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for Low-Latency Distributed Inference

Reent Schlegel, Student Member, IEEE, Siddhartha Kumar, Eirik Rosnes, Senior Member, IEEE,
and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—We consider a mobile edge computing scenario
where a number of devices want to perform a linear infer-
ence Wx on some local data x given a network-side ma-
trix W . The computation is performed at the network edge
over a number of edge servers. We propose a coding scheme
that provides information-theoretic privacy against z colluding
(honest-but-curious) edge servers, while minimizing the overall
latency—comprising upload, computation, download, and decod-
ing latency—in the presence of straggling servers. The proposed
scheme exploits Shamir’s secret sharing to yield data privacy and
straggler mitigation, combined with replication to provide spatial
diversity for the download. We also propose two variants of the
scheme that further reduce latency. For a considered scenario
with 9 edge servers, the proposed scheme reduces the latency by
8% compared to the nonprivate scheme recently introduced by
Zhang and Simeone, while providing privacy against an honest-
but-curious edge server.

Index Terms—Coded computing, joint beamforming, mobile
edge computing, privacy, spatial diversity.

I. INTRODUCTION

Mobile edge computing is a key enabler of delay-critical
internet-of-things applications that rely on large data comput-
ing services [2], and has become a pillar of the 5G mobile
network [3]. Offloading computations to far-away cloud ser-
vices can be infeasible due to bandwidth constraints on the
backhaul network and possibly large communication latency
[2]. To circumvent these shortcomings, the edge computing
paradigm moves the computation power closer to the devices
generating the data.

Distributing computations over a number of servers at the
edge of the wireless network leads to major challenges, among
them the presence of straggling servers—the computation
latency is dominated by the slowest server. The straggler prob-
lem has been addressed in the neighboring field of distributed
computing in data centers by means of coding [4]–[14]. The
key idea in distributed computing is to introduce redundant
computations across servers via an erasure correcting code
such that the results from a subset of the servers is sufficient to
recover (decode) the desired computation. Hence, the latency
is no longer dominated by the slowest servers. Maximum
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distance separable (MDS) codes have been shown to provide
excellent straggler resiliency [4], [5]. Most works on coded
computing neglect the impact of the decoding complexity on
the latency. An exception is [6], [7], where it was shown
that the decoding latency may severely impact the overall
latency. Long MDS codes, in particular, entail a high decoding
complexity, which may impair the overall latency.

In edge computing, besides the straggler problem, the
incurred latency of uploading and downloading data through
the wireless links is a genuine problem. To reduce the com-
munication latency, in [15], [16] subtasks are replicated across
edge servers to introduce spatial diversity such that the edge
servers can utilize zero-forcing precoding and serve multiple
users simultaneously. More recently, the authors in [17]–[19]
proposed to combine subtask replication for spatial diversity
with an MDS code for straggler mitigation, borrowing the cod-
ing ideas from distributed computing. These works, however,
neglect the latency entailed by the decoding operation. In [20],
a scheme combining rateless codes with irregular repetition
was proposed, yielding significantly lower latency (comprising
the decoding latency) than the scheme in [17]–[19].

Performing computations over possibly untrustworthy edge
servers raises also privacy concerns. The problem of user data
privacy in the context of distributed computing in data centers
in the presence of stragglers has been addressed in, e.g., [21]–
[24]. The underlying idea in these works is to utilize some
form of secret sharing, i.e., encode the confidential user data
together with random data such that small subsets of servers
do not gain information about the confidential data.

In this paper, we consider a similar scenario to the one
in [17], [20] where multiple users wish to perform a linear
inference Wx on some local data x given a network-side
matrix W . Such operations arise in, e.g., recommender sys-
tems based on collaborative filtering, like a shopping center
application providing product recommendations and corre-
sponding price offers [25]. Each customer has its preferences,
which are encoded by an attribute vector x. Based on a
customer’s preferences, the application recommends products
by mapping from a customer’s preference (vector x) to the
likelihood that he/she would enjoy a given product via the
system matrix W . For this scenario, we present a coding
scheme that guarantees information-theoretic user data privacy
against z compromised (honest-but-curious) edge servers that
collaborate to infer users’ data, while minimizing the incurred
overall latency—comprising upload, computation, download,
and decoding latency. The proposed scheme is based on
Shamir’s secret sharing (SSS) scheme [26] to achieve data
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privacy as well as straggler mitigation—thereby reducing
computation latency—combined with replication of subtasks
across multiple edge servers to allow for spatial diversity and
joint beamforming (by means of zero-forcing precoding) in the
download to reduce communication latency. A key feature of
the proposed scheme is that, unlike the existing (nonprivate)
schemes for straggler mitigation in edge computing [17]–[19],
redundancy is introduced on the users’ data—which enables
privacy—instead of on the network-side matrix W .

We also introduce two variants of the scheme that further
reduce latency. First, we note that the download phase can
be performed simultaneously to the computation phase once
the upload phase is completed, which reduces the overall
latency especially when the communication cost is relatively
high compared to the computation cost. To exploit this, we
introduce a priority queue to determine the order in which
partial results should be downloaded from the edge servers.
Second, we introduce an additional level of coding on W . We
show that the combination of the SSS code and the code onW
results in a product code over intermediate results. Decoding
can then be performed iteratively, iterating between the row
and column component decoders.

The proposed scheme entails an inherent tradeoff between
computation latency due to straggling servers, communication
latency, and user data privacy. Interestingly, for a considered
scenario with 9 edge servers, the proposed scheme reduces
the latency by 8% compared to the nonprivate scheme in
[17], while providing privacy against a single edge server.
This somewhat surprising result is explained by the high
decoding complexity of the scheme in [17] due to the use
of a long MDS code (on W ), while the proposed schemes
rely on short codes over both users’ data and W . Higher
privacy levels can be achieved at the expense of higher latency.
Furthermore, the additional coding onW significantly reduces
the variance of the latency, which, for a scenario where the
linear inference needs to be performed within a deadline,
increases the probability of meeting the deadline.

Notation: Vectors and matrices are written in lowercase and
uppercase bold letters, respectively, e.g., a and A, and all
vectors are represented as column vectors. The transpose of
vectors and matrices is denoted by (·)>. GF(q) denotes the
finite field of order q and N denotes the positive integers.
We use the notation [a] to represent the set of integers
{1, 2, . . . , a}. Furthermore, da/be is the smallest integer larger
than or equal to a/b and ba/bc is the largest integer smaller
than or equal to a/b. We represent permutations in cycle
notation, e.g., the permutation π = (1 3 2 4) maps 1 7→ 3,
3 7→ 2, 2 7→ 4, and 4 7→ 1. In addition, π(i) is the image of
i under π, e.g., π(1) = 3. Applying π recursively i times is
denoted by πi, e.g., π2(3) = 4, and π0 is an identity, e.g.,
π0(2) = 2. The expected value of a random variable X is
denoted by E[X].

