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Abstract—Over-the-air federated edge learning (Air-FEEL) has
emerged as a communication-efficient solution to enable dis-
tributed machine learning over edge devices by using their
data locally to preserve the privacy. By exploiting the waveform
superposition property of wireless channels, Air-FEEL allows
the “one-shot” over-the-air aggregation of gradient-updates to
enhance the communication efficiency, but at the cost of a
compromised learning performance due to the aggregation errors
caused by channel fading and noise. This paper investigates the
transmission power control to combat against such aggregation
errors in Air-FEEL. Different from conventional power control
designs (e.g., to minimize the individual mean squared error
(MSE) of the over-the-air aggregation at each round), we consider
a new power control design aiming at directly maximizing the
convergence speed. Towards this end, we first analyze the con-
vergence behavior of Air-FEEL (in terms of the optimality gap)
subject to aggregation errors at different communication rounds.
It is revealed that if the aggregation estimates are unbiased, then
the training algorithm would converge exactly to the optimal
point with mild conditions; while if they are biased, then the
algorithm would converge with an error floor determined by the
accumulated estimate bias over communication rounds. Next,
building upon the convergence results, we optimize the power
control to directly minimize the derived optimality gaps under the
cases without and with unbiased aggregation constraints, subject
to a set of average and maximum power constraints at individual
edge devices. We transform both problems into convex forms,
and obtain their structured optimal solutions, both appearing in
a form of regularized channel inversion, by using the Lagrangian
duality method. Finally, numerical results show that the proposed
power control policies achieve significantly faster convergence
for Air-FEEL, as compared with benchmark policies with fixed
power transmission or conventional MSE minimization.
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I. INTRODUCTION

In the pursuit of ubiquitous brain-inspired intelligence en-

visioned in the future 6G networks [2], recent years have wit-

nessed the spreading of artificial intelligence (AI) algorithms

from the cloud to the network edge, resulting in an active

area called edge intelligence [3], [4]. The core research issue

therein is to allow low-latency and privacy-aware access to

rich mobile data for intelligence distillation. To this end, the

federated edge learning (FEEL) framework has been proposed

recently, which distributes the AI-model training task over

edge devices by using their data locally to preserve the privacy

[5]–[10]. Essentially, the FEEL framework corresponds to the

implementation of distributed gradient descent over wireless

networks. Such a training process is to find optimized AI-

model parameters by minimizing a properly designed loss

function in an iterative manner. Specifically, at each iteration

or communication round, the edge server first broadcasts the

global AI-model parameters to edge devices, such that all edge

devices can synchronize their local models; next, the edge

devices compute their respective local gradient updates using

the local data and then upload them to the edge server for

further aggregation to update the global model. Although the

uploading of high-volume raw data is avoided, the gradient

aggregation process in FEEL may still suffer from a com-

munication bottleneck due to the high dimensionality of each

gradient update, especially when the number of edge devices

sharing the same wireless medium becomes large. To tackle

this issue, one promising solution called over-the-air FEEL

(Air-FEEL) has been proposed (see, e.g., [11]), which exploits

the over-the-air computation (AirComp) technique for “one-

shot” aggregation by allowing multiple devices’ concurrent

update transmission. In such a way, the communication and

computation are integrated in a joint design by exploiting the

superposition property of a multiple access channel (MAC)

[12], [13].

The idea of AirComp was first proposed in [12] for data

aggregation in sensor networks, which harnessed the “interfer-

ence” via structured codes to help functional computation over

a MAC. The subsequent work [13] showed that for Gaussian

independent and identically distributed (i.i.d.) data sources,

the uncoded (analog) transmission is optimal to minimize the

distortion in AirComp. Building on the information-theoretic

studies, the analog AirComp implementation has attracted

growing research interests (see, e.g., [14]–[21]). For instance,

the synchronization issue in AirComp was addressed in [14]

http://arxiv.org/abs/2106.09316v3
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via a shared clock broadcasting from edge server to devices;

the optimal power control policies for AirComp over fading

channels were derived in [15], [16] to minimize the aver-

age computation distortion; and the cooperative interference

management for multi-cell AirComp networks was developed

in [17]. Furthermore, multiple-input-multiple-output (MIMO)

spatial multiplexing was exploited in AirComp to enable

vector-valued functional computation targeting multi-modal

sensing [18], [19] and to enhance the computational accuracy

[20], [21].

Recently, AirComp found its merits in the new context of

FEEL, namely the Air-FEEL, to enable the communication-

efficient gradient aggregation at each communication round

[22]. Prior works studied the Air-FEEL system from different

perspectives such as devices scheduling [23]–[26], beam-

forming design [27], [28], update compression [29]–[31],

and hyper-parameters (such as learning rates) optimization

[32]–[34]. For instance, a broadband Air-FEEL solution was

proposed in [23], where a set of communication-learning

tradeoffs were derived to guide the device scheduling. Along

this vein, the authors in [24] proposed an energy-aware device

scheduling strategy to minimize the expected improvement of

loss function value at each communication round, while the

authors in [25] proposed a threshold-based device selection

scheme to achieve reliable model aggregation. Then, for

multi-antenna Air-FEEL systems, a joint design of device

scheduling and receive beamforming was presented in [27],

and a unit-modulus analog receive beamforming design was

proposed in [28]. As for update compression, a source-coding

algorithm exploiting gradient sparsification was proposed in

[29], [30], and a compressive-sensing based gradient aggrega-

tion approach was developed in [31] to further improve the

communication efficiency. Lately, Air-FEEL based on digital

modulation was proposed in [35] and further extended in

[36], which features one-bit quantization and modulation at

the edge devices and majority-vote based decoding at the

edge server. Besides improving the communication efficiency,

the Air-FEEL has also been exploited for enhancing the data

privacy, in which individual updates are not accessible by the

centralized edge server, thus eliminating the risk of potential

model inversion attack [37]–[40].

Generally speaking, the employment of AirComp intro-

duces an essential design tradeoff in Air-FEEL between the

the enhanced communication efficiency (via the over-the-air

aggregation) and the degraded learning performance (due to

the aggregation error caused by the channel fading and noise

perturbation). Due to such a tradeoff, how to analytically char-

acterize the training performance (e.g., in terms of accuracy

and latency) is a challenging task has not been investigated in

the literature yet. Also notice that the aggregation distortion

in different communication rounds may have distinct impacts

on the learning performance [41], thus making the above

tradeoff even more complicated. To deal with these issues,

it is crucial to properly control the transmission power at

different edge devices over different communication rounds.

In the literature, there have been prior works on Air-FEEL

[23]–[27], [29], [33], [37] that considered simplified channel

inversion (or its variants) to align the channel gains among

different devices, which, however, may lead to amplified noise

at receiver and thus is highly suboptimal especially in deep

fading scenarios. Some other works [34], [42] designed the

power control with the objective of minimizing the individual

aggregation distortion (e.g., mean squared error (MSE)) at

each communication round, which, however, may not perform

well as the aggregation distortion in different communication

rounds may have distinct impact on the learning performance

[41]. Therefore, how to obtain the analytic learning perfor-

mance of Air-FEEL in terms of the power control variables,

and accordingly optimize the power control decisions for

optimizing the learning performance still remains unknown.

This thus motivates the current work.

This paper studies an Air-FEEL system consisting of multi-

ple edge devices and one edge server. By considering smooth

learning models satisfying the Polyak-Łojasiewicz inequality,

we establish an elegant learning performance metric, namely

the optimality gap, linking with the aggregation errors over

communication rounds. Accordingly, we propose optimized

power control policies for directly minimizing the optimality

gap. The main contributions are summarized as follows.

• Convergence analysis: First, we analyze the optimality

gap of the loss function over different communication

rounds, which characterizes the impact of gradient aggre-

gation errors (i.e., the bias and MSE of the gradient aggre-

gation estimates) on the convergence performance of the

Air-FEEL algorithm. It is revealed that if the aggregation

errors are unbiased, the optimality gap will diminish to

zero with sufficiently many communication rounds and

properly chosen step sizes; while if the aggregation errors

are biased, the optimality gap would reach to an error

floor whose height is equal to the accumulated estimate

bias over communication rounds. It is also shown that

within a finite number of communication rounds, the

aggregation errors at later rounds (with higher weights)

contribute more to the optimality gap than those at earlier

rounds.

