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Robust, Private and Secure Cache-Aided Scalar
Linear Function Retrieval From Coded Servers
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Abstract— This work investigates a system where each user
aims to retrieve a scalar linear function of the files of a library,
which are Maximum Distance Separable coded and stored at
multiple distributed servers. The system needs to guarantee
robust decoding in the sense that each user must decode its
demanded function with signals received from any subset of
servers whose cardinality exceeds a threshold. In addition, (a) the
content of the library must be kept secure from a wiretapper who
obtains all the signals from the servers; (b) any subset of users
together can not obtain any information about the demands of
the remaining users; and (c) the users’ demands must be kept
private against all the servers even if they collude. Achievable
schemes are derived by modifying existing Placement Delivery
Array (PDA) constructions, originally proposed for single-server
single-file retrieval coded caching systems without any privacy
or security or robustness constraints. It is shown that the PDAs
describing the original Maddah-Ali and Niesen’s coded caching
scheme result in a load-memory tradeoff that is optimal to within
a constant multiplicative gap, except for the small memory regime
when the number of file is smaller than the number of users.
As by-products, improved order optimality results are derived
for three less restrictive systems in all parameter regimes.

Index Terms— Coded caching, distributed storage, maximum
distance separable code, placement delivery array, privacy, robust
decoding, scalar linear function retrieval, security.

I. INTRODUCTION

CODED caching, introduced by Maddah-Ali and Niesen
(MAN) [2], is a technique to reduce the peak-time com-

munication load across a bottleneck shared link by leveraging
the multicast opportunities created by content pre-stored at
users’ local caches. The model consists of a single server,
multiple users, and two phases. In the placement phase, the
users’ caches are populated without the knowledge of their
future demands. In the delivery phase, when users’ demands
are revealed, the server satisfies them by transmitting coded
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packets over the shared link. For a system with N files and
K users, the MAN scheme achieves the optimal load-memory
tradeoff among all uncoded placement schemes when N ≥
K [3], and for N < K after removing some redundant
transmissions [4]. Recently, it was shown that allowing the
users to demand arbitrary linear combinations of the files does
not increase the load compared to the case single file retrieval,
at least under uncoded placement [5].

Content security, demand (both user- and server-side) pri-
vacy, and robustness are critical aspects of practical systems.

A. Content Security

In [6], the content of the library must be protected against an
external wiretapper who obtains the signals transmitted during
the delivery phase. The key idea in [6] is that users cache the
same content as in the MAN scheme [2], and in addition also
share some security keys for the part of the files that were not
cached in the MAN scheme. The latter is done in a structured
way so that each user can retrieval all the multicast signals it
needs to decode.

B. User-Side Demand Privacy
Schemes that guarantee user privacy, that is, no user can

infer the demand of another user after the delivery phase, were
proposed in [7]. In particular, user privacy can be guaranteed
by adding virtual users [7], [8]. We investigated user privacy
against colluding users in [9], for both single file retrieval
and scalar linear function retrieval, where we imposed that
any subset of users must not obtain any information about the
demands of other users even if they exchange the content in
their caches. The key idea in [9] is that, in addition to the
cached contents as in the MAN scheme [2], each user also
privately caches some privacy keys, which are composed as
random linear combinations of the parts of the files that were
not cached in the MAN scheme. The demands are added by
the same coefficients used to generate the privacy keys, so that
each user can decode its demanded files with the privacy keys.

C. Content Security & User-Side Demand Privacy
We investigated simultaneous content Security and user

demand Privacy for scalar Linear Function Retrieval (SP-LFR)
in [10], where we designed a key superposition scheme to
guarantee both conditions at once by superposing (i.e., sum
together) the security keys and privacy keys. We showed
that the load-memory tradeoff in this case is the same as
in the setup with only content security guarantees. The idea
of key superposition was incorporated into the framework
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of Placement Delivery Array (PDA), which was known to
depict both placement and delivery phases in a single array
for coded caching systems with neither security or privacy
constraint [11]. The advantage of the PDA framework is that
low subpacketization schemes can be obtained directly from
existing PDA constructions, such as the ones in [11]–[15].

D. Server-Side Demand Privacy

Server-side demand privacy has been thoroughly investi-
gated for the case of multiple servers and a single user,
which is known as the Private Information Retrieval (PIR)
problem [16]. The capacity of PIR has been characterized
in [17] for single file retrieval, in [18] for scalar linear
function retrieval, and in [19] or single file retrieval and col-
luding servers. PIR with a cache-aided user was investigated
in [20]–[23].

E. MDS Coded Servers and Decoding Robustness

Since node failures and erasures commonly arise in storage
systems, redundancy is desirable [24]. Maximum Distance
Separable (MDS) codes are often used to code the data stored
across servers. The advantage of MDS coded servers is that it
saves storage while allowing unresponsive servers. PIR from
MDS-coded servers has been investigated in [25]–[27], and
the capacity was charactered in [25]. The schemes in [26],
[27] have almost optimal sub-packetization among all schemes
achieving the smallest download rate. The PIR schemes in [28]
have asymptotically optimal download rate when any num-
ber of unresponsive servers not exceeding some threshold
show up.