II. SYSTEM MODEL

We consider a scenario with u single-antenna users,
u1, . . . , uu, each wanting to compute the linear inference
operation yi = Wxi on its local and private data xi =

EN

µ

user

unicast

Fig. 1. A mobile edge computing network with two users and three ENs.

(xi,1, . . . , xi,r)
> ∈ GF(q)

r for some network-side public
matrixW ∈ GF(q)m×r. The operation is offloaded to the edge
and is performed in a distributed fashion over a number of edge
servers—hereafter referred to as edge nodes (ENs). We assume
that there are emax ENs available at the network edge, and that
the linear inference is performed over e ≤ emax ENs, where
e can be optimized. The e ENs that perform the computation
tasks are denoted e1, . . . , ee. Each EN has a storage capacity
µ, 0 < µ ≤ 1, which is the fraction of W each EN can store,
i.e., each EN can store up to µmr elements from GF(q). We
assume that W stays constant over a sufficient amount of time
so that it can be stored on the ENs offline. The system model
is depicted in Fig. 1.

A. Computation Runtime Model

The ENs are in general multi-task nodes, may run several
applications in parallel, and need to serve many users. As
a result, they may straggle. We model this behavior with a
random setup time λj for each EN ej . The setup time is the
time it takes an EN to start the computation after it received
all the necessary data. Here, we assume the widely-adopted
model in which the setup times are independent and identically
distributed (i.i.d.) and modeled by an exponential distribution
with parameter η, such that E[λj ] = 1/η [14], [17], [27]. Once
set up, an EN needs τ time units to compute an inner product
in GF(q)r for each of the users, i.e., it takes an EN τ time
units to do r multiplications and r− 1 additions for all users.
Consequently, to compute d inner products for each user (ud
inner products in total), EN ej incurs a latency of

λj + dτ .
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We define the normalized computation latency of EN ej
(normalized by τ ) as

Lcomp
j =

λj
τ

+ d .

The ENs have superior computing capabilities compared
to the users. In particular, we assume that the users need δ
normalized time units to perform r multiplications and r − 1
additions.

B. Communication

The users have to upload their data to the ENs as well as
download the results of the computations from the ENs. We
denote by γ the normalized time it takes for both upload and
download to unicast a symbol α ∈ GF(q)u (i.e., an element
from GF(q) for each user). Consequently, the normalized time
incurred by all users uploading their data (i.e., u vectors in
GF(q)r) to a single EN is

Lcomm,up = γr .

For the upload of the private data {xi} from the u users to
the e ENs, we assume that transmission occurs sequentially,
i.e., we consider time-division multiple access, whereas in the
download the ENs can transmit simultaneously to multiple
users by utilizing joint beamforming based on zero-forcing
precoding [15]–[18], [28], [29]. More precisely, a symbol
available at ρ ENs can be transmitted simultaneously to
min{ρ, u} users with a normalized communication latency
of γ/min{ρ, u} in the high signal-to-noise (SNR) regime.
The normalized communication latency in the download (in
the high SNR regime) incurred by transmitting v symbols
α1, . . . , αv in GF(q)u, one element from GF(q) for each user,
where symbol αi is available at ρi ENs, is

Lcomm,down = γ

v∑
i=1

1

min{ρi, u}
.

The communication latency is then

Lcomm = Lcomm,up + Lcomm,down .

C. Privacy and Problem Formulation

The ENs may not be trustworthy or may be compromised.
Further, the compromised ENs may collaborate to infer the
data of the users. In this paper, we assume that up to z
ENs may be compromised and may collude. Our goal is to
perform the inference problem over e ENs privately (so that
the compromised ENs gain no information in an information-
theoretic sense about the private data) while minimizing the
overall latency,

L = Lcomp + Lcomm + Ldec ,

encompassing the computation and communication latency, as
well as the latency incurred by the decoding operation, denoted
by Ldec and discussed in Section IV-C.

III. PRIVATE DISTRIBUTED LINEAR INFERENCE

In this section, we present a privacy-preserving coded
scheme that allows u users to perform the linear inference
{Wxi} over e ENs without revealing any information to any
subset of z colluding ENs. A distinguishing feature of the pro-
posed scheme is that, unlike the (nonprivate) scheme in [17],
which yields straggler mitigation by introducing redundancy
on matrix W , it introduces redundancy on the users’ data,
by means of secret sharing according to [26], which allows
to achieve straggler mitigation while guaranteeing user data
privacy simultaneously.

A. Secret Sharing
We consider the SSS scheme to yield privacy. An (n, k) SSS

scheme divides a secret into n pieces, referred to as shares,
such that any k or more shares are sufficient to recover the
data, while less than k shares do not reveal any information
about data.

The proposed scheme is as follows. Each user ui uses
an (n, k) SSS scheme to compute n shares of its private
data xi = (xi,1, . . . , xi,r)

>. In particular, user ui encodes
each data entry xi,l along with k − 1 i.i.d. uniform random
symbols r(1)i,l , . . . , r

(k−1)
i,l from GF(q) using a nonsystematic

(n, k) Reed-Solomon (RS) code over GF(q) to obtain n coded
symbols s(1)i,l , . . . , s

(n)
i,l . Let {r(κ)i = (r

(κ)
i,1 , . . . , r

(κ)
i,r )
> | κ ∈

[k − 1]} be the set of vectors of uniform random symbols
used by user ui. For each h ∈ [n], the h-th share of user ui is

s
(h)
i =

(
s
(h)
i,1 , . . . , s

(h)
i,r

)>
.

We collect the h-th share of all users in the matrix

S(h) =
(
s
(h)
1 , s

(h)
2 , . . . , s

(h)
u

)
∈ GF(q)r×u . (1)

The following theorem proves that the linear inference
operations {yi = Wxi} can be computed for all users from
a given set of computations based on the matrices of shares
S(1), . . . ,S(n), while providing privacy against up to k − 1
colluding ENs—which collectively have access to up to k− 1
distinct matrices of shares.

Theorem 1. Consider u users with their respective private
data xi ∈ GF(q)r, i ∈ [u]. Use an (n, k) SSS scheme on each
xi to obtain the matrices of shares S(1), . . . ,S(n) in (1). Let
W ∈ GF(q)m×r be a public matrix and I ⊆ [n] a set of
indices with cardinality |I| = k. Then, the set of computations
{WS(h) | h ∈ I} allows to recover the computations {Wxi}
of all users. Moreover, for any set J ⊆ [n] with |J | < k,
{WS(h) | h ∈ J } reveals no information about {Wxi}.

The proof is given in Appendix A. The following corollary
gives a sufficient condition to recover the private computations
{Wxi}.