• Power control optimization: Next, building on the con-

vergence results, we formulate new power control opti-

mization problems for Air-FEEL under the cases without

and with unbiased aggregation constraints, respectively,

with the objective of minimizing the optimality gap, sub-

ject to a set of average and maximum power constraints at

individual edge devices. Fortunately, both power control

problems can be transformed into convex forms, which

can thus be optimally solved by the Lagrangian duality

method. The optimized power control solutions estab-

lish a regularized channel inversion structure, where the

regularization term at each edge device is related to all

other devices’ average power budgets for the case without

unbiased aggregation constraints, and is only related to

the own device’s individual average power budget for the

case with unbiased aggregation constraints.

• Performance evaluation: Finally, we conduct extensive

simulations to evaluate the performance of the optimized

power control for Air-FEEL by considering the ridge

regression with synthetic dataset, and handwritten digit

recognition using MNIST dataset with a convolution
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neural network (CNN). It is shown that the proposed

power control policies in the cases without and with un-

biased aggregation constraints achieve significantly faster

convergence rate (or lower optimality gap), than the

benchmarking fixed power transmission and conventional

MSE minimization schemes, as the proposed policies can

better handle the aggregation errors over rounds based on

their contributions to the optimality gap. It is also shown

that the the case without unbiased aggregation constraints

can achieve lower optimality gap than that with biased

aggregation constaints when some mild conditions are

met. This validates our analysis that the Air-FEEL can

always converge to the optimal point with unbiased

gradient aggregation.

Notations: Bold lowercase letters refer to column vectors.

E(·) denotes the expectation operation; the superscript T rep-

resents the transpose operation; ∇ is the gradient operator, and

(x)+ , max{0, x}. For a set A, |A| denotes its cardinality.

‖a‖ denotes the Euclidean norm of vector a. I denotes the

identity matrix. For ease of reference, the main notations used

in this paper are listed in Table I.

Table I
LIST OF MAIN NOTATIONS

Symbol Description

K Set of edge devices with K , {1, ...,K}

N Set of communication rounds with N , {1, · · · , N}
w ∈ R

q Parameter vector of learning model with size q
w⋆ Optimal parameter vector

Dk Local dataset at edge device k ∈ K with cardinality Dk

(xi, τi) The i-th sample xi in dataset with ground-true label τi
f(w,xi, τi) Sample-wise loss function for quantifying the prediction

error of the learning model w on xi in terms of τi
Fk(w) Local loss function of the learning model vector w on Dk

at edge device k ∈ K
F (w) Global loss function at the parameter model w

g
(n)
k

Local gradient estimate in edge device k at communica-
tion round n

ḡ(n) Global gradient estimation at communication round n

ĝ(n) Global gradient received at the edge server through over-
the-air aggregation at communication round n

η(n) Learning rate at communication round n

ε
(n) Aggregation error at each communication round n

∇F (w) Ground-truth gradient of the loss function evaluated at
point w ∈ R

q

F ⋆ Optimal loss function value that is equal to F (w⋆)

ĥ
(n)
k

Complex channel coefficient from edge device k ∈ K to
the edge server at communication round n

z(n) ∈ R
q AWGN with z(n) ∼ CN(0, σ2zI)

p
(n)
k

Power scaling factor in edge device k ∈ K at communi-
cation round n

y(n) Received signal in edge server at communication round n

II. SYSTEM MODEL

We consider an Air-FEEL system consisting of an edge

server and K edge devices, as shown in Fig. 1. With the

coordination of the edge server, the edge devices cooperatively

train a shared machine learning model via the over-the-air

gradient aggregation as elaborated in the sequel.

A. Learning Model

We assume that the learning model is represented by the

parameter vector w ∈ R
q with w = [w1, · · · , wq]

T and q

Edge server

Edge 
devices

Local
dataset

Multiple access 
channel

Gradient !"#$%&'

Broadcast of global gradient

Gradient averaging 

ḡ
(n)

=
1

K

∑

k∈K

g
(n)
k

g
(n)
K

g
(n)
k

g
(n)
1

Figure 1. Illustration of over-the-air federated edge learning (Air-FEEL).

denoting the learning model size. Let Dk denote the local

dataset at edge device k, in which the i-th sample and its

ground-true label are denoted by xi and τi, respectively. Define

f(w,xi, τi) as the sample-wise loss function quantifying the

prediction error of the learning model w on sample xi with

respect to (w.r.t.) its ground-true label τi. Then the local loss

function of the learning model vector w on Dk is

Fk(w) =
1

|Dk|

∑

(xi,τi)∈Dk

f(w,xi, τi). (1)

For notational convenience, we denote f(w,xi, τi) as fi(w)
and assume that the sizes of local datasets at different edge

devices are uniform, i.e., D , Dk = |Dk|, ∀k ∈ K. Then,

the global loss function on all the distributed datasets Dtot =
∪k∈KDk evaluated on parameter vector w is given by

F (w) =
1

Dtot

∑

k∈K

DkFk(w) =
1

K

∑

k∈K

Fk(w), (2)

where Dtot = |Dtot| = KD.

The objective of the training process is to find a desired

parameter vector w for minimizing the global loss function

F (w) in (2), i.e.,

w⋆ = argmin
w

F (w). (3)

Instead of uploading all the local data to the edge server

for centralized training, we consider the Air-FEEL, in which

the learning process in (3) is implemented iteratively in a

distributed manner using the federated stochastic gradient

descent (FedSGD) algorithm1 [44] as detailed in the following.

Consider a particular iteration or communication round n,

with the learning model before updating being denoted by

w(n). In this round, each edge device k ∈ K computes the

local gradient estimate of the loss function as g
(n)
k , based on

a randomly sampled mini-batch from the local dataset. We

denote the set of mini-batch data used by the edge device k

1Besides the FedSGD, the federated averaging (FedAvg) is an alternative
method for Air-FEEL, which can be implemented with multiple local updates
at edge devices together with the model averaging at the edge server. This
paper considers the FedSGD (instead of FedAvg), mainly for the purpose of
facilitating the convergence analysis and gaining insightful results. Further-
more, the FedSGD enjoys the advantages of being more robust to the non-i.i.d.
data [43]. Nevertheless, our design and analysis principles in this paper can
be extended to the case with FedAvg, which is left for future work.
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at round n as D̃
(n)
k and its size mb = |D̃

(n)
k |, ∀k ∈ K. Then

we have

g
(n)
k =

1

mb

∑

(xi,τi)∈D̃k

∇fi

(

w(n)
)

. (4)

Next, the edge devices upload their local gradients to the edge

server for aggregation. If the aggregation is error-free, then the

global gradient estimate can be obtained as an average of local

gradient estimates from all different edge devices, i.e.,2

ḡ(n) =
1

K

∑

k∈K

g
(n)
k . (5)

Then, the edge server broadcasts the obtained global gradient

estimate ḡ(n) to the edge devices, based on which different

edge devices can synchronously update their own learning

model via

w(n+1) = w(n) − η(n) · ḡ(n), (6)

where η(n) is the learning rate at communication round n.

The above procedure continues until the convergence criteria

is met or the maximum number of communication rounds is

achieved.

Notice that this paper considers the over-the-air aggregation

approach to achieve fast gradient aggregation, based on which

the received aggregated gradient at the edge server in (5) may

be erroneous due to perturbation caused by the channel fading

and noise. This issue will be elaborated in Section II-C.

B. Basic Assumptions on Learning Model

To facilitate the convergence analysis, we make several

assumptions on the loss functions and gradient estimates,

which are commonly made in the literature [25], [28], [34],

[37], [45], [46].

Assumption 1 (Smoothness). Let ∇F (w) denote the gradient

of the loss function evaluated at point w ∈ R
q . Then

there exists a non-negative constant vector L ∈ R
q with

L = [L1, · · · , Lq]
T , such that

F (w)−
[
F (w′)+∇F (w)T (w−w′)

]

≤
1

2

q
∑

i=1

Li(wi − w′
i)

2, ∀w,w′ ∈ R
q.

Assumption 1 guarantees that the gradient of the loss

function would not change arbitrarily quickly w.r.t. the pa-

rameter vector. Note that such an assumption is essential for

convergence analysis of gradient decent methods to provide a

good indicator for how far to decrease to the minimum loss.