Notice that, the content security and user-side privacy
are mainly investigated in coded caching literature, which
typically involves a single server and multiple users, while
the MDS-coded servers and server-side privacy are mainly
investigated in the PIR literature, which typically involves mul-
tiple servers and a single user. For multiple-server-multiple-
user systems, the techniques from coded caching and PIR
were combined in [29], [30] to guarantee server-side privacy.
However, how to satisfy all the above requirement is not clear
as far as we know.

1) Contributions and Paper Organization: In this paper,
we combine all the above mentioned requirements in a system
whose model is depicted in Fig. 1. The model consists of H
servers, N files, and K users. Each of the N files is stored,
as an (H, L) MDS coded version,1 at all servers. Each server
is connected to all the users via a dedicated shared link, but
may not be able to reach all the users. The novel aspect of this
work is to design coded caching schemes that are robust to
some servers’ unavailability, that is, each user must be able to
retrieve an arbitrary scalar linear function of the files from the
signals obtained from an arbitrary subset of L servers (out of
H servers). The security [6], user-side privacy [9] and server-
side privacy [19] conditions are also imposed. We refer to this

1An (H, L) MDS code encodes L information packets into H coded
packets, with the property that upon obtaining any L (out of H) coded packets
one can recover the L information packets.

Fig. 1. System model.

model as a Robust Secure and (server- and user-side) Private
Linear Function Retrieval (RSP-LFR) problem.

Our key idea on how to guarantee all those conditions
simultaneously is to extend the key superposition scheme
in [10]. In particular, the technique of superposing user-side
privacy and security keys is used in the placement phase, while
in the delivery phase, the multicast signals are created in the
MDS code domain, where the MDS coded version of the keys
are added to the MDS coded multicast signals. Robustness is
guaranteed by the linearity property of the MDS code. Security
and (server- and user-side) privacy are guaranteed since each
transmitted signal is accompanied by an appropriate MDS
coded key.

Our main contributions for the proposed RSP-LFR model
are as follows.

1) We propose a procedure to obtain a RSP-LFR scheme
from a given PDA, so that low-subpacketization
RSP-LFR schemes can be easily obtained from various
existing PDA constructions [11]–[15]. Interestingly, with
the same PDA, compared to the single server SP-LFR
system in [10], the achieved memory size is the same,
but the load is scaled by a factor H/L, i.e., the inverse
of the rate of the MDS code used to encode the library
files.

2) Following the proposed procedure, RSP-LFR schemes
based on the PDAs that describe the original MAN
scheme in [2] (MAN-PDAs) are proved to achieve
the best load-memory tradeoffs among all PDA-based
RSP-LFR schemes. Moreover, we show that they have
the smallest subpacketization among all PDA based
schemes achieving the same load-memory pairs.

3) The load-memory tradeoff achieved by MAN-PDAs is
proved to be to within a constant multiplicative gap from
the optimal load-memory tradeoff, except for the regime
of small memory and less files than users.

4) For three less restrictive models, where some conditions
are dropped, we propose schemes for the corresponding
setups that improve the load-memory tradeoffs of the
novel MAN-PDA-based RSP-LFR scheme. The idea for
improving the tradeoff in less restrictive models is as
follows. In the case where security is not imposed,
security keys can be removed, and hence, some signals
in the delivery phase became redundant and can be
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removed akin to [4], [5], [10]. Moreover, those improved
schemes are shown to be optimal to within a constant
multiplicative gap in their respective setups in all para-
meter regimes, and the gap is lower than previously
known schemes.

The rest of this paper is organized as follows. Section II
gives the formal problem definition. Section III reviews the
PDA framework and gives an illustrative example. Section IV
summarizes our main results, where the proof details are
deferred to Sections V–VII. Section VIII presents some numer-
ical results. Section IX concludes the paper.

2) Notation Convention: In this paper, N
+ denotes the set

of positive integers; Fq and F
n
q denote the finite field of

cardinality q, for some prime power q, and the n-dimensional
vector space over Fq, respectively. For two integers m, n
such that m ≤ n, we use [m : n] to denote the set of the
first positive integers {m, . . . , n}; [1 : n] is also denoted by
[n] for short. We use XA to denote the tuple composed of
{Xi : i ∈ A} for some integer set A, where the elements
are ordered increasingly, e.g., X[3] = (X1, X2, X3). For
variables with two or more indices, e.g., Xi,j , we use XA,B
to denote the tuple {Xi,j : i ∈ A, j ∈ B}, where the
elements are listed in lexicographical order, e.g. X[3],[2] =
(X1,1, X1,2, X2,1, X2,2, X3,1, X3,2).

II. SYSTEM MODEL

Let N, K, L, H be positive integers satisfying L ≤ H .
The (N, K, L, H) RSP-LFR system, illustrated in Fig. 1,
consists of H servers (denoted by 1, . . . , H), where each
server is connected to K users (denoted by 1, . . . , K) via a
dedicated shared-link. A file library of N files (denoted by
W1, . . . , WN ∈ F

B
q ) are stored at the H servers in the form

of an (H, L) MDS code as follows, where B denotes the file
length. Each file Wn, n ∈ [N ], is composed of L equal-size
subfiles Wn,1, . . . , Wn,L ∈ F

B/L
q and is encoded into H coded

subfiles Wn,1, . . . , Wn,H ∈ F
B/L
q with a given (H, L) MDS

code with generator matrix

G =

⎡
⎢⎣

g1,1 . . . g1,H

...
. . .