Corollary 1 (Sufficient recovery condition). Consider an edge
computing scenario where the public matrix W is partitioned
row-wise into b disjoint submatricesW` ∈ GF(q)

m
b ×r, ` ∈ [b],

and the private data is {xi}. Then, the private computations
{Wxi} can be recovered from the computations in the sets

S` , {W`S
(h) | h ∈ I}, ` ∈ [b] , (2)
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for any fixed set I ⊆ [n] with cardinality |I| = k.

Proof: From Theorem 1, for a given ` ∈ [b], the
computations in the set {W`xi} can be recovered from the
computations in the set S`. Then, we obtain

Wxi =
(
(W1xi)

>, (W2xi)
>, . . . , (Wbxi)

>)> , ∀i ∈ [u] .

Given the SSS scheme, the proposed scheme can be reduced
to two combinatorial problems: the assignment of submatrices
{W`} to the ENs such that no EN stores more than a fraction
µ of W , and the assignment of matrices of shares {S(h)} to
the ENs such that no z colluding ENs gain any information
about the data {xi}. We require that the combination of the
assignments guarantees the users to obtain the compuations
in (2), such that the users have access to sufficient data to
recover {Wxi}. In the following two subsections, we describe
the assignment of {W`} and {S(h)} to the ENs.

B. Assignment of W to the Edge Nodes

To create joint beamforming opportunities in the download,
we allow for replications of the same W` across different ENs.
Submatrices are assigned to the ENs as follows. In order to
satisfy the storage constraint, i.e., no EN can store more than
a fraction µ of W , we select p ∈ N such that p/e ≤ µ and
partition W row-wise into e submatrices as

W =
(
W>

1 ,W
>
2 , . . . ,W

>
e

)>
.

We then assign p submatrices to each of the e ENs. To this
scope, we define a matrix of indices Iw, of dimensions p× e,
which prescribes the assignment of submatrices to the ENs.
The assignment has the following combinatorial structure.
Consider a cyclic permutation group of order e with generator
π. We construct Iw as

Iw =


π0(1) π0(2) · · · π0(e)
π1(1) π1(2) · · · π1(e)

...
...

. . .
...

πp−1(1) πp−1(2) · · · πp−1(e)

 (3)

and define the set of indices

Iwj = {π0(j), . . . , πp−1(j)} (4)

for j ∈ [e] as the set containing the entries in column j of
Iw. Then, we assign the submatrices {W` | ` ∈ Iwj } to EN
ej , i.e., ej is assigned the submatrices {W`} with indices ` in
the j-th column of Iw. For example, if π = (1 e e− 1 · · · 2),
we have

Iw =


1 2 · · · e
e 1 · · · e− 1
...

...
. . .

...
e− p+ 2 e− p+ 3 · · · e− p+ 1

 ,

and EN e2 stores W2,W1,We, . . . ,We−p+3.
This assignment of submatrices to ENs bears some resem-

blance with fractional repetition (FR) codes [30]. FR codes
were proposed in the context of distributed storage systems
and yield the property that any ζ storage nodes have access to

at least ψ distinct symbols/packets of a ψ-dimensional MDS
code such that users can recover the data by decoding the MDS
code after contacting ζ storage nodes. By guaranteeing that all
pairs of storage nodes share exactly θ packets (utilizing Steiner
systems such as the Fano plane), the authors can derive lower
bounds on the number of distinct packets across ζ storage
nodes. From this lower bound, the above-mentioned property
(i.e., that any ζ storage nodes have access to at least ψ distinct
symbols/packets) follows. In contrast, our goal is to achieve
significant replication of submatricesW` at the ENs, which we
achieve by a cyclic structure. We do not have the requirement
that any two ENs share exactly θ packets. Furthermore, one of
our proposed schemes (introduced in Section V-B) allows for
irregular repetition of packets across ENs, while an essential
requirement of FR codes is that packets are repeated the
same amount of times across nodes. To summarize, both our
assignment of submatrices and FR codes are combinatorial
designs, but serve different purposes. Notably, our assignment
is much less structured than FR codes.

The ENs process the assigned submatrices of W in the
same order as their indices appear in the rows of Iw. We
define φwj (`

′) for `′ ∈ [p] to be the map from `′ to the index
of the `′-th assigned submatrix of EN ej .

C. Assignment of Shares to the Edge Nodes

On the basis of the assignment of the submatrices of W ,
to guarantee privacy, we now have to define the assignment of
matrices of shares such that no z colluding ENs have access to
k or more distinct matrices of shares, while the users should be
guaranteed to obtain the computations in (2). Here, we restrict
the number of shares n to be at most equal to the number
of ENs, i.e., we require n ≤ e. As with the submatrices of
W , we allow replicating shares across ENs to exploit joint
beamforming opportunities in the download. However, this
may lead to multiple shares being assigned to a single EN,
which presents difficulties in the design of a private scheme,
because having multiple shares available at a single EN results
in a privacy level z lower than that of the SSS scheme (k).
For example, if all ENs have access to two matrices of shares,
the scheme only provides privacy against any z = b(k−1)/2c
colluding ENs.

Alike to Iw, let Is be the index matrix that prescribes the
assignment of matrices of shares to the ENs—the users upload
their shares to the ENs according to Is. The assignment has
the following structure. Given the generator π used to assign
the submatrices of W to the ENs, we construct the (β+1)×e
index matrix Is as

Is =


π0(1) π0(2) · · · π0(e)
πe−p(1) πe−p(2) · · · πe−p(e)

...
...

. . .
...

πβ(e−p)(1) πβ(e−p)(2) · · · πβ(e−p)(e)

 , (5)

where β = de/pe − 1. Define the set of indices

Isj = {π0(j), . . . , πβ(e−p)(j)}\{n+ 1, n+ 2, . . . , e} (6)
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as the subset of entries in column j of Is that are in [n]. We
have

|Isj | = dde/pe · n/ee , a , (7)

as we keep only a fraction dn/ee of the shares corresponding
to the β + 1 = de/pe used permutations in Is. Then, user ui
transmits the shares {s(h)i | h ∈ Isj} to EN ej , i.e., EN ej
is assigned a matrices of shares {S(h)} with indices h in the
j-th column of Is that are in [n]. Consequently, z colluding
ENs have access to az possibly distinct matrices of shares. To
guarantee user data privacy against any subset of z colluding
ENs, we have to impose the constraint k ≥ az + 1.

Similar to the submatrices of W , the shares are processed
by the ENs in the same order as their indices appear in the
rows of Is. We define φsj(h

′) for h′ ∈ [a] to be the map
from h′ to the index of the h′-th assigned matrix of shares
of EN ej . For all `′ ∈ [p], EN ej computes Wφw

j (`
′)S

(φs
j(h
′))

before moving on to the next matrix of shares S(φs
j(h
′+1)).