Assumption 2 (Polyak-Łojasiewicz inequality). Let F ⋆ de-

note the optimal loss function value to problem (3). There

exists a constant δ ≥ 0 such that the global loss function

F (w) satisfies the following Polyak-Łojasiewicz condition:

‖∇F (w)‖2 ≥ 2δ(F (w)− F ⋆). (7)

2Although we consider the same data size D at different edge devices,
our proposed Air-FEEL can be easily extended to the case when they have
different data sizes, i.e., Dk’s are different. In this case, we only need to revise
the global gradient estimate in (5) as a weighted-average of the local ones,

i.e., ḡ(n) =
∑

k∈K

Dk

Dtot
g
(n)
k

. Via AirComp, the desired weighted aggregation

of the local gradient estimate can be easily attained by adding an additional

pre-processing ψ(·) on the transmitted signal sk with ψ(sk) =
∑

k∈K

Dk

Dtot
sk .

Notice that Assumption 2 is more general than the standard

assumption of strong convexity [47]. The inequality in (7)

simply requires that the gradient grows faster than a quadratic

function when away from the optimal function value and

implies that every stationary point is a global minimum.

Typical loss functions satisfying Assumptions 1 and 2 include

logistic regression, linear regression, and least squares.

Assumption 3 (Variance bound). The local gradient estimates

{gk}, defined in (4), where the index n is omitted for simplic-

ity, are assumed to be independent and unbiased estimates of

the batch gradient ∇F (w) with coordinate bounded variance,

i.e.,

E[gk] = ∇F (w), ∀k ∈ K, (8)

E[(gk,i −∇F (wi))
2] ≤

σ2
i

mb

, ∀k ∈ K, ∀i, (9)

where gk,i and ∇F (wi) are defined as the i-th element of

{gk} and ∇F (w), respectively, σ = [σ1, · · · , σq] is a vector

of non-negative constants, and the denominator mb accounts

for the fact that the local gradient estimate is computed over

a mini-batch of data with size mb.

Notice that the following convergence analysis and power

control optimization in Sections III and IV are based on As-

sumptions 1-3, similarly as in prior work [10], [25], [28], [34],

[37]. Nevertheless, as shown in simulations in Section V-C, the

proposed power control designs can still work well for CNN

when such assumptions are relaxed.

C. Over-the-Air Aggregation for FEEL

The distributed training latency for FEEL is dominated by

the update aggregation process, especially when the number of

devices becomes large. Therefore, we focus on the aggregation

process over a MAC. To accelerate the learning, we employ

the AirComp technique for fast gradient aggregation by ex-

ploiting the superposition property of the MAC. To implement

AirComp, during the gradient-uploading phase, all devices

transmit simultaneously over the same time-frequency block

with proper phase compensation. For ease of exposition, it is

assumed that the channel coefficients remain unchanged within

each communication round, but may change over different

rounds. It is also assumed that the edge devices can perfectly

know their own channel state information (CSI), so they can

compensate for the channel phase differences.

Let ĥ
(n)
k denote the complex channel coefficient from edge

device k to the edge server at communication round n, and

h
(n)
k denote its post-compensated real-valued channel coeffi-

cient, i.e., h
(n)
k = |ĥ

(n)
k |. Then, the received aggregated signal

via AirComp (after phase compensation) is given by

y(n) =
∑

k∈K

h
(n)
k

√

p
(n)
k g

(n)
k + z(n), (10)

in which p
(n)
k denotes the power scaling factor at edge device

k, and z(n) ∈ R
q denotes the additive white Gaussian noise

(AWGN) with z(n) ∼ CN (0, σ2
zI) and σ2

z being the noise

power. Based on (10), the global gradient estimate at the edge
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server is given by3

ĝ(n) =
y(n)

K
. (11)

It thus follows from (10) and (11) that the aggregation error

caused by the over-the-air aggregation in global gradient

estimation is given by

ε
(n) = ĝ(n) − ḡ(n)

=
1

K

∑

k∈K

(

h
(n)
k

√

p
(n)
k − 1

)

g
(n)
k

︸ ︷︷ ︸

Signal misalignment error

+
z(n)

K
︸︷︷︸

Noise

, (12)

which consists of two components representing the signal

misalignment error and noise-induced error, respectively.

The devices can adaptively adjust their transmit powers

by controlling {p
(n)
k } to reduce the aggregation errors for

enhancing the learning performance. We consider that each

edge device k ∈ K is subject to a maximum power budget

P̂max
k for each communication round, and an average power

budget denoted by P̂ ave
k over the whole training period.

Therefore, we have

1

q
E

(∥
∥
∥
∥

√

p
(n)
k g

(n)
k

∥
∥
∥
∥

2
)

≤ P̂max
k , ∀k ∈ K, ∀n ∈ N , (13)

where q is the size of the gradient vector g
(n)
k , as well as

1

Nq

∑

n∈N

E

(∥
∥
∥
∥

√

p
(n)
k g

(n)
k

∥
∥
∥
∥

2
)

≤ P̂ ave
k , ∀k ∈ K, (14)

where N , {1, · · · , N} with N denoting the total number of

communication rounds for model training.

In the following Section III, we will establish a direct learn-

ing performance metric, namely the optimality gap, linking

with the aggregation errors over communication rounds. Based

on the analysis, in Section IV we will propose to minimize

the optimality gap via optimizing the power control subject to

a set of individual maximum and average power constraints.

III. CONVERGENCE ANALYSIS

In this section, we present a convergence analysis frame-

work for the FEEL in the presence of aggregation errors by

using the optimality gap as the performance metric, which

sheds light on how the imperfect gradient updates affect the

convergence of FEEL in general. As will be shown shortly,

depending on whether the aggregated gradient estimate is

unbiased or not, the FEEL will have different convergence

behaviors.

A. Optimality Gap versus Aggregation Errors

Suppose that at each communication round n, F
(
w(n)

)

is the value of loss function w.r.t. the parameter vector w(n).

Thus, with the lossy gradient aggregation in (12), the update of

learning model at communication round n in (6) is represented

as

w(n+1) = w(n) − η(n) ·
(

ḡ(n) + ε
(n)
)

, (15)

3Unlike the conventional AirComp, using an additional scaling factor at
the receiver, in (11) we directly use y(n)/K as the estimated value of global

gradient for Air-FEEL. This is due to the fact that the learning rate η(n) in
(6) can play the equivalent role of scaling factor, and thus dedicated scaling
factors are not needed as in conventional AirComp.

where ε
(n) represents the induced random aggregation error

(including the signal misalignment error and noice-induced

error) at each communication round n. Let E[ε(n)] and

E[‖ε(n)‖2] denote the bias and MSE of the global gradient

estimate at each communication round n, respectively, where

the expectation operation is taken over the stochastic sample

selection on the local gradient estimation over a mini-batch

dataset, as well as the receiver noise due to AirComp.

Depending on the value of E[ε(n)], we define two cases for

the gradient aggregation.

• Case I without unbiased aggregation constraints: The

aggregation can either be biased (i.e., E[ε(n)] 6= 0)

or unbiased (E[ε(n)] = 0). In this case, no additional

constraints on the aggregation biasness are introduced

during the power control designs.

• Case II with unbiased aggregation constraints: The ag-

gregation is unbiased, i.e., the constraints E[ε(n)] =
0, ∀n ∈ N , are introduced in the aggregation designs

(e.g., transmission power control).

Define the optimality gap after N communication rounds

as F
(
w(N+1)

)
−F ⋆ and L , ‖L‖∞. Then, by considering a

properly chosen fixed learning rate, we establish the following

theorem.

Theorem 1 (Impact of aggregation error on convergence with

a fixed learning rate). Under Assumption 1, suppose that the

FEEL algorithm is implemented with a fixed learning rate η ,

η(n), ∀n ∈ N , with 0 ≤ η ≤ 2
2+L

≤ 1
δ

and fixed mini-batch

size mb = N [48]. Then, the expected optimality gap satisfies

the inequality (16), where C = 1− δη with 0 < C < 1.

Proof: See Appendix A.

Remark 1. From Theorem 1, we have the following obser-

vations.