...
gL,1 . . . gL,H

⎤
⎥⎦ ,

that is, the coded subfiles are given by

(Wn,1, . . . , Wn,H)

=
( ∑

l∈[L]

gl,1Wn,l, . . . ,
∑
l∈[L]

gl,HWn,l

)
, ∀n ∈ [N ]. (1)

The N files are mutually independent and uniformly distrib-
uted over F

B
q , that is,

H(W1) = · · · = H(WN ) = B,

H(W1, . . . , WN ) = H(W1) + · · · + H(WN ).

Therefore, each subfile or coded subfile is uniformly distrib-
uted over F

B/L
q . Server h ∈ [H ] stores the h-th coded subfile

of each file, i.e.,

W [N ],h := (W 1,h, . . . , WN,h), ∀h ∈ [H ].

For notational simplicity, for a vector a = (a1, . . . , aN )� ∈
F

N
q , we denote the scalar (i.e., operations are meant

element-wise across files) linear combination of the files
or (coded) subfiles for all l ∈ [L] and h ∈ [H ] as

Wa :=
∑

n∈[N ]

anWn, (2a)

Wa,l :=
∑

n∈[N ]

anWn,l, (2b)

W a,h :=
∑

n∈[N ]

anWn,h =
∑
l∈[L]

gl,hWa,l. (2c)

Notice that, Wa, Wa,l, W a,h are linear in a, e.g., for any
u, v ∈ Fq and a,b ∈ F

N
q , Wua+vb = uWa + vWb. Moreover,

since Wn,[H] := (Wn,1, . . . , Wn,H) is the MDS coded ver-

sion of Wn,[L] := (Wn,1, . . . , Wn,L), ∀n ∈ [N ], by linearity

we have that W a,[H] := (W a,1, . . . , W a,H) is the MDS coded
version of Wa,[L] := (Wa,1, . . . , Wa,L), ∀a ∈ F

N
q , as in (2c).

The system operates in two phases as follows.

A. Placement Phase

The servers can communicate with each other, and all
users can access all servers. To ensure the security condition
in (4b), the servers share some randomness V from some
finite alphabet V . Each user k ∈ [K] generates some random
variable Pk from some finite alphabet Pk and cache some
content Ck as a function of Pk, V and the file library W[N ].
Let the cached content be

Ck := ϕk(Pk, V, W[N ]) ∈ F
�MB�
q , ∀ k ∈ [K],

for some encoding functions ϕk : Pk × V × F
NB
q �→

F
�MB�
q , ∀ k ∈ [K]. The quantity M is referred to as memory

size. The encoding functions ϕ1, . . . , ϕK are known by the
servers, but the randomness P1, . . . , PK are kept private by
the corresponding users.

B. Delivery Phase

Each user k ∈ [K] generates a demand dk = (dk,1, . . . ,
dk,N )� ∈ F

N
q , meaning it is interested in retrieving the linear

combination of the files Wdk
. The following random variables

are independent

H(d[K], W[N ], P[K], V )

=
∑

k∈[K]

H(dk) +
∑

n∈[N ]

H(Wn) +
∑

k∈[K]

H(Pk) + H(V ).

User k ∈ [K] generates queries Qk,[H] := (Qk,1, . . . , Qk,H)
as

Qk,h := κk,h(dk, Ck) ∈ F
�k,h
q , ∀h ∈ [H ],

for some query functions κk,h : F
N
q × F

�MB�
q �→ F

�k,h
q , where

�k,h is the length of the query Qk,h. If any randomness is
needed in the queries, it has to be stored in the cache. Then
user k ∈ [K] sends the query Qk,h to server h ∈ [H ].

Upon receiving the queries from all the users, server h ∈
[H ] creates a signal Xh as

Xh := φh(V, Q[K],h, W [N ],h) ∈ F
�RhB�
q , ∀h ∈ [H ],
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for some encoding function φh : V × F

�
k∈[K] �k,h

q × F
NB
L

q �→
F
�RhB�
q . The quantity Rh, h ∈ [H ], is referred to as the load

of server h. The (total) load of the system is defined as

R :=
∑

h∈[H]

Rh.

An RSP-LFR scheme must satisfy the following conditions
for all demands d1, . . . ,dK ∈ F

N
q .

[Robust Correctness] : H(Wdk
|XL,dk, Ck) = 0,

∀ k ∈ [K],L ⊆ [H ] : |L| = L, (4a)

[Security] : I(W[N ]; X[H]) = 0, (4b)

[User-side Privacy] : I(d[K]\S ; CS , X[H],dS , |W[N ]) = 0,

∀S ⊆ [K] : S 	= ∅, (4c)

[Server-side Privacy] :
I(d[K]; Q[K],[H], W [N ],[H], V ) = 0, (4d)

C. Objective

A memory-load pair (M, R) ∈ [1, N ] × R
+ is said to be

B-achievable if, for any � > 0, there exists a scheme satisfying
all the conditions in (4) with memory size less than M + �,
load less than R+ � with file-length B. The main objective of
this paper is to characterize the optimal load-memory tradeoff
of the system, defined as

R∗(M) := inf
B∈N+

{
R : (M, R) is B-achievable

}
. (5)

Throughout this paper, we consider the case N ≥ 2, since
demand privacy is impossible for N = 1 (i.e., there is only
one possible file to be demanded).