The following theorem shows that the combined assignment
of submatrices and shares to the ENs allow each user ui to
obtain its desired result Wxi while preserving privacy against
up to z colluding ENs.

Theorem 2. Consider an edge computing network consisting
of u users and e ENs, each with a storage capacity cor-
responding to a fraction µ, 0 < µ ≤ 1, of W , and an
(n, k ≥ az + 1) SSS scheme, with n ≤ e and a given in
(7). For j ∈ [e], EN ej stores the submatrices of W from the
set {W` | ` ∈ Iwj } with Iwj defined in (4). Furthermore, it
receives the matrices of shares from the set {S(h) | h ∈ Isj}
with Isj defined in (6), and computes and returns the set
{W`S

(h) | ` ∈ Iwj , h ∈ Isj} to the users. Then, all users can
recover their desired computations {Wxi} and the scheme
preserves privacy against any set of z colluding ENs.

The proof of Theorem 2 is given in Appendix B. We provide
a sense of the proof with the following example.

Example 1. Consider e = n = 5, p = 3, and π = (1 4 2 5 3),
the generator of a cyclic permutation group of order 5.
From (3) and (5), we have

Iw =

1 2 3 4 5
4 5 1 2 3
2 3 4 5 1

 and Is =

(
1 2 3 4 5
2 3 4 5 1

)
.

We focus on the matrix of shares S(1). It is assigned to EN
e1 and gets multiplied with the submatrices of W indexed by
the elements in the set

Iw1 = {π0(1), π(1), π2(1)} = {1, 4, 2} .

Note that the set Iw1 contains three recursively π-permuted
integers of 1 (π0(1), π1(1), and π2(1)). Now, consider EN e5,
which is also assigned the matrix of shares S(1). We have

Iw5 = {π0(5), π(5), π2(5)} = {5, 3, 1} .

Notice that π0(5) = π3(1) = 5 is the fourth (including π0)
recursively π-permuted integer of 1. Hence, the set Iw1 ∪ Iw5
contains in total six recursively π-permuted integers of 1,

which is sufficient to give the set [5], since the group generated
by π is transitive. In a similar way, it can be shown that the
same property holds for all other matrices of shares. Each
matrix of shares is multiplied with all submatrices of W , and
the sets in (2) are obtained.

IV. COMMUNICATION AND COMPUTATION SCHEDULING,
AND PRIVATE CODING SCHEME OPTIMIZATION

In this section, we describe the scheduling of the proposed
scheme. This encompasses the upload of the shares to the
ENs, the order of the computations performed at the ENs, the
download of a sufficient subset of {W`S

(h) | ` ∈ Iwj , h ∈
Isj , j ∈ [e]}, and the decoding of this subset such that each
user ui obtains the desired result yi =Wxi. In the following,
we refer to a product W`S

(h) as an intermediate result (IR).

A. Upload and Computation

Our scheme starts with the users uploading their shares to
the ENs. As W stays constant over a long period of time, we
assume that it can be stored at the ENs prior to the beginning
of the online phase. The users start by sequentially unicasting
their shares to the e ENs. Note that, unlike in the nonprivate
scheme in [17], the users cannot broadcast their data in the
clear—to attain privacy, it needs to be ensured that any z
potentially compromised ENs do not gain access to more than
k − 1 distinct shares of the users’ private data. Recall that
transmission of one element of GF(q) from each user takes
γ normalized time units (see Section II-B). Consequently, it
takes γr time units until an EN receives a matrix of shares
S(h). The upload schedule is depicted in blue in Fig. 2.
The users first upload their first matrix of shares to EN e1
and continue with e2, e3, . . . sequentially until each EN has
received its first matrix of shares. The users then transmit their
second matrix of shares to the e ENs, starting with e1. This
continues until each EN has received a matrices of shares; EN
ej receives {S(h) | h ∈ Isj}. Hence, EN ej receives its h′-th
matrix of shares, S(φs

j(h
′)), at normalized time

Lup,h
′

j = γr(e(h′ − 1) + j) ,

and the total normalized upload latency of the private scheme
becomes

LupP = γ · r · e · a .

The computation phase at an EN starts as soon as the EN
receives the first matrix of shares from the users. Recall from
Section II-A that the random setup time for EN ej is λj ,
i.e., EN ej starts the computation λj/τ normalized time units
after receiving its first matrix of shares. The setup times are
illustrated in red in Fig. 2. In total, p IRs of the form W`S

(h)

have to be computed for each assigned matrix of shares S(h)

by EN ej , j ∈ [e], where ` ∈ Iwj and h ∈ Isj . This incurs
a normalized latency of p ·m/e, because each W` has m/e
rows, and hence the ENs compute u ·m/e inner products for
each of the p IRs.

It can happen that an EN has not received the next matrix of
shares when it finished the computation on the current matrix
of shares. In this case, the EN remains idle until the users
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rγ pm/e

rγ λ2/τ

rγ

L = 0

EN e1

EN e2

EN e3

latencyLstart,11 Lstart,21

Fig. 2. Scheduling of the upload and computing phases. For each EN, the
upload normalized times rγ are shown in blue, the random setup times in
red, the times pm/e to compute p IRs in green, and possible idle times in
yellow.

upload the next matrix of shares. We depict this in yellow
in Fig. 2. For h′ ∈ [a], the normalized time at which EN ej
starts to compute on the h′-th assigned matrix of shares, i.e.,
on S(φs

j(h
′)), is

Lstart,h
′

j = max
{
Lstart,h

′−1
j + p

m

e
, Lup,h

′

j

}
, for h′ > 1 ,

and
Lstart,1j =

λj
τ

+ Lup,1j .

The computation phase continues at least until the computa-
tions in (2) are obtained, i.e., until there are at least k distinct
IRs of the form W`S

(h) for each ` ∈ [e]. This ensures that
user ui can recover Wxi. We remark that it can be beneficial
to continue computing products to reduce the communication
latency in the download phase, as we discuss next.

B. Download

For the download, we exploit zero-forcing precoding to
serve multiple users simultaneously and hence reduce the
communication latency. An IR W`S

(h) that is available at
ρ`,h ENs incurs a normalized communication latency of
(m/e) · γ/min{ρ`,h, u} (see Section II-B). Consequently, a
high multiplicity of an IR reduces its corresponding commu-
nication latency. However, a high multiplicity implies that the
same IR has to be computed multiple times at different ENs,
thereby increasing the computation latency. There is therefore
a tradeoff between communication latency and computation
latency, which can be optimized to reduce the overall latency.
Assume the optimum is reached after EN ej∗ has computed the
IR Wφw

j∗ (`
∗)S

(φs
j∗ (h

∗)). This gives a normalized computation
latency of

Lcomp = Lstart,h
∗

j∗ + `∗
m

e
.