• The FEEL algorithm converges eventually as N → ∞,

with the optimality gap possibly landed on an error

floor instead of diminishing to zero. It is observed

from (16) that the upper bound of the optimality gap

can be decomposed into two components, i.e., the error

floor
∑

n∈N

CN−n

2

∥
∥E
[
ε
(n)
]∥
∥
2

that cannot vanish as N

grows, and the gap to the error floor, denoted by ∆(N),
which can approach zero as N increases. To see this,

∆(N) is observed to contain four terms related to the

initial optimality gap (E
[
F
(
w(1)

)]
− F ⋆), the gradient

variance
η2L‖σ‖2

2

2δNK2 , as well as the bias E
[
ε
(n)
]

and MSE

E

[∥
∥ε

(n)
∥
∥
2
]

of the aggregation errors, respectively. All

the four terms diminish as N goes to infinity, or become

negligible under a sufficiently small learning rate. On

the other hand, the error floor is determined by the

accumulated bias
∥
∥E
[
ε
(n)
]∥
∥
2

over rounds. Hence, as

N increases, the error floor would approach a constant

while the gap to it ∆(N) would vanish. Such effects are

illustrated in Fig. 2.

• The FEEL algorithm shows different convergence

behaviors depending on whether the gradient aggre-

gation is biased or not. For the case with unbiased

aggregation constraints, i.e., E
[
ε
(n)
]
= 0, ∀n ∈ N , as
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E

[

F
(

w(N+1)
)]

− F ⋆ ≤
∑

n∈N

CN−n

2
‖E
[

ε
(n)
]

︸ ︷︷ ︸

Bias

‖2

︸ ︷︷ ︸

Error floor

+

CN
(

E

[

F
(

w(1)
)]

− F ⋆
)

︸ ︷︷ ︸

Initial optimality gap

+
∑

n∈N

CN−n

2








η2L ‖σ‖22
2δNK2
︸ ︷︷ ︸

Gradient variance

+η2L2 ≤ ‖E
[

ε
(n)
]

︸ ︷︷ ︸

Bias

‖2+η2LE

[∥
∥
∥ε

(n)
∥
∥
∥

2
]

︸ ︷︷ ︸

MSE








︸ ︷︷ ︸

The gap to the error floor ∆(N)

. (16)

 Communication rounds

O
p

ti
m

a
lit

y
 g

a
p

 Error floor:

N0

The gap to the error floor

∆(N)

∑

n∈N

CN−n

2

∥

∥

∥
E

[

ε
(n)

]
∥

∥

∥

2

Figure 2. Illustration of contraction region on the learning performance.

N becomes sufficiently large, the model under training

can converge exactly to the optimal point with minimum

training loss with zero error floor in the training process.

By contrast, for the case without unbiased aggregation

constraints, the model under training may only converge

to a neighborhood of the optimal point (if the aggregation

is biased). However, the case with unbiased aggregation

constraints may converge slower compared with its coun-

terpart without unbiased aggregation constraints, as the

enforcement of the unbiasness generally comes at a cost

of elevated MSE that translates to a larger gap to the

error floor ∆(N). The observation is also validated via

experiments shown in Section V.

• Latter rounds are more sensitive to aggregation error.

The bias E
[
ε
(n)
]

and MSE E

[∥
∥ε

(n)
∥
∥
2
]

at the later

communication rounds (with large n) contribute more on

the optimality gap than that of the initial rounds (with

small n), as the effect of the aggregation error introduced

at early stages (small n) is discounted by CN−n on the

right hand side of (16).

Theorem 1 can be extended to the case with diminishing

learning rates, as shown in the following corollary.

Corollary 1 (Impact of aggregation error on convergence with

diminishing learning rates). Under Assumption 1, suppose

that the FEEL algorithm is implemented with fixed mini-

batch size mb = N , and diminishing learning rates η(n) =
u

n+v
, ∀n ∈ N [49], with v > 0 and u > 1/δ, such that

η(1) ≤ 2
2+L

. Then, the expected optimality gap satisfies the

following inequality:

E

[

F
(

w(N+1)
)]

−F ⋆ ≤

(
∏

n∈N

C(n)

)
(

E

[

F
(

w(1)
)]

−F ⋆
)

+

N∑

n=1

J (n)

(

(η(n))2L ‖σ‖22
2mbK2

+ (η(n))2L2
∥
∥
∥E

[

ε
(n)
]∥
∥
∥

2
)

+

N∑

n=1

J (n)
∥
∥
∥E

[

ε
(n)
]∥
∥
∥

2

+

N∑

n=1

J (n)(η(n))2LE

[∥
∥
∥ε

(n)
∥
∥
∥

2
]

, (17)

where C(n) = 1− δη(n) and J (n) ,
∏

N
i=n

C(i)

2C(n) , ∀n ∈ N .

Proof: This proof is similar to that for Theorem 1, and

thus is omitted here for brevity.

Note that similar observations can be made from Corollary 1

as those in Remark 1. An additional tradeoff lies in designing

the learning rate η(n). It is observed that when the learning rate

is small, the error floor would be large as C(n) (or J (n)) tends

to be increasing, whereas the gap to the error floor becomes

small.

B. Optimality Gap versus Transmission Power Control

In this subsection, we obtain the optimality gap w.r.t. the

transmission power control variables based on the results in

Section III-A, in order to facilitate the power control design in

the sequel. In particular, we consider the Air-FEEL in the cases

without and with unbiased aggregation constraints E
[
ε
(n)
]
=

0, ∀n ∈ N .

Before proceeding, we introduce the following assumption

on the sample-wise gradient bound.

Assumption 4 (Bounded sample-wise gradient). At any com-

munication round n, the sample-wise gradient ∇f
(
w(n),x, y

)

for any training sample (x, y) is upper bounded by a given

constant G(n), i.e.,
∥
∥
∥∇f

(

w(n),x, y
)∥
∥
∥ ≤ G(n), ∀n ∈ N . (18)

Based on Assumption 4, we have
∥
∥∇F (w(n))

∥
∥ ≤

max(x,y)∈D

∥
∥∇f

(
w(n),x, y

)∥
∥ ≤ G(n). Together with As-

sumption 3, it thus holds that

E

[∥
∥
∥g

(n)
k

∥
∥
∥

2
]

≤
∥
∥
∥∇F (w(n))

∥
∥
∥

2

+
‖σ‖22
mb

≤ Ĝ(n) ,

(

G(n)
)2

+
‖σ‖22
mb

. (19)

1) Convergence Analysis for Air-FEEL in Case I: In this

part, we formally characterize the convergence behavior of
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Air-FEEL w.r.t. the transmission power in the case without

unbiased aggregation constraints.

According to the definition of ε
(n) in formula (12), at

each communication round n, the bias and MSE of gradient

estimates through the over-the-air gradient aggregation for Air-

FEEL are derived as
∥
∥
∥E

[

ε
(n)
]∥
∥
∥ =

∥
∥∇F (w(n))

∥
∥

K

(
∑

k∈K

h
(n)
k

√

p
(n)
k −K

)

≤
G(n)

K

(
∑

k∈K

h
(n)
k

√

p
(n)
k −K

)

, (20)

E

[∥
∥
∥ε

(n)
∥
∥
∥

2
]

≤

∥
∥∇F (w(n))

∥
∥
2
+

‖σ‖2
2

mb

K

∑

k∈K

(

h
(n)
k

√

p
(n)
k −1

)2

+
σ2
zq

K2

≤
Ĝ(n)

K

∑

k∈K

(

h
(n)
k

√

p
(n)
k − 1

)2

+
σ2
zq

K2
, (21)

where both inequalities follow from Assumptions 3 and 4. By

substituting (20) and (21) into (17) and (16), we can have the

following proposition.

Proposition 1 (Optimality gap for Air-FEEL without unbiased

aggregation constraints). The expected optimality gap for Air-

FEEL in the case without unbiased aggregation constraints is

upper bounded by

E

[

F
(

w(N+1)
)]

−F ⋆ ≤
∏

n∈N

C(n)
([

F
(

w(1)
)]

− F ⋆
)

+

N∑

n=1

J (n)



A(n)

(
∑

k∈K

h
(n)
k

√

p
(n)
k −K

)2

+
(η(n))2L ‖σ‖22

2mbK2





+
N∑

n=1

J (n)

(

B(n)
∑

k∈K

(

h
(n)
k

√

p
(n)
k −1

)2

+
(η(n))2σ2

zLq

K2

)

, (22)

where A(n) =
(1+(η(n))2L2)(G(n))2

K2 , B(n) = (η(n))2LĜ(n)

K
, and

J (n) =
∏N

i=n
C(i)

2C(n) for the diminishing learning rates η(n) =
u

n+v
, ∀n ∈ N , with v > 0, u > 1/δ, and η(1) ≤ 2

2+L
; while

A(n) =
(1+η2L2)(G(n))2

K2 , B(n) = η2LĜ(n)

K
, and J (n) = CN−n

2

for the fixed learning rate with η = η(n), ∀n ∈ N , with 0 ≤
η ≤ 2

2+L
≤ 1

δ
.