For a given scheme, we are also interested in its subpacke-
tization level, which is defined as the number of packets each
file has to be partitioned into in order to implement the scheme.

Remark 1 (Implications of the Conditions in (4)): The
constrains in (4) imply the following.

1) The robust correctness condition in (4a) guarantees that
each user can correctly decode its required scalar linear
function by receiving any L-subsets of the transmitted
signals. Since each user decodes independently, the
available subset of signals L need not to be same across
the users.

2) The security condition in (4b) guarantees that a wiretap-
per, who is not a user in the system and observes all the
delivery signals, can not obtain any information about
the contents of the library files. It was proved in [9,
Appendix A] that the conditions in (4b) and (4c) imply

I(W[N ],d[K]; X[H]) = 0,

that is, the wiretapper having access to X[H] in fact
can not obtain any information on both the files and
the demands of the users.

3) The user-side privacy condition in (4c) guarantees that
any subset of users who exchange their cache contents
cannot jointly learn any information on the demands of
the other users, regardless of the file realizations.

4) The server-side privacy condition in (4d) guarantees
that the servers can not obtain any information on the
demands of the users, even if all the servers collude by
exchanging their stored contents.

Remark 2 (Minimum Memory Size): It was proved in [6]
that, in order to guarantee the correctness condition in (4a)
and the security condition in (4b) simultaneously, the memory
size M has to be no less than one. Thus the load-memory
tradeoff is defined for M ∈ [1, N ].

Remark 3 (Comparison With [29]): In the case L = 1
and G = [1, 1, . . . , 1], the servers store replicated databases.
A scheme to retrieve single files from replicated databases
for multiple users was proposed in [29], while guaranteeing
server-side privacy. This is different from our setup, even if
we remove the user-side privacy and security conditions, since
our robust decoding setup in this case imposes that each user
can decode from the signal of any single server (i.e., L = 1).

Remark 4 (Less Constrained Systems and Naming Conven-
tion): For any given RSP-LFR (N, K, L, H) system, the robust
correctness condition in (4a) guarantees that the users can
correctly decode their demands by receiving the signals from
any L servers. In addition to investigating the load-memory
tradeoff of the RSP-LFR system, we also discuss less con-
strained systems where some of the conditions in (4) are
relaxed or dropped. In such systems, the optimal load-memory
tradeoff can be similarly defined as in (5). In particular, we use
R∗

C(M) to denote the optimal load-memory tradeoff of a
system with only the constrains listed in the label C, which
can be any of the following:

• L: scalar Linear Function Retrieval (LFR) demands, i.e.,
the demands d1, . . . ,dK ∈ F

N
q ;

• F: File Retrieval (FR) demands, i.e., the demands
d1, . . . ,dK are restricted to {e1, . . . , eK}, where en ∈
F

N
q , n ∈ [N ], is the vector with the n-th digit being 1

and all the others zero;
• S: the security condition in (4b);
• P: both privacy conditions in (4c) and (4d);
• PU: the user-side privacy condition in (4c);
• PS: the server-side privacy condition in (4d);

The convention for the subscript C is:
1) It contains either L or F, but not both, so as to identify

the demand type allowed in the system.
2) It contains at most one character between P, PU, PS,,

which identifies the privacy condition imposed on the
system.

3) The tradeoff is defined for M ∈ [1, N ] if it contains S,
and for M ∈ [0, N ] otherwise (see Remark 2).

With the above conventions, the value of C is one from the
set

Ω := {L, LS, LP, LPS, LPU, LSP, LSPS, LSPU,

F, FS, FP, FPU, FPS, FSP, FSPS, FSPU}.

Notice that, if C = LSP, the system is the novel RSP-LFR
setup introduced in this paper, thus, R∗

LSP(M) = R∗(M)
in (5), defined for all M ∈ [1, N ].

We will also need to discuss the single server system where
all the files are stored at the server. The optimal load-memory
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tradeoff can be similarly defined for such a system for any
constraint implied by C ∈ Ω. We will use R

∗
C(M) to denote

the optimal tradeoff in the single server system with constraint
identified by C ∈ Ω.

III. PDAS AND A TOY EXAMPLE

Our achievable results are based on the notion of PDA [11],
originally introduced to reduce the subpacketization in the
single-server systems for single file retrieval and without any
security or privacy guarantees. In this section, we first review
the definition of PDA, and then give an example to highlight
the key ideas in the design of our RSP-LFR scheme. The
general construction will be discussed in the rest of the paper.

A. Placement Delivery Array

Definition 1 (PDA [11]): For given K, F ∈ N
+ and Z, S ∈

N, an F × K array A = [ai,j ], i ∈ [F ], j ∈ [K], composed
of Z specific symbols “∗” in each column and some ordinary
symbols 1, . . . , S, each occurring at least once, is called a
(K, F, Z, S) PDA, if, for any two distinct entries ai,j and
ai′,j′ , we have ai,j = ai′,j′ = s, for some ordinary symbol
s ∈ [S] only if

a) i 	= i′, j 	= j′, i.e., they lie in distinct rows and distinct
columns; and

b) ai,j′ = ai′,j = ∗, i.e., the corresponding 2×2 sub-array
formed by rows i, i′ and columns j, j′ must be of the
following form [

s ∗
∗ s

]
or

[
∗ s
s ∗

]
.