Subsequently, the ENs jointly transmit a subset of the
computed IRs {W`S

(h)} to multiple users simultaneously in
descending order of their multiplicity ρ`,h until enough results
are available to the users such that the sufficient recovery
condition in Corollary 1 is met. More precisely, for each W`

the ENs send the k IRs with highest multiplicity to the users,
thereby ensuring that each user ui can recover the desired
result Wxi. For a fixed `, let

Hmax
` = arg max

A⊆[n],|A|=k

∑
h∈A

ρ`,h

be the set of indices h of the k largest ρ`,h. Then, the
aforementioned download strategy results in a normalized
communication latency of

Lcomm = γ
m

e

e∑
`=1

∑
h∈Hmax

`

1

min{ρ`,h, u}
.

C. Decoding Latency

After the users have downloaded a sufficient number of IRs
(k IRs for each W`), the users need to decode the SSS scheme
to obtain their desired results {yi =Wxi}. Decoding the SSS
scheme means decoding the corresponding RS code. Here,
we assume decoding via the Berlekamp-Massey algorithm,
which, for an (n, k) RS code, entails n(n−k) multiplications
and n(n − k − 1) additions [31], plus an additional discrete
Fourier transformation that involves n/2(dlog2(n)e−1) multi-
plications and ndlog2(n)e additions [32, Eq. (8)]. We assume
that it takes the same time to perform one addition and one
multiplication, i.e., both operations take the same amount of
clock cycles. This assumption is reasonable, as both operations
can be performed using either a look-up table or, in case q is
a prime, integer arithmetic in the arithmetic and logic units
of the user devices’ processors. We make this assumption
because it significantly simplifies the analysis. Recall that a
user requires δ normalized time units to compute an inner
product in GF(q)

r, which comprises r multiplications and
r − 1 additions in GF(q). The latency of performing an
addition or a multiplication is hence δ/(2r − 1). With this,
the decoding latency for each user can be written in closed-
form as

Ldec =
δ

2r − 1
mn

(
2(n− k) + 3

2
dlog2(n)e −

3

2

)
,

since the users have to perform

m

e
· e · n

(
2(n− k) + 3

2
dlog2(n)e −

3

2

)
operations in GF(q) (one RS decoding per row) for each of
the e matrices {W`} while needing δ/(2r − 1) normalized
times units per operation.

The overall normalized latency becomes

L = Lcomp + Lcomm + Ldec

= Lstart,h
∗

j∗ + `∗
m

e
+ γ

m

e

e∑
`=1

∑
h∈Hmax

`

1

min{ρ`,h, u}

+
δ

2r − 1
mn

(
2(n− k) + 3

2
dlog2(n)e −

3

2

)
. (8)
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D. Private Coding Scheme Optimization
The system design includes the SSS code, which we denote

by CSSS, the assignment matrices Iw and Is, the number
of ENs over which the users offload the linear inference
operation, e ≤ emax, and the privacy level z. To construct
matrices Iw and Is, we require a permutation group generator
π and the parameter p. Further, to determine a good stopping
point for the computation phase, we introduce the parameter t,
defined as the number of (not necessarily distinct) IRs for each
W` computed across all ENs to wait for before the download
phase starts. Note that t should be such that the ENs have
collected enough distinct IRs so that the users can decode
to recover {yi = Wixi}. However, it might be useful to
collect more IRs than the minimum necessary to reduce the
communication latency. As soon as there are t (not necessarily
distinct) IRs computed across all ENs for each submatrix of
W , the ENs stop the computation and begin the download
phase.

We refer to the tuple (CSSS, e, π, p, t, z) as the private
coding scheme. The goal is then to optimize the private coding
scheme, i.e., the above-mentioned tuple, in order to minimize
L in (8) for a given privacy level z.

Note that e ≤ emax (it may be beneficial to contact less ENs
than the ones available). Furthermore, even for the lowest level
of privacy, z = 1, the users need to contact at least 2 ENs,
i.e., 2 ≤ e ≤ emax. Additionally, 1 ≤ p ≤ bµec; each EN
needs to be assigned at least one partition of W and it may
be beneficial that the ENs do not utilize their whole storage
capacity, because storing fewer than bµec submatrices of W
leads to the ENs performing computations on the later shares
sooner. Lastly, there are some constraints on the parameters n
and k of the SSS code CSSS. From the SSS code, it follows
that n ≥ k, whereas from the combinatorial design n ≤ e.
The value of k depends on the desired privacy level z and
the number of matrices of shares each EN has access to, a
(which follows from e, p, and n, see (7)). In the worst case, z
ENs have access to az distinct shares. Therefore, we need k ≥
az+1 to ensure privacy. Consequently, we get az+1 ≤ n ≤ e.
Note that there is no reason to select k > az+1 as this leads
to reduced straggler mitigation and increased computational
load.

V. VARIANTS

In this section, we introduce two variants to the private
scheme proposed in Sections III and IV. First, we notice that
we can reduce the overall latency by starting the download
as soon as the upload phase is completed, i.e., the download
phase and the computation phase can be performed simultane-
ously. We propose to use a priority queue that determines the
order in which computed IRs should be downloaded. Secondly,
we introduce an additional layer of coding to the scheme by
encoding the network-side matrix W prior to storing it over
the ENs. We also relax some of the constraints on the system
parameters.

A. Priority Queue
Instead of waiting for the computation phase to finish, IRs

can be downloaded as soon as they are available and the

channel is idle, i.e., when the upload phase is completed and
no other IR is being downloaded. To determine which IR
to send, we equip the ENs with a shared priority queue in
which the pairs of indices that identify the IRs, (`, h) (where
` identifies the partition ofW ,W`, and h the matrix of shares,
S(h)), are queued. A priority queue is a data structure in which
each element has an associated priority. Elements with high
priority will leave the queue before elements with low priority.
Particularly, we consider a priority queue in which the priority
is given by the multiplicity of an IR. After an EN has finished
the computation of an IR, it either adds the corresponding
pair of indices (`, h) to the queue or increments its multiplicity
(priority) if it already exists in the queue. Anytime the channel
is available and there are index pairs left in the queue, the
ENs cooperatively send the corresponding IR with the highest
priority (i.e., highest multiplicity) to the users. This ensures
that at any time the ENs send the IR with the lowest associated
communication cost to the users. In contrast to the scheme
in Sections III and IV, there is no optimization needed to
determine t, as the download starts as soon as the upload phase
finishes. Hence, the optimization is over (CSSS, e, π, p, z) for
a given value of z. Further, the ENs have to keep track of the
queue and its complete history. This way, already downloaded
IRs do not need to be computed again.