2) Convergence Analysis for Air-FEEL in Case II: Next,

we consider the case with unbiased aggregation constraints,

where we have E
[
ε
(n)
]
= 0, ∀n ∈ N . Similar to Proposition

1, we have the following proposition.

Proposition 2 (Optimality gap for Air-FEEL with unbiased

aggregation constraints). The expected optimality gap for

Air-FEEL in the case with unbiased aggregation constraints

is upper bounded by

E

[

F
(

w(N+1)
)]

− F ⋆ ≤
∏

n∈N

C(n)
([

F
(

w(1)
)]

− F ⋆
)

+

N∑

n=1

J (n)

(

B(n)
∑

k∈K

(

h
(n)
k

√

p
(n)
k − 1

)2

+
(η(n))2σ2

zLq

K2

)

+
N∑

n=1

J (n) (η
(n))2L ‖σ‖22
2mbK2

, (23)

where B(n) = (η(n))2LĜ(n)

K2 and J (n) =
∏N

i=n C(i)

2C(n) for the

diminishing learning rates η(n) = u
n+v

, ∀n ∈ N , with

v > 0, u > 1/δ, and η(1) ≤ 2
2+L

; while B(n) = η2LĜ(n)

K2 and

J (n) = CN−n

2 for the fixed learning rate with η = η(n), ∀n ∈
N , with 0 ≤ η ≤ 2

2+L
≤ 1

δ
.

Since the derived convergence results for both the cases

of diminishing and fixed learning rates share similar form,

the subsequent power control optimization will be presented

targeting the case with diminishing learning rates only for

brevity, while the yielded insights hold for both cases.

IV. POWER CONTROL OPTIMIZATION

Given the convergence results of Air-FEEL in the preceding

section, we are now ready to present the power control

optimization polices for speeding up the convergence rate in

this section.

To start with, we first reformulate the power constraints in

(13) and (14) by leveraging Assumption 4 and inequality (19)

to avoid the requirement of non-causal gradient information

g
(n)
k . Hence, the individual power constraints at each commu-

nication round and the entire training process are respectively

reformulated as

p
(n)
k Ĝ(n) ≤ Pmax

k , ∀k ∈ K, n ∈ N , (24)

1

N

∑

n∈N

p
(n)
k Ĝ(n) ≤ P ave

k , ∀k ∈ K, (25)

where Pmax
k , qP̂max

k and P ave
k , qP̂ ave

k , ∀k ∈ K, are defined

for notational convenience.

A. Power Control Optimization for Case I

We start with the case I without unbiased aggregation

constraints. Discarding the irrelevant terms in (22) in Propo-

sition 1 (i.e., the terms related to the initial optimality gap

E
[
F
(
w(1)

)]
−F ⋆, the gradient variance bound

(η(n))2L‖σ‖2
2

2mbK2 ,

and the noise power
(η(n))2σ2

zLq

K2 ) in Proposition 1, we denote

Φ̃({p
(n)
k }) in the following as the effective optimality gap to

be optimized.

Φ̃({p
(n)
k }) ,

N∑

n=1

J (n)A(n)

(
∑

k∈K

h
(n)
k

√

p
(n)
k −K

)2

+

N∑

n=1

J (n)B(n)
∑

k∈K

(

h
(n)
k

√

p
(n)
k − 1

)2

. (26)

The optimization problem is thus formulated as

P1 : min
{p

(n)
k

≥0}

Φ̃({p
(n)
k })

s.t. (24) and (25).

By introducing a set of auxiliary variables, p̂
(n)
k =

√

p
(n)
k , ∀k ∈ K, n ∈ N , the objective is re-expressed as

Φ({p̂
(n)
k }) ,

N∑

n=1

J (n)A(n)

(
∑

k∈K

h
(n)
k p̂

(n)
k −K

)2

+

N∑

n=1

J (n)B(n)
∑

k∈K

(

h
(n)
k p̂

(n)
k − 1

)2

, (27)



8

and problem (P1) is re-expressed as

P1.1 : min
{p̂

(n)
k

≥0}

Φ({p̂
(n)
k })

s.t. q̂
(n)
k ≤ Pmax

k,n , ∀k ∈ K, n ∈ N (28)

1

N

∑

n∈N

(

q̂
(n)
k

)2

Ĝ(n) ≤ P ave
k , ∀k ∈ K, (29)

where constraints (28) and (29) follow from (24) and (25),

respectively, and Pmax
k,n ,

√
Pmax

k

Ĝ(n)
, ∀k ∈ K, n ∈ N . Problem

(P1.1) is convex and can thus be optimally solved by the stan-

dard convex optimization techniques such as the interior point

method [50]. Alternatively, to gain engineering insights, we

resort to the Lagrange duality method to derive the structured

optimal solution for problem (P1.1). Let {p̂
(n)opt
k } denote the

optimal solution to problem (P1.1), and ϕopt
k , ∀k ∈ K the

optimal dual variable associated with the k-th constraint in

(29). Then we have the following proposition.

Proposition 3. The optimal solution p̂
(n)opt
k , ∀k ∈ K, n ∈ N

to problem (P1.1) is

p̂
(n)opt
k = min







B(n) +A(n)K

M
(n)
k +A(n)M

(n)
k

∑

i∈K

h
(n)
i

M
(n)
i

, Pmax
k,n






, (30)

where M
(n)
k , B(n)h

(n)
k +

ϕ
opt
k

Ĝ(n)

NJ(n)h
(n)
k

, ∀k ∈ K, n ∈ N .

Proof: See Appendix B.

According to Proposition 3, the optimal power scaling factors

p
(n)opt
k , ∀k ∈ K, n ∈ N to problem (P1) is

p
(n)opt
k =min













B(n) +A(n)K

M
(n)
k +A(n)M

(n)
k

∑

i∈K

h
(n)
i

M
(n)
i







2

,
(
Pmax
k,n

)2






. (31)

Remark 2. According to Proposition 3, the optimal {p̂
(n)opt
k }

(equivalently the optimal power scaling factor p
(n)opt
k =

(p̂
(n)opt
k )2, ∀k ∈ K, n ∈ N ) exhibits a regularized channel

inversion structure with the regularized term
∑

i∈K

A(n)h
(n)
i

M
(n)
k

M
(n)
i

related to all dual variables ϕopt
k associated with the average

power budgets at all edge devices in (29). Considering the

special case when the average power budgets {P ave
k } at all de-

vices are sufficiently large, such that the dual variables become

zero at the same time (i.e., ϕopt
k = 0, ∀k ∈ K, n ∈ N ). In this

case, the optimal power scaling strategy reduces to the channel

inversion policy, i.e., p
(n)opt
k = min

[

1
(

h
(n)
k

)2 ,
(

Pmax
k,n

)2
]

,

∀k ∈ K, n ∈ N . Interestingly, this result is equivalent

to minimizing the MSE in isolation at each communication

round. In other words, in the special case when all devices have

a sufficiently large average power budgets, the conventional

MSE minimization can be sufficient to minimize the optimality

gap.

B. Power Control Optimization fo Case II

Next, we consider the power control optimization for the

case with unbiased aggregation constraints, where the power

control policy needs to enforce the additional constraint

E
[
ε
(n)
]
= 0, ∀n ∈ N . According to (20), it follows that

∑

k∈K

h
(n)
k

√

p
(n)
k = K, ∀n ∈ N . In this case, the effective

optimality gap in Proposition 2 is given by

Θ̃
(

{p
(n)
k }

)

,

N∑

n=1

J (n)B(n)
∑

k∈K

(

h
(n)
k

√

p
(n)
k − 1

)2

. (32)

Accordingly, we formulate the power control optimization

problem as

P2 : min
{p

(n)
k

≥0}

Θ̃
(

{p
(n)
k }

)

s.t.
∑

k∈K

h
(n)
k

√

p
(n)
k = K, ∀n ∈ N (33)

(24) and (25).