With a given (K, F, Z, S) PDA, it was shown in [11] that
there exists an associated coded caching scheme in the single
server system without any security or privacy constraint, where
the parameter K is the number of users, F is the number of
packets each file is split into (i.e., subpacketization), Z is the
number of uncoded packets from each file stored at each user,
and S is the number of coded multicast signals.

In our model, those implications are used on the subfiles and
each single server: the parameter K is the number of users,
F is the number of packets each subfile Wn,l is split into, Z
is the number of uncoded packets from each subfile stored at
each user; and S is the number of coded multicast signals sent
by each individual server.

B. A Toy RSP-LFR Example From PDAs

We derive here a RSP-LFR scheme associated to the
(K, F, Z, S) = (3, 3, 1, 3) PDA

A =

⎡
⎣ ∗ 1 2

1 ∗ 3
2 3 ∗

⎤
⎦ (6)

for an (N, K, L, H) = (4, 3, 2, 3) distributed system.
Let the four files be W1, W2, W3, W4 ∈ F

B
2 and the (3, 2)

generator matrix is given by

G =
[

1 0 1
0 1 1

]
. (7)

TABLE I

THE CACHED CONTENTS OF USERS† ACCORDING TO A IN (6)

That is, each file is split into L = 2 subfiles, Wn =
(Wn,1, Wn,2), n ∈ [4] and by (1), the contents stored at the
servers are

W [4],1 = W[4],1,

W [4],2 = W[4],2,

W [4],3 = W[4],1 ⊕ W[4],2.

Based on the PDA A in (6), each subfile Wn,l is partitioned
into F = 3 equal-size packets, Wn,l,1, Wn,l,2, Wn,l,3 for all
n ∈ [4], l ∈ [2]. Accordingly, the coded subfile Wn,h is parti-
tioned into F = 3 equal-size packets, Wn,h,1, Wn,h,2, Wn,h,3.

Similarly to (2), for any a = (a1, a2, a3, a4)� ∈ F
4
2, we use

the following notation to denote the linear combination of
(un)coded packets with coefficient vector a:

Wa,l,i :=
⊕
n∈[4]

anWn,l,i,

W a,h,i :=
⊕
n∈[4]

anWn,h,i =
⊕
l∈[2]

gl,hWa,l,i

for all l ∈ [2], i ∈ [3], h ∈ [3].
The system operates as follows.
Placement Phase: The servers share LS = 6 vectors {Vl,s :

l ∈ [2], s ∈ [3]}, which are generated independently and
uniformly from F

B/6
2 , where the packets V1,s, V2,s will be

associated to the ordinary symbol s ∈ [3]. Each user k ∈ [3]
generates a random vector pk = (pk,1, pk,2, pk,3, pk,4)� ∈ F

4
2.

The cache content of the user k is composed of pk and the
(un)coded packets in the corresponding column in Table I.

The packets W[4],[2],i are associated to the i-th row of A
in (6) and user k is associated to the k-th column of A.
The packets in the i-th row of Table I of user k are created
according to the entry ai,k of A in (6): if ai,k = ∗, user k
caches NL = 8 uncoded packets W[4],[2],i, otherwise it caches
L = 2 coded packets Wpk,[2],i ⊕ V[2],ai,k

.
Delivery Phase: Assume that user 1, 2, 3 demands the

linear combination Wd1 , Wd2 and Wd3 , respectively, where
d1,d2,d3 ∈ F

4
2. Each user k ∈ [3] sends qk = pk ⊕dk to all

the servers as queries. Upon receiving the query vectors q[3],
each server h ∈ [3] sends a signal Xh to the users, where Xh is
composed of the query vectors q[3] and S = 3 coded packets
as in the Table II, which are associated to the ordinary symbols
s = 1, 2, 3 of A in (6), respectively, where (V 1,s, V 2,s, V 3,s)
is the MDS codeword of (V1,s, V2,s) with generator matrix G
in (7), i.e., for s ∈ [3],

V 1,s = V1,s, V 2,s = V2,s, V 3,s = V1,s ⊕ V2,s.

Performance: Each user k ∈ [3] can decode the linear
combination Wdk

with signals from any L = 2 servers because



YAN AND TUNINETTI: ROBUST, PRIVATE AND SECURE CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 973

TABLE II

THE SIGNALS SENT BY THE SERVERS† ACCORDING TO A IN (6)

TABLE III

THE SIGNALS A USER CAN DECODE FROM THE TRANSMISSION BY THE

SERVERS† ACCORDING TO A IN (6)

user k can decode Wdk,[2],k since it has cached all the uncoded
packets W[4],[2],k from Table I. For the other packets, we note:

• For each s ∈ [3], the signals associated to s over the
servers form an MDS codeword with generator matrix
G, whose original packets are coded packets within each
subfile as shown in Table III. By the property of MDS
codes, each user can decode the signals in Table III by
receiving signals from any L = 2 of the servers.