B. Additional Coding on the Network-Side Matrix W

The straggler resiliency of the scheme proposed in the
previous sections can be increased by introducing an ad-
ditional layer of coding on the matrix W . In particular,
we partition W row-wise into k′ submatrices and encode
it using an (n′, k′) RS code, denoted by Cw. We denote
by C =

(
C>1 ,C

>
2 , . . . ,C

>
n′

)>
the resulting coded matrix,

comprising n′ submatrices. The n′ coded submatrices of C
are then assigned to the ENs. Compared to the uncoded case,
we relax the condition that the number of submatrices equals
the number of ENs e. For n′ = e, the same assignment of
submatrices to ENs as the one used in Section III-B for the
uncoded matrix W can be used. For n′ 6= e, however, we
need to modify the assignment. For n′ ≥ e, we simply take
a cyclic permutation group πc of order n′ to fill the index
matrix Ic that determines the assignment of submatrices {C`}
to ENs (i.e., Ic is the counterpart of Iw for the uncoded case
and πc is the counterpart of π, see Section III-B). Using
the same approach for n′ < e works, but it leads to a
nonuniform distribution of indices in Ic. This would lead
to higher multiplicity for some IRs, which is suboptimal in
terms of download latency. Increasing the multiplicity of IRs
has diminishing returns; increasing the multiplicity from 1
to 2 reduces the communication latency by 50%, whereas
increasing the multiplicity from 2 to 3 yields a decrease of
only 33.3%. This means that the highest gains are obtained
by increasing the multiplicity simultaneously across IRs, i.e.,
we are interested in obtaining a distribution of indices in Ic
as close as possible to a uniform distribution. To accomplish
that, we propose the following index assignment for n′ < e.
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We start by cyclically filling Ic with indices in [n′],

Ic =


1 2 · · · n′ ? ? · · · ?
? 1 2 · · · n′ ? · · · ?
...

. . . . . . . . . . . . . . . . . .
...

? · · · ? 1 2 · · · n′ ?

 . (9)

The left-out entries marked with ? are filled such that the
distribution of indices in Ic is as close to uniform as possible
while not repeating indices in the same column of Ic, as
this assignment does not favor a specific submatrix of C and
prevents the same submatrix being assigned twice to one EN.
Note that (9) is only one example of how Ic can look like.
Depending on e, p, and n′ there might be wrap-arounds of
indices.

We can also relax the condition that the number of secret
shares has to be less than or equal to the number of ENs, i.e.,
we allow n > e, and simply consider a permutation group πs
of order max(n, e) and construct Is as in (5) (with π = πs).

Remark 1. By allowing n′ 6= e and n > e, it becomes difficult
to prove a similar result as in Corollary 1 for the uncoded
case on a sufficient condition on the cardinality of I and J
such that the linear inference can be completed from the IRs
{C`S(h) | h ∈ I, ` ∈ J }. However, our numerical results
reveal that encoding W and relaxing the constraints n′ = e
and n ≤ e allows to reduce the overall latency compared to
the scheme in Sections III and IV.

For each user ui—with its private data xi and set of random
vectors {r(1)i , . . . , r

(k−1)
i }—the combination of the (n, k) RS

code on {xi, r(1)i , . . . , r
(k−1)
i } used in the SSS scheme and

the (n′, k′) RS code on {W1, . . . ,Wk′} can be seen as
an (nn′, kk′) product code (with nonsystematic component
codes) over {W`xi|` ∈ [k′]} (i.e., the desired inference Wxi)
and {W`r

(κ)
i |` ∈ [k′], κ ∈ [k− 1]}. To show this, we arrange

the elements of {C`s(h)i } in the n′×n two-dimensional array
C1s

(1)
i C1s

(2)
i · · · C1s

(n)
i

C2s
(1)
i C2s

(2)
i · · · C2s

(n)
i

... · · ·
. . .

...
Cn′s

(1)
i Cn′s

(2)
i · · · Cn′s

(n)
i

 .
It is easy to see that each row of the array is a codeword of an
(n, k) code and each column is a codeword of an (n′, k′) code.
More precisely, (s(1)i , . . . , s

(n)
i ) is the codeword corresponding

to the encoding of (xi, r
(1)
i , . . . , r

(k−1)
i ) via the SSS (n, k)

RS code. Since the RS code is linear, (C`s
(1)
i , . . . ,C`s

(n)
i )

is also a codeword of an (n, k) RS code, which would re-
sult from encoding (C`xi,C`r

(1)
i , . . . ,C`r

(k−1)
i ). Likewise,

(C1, . . . ,Cn′) is the codeword corresponding to the encoding
of (W1, . . . ,Wk′) via the (n′, k′) RS code on W , and
(C1s

(h)
i , . . . ,Cn′s

(h)
i ) is a codeword of an (n′, k′) RS code

corresponding to the encoding of (W1s
(h)
i , . . . ,Wk′s

(h)
i ).

The product code structure allows the users to iteratively
decode the received results, which provides more flexibility
regarding the decodable patterns; there are sets of IRs that
allow to complete the linear inference operation by iterating
between row and column decoders, while either component

code would fail to decode on its own. To illustrate the iterative
decoding procedure, we provide the following example.

Example 2. Consider the SSS (n, k) = (4, 3) RS code and
an (n′, k′) = (3, 2) RS code on W . Encode W into a matrix
C and arrange all {C`s(h)i |` ∈ [3], h ∈ [4]} in an array of
dimensions 3× 4 to show the product code structure, C1s

(1)
i C1s

(2)
i C1s

(3)
i C1s

(4)
i

C2s
(1)
i C2s

(2)
i C2s

(3)
i C2s

(4)
i

C3s
(1)
i C3s

(2)
i C3s

(3)
i C3s

(4)
i

 .
Each row of the array is a codeword of a (4, 3) RS code and
each column is a codeword of a (3, 2) RS code.

Assume that the users have the following IRs available, C1s
(1)
i C1s

(2)
i

C2s
(2)
i C2s

(3)
i

C3s
(1)
i C3s

(4)
i

 .
As we can see, there are no k = 3 IRs available for any
C`. Therefore, the users would not be able to decode any SSS
scheme. However, we have k′ = 2 IRs available in the first
and second column. The users can then decode the column RS
code for columns one and two to obtain C2s

(1)
i and C3s

(2)
i , C1s

(1)
i C1s

(2)
i

C2s
(1)
i C2s

(2)
i C2s

(3)
i

C3s
(1)
i C3s

(2)
i C3s

(4)
i

 .
Now, there are k = 3 IRs available in the second and third
row, hence the users can decode the corresponding row codes
to obtain C2s

(4)
i and C3s

(3)
i , C1s

(1)
i C1s

(2)
i

C2s
(1)
i C2s

(2)
i C2s

(3)
i C2s

(4)
i

C3s
(1)
i C3s

(2)
i C3s

(3)
i C3s

(4)
i

 .
Lastly, the users can switch to column decoding again as now
there are k′ = 2 IRs available in the third and fourth column,
and the whole code array can be recovered, C1s

(1)
i C1s

(2)
i C1s

(3)
i C1s

(4)
i

C2s
(1)
i C2s

(2)
i C2s

(3)
i C2s

(4)
i

C3s
(1)
i C3s

(2)
i C3s

(3)
i C3s

(4)
i

 .
At last, the users are able to recover all IRs and thereby
the computations {Wxi}. For this particular example, this
would not have been possible without the redundancy on the
submatrices of W .