Note that problem (P2) is non-convex. However, via a change

of variables q
(n)
k ,

√

p
(n)
k , ∀k ∈ K, n ∈ N , the objective can

be re-expressed as

Θ
(

{q
(n)
k }

)

,

N∑

n=1

J (n)B(n)
∑

k∈K

(

h
(n)
k q

(n)
k − 1

)2

, (34)

and problem (P2) can be transformed into the following

equivalent convex form:

P2.1 : min
{q

(n)
k

≥0}

Θ
(

{q
(n)
k }

)

s.t.
∑

k∈K

h
(n)
k q

(n)
k = K, ∀n ∈ N (35)

q
(n)
k ≤ Pmax

k,n , ∀k ∈ K, ∀n ∈ N (36)

1

N

∑

n∈N

(

q
(n)
k

)2

Ĝ(n) ≤ P ave
k , ∀k ∈ K, (37)

where constraints (36) and (37) follow from (24) and (25),

respectively.

1) Feasibility of Problem (P2.1): Before solving problem

(P2.1), we first check its feasibility, i.e., whether the power

budget can support the required unbiased estimation level

denoted by ℓ or not. Let ℓ⋆ denote the maximum unbiased

estimation level, which can be expressed as

ℓ⋆ = max
{q

(n)
k

≥0}

ℓ (38)

s.t.
∑

k∈K

h
(n)
k q

(n)
k ≥ ℓ, ∀n ∈ N

(36) and (37).

If ℓ⋆ ≥ K , then problem (P2.1) is feasible; otherwise, problem

(P2.1) is not feasible. Hence, the feasibility checking proce-

dure corresponds to finding ℓ⋆ by solving problem (38). Notice

that problem (38) is convex, which can thus be efficiently

solved via standard convex optimization techniques, such as

the interior point method [50]. By comparing ℓ⋆ versus K , the

feasibility of problem (P2.1) is checked. In the following, we

solve problem (P2.1) when it is feasible.

2) Optimal Solution to Problem (P2.1): Let {q
(n)opt
k } de-

note the optimal solution to problem (P2.1). We have the

following proposition by leveraging the Lagrange duality

method, where µopt
n and λopt

k are the optimal dual variables

associated with constraints (35) and (37), respectively.
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Proposition 4. The optimal solution q
(n)opt
k , ∀k ∈ K, n ∈ N

to problem (P2.1) is given as

q
(n)opt
k = min




h
(n)
k α

(n)
k

(h
(n)
k )2 +

2λopt
k

Ĝ(n)

NJ(n)B(n)

, Pmax
k,n



 , (39)

where α
(n)
k ,

(

1−
µopt
n

2J(n)B(n)

)+

, ∀k ∈ K, n ∈ N .

Proof: See Appendix C.

From (39) in Proposition 4, we can accordingly obtain the

optimal power scaling factors p
(n)opt
k , ∀k ∈ K, n ∈ N to

problem (P2) as

p
(n)opt
k =

(

q
(n)opt
k

)2

=min









h
(n)
k α

(n)
k

(h
(n)
k )2+

2λopt
k

Ĝ(n)

NJ(n)B(n)





2

,
(
Pmax
k,n

)2




. (40)

Remark 3. According to (39), the optimal solution of

{q
(n)opt
k } to problem (P2.1) (equivalently the optimal power

scaling factor p
(n)opt
k = (q

(n)opt
k )2, ∀k ∈ K, n ∈ N ) has

a similar regularized channel inversion structure as that in

(30), but the regularized term therein (i.e.,
2λopt

k
Ĝ(n)

NJ(n)B(n) ) is only

related to its own device k’s average power budget in (37)

through the dual variable λopt
k , as opposed to all devices’

budgets in (29) for the case without unbiased aggregation

constraints. Furthermore, it is observed that for any edge

device k ∈ K, if λopt
k > 0 holds, then the average power

constraint of edge device k must be tight at the optimality (i.e.,

1
N

∑

n∈N

(

q
(n)opt
k

)2

Ĝ(n)−P ave
k = 0) due to the complementary

slackness condition, and thus this edge device should use up

its average power budget based on the regularized channel in-

version power control over communication rounds; otherwise,

if λopt
k = 0, then edge device k should transmit with channel-

inversion power control without using up its average power

budget.

V. SIMULATION RESULTS

In this section, we provide simulation results to validate

the performance of the proposed power control policies for

Air-FEEL. The proposed algorithms are implemented using

the Matlab and Pytorch for two different tasks, i.e., the ridge

regression and handwritten digit recognition, respectively.

A. Simulation Setup and Benchmark Schemes

In the simulation, the wireless channels from the edge

devices to the edge server over different communication

rounds follow i.i.d. Rayleigh fading, i.e., h
(n)
k ’s are modeled as

i.i.d. circularly symmetric complex Gaussian (CSCG) random

variables with zero mean and unit variance. We set the number

of devices as K = 10, the noise variance σ2
z = 0.1, and

the average power budgets at different devices P̂ ave
k to be

heterogeneous4. We set the maximum power budget to be

5P̂ ave. We consider both the fixed and diminishing learning

4The average power budgets at different devices are set as, P̂ ave
i = 5W

and P̂ ave
i+1 = 15W, i = {1, · · · , K/2}.

rates with η = 0.05 and η(n) = u
n+v

under u = 2 and v = 8,

respectively. As for the performance metrics, the optimality

gap and prediction error are considered for ridge regression

on synthetic dataset, while the loss function value and test

(recognition) accuracy are considered for handwritten digit

recognition on MNIST dataset.

For performance comparison, we consider the following two

benchmark schemes.

• Fixed power transmission: The edge devices transmit

with fixed power over different communication rounds

by setting p
(n)
k = P ave

k , ∀k ∈ K.

• Conventional MSE minimization: The edge devices

optimize their power control to minimize the aggregation

MSE in isolation at each communication round. For each

round, the MSE minimization problem has been solved

in [15]5.

B. Air-FEEL for Ridge Regression

First, we consider the ridge regression with the sample-

wise loss function f(w,x, τ) = 1
2‖x

Tw − τ‖2 + ρR(w)
6 and the regularization function R(w) = ‖w‖2 with the

hyperparameter ρ = 5× 10−5. Randoml,y generated synthetic

dataset is used for model training and testing. The generated

data sample vector x ∈ R
q with q = 10 follow i.i.d. Gaussian

distribution (i.e., x ∼ N (0, I)) and the label y is obtained

as τ = x(2) + 3x(5) + 0.2z, where x(t) represents the

t-th in vector x and z denotes the observation noise with

i.i.d. Gaussian distribution, i.e., z ∼ N (0, 1). Unless stated

otherwise, the data samples are evenly distributed among

devices with identical size D = Dk = 1000, ∀k ∈ K and

Dtot =
∑

k∈K

Dk = 10000.

Based on the above models, we can obtain the smooth-

ness parameter L and Polyak-Łojasiewicz parameter δ as the

largest and smallest eigenvalues of the data Gramian matrix

XTX/Dtot + 10−4I, in which X = [x1, · · · ,xDtot ]
T is the

data matrix. We use the simple upper bounds G(n) = 2WL
[37] with W ≥ ‖w‖ as a bound on the norm ‖w‖. The

optimal loss function F ⋆ is computed using the optimal

parameter vector w⋆ to the learning problem (3), where

w⋆ = (XTX + ρI)−1XT
τ with τ = [τ1, · · · , τDtot ]

T . We

set the initial parameter vector as an all-zero vector.

Fig. 3 shows the learning performance (i.e., the optimal-

ity gap in Figs. 3(a) and 3(c) and the prediction error in

Figs. 3(b) and 3(d)) versus the number of communication

rounds N , where the learning rates are set to be diminishing

in Figs. 3(a) and 3(b) and those are set to be fixed in

Figs. 3(c) and 3(d). First, it is observed that the proposed

5Although the conventional channel inversion power control can achieve
the unbiased aggregation, it is not the only way to achieve the unbiased
aggregation and just a sufficient condition leading to unbiased aggregation.
Moreover, as validated in [15], the conventional MSE minimization scheme
can achieve the minimum communication distortion in AirComp. Therefore,
in this paper we only consider the conventional MSE minimization scheme as
one benchmark, which always outperforms the generally sub-optimal channel
inversion scheme.

6The loss function here consists of both the model loss and the regulariza-
tion term, where the former captures the prediction error of the trained model
over the samples, and the latter is added to avoid overfitting and enhance the
robustness [51].
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(a) Optimality gap versus N under diminishing learning rate.
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(b) Prediction error versus N under diminishing learning rate.
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(c) Optimality gap versus N under fixed learning rate.
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(d) Prediction error versus N under fixed learning rate.