• Upon obtaining the signals in Table III, each user k ∈ [3]
can proceed with the decoding process for each subfile
l ∈ [2] as in [9]. Let us take s = 1 for subfile l = 1
as an example. As a1,2 = a2,1 = 1, user 1 can decode
Wd1,1,2 and user 2 can decode Wd2,1,1 from the signal
V1,1 ⊕ Wq1,1,2 ⊕ Wq2,1,1, i.e.,

Wd1,1,2 = (V1,1 ⊕ Wq1,1,2 ⊕ Wq2,1,1) (8a)

⊕ (V1,1 ⊕ Wp1,1,2) (8b)

⊕Wq2,1,1, (8c)

thus, user 1 can decode Wd1,1,2 since the signals in (8b)
are cached by user 1, and the signal in (8c) can be
computed from the cached uncoded packets W[4],1,1 and
the vector q2. Similarly, user 2 can decode the packet
Wd2,1,1 by computing

Wd2,1,1 = (V1,1 ⊕ Wq1,1,2 ⊕ Wq2,1,1)
⊕ (V1,1 ⊕ Wp2,1,1)
⊕Wq1,1,2.

One can verify that each user k ∈ [3] can decode all the
remaining packets Wdk,[2],[3]\{k} from its stored contents,
the signals in Table III and the query vectors q[3].

This concludes the proof of correct robust decoding. Privacy
and security are guaranteed since each signal is accompanied
by a key of random and uniformly distributed bits.

In term of memory-load performance, recall that each packet
is of size B

6 bits. Each user caches 12 packets and 1 vectors

in F
4
2, whose length does not scale with B. Thus the needed

memory is M = 12 × 1
6 = 2 files. Each of the 3 server

sends 3 packets and 3 vectors in F
4
2, thus the achieved load

is R = 3 × 3 × 1
6 = 3

2 files. Hence, the scheme achieves the
memory-load pair (M, R) =

(
2, 3

2

)
.

IV. MAIN RESULTS

A. PDA Based RSP-LFR Schemes

With any given PDA, we will construct an associated
RSP-LFR scheme. The following theorem summarizes the per-
formance of PDA based SP-LFR scheme, which will be proved
by presenting and analyzing the construction in Section V.

Theorem 1: For any (N, K, L, H) system and a given
(K, F, Z, S) PDA A, there exists an associated RSP-LFR
scheme that achieves the memory-load pair

(
MA, RA

)
=

(
1 +

Z

F
(N − 1),

H

L
· S

F

)
. (10)

with subpacketization LF .
Remark 5 (Comparison With Single-Server Systems):

With the procedure described in Section V, we can easily
obtain RSP-LFR schemes from existing PDA constructions,
such as those in [11]–[15]. If H = L = 1, the system
degrades to a single-server shared-link system, where all the
files are stored at the server [2]. In [10], a key superposition
scheme was proposed to guarantee the correctness, security,
and user privacy conditions simultaneously based on any
(K, F, Z, S) PDA A for single-server systems. The scheme
in [10] achieves the memory-load pair in (10) with H/L = 1.
In other words, the RSP-LFR scheme with PDA A achieves
the same memory size as in the single server case but the
load is scaled by a factor H

L . In the case H = L, each
user needs to retrieve information from all the servers, and
the total load is the same as that from a single server case
(i.e., H = L = 1). Moreover, this indicates that, in addition
to guaranteeing correctness, security, and user-side privacy
conditions, the server-side privacy condition does not increase
the load-memory tradeoff in the non-robust multi-server case
with H = L.

B. Optimality of MAN-PDA Based RSP-LFR Schemes

The following PDA describing the MAN scheme in [2]
is important, and will be referred to as MAN-PDA in the
following.

Definition 2 (MAN-PDA): For any integer j ∈ [0 : K],
define the set Ωj � {T ⊆ [K] : |T | = j}. Fix any integer
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t ∈ [0 : K], denote the set Ωt = {Ti : i ∈ [
(

K
t

)
]}. Also,

choose an arbitrary bijective function κt+1 from Ωt+1 to the
set

[(
K

t+1

)]
. Then, define the array At = [ai,j ] as

ai,j �
{
∗, if j ∈ Ti

κt+1({j} ∪ Ti), if j /∈ Ti.
(11)

It was proved in [11] that At from (11) in Definition 2 is
a (K,

(
K
t

)
,
(
K−1
t−1

)
,
(

K
t+1

)
) PDA.

Example 1 (A MAN-PDA): Consider K = 4, t = 2, let
T1 = {1, 2}, T2 = {1, 3}, T3 = {1, 4}, T4 = {2, 3}, T5 =
{2, 4} and T6 = {3, 4}. Let κ3 be the lexicographic order of a
subset of size 3 in Ω3, e.g., κ3({1, 2, 3}) = 1, κ3({1, 2, 4}) =
2 and κ3({1, 3, 4}) = 3 and κ3({2, 3, 4}) = 4. The corre-
sponding (4, 6, 3, 4) PDA is given by

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 1 2
∗ 1 ∗ 3
∗ 2 3 ∗
1 ∗ ∗ 4
2 ∗ 4 ∗
3 4 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The following theorem summarizes the performance of
MAN-PDA and its optimality. The proof is presented
in Section VI-A

Theorem 2: Let R(M) be the lower convex envelope of the
following points

(Mt, Rt) =
(

1 +
t(N − 1)

K
,
H(K − t)
L(t + 1)

)
, (12)

where t ∈ [0 : K], then R(M) is achievable in an
(N, K, L, H) RSP-LFR system, where the point (Mt, Rt) can
be achieved with subpacketization L

(
K
t

)
. Moreover, R(M)

and the optimal communication load R∗(M) satisfies

1) N ≥ K , for all M ∈ [1, N),

R(M)
R∗(M)

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if K = 1
2, if N = K = 2
6.02652, if N = K ≥ 3
5.0221, if N = K + 1
4.01768, if N ≥ K + 2.