The private coding scheme with coding overW and priority
queue is defined by the tuple (CSSS,Cw, e, πc, πs, p, z), which
should be properly optimized for a given privacy level z.

VI. NUMERICAL RESULTS

In this section, we compare the performance of the proposed
private scheme in Sections III and IV, and its variants in
Section V, with that of the nonprivate scheme in [17]. For
convenience, we will refer to the scheme in Sections III and IV
as Scheme 1, and to the two variants in Section V as Scheme 2
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(Scheme 1 augmented with a priority queue) and Scheme 3
(Scheme 2 augmented with coding over W ).

For all numerical results, the maximum number of ENs is
emax = 9, the storage capacity is µ = 2/3, W has dimensions
600 × 50, the computation time is τ = 0.0005, and the
straggling parameter is η = 0.5. Lastly, we assume that the
users are δ = 3 times slower than the ENs. Note that due to the
normalization by τ , the number of users is inconsequential on
the normalized overall latency L as long as u ≥ max`,h ρ`,h,
e.g., if u ≥ e. In the simulations we consider u ≥ e, which is
usually the case in practice.

For the optimization of the coding schemes, we fix the gen-
erator of the cyclic permutation group to π = (1 e e−1 · · · 2)
for Schemes 1 and 2 whereas for Scheme 3 we vary n′ and
assign the submatrices C` as described in Section V-B. For
Scheme 3, we use πs = (1 max(n, e) max(n, e) − 1 · · · 2)
and if n′ ≥ e, we use πc = (1 n′ n′ − 1 · · · 2). We then
optimize the other parameters for a given privacy level z.
Particularly, we perform an exhaustive search over all feasible
parameter values. For each set of parameters, unless otherwise
stated, we generated 104 instances of the random setup times
{λj} and simulated the scheme. We then select the parameters
that yield the best expected overall latency over the 104 runs.

In Fig. 3, we plot the expected overall latency E[L] (given by
(8)) as a function of γ for Scheme 1 with different values of z
and compare its performance to that of the nonprivate scheme
in [17]. We remark that in [17] both the upload latency and the
decoding latency are neglected, while we consider them here.
For the scheme in [17], we assume as in [17] that the users can
broadcast their local data to all ENs simultaneously. However,
in general, broadcasting a message to e receivers is more
expensive than transmitting a single unicast message to one
receiver. As in [5], we assume that broadcasting to e receivers
is a factor log(e) more expensive in terms of latency than a
single unicast. Recall that the normalized latency of unicasting
u vectors from GF(q)r is γr. Hence, for the nonprivate scheme
in [17], the normalized latency of every user broadcasting its
local data to all e ENs is LupNP = γ · r · log(e).

To yield privacy, the proposed scheme involves more com-
munication and computation at the ENs than the nonprivate
scheme, as there are multiple shares to be transmitted and
computed on instead of a single vector xi per user. As a result,
the proposed scheme has a higher latency. As expected, the
expected overall latency increases with the privacy level z. For
γ = 0, the latency of the private scheme increases by a factor
1.7, 2.8, 4.0, and 4.5 for z = 1, 2, 3, and 4, respectively,
compared to the nonprivate scheme, whereas for γ = 5 the
factors are 2.3, 3.7, 5.0, and 8.0, respectively. The relative
increase in latency increases with γ (i.e., increases with
the relative communication costs) due to the aforementioned
higher communication load of the proposed scheme. We also
notice that the proposed scheme does not always utilize all
available ENs. For example, for z = 1 and γ = 2.5, Scheme 1
has the lowest expected overall latency when contacting only
e = 6 ENs. The parameter e influences not only the upload
cost, but also the number of submatrices of W , which in turn
influences the number of submatrices stored at each EN, p,
which effects the multiplicity of IRs. This complex interplay
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Fig. 3. Expected overall normalized latency as a function of γ for different
privacy levels z of the proposed scheme (Scheme 1) compared to the
nonprivate scheme in [17]. The parameters are µ = 2/3, τ = 0.0005,
η = 0.5, emax = 9, m = 600, r = 50, and δ = 3.

of dependencies on e makes it difficult to predict the optimal
value of e. For example, for z = 1, the optimal e increases
with γ (we have e = 8 for γ ≥ 4) whereas for z = 2, e
decreases with γ (from e = 9 for γ ≤ 1.5 to e = 8 for
γ ≥ 2).

In Fig. 4, we compare the performance of Scheme 1 with
that of Scheme 2 and the nonprivate scheme in [17]. The
use of a priority queue reduces the expected overall latency,
especially for high values of γ, i.e., when communication is
comparatively expensive. As a result, for z = 1, Scheme 2
performs similar to the nonprivate scheme, while providing
privacy against one honest-but-curious server.

In Fig. 5, we plot the expected overall latency E[L] versus
γ for Scheme 2, Scheme 3, and the scheme in [17]. The
higher flexibility offered by adding redundancy on W allows
to further reduce the expected overall latency with respect to
Scheme 2 for low values of γ, for which the computation times
dominate and straggler mitigation is important. Interestingly,
this improvement allows the private scheme to outperform the
nonprivate scheme for z = 1. This is explained by the high
decoding cost of the scheme in [17] compared to the proposed
scheme. Indeed, the RS code used in the SSS scheme has very
small length and dimension, whereas the MDS code used in
[17] has much higher length and dimension. For example, for
γ = 1 with Scheme 3 and z = 1 we have (n′, k′) = (4, 3) and
for the nonprivate scheme the code length and dimension are
in the order of m (m = 600 in this scenario). Therefore, the
nonprivate scheme suffers from higher decoding latency, which
significantly penalizes the expected overall latency. For high
values of γ, i.e., when the communication latency becomes
more critical, it is beneficial to use as much replication as
possible to increase the multiplicities of the IRs to reduce the
communication latency in the download. This means that small
n and n′ are beneficial to reduce the number of distinct IRs. As
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Fig. 4. Expected overall normalized latency as a function of γ for different
privacy levels z of the proposed scheme (Scheme 1) compared to the priority
queue variant (Scheme 2) and the nonprivate scheme in [17]. The parameters
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δ = 3.
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Fig. 5. Expected overall normalized latency as a function of γ for different
privacy levels z of the priority queue variant (Scheme 2), the priority queue
with coding on W variant (Scheme 3), and the nonprivate scheme in [17].
The parameters are µ = 2/3, τ = 0.0005, η = 0.5, emax = 9, m = 600,
r = 50, and δ = 3.

a consequence, coding on W brings almost no improvement
for high γ, as we have n = k and n′ = k′ (i.e., no RS coding)
for as low k and k′ as possible.