Figure 3. Learning performance of Air-FEEL over number of communication rounds.

power control policies (with both biased and unbiased aggre-

gation constraints) and the conventional MSE minimization

design achieve faster convergence and lower optimality gap

than the fixed power transmission. This shows the benefit

of power control optimization in accelerating the learning

convergence rate, via either directly minimizing the optimality

gap or indirectly minimizing the MSE. Secondly, the proposed

power control policies are observed to significantly outperform

the conventional MSE minimization design in reducing the

optimality gap. This is due to the fact that the contributions

of aggregation errors to the optimality gap are distinct at

different communication rounds (see Remark 1), which cannot

be captured by the conventional MSE minimization design.

Furthermore, the proposed power control policy under Case II

(with unbiased aggregation constraints) is observed to achieve

a lower optimality gap than the proposed power control policy

under Case I (without unbiased aggregation constraints) when

N > 150 under the fixed learning rate and N > 80 under the

diminishing learning rates. This coincides with Remark 1 that

the Air-FEEL algorithm converges to the optimal point with

unbiased gradient aggregation.

Fig. 4 shows the learning performance (i.e., the optimality

gap in Figs. 4(a) and 4(c) and the prediction error in Figs. 4(b)

and 4(d)) versus the number of devices K , where the learning

rates are set to be diminishing in Figs. 4(a) and 4(b) and those

are set to be fixed in Figs. 4(c) and 4(d). Firstly, it is observed

that the optimality gap achieved by all schemes decreases as

K increases. This is because that the edge server can aggregate

more data for averaging to improve the learning performance.

Secondly, the performance gaps between the proposed power

control policies (under Cases I and II) versus the benchmark

schemes are observed to decrease with K increasing, which

would be saturated in the large K regime. The performance

gap validates the effectiveness on the proposed power control

optimization in reducing the optimality gap.

C. Air-FEEL for Handwritten Digit Recognition

Next, we consider the learning task of handwritten digit

recognition using the well-known MNIST datasets, which

consists of 10 classes of black-and-white digits ranging from

“0” to “9”. We implement a 6-layer CNN as the classifier

model, which consists of two 5 × 5 convolution layers with

ReLU activation (the first with 32 channels, the second with

64), each followed by a 2× 2 max pooling; a fully connected

layer with 512 units and ReLU activation; and a final softmax

output layer (582, 026 parameter in total). The local batch



11

5 10 15 20 25 30

Number of edge devices,  K

10-3

10-2

O
pm

al
ity

 g
ap

Proposed power control (Case I)
Proposed power control (Case II)
Fixed power transmission
Conventional MSE minimization

(a) Optimality gap versus K under diminishing learning rate.
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(b) Prediction error versus K under diminishing learning rate.
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(c) Optimality gap versus K under fixed learning rate.
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(d) Prediction error versus K under fixed learning rate.

Figure 4. Effect of number of devices on the learning performance of Air-FEEL.

size at each edge device is set to be mb = 512. Notice

that Assumptions 1 and 2 may not hold in this case, but

our proposed power control policies still work well as will

be shown shortly.

Fig. 5 shows the learning performance versus the varying

number of communication rounds N , where the learning rates

are set to be diminishing in Figs. 5(a) and 5(b) and those

are set to be fixed with η = 0.01 in Figs. 5(c) and 5(d).

First, it is observed that the proposed power control policies

achieve lower loss function values and higher test accu-

racy than both the fixed-power-transmission and conventional-

MSE-minimization schemes. Furthermore, the power control

policy under Case II is observed to outperform that under Case

I when N > 200 with the fixed learning rate and N > 150
with the diminishing learning rates. These observations are

generally consistent with those in Fig. 3 with the ridge

regression model.

VI. CONCLUSION

In this paper, we exploited the transmission power control

as a new design degree of freedom to optimize the learning

performance of Air-FEEL. To this end, we first analyzed the

convergence behavior of the FEEL algorithm (in terms of the

optimality gap) and characterized the impact of aggregation

errors, w.r.t. its bias and MSE, at different communication

rounds. It was observed that in the case with unbiased aggre-

gation estimates, the FEEL algorithm would converge exactly

to the optimal point with mild conditions; and otherwise, it

would converge with an error floor. Next, we proposed to

directly minimize the derived optimality gaps by optimizing

the power control, for which the optimal solutions are obtained

to follow regularized channel inversion structures. Finally,

experimental results demonstrated that the proposed power

control policies achieve significantly lower optimality gap in

Air-FEEL, as compared with benchmark schemes with fixed

power transmission and conventional MSE minimization. We

expect that this initial work can provide useful insights on

exploiting the power control for enhancing the Air-FEEL

performance.

Nevertheless, due to the space limitation, there are still a lot

of interesting issues that are not addressed in this paper but

worth investigation. In the following, we introduce several of

them to motivate future work.

• One interesting direction is to explore the large-scale Air-

FEEL over multi-cell networks to accommodate massive

edge devices with more data. In this case, a hierar-
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Figure 5. Learning performance of Air-FEEL on MNIST dataset over number of communication rounds.

chical framework would be established to explore the

distributed computation and communication capacity for

performance improvement, and therein the cooperative

interference management will be a new issue to be

addressed.

• Another interesting direction is to consider the FedAvg

scenario, where the local updates at each edge devices

are implemented multiple times, and the local models are

aggregated over the air instead of gradients. The analysis

and design principles in this paper are generally extend-

able to this scenario by taking into account the following

two new technical challenges. First, as multiple local

updates are implemented at edge devices, the introduced

gradient/model errors due to aggregation in this paper are

not applicable for FedAvg. Therefore, new approaches for

analyzing the gradient/model errors in FedAvg should be

considered for its convergence analysis. Next, while the

learning rate plays a dual role of denoising factor for

over-the-air gradient aggregation in FedSGD, in FedAvg

we need a dedicated denoising factor to suppress the Air-

Comp signal misalignment error for model aggregation.

As a result, the denoising factors would become new

design variables for joint optimization, thus making the

problem more complicated.

• Furthermore, it is also an interesting problem to fairly

and quantitatively compare the performance of Air-FEEL

versus the traditional digital FEEL (e.g., [5], [7], [9]),

in terms of the training latency and training accuracy.

General speaking, the proposed Air-FEEL can achieve

significant per-round communication latency reduction

over the digital FEEL, but at a cost of the newly in-

troduced aggregation errors and the increased number

of communication rounds needed for convergence. To

deal with such a tradeoff, we need to explore the power

control policy for training latency minimization while

ensuring a given maximum optimality gap requirement

for both Air-FEEL and digital FEEL. How to determine

proper approximate optimality gaps for both Air-FEEL

and digital FEEL to enable their fair training performance

comparison is challenging in practice.

• Moreover, the investigation of Air-FEEL with the non-

i.i.d. data is also an interesting future research direction.

The non-i.i.d. nature of data may degrade the training

performance of AirFEEL, and also make the convergence

analysis more challenging. In this case, how to capture

the effect of the non-i.i.d. degrees of edge devices on
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the learning performance and accordingly optimize the

transmission power control over them is a difficult task.

APPENDIX

A. Proof of Theorem 1

The proof follows by relating the norm of the gradient to the

expected improvement made at each communication round.

Recall that w(n+1) = w(n) − η ·
(
ḡ(n) + ε

(n)
)
, and thus it

follows that

F
(

w(n+1)
)

− F
(

w(n)
)

≤
(

∇F
(

w(n)
))T

(w(n+1)−w(n))+

q
∑

i=1

Li

2

(

w
(n+1)
i −w

(n)
i

)2

= ∇F
(

w(n)
)T

(w(n) − η ·
(

ḡ(n) + ε
(n)
)

−w(n))

+
L

2

∥
∥
∥w

(n) − η ·
(

ḡ(n) + ε
(n)
)

−w(n)
∥
∥
∥

2

= −η∇F
(

w(n)
)T(

ḡ(n)+ε
(n)
)

+
Lη2

2

∥
∥
∥ḡ

(n) + ε
(n)
∥
∥
∥

2

, (41)

where the above inequality follows Assumption 1 and L ,

‖L‖∞. By taking expectation at both sides of (41), we have

E

[

F
(

w(n+1)
)

− F
(

w(n)
)]

≤−η∇F
(

w(n)
)T

E

[

ḡ(n)+ε
(n)
]

+
Lη2

2
E

[∥
∥
∥ḡ

(n)+ε
(n)
∥
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∥

2

2

]

=−η
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[

ε
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2
E
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2
]

+ Lη2∇F
(

w(n)
)T

E

[

ε
(n)
]
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Lη2

2
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2
E
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(n)
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∥

2
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+ Lη2∇F
(

w(n)
)T

E

[

ε
(n)
]

, (42)

where the denominator mb in (42) is induced from Assumption

3 and Equation (4). By applying the inequality of arithmetic

and geometric means, i.e., −a1
T
a2 ≤ ‖a1‖

2

2 + ‖a2‖
2

2 , it then

follows that

E

[

F
(

w(n+1)
)

− F
(

w(n)
)]

≤ −η
∥
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∥∇F

(

w(n)
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2
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.