2) N < K , for all M ∈ [2, N),

R(M)
R∗(M)

< 8.

Remark 6 (On Unbounded Regime): In the regime N <
K, 1 ≤ M < 2 the gap is unbounded. From our proof,
R(M)
R∗(M) is upper bounded by

RLSPU (M)

R
∗
LSPU

(M)
, where RLSPU(M)

is the tradeoff achieved by the key superposition scheme in
the single server system where the security and user-side
privacy conditions are imposed [10], and R

∗
LSPU

(M) is the
corresponding optimal tradeoff. The gap result in Theorem 2

thus follows from the bound for
RLSPU (M)

R
∗
LSPU

(M)
in [10], where the

same regime is open. The main problem in this regime for the
single server model is that, if security keys are used [6], [10],
for the point M = 1 the best know achievable load is K , while

the best known converse is N . Thus, it seems that the larger
load when K > N is mainly caused by the security condition;
closing the gap in small memory regime is an open problem
in the S-FR setup [6]. When new converse and gap will be
obtained for this regime in the single server case, the same gap
will apply to our RSP-LFR system. In fact, it was observed

in [10] that,
RLSPU (M)

R
∗
LSPU

(M)
is upper bounded by the constant 17

for the regime N > K and 1 + (N−K)(N−1)
NK ≤ M ≤ 2,

which was a gap obtained for S-FR setup [6]. Thus, the gap
remains unbounded only for the regime K > N, 1 ≤ M ≤
1 + (N−K)(N−1)

NK .
The following theorem implies that, with the given pro-

cedure of deriving RSP-LFR scheme in Section V, the
memory-load pairs {(Mt, Rt) : t ∈ [0 : K]} achieved by
the MAN-PDAs are Pareto-optimal among all PDA based
RSP-LFR schemes. Moreover, the MAN-PDAs have the small-
est subpacketization among all PDA based RSP-LFR schemes
achieving these points. The proof is deferred to Section VI-B.

Theorem 3: Given a (K, F, Z, S) PDA, if the associated
RSP-LFR scheme achieves a memory-load pair (M, R), then
necessarily

R ≥ HK(N − M)
L(N − 1 + K(M − 1))

=
H(K − x)
L(x + 1)

∣∣∣∣
x=K M−1

N−1

.

(13)

In particular, the memory-load pairs {(Mt, Rt) : t ∈ [0 :
K]} satisfy (13) with equality. Moreover, if M = Mt and

R = Rt for some t ∈ [0 : K], then the subpacketization is at

least L
(
K
t

)
.

Remark 7 (Subpacketizations): By the procedure described
in Section V, we can easily obtain RSP-LFR schemes from
existing PDA constructions, such as those in [11]–[15]. It was
shown in [10] that the new PDA construction based scheme
in [11] achieves a slightly larger load than MAN-PDA for
the same memory size, while reducing the subpacketization
by a factor that increases exponentially with K . Thus, PDAs
in [11] sacrifice some load for an exponential reduction in
subpacketization.

C. Improved Load-Memory Tradeoffs for
Less Constrained Systems

Obviously, the load-memory tradeoff R(M) in Theorem 2
is achievable for any less constrained system described in
Remark 4. In this subsection, we present improved achievable
results for the following three less constrained systems. The
details are presented in Section VII.

1) Robust Private Linear Function Retrieval (RP-LFR) Sys-
tem (C = LP): In an (N, K, L, H) RP-LFR system, the
correctness condition (4a) and the privacy conditions (4c)–(4d)
must be guaranteed for all LFR demands.

Theorem 4: For an (N, K, L, H) RP-LFR system, let
RLP(M) be the lower convex envelope of the point

(
0, HN

L

)
and the following points

(MLP
t , RLP

t )

:=
(

1 +
t(N − 1)

K
,
H

((
K

t+1

)
−

(
K−min{K,N}

t+1

))
L

(
K
t

) )
, (14)
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where t ∈ [0 : K]. Then, RLP(M) is achievable, and it
satisfies

RLP(M)
R∗

LP(M)
≤ 6.3707, ∀M ∈ [0, N ].

2) Robust Private File Retrival (RP-FR) System (C =
FP): In an (N, K, L, H) RP-FR system, the correctness
condition (4a) and the privacy conditions (4c)–(4d) must be
guaranteed for all FR demands.

Theorem 5: For an (N, K, L, H) RP-FR system, let
RFP(M) be the lower convex envelope of the point

(
0, HN

L

)
and the following points

(MFP
t , RFP

t

:=
(

1 +
t(N − 1)

K
,
H

((
K

t+1

)
−

(
K−min{K,N−1}

t+1

))
L

(
K
t

) )
,

where t ∈ [0 : K]. Then, RRP-F(M) is achievable, and it
satisfies

RFP(M)
R∗

FP(M)
≤ 5.4606, ∀M ∈ [0, N ].