For some applications, the expected overall latency may not
be the most relevant performance metric. In Fig. 6, we consider
edge computing under a deadline, where we are interested in
completing the linear inference within some overall latency.
Particularly, we plot the probability that the linear inference
is not completed within a deadline L, for z = 1 and γ = 1
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Fig. 6. The probability of meeting a given deadline for the private scheme
(Scheme 1) and its variants (Schemes 2 and 3) with z = 1 for different values
of γ.

and 4.5. To this end, for a given probability, we optimize over
(a subset of) the parameters (CSSS,Cw, e, π, πc, πs, p, t, z) for
π = (1 e e − 1 · · · 2), πc = (1 n′ n′ − 1 · · · 2), πs =
(1 max(n, e) max(n, e) − 1 · · · 2), and z = 1 to minimize
L. The number of samples of {λj} is increased to 106 to get
reliable results for probabilities down to 10−4.

For γ = 4.5 and a deadline L = 104, the probability of
exceeding the deadline is 4.0 · 10−1 for Scheme 1, while
it decreases to 3.9 · 10−3 for Scheme 2, i.e., two orders
of magnitude lower. Introducing coding over W does not
bring further gains. For γ = 1 and a deadline L = 104,
the probability of exceeding the deadline is 7.2 · 10−2 for
Scheme 1, while it decreases to 4.5·10−4 for Scheme 2. Again,
we see an improvement of about two orders of magnitude.
Furthermore, for this low value of γ, introducing coding over
W reduces the probability of not meeting the deadline further
to 9.7 · 10−5.

VII. CONCLUSION

We introduced three coded edge computing schemes for
linear inference at the network edge that provide privacy
against up to z colluding edge servers while minimizing the
overall latency encompassing upload, computation, download,
and decoding latency. The proposed schemes combine secret
sharing to provide privacy and straggler resiliency, possibly
coding over the network model matrix for further straggler
mitigation, and replication of subtasks across edge servers
to create cooperation opportunities between edge servers
to reduce the download communication latency. Numerical
results show that, for a considered scenario with 9 edge
servers, the proposed scheme yields a 8% latency reduction
compared to the nonprivate scheme by Zhang and Simeone
while providing privacy against one honest-but-curious edge
server. The privacy level can be enhanced at the expense of a
higher latency.
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APPENDIX A
PROOF OF THEOREM 1

Let CSSS be the (n, k) RS code used in the SSS scheme. For
each h ∈ [n], the entries of the rows of S(h) are code symbols
in position h of codewords from CSSS pertaining to different
users. More precisely, for each user ui, each row of the matrix(
s
(1)
i , s

(2)
i , . . . , s

(n)
i

)
of all n shares of ui is a codeword from

CSSS. Since CSSS is a linear code, each of the m rows of the
matrix

W
(
s
(1)
i , s

(2)
i , . . . , s

(n)
i

)
is a codeword of CSSS. Furthermore, the messages obtained
by decoding these codewords are the rows of(

Wxi,Wr
(1)
i , . . . ,Wr

(k−1)
i

)
.

Then, decoding the vectors in the set {Ws
(h)
i | h ∈ I} gives

Wxi, and it follows that {WS(h) | h ∈ I} gives {Wxi}.
From the properties of the SSS scheme, it follows that the

mutual information between {S(h) | h ∈ J } and {xi} is zero.
Subsequently, from the data processing inequality, it follows
that {WS(h) | h ∈ J } reveals no information about {xi}.

APPENDIX B
PROOF OF THEOREM 2

The proof makes heavy use of combinatorics. For readers
unfamiliar with this field, especially the nomenclature of
blocks and points, we recommend [33]. We define a map (x)e
that maps an integer x onto the set [e] by successively adding
or subtracting e to x until the result lies in [e]. For example,
for e = 5, we have (3)5 = 3, (−2)5 = 3, and (7)5 = 2. In
contrast to taking a modulo e, we have (e)e = e, whereas e
mod e = 0. The rationale for introducing this map instead
of the conventional modulo arithmetic is that the indices of
matrix rows and columns run from 1, and not from 0.

We start by proving the recovery ability. Iw is a combina-
torial design D with e blocks—the e sets with entries from
the e columns of Iw—and e points—each point is the index `
pertaining to the submatrix W`. In particular, block j of D is
B(D)
j = Iwj . Furthermore, each row i of Is combined with Iw

represents a combinatorial design Di, where its blocks are a
permutation π−(i−1)(e−p) of the blocks in D. More precisely,
we have block j of Di as

B(Di)
j = B(D)

π−(i−1)(e−p)(j)
.

Consider ∆(Di) to be an incidence matrix, of dimensions e×e,
where the incidence relation is between the set of points, [e],
and the set of blocks, {B(Di)

j | j ∈ [e]}. Then, to prove the
recovery ability, we need to show that for

∆ =

β+1∑
i=1

∆(Di) ,

we have

δij ≥ 1, ∀i ∈ [e], j ∈ [e] , (10)

where δij is the element in the i-th row and j-th column of
∆.

We will now show that (10) holds. In the construction of
Iw and Is in (3) and (5), respectively, we consider a cyclic
permutation group of order e with elements

π0, π, π2, . . . , πe−1 ,

where π is the generator and π0 is the identity element of the
group. The set

{π0(j), π(j), π2(j), . . . , πe−1(j)} = [e] ,

since π is the generator of the group, and the group is
transitive. Let α be the number of cyclic shifts between two
consecutive rows of Iw. Then,

πi(j) = (j + i(e− α))e = (j − iα)e ,

where i ∈ [e]. Note that the blocks of D are

B(D)
j = {π0(j), π(j), . . . , πp−1(j)} .

We see that block j consists of p consecutive permutations of
j. Furthermore, for d ∈ [β],

π−d(e−p)(j) = (j − d(e− α)(e− p))e
= (j − dpα)e .

In other words, π−d(e−p) = πdp. Thus, for some j ∈ [e], we
have

B(D)

π−d(e−p)(j)
= {πdp(j), πdp+1(j), . . . , π(d+1)p−1(j)} ,

form which it follows that

B(D)
j ∪

(
β⋃
d=1

B(D)

π−d(e−p)(j)

)
= [e] .

Notice that B(D)

π−d(e−p)(j)
is the support of δ(Dd+1)

j , the j-th
column of ∆(Dd+1). Thus, (10) holds.

The privacy of the scheme follows straightforwardly. Any z
colluding ENs have access to at most az distinct matrices of
shares. Since we have k ≥ az+1, it follows from Theorem 1
that the user data privacy is guaranteed.
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