Under the Cauchy-Schwarz’s inequality, i.e., b1
T
b2 ≤

‖b1‖‖b2‖ ≤ ‖b1‖
2

2 + ‖b2‖
2

2 , we further have
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where the inequality in (43) follows that η ≤ 2
2+L

. Next, by

applying Assumption 2, it hence follows that

E

[

F
(

w(n+1)
)]

− F ⋆ ≤ (1− δη)
(

E

[

F
(

w(n)
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− F ⋆
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2
]

.

Through some further algebraic manipulation over the above

inequality based on mb = N and C = 1− δη, we have (17).

This thus completes the proof.

B. Proof of Proposition 3

Notice that problem (P1.1) is convex, and thus strong duality

holds between problem (P1.1) and its Lagrange dual problem

[50]. Hence, we leverage the Lagrange duality method to

optimally solve problem (P1.1). Let ϕk ≥ 0, ∀k ∈ K denote

the dual variable associated with the k-th constraint in (29),

respectively. The partial Lagrangian of problem (P1.1) is thus

given by

L1

({

p̂
(n)
k

})

=

N∑

n=1

J (n)A(n)

(
∑

k∈K

h
(n)
k p̂

(n)
k −K

)2

+

N∑

n=1

J (n)B(n)
∑

k∈K

(

h
(n)
k p̂

(n)
k − 1

)2

+
∑

k∈K

ϕk

(

1

N

∑

n∈N

(

p̂
(n)
k

)2

Ĝ(n) − P ave
k

)

.

Then the dual function is

W1({ϕk}) = min
{0≤q

(n)
k

≤Pmax
k,n

}

L1

({

p̂
(n)
k

})

. (44)

The dual problem of problem (P1) is given as

D1 : min
{ϕk≥0}

W2({ϕk}). (45)

Due to the strong duality between problems (P1.1) and (D1),

we solve problem (P1.1) by equivalently solving its dual prob-

lem (D1). Let {p̂
(n)opt
k } denote the optimal primal solution

to problem (P1.1), and {ϕopt
k } the optimal dual solution to
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problem (D1). We first evaluate the dual function W1({ϕk})
under any given feasible {ϕk}, and then obtain the optimal

dual variables {ϕopt
k } to maximize W1({ϕk}}).

First, we obtain W1({ϕk}}) by solving problem (44) under

any given feasible {ϕk}, which can be decomposed into a

series of subproblems each for one communication round n
as follows.

min
{q

(n)
k

}

J (n)A(n)

(
∑

k∈K

h
(n)
k p̂

(n)
k −K

)2

+
ϕkĜ

(n)
(

p̂
(n)
k

)2

N

+ J (n)B(n)
∑

k∈K

(

h
(n)
k p̂

(n)
k −1

)2

(46)

s.t. 0 ≤ q
(n)
k ≤ Pmax

k,n , ∀k ∈ K. (47)

By taking its first-order derivation w.r.t. each p̂
(n)
k , we have

the following lemma.

Lemma 1. The optimal solution to problem (46) denoted by

q
(n)⋆
k , ∀k ∈ K, n ∈ N is given as

p̂
(n)⋆
k = min







B(n) +A(n)K
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(n)
k +A(n)M

(n)
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i∈K
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(n)
i

M
(n)
i

, Pmax
k,n






, (48)

where M
(n)
k , B(n)h

(n)
k + ϕkĜ

(n)

NJ(n)h
(n)
k

, ∀k ∈ K, n ∈ N .

With Lemma 1, problem (44) is solved under any given

{ϕk}, and the dual function W1({ϕk}}) is accordingly ob-

tained. It remains to find the optimal {ϕk ≥ 0}. Since the

dual function W1({ϕk}) is concave but non-differentiable in

general, one can use subgradient based methods such as the

ellipsoid method [52] to obtain the optimal dual variables.

Note that for the objective function in (44), the subgradient

w.r.t. ϕk, ∀k, is 1
N

∑

n∈N

(

p̂
(n)⋆
k

)2

Ĝ(n) − P ave
k . By replacing

{ϕk} in Lemma 1 with the obtained optimal dual variables

{ϕopt
k }, the optimal solution to problem (P1.1) is accordingly

obtained as shown in Proposition 3. This thus completes the

proof.

C. Proof of Proposition 4

Notice that problem (P2.1) is convex and satisfies the

Slater’s condition, and thus strong duality holds between

problem (P2.1) and its Lagrange dual problem [50]. Therefore,

we apply the Lagrange duality method to optimally solve

problem (P2.1). Let µn and λk ≥ 0 denote the dual variable

associated with the n-th constraints in (35) and the k-th

constraint in (37), respectively. Then the partial Lagrangian

of problem (P2.1) is

L
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.

Then the dual function is

W2({λk}, {µn}) = min
{q

(n)
k

≥0}

L
(

{q
(n)
k }

)

(49)

s.t. (36).

Accordingly, the dual problem of problem (P1) is given as

D2 : min
{λk≥0},{µn}

W2({λk}, {µn}). (50)

Due to the fact that the strong duality holds between problems

(P2.1) and (D2), we can solve problem (P2.1) by equivalently

solving its dual problem (D2). For notational convenience,

let {q
(n)opt
k } denote the optimal primal solution to problem

(P2.1), and {λopt
k } and {µopt

n } denote the optimal dual solution

to problem (D2). In the following, we first evaluate the dual

function W2({λk}, {µn}) under any given feasible {λk} and

{µn}, and then obtain the optimal dual variables {λopt
k } and

{µopt
n } to maximize W2({λk}, {µn}).
First, we obtain W2({λk}, {µn}) by solving problem (49)

under any given feasible {λk} and {µn}, which can be decom-

posed into a sequence of subproblems each for optimizing the

power scaling factor in edge device k at one communication

round n, i.e.,

min
q
(n)
k

J (n)B(n)
(

h
(n)
k q

(n)
k −1

)2

+
λkĜ

(n)

N

(

q
(n)
k

)2

+µnh
(n)
k q

(n)
k (51)

s.t. 0 ≤ q
(n)
k ≤ Pmax

k,n

Via the first-order derivation of the objective function in (51),

we have the following lemma.

Lemma 2. The optimal solution to problem (51) denoted by

q
(n)⋆
k , ∀k ∈ K, n ∈ N is given as

q
(n)⋆
k = min








(

h
(n)
k −

µnh
(n)
k

2J(n)B(n)

)+

(h
(n)
k )2 + 2λkĜ(n)

NJ(n)B(n)

, Pmax
k,n







. (52)

Therefore, with Lemma 2, problem (49) is solved, and

the dual function W2({λk}, {µn}) is accordingly obtained.

It remains to find the optimal {λk ≥ 0} and {µn}.

Since the dual function W2({λk}, {µn}) is concave but non-

differentiable in general, we can use the ellipsoid method

[52], to obtain the optimal dual variables. Note that for the

objective function in (49), the subgradient w.r.t. λk, ∀k, is

1
N

∑

n∈N

(

q
(n)⋆
k

)2

Ĝ(n) − P ave
k , while that for dual variables

µn, ∀n ∈ N , is
∑

k∈K

h
(n)
k q

(n)⋆
k − K . By replacing {λk} and

{µn} in Lemma 2 with the obtained optimal dual variables

{λopt
k } and {µopt

n }, the optimal solution to problem (P2.1)

is accordingly obtained as shown in Lemma 4. This thus

completes the proof.
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[6] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
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