3) Robust Linear Function Retrieval (R-LFR) System (C =
L): In an (N, K, L, H) R-LFR system, only the correctness
condition (4a) must be guaranteed for all LFR demands.

Theorem 6: For an (N, K, L, H) R-LFR system, let
RL(M) be the lower convex envelope of the following points

(ML
t , RL

t ) :=
(

tN

K
,
H

((
K

t+1

)
−

(
K−min{K,N}

t+1

))
L

(
K
t

) )
,

where t ∈ [0 : K]. Then, RL(M) is achievable and it satisfies

RL(M)
R∗

L(M)
≤ 2.00884, ∀M ∈ [0, N ].

Remark 8 (Less Constrained Systems): Notice that if
RC(M) is achievable for the constraint C, then RC(M)
is achievable for all constrains that are less restrictive
than C. In particular, with Theorem 2, the tradeoff R(M) is
achievable for all C ∈ Ω. Moreover, with Theorems 4–6, the
tradeoff

1) RLP(M) is achievable for any C ∈ {LP, LPS, LPU};
2) RFP(M) is achievable for any C ∈ {FP, FPS, FPU};
3) RL(M) is achievable for any C ∈ {L, F}.

Moreover, from the proofs in Section VII, it is clear that the
subpacketzation for (MC

t , RC
t ) is L

(
K
t

)
for all t ∈ [0 : K]

and C ∈ {LP, FP, L} (and thus also for their less constrained
systems).

V. PROOF OF THEOREM 1

In this section, we derive a RSP-LFR scheme for an
(N, K, L, H) system from any given (K, F, Z, S) PDA A =
[ai,j ]F×K . Based on A, each subfile Wn,l (n ∈ [N ], l ∈
[F ]) is partitioned into F equal-size packets, denoted by
Wn,l,1, . . . , Wn,l,F , where each packet Wn,l,i ∈ F

B/(LF )
q . The

packets with index i, i.e., W[N ],[L],i, are associated to the
i-th row of A. According to (1), each coded subfile Wn,h

(n ∈ [N ], h ∈ [H ]) is composed of F coded packets, denoted
by Wn,h,1, . . . , Wn,h,F , where

Wn,h,i =
∑
l∈[L]

gl,hWn,l,i, ∀ i ∈ [F ].

That is, the coded contents stored at server h are

W [N ],h,[F ], ∀h ∈ [H ].

We use the following notations similarly to (2) for any
a = (a1, . . . , aN)� ∈ F

N
q to denote the linear combination

of (un)coded packets:

rCllWa,l,i =
∑

n∈[N ]

anWn,l,i, ∀ l ∈ [L], i ∈ [F ].

W a,h,i =
∑

n∈[N ]

anWn,h,i, ∀h ∈ [H ], i ∈ [F ].

Notice that (W a,1,i, . . . , W a,H,i) is the MDS codeword of
(Wa,1,i, . . . , Wa,L,i), i.e.,

(W a,1,i, . . . , W a,H,i)

=
( ∑

l∈[L]

gl,1Wa,l,i, . . . ,
∑
l∈[L]

gl,HWa,l,i

)
. (15)

Moreover, Wa,l,i, Wa,h,i are linear in a.

A. Placement Phase

the servers share the random variables

V = {Vl,s : l ∈ [L], s ∈ [S]}, (16)

which are SL vectors independently and uniformly distributed
over F

B/(FL)
q . Each user k ∈ [K] locally generates a random

vector pk uniformaly over F
N
q , and constructs its local cache

Ck as

Ck = {pk} (17a)

∪{Wn,l,i : n ∈ [N ], l ∈ [L], i ∈ [F ], ai,k = ∗}
(17b)

∪{Wpk,l,i + Vl,ai,k
: l ∈ [L], i ∈ [F ], ai,k 	= ∗}.

(17c)

B. Delivery Phase

Assume that user k ∈ [K] demands Wdk
, for some dk ∈

F
N
q . Then user k ∈ [K] sends query qk = dk + pk to all the

servers, i.e., the queries Qk,[H] are constructed as

Qk,h = qk = dk + pk, ∀h ∈ [H ]. (18)

For each s ∈ [S], consider the MDS coded version of
(V1,s, . . . , VL,s) with the generator matrix G, i.e.,

(V 1,s, . . . , V H,s) =
( ∑

l∈[L]

gl,1Vl,s, . . . ,
∑
l∈[L]

gl,HVl,s

)
. (19)

Upon receiving the queries Q[K],h = q[K], each server h ∈
[H ] sends the signal

Xh = (q[K], Y h,[S]) (20)



976 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

to the users, where for each s ∈ [S], Y h,s is

Y h,s = V h,s +
∑

(u,v)∈[F ]×[K]
au,v=s

Wqv,h,u. (21)

C. Robust Correctness

We need to show that for each user k ∈ [K], with any
L ⊆ [K] such that |L| = L, user k can decode its demanded
scalar linear function Wdk

, i.e., all the packets Wdk,[L],[F ].

For each i ∈ [F ] such that ai,k = ∗, by (17b), user k ∈
[K] has stored all the packets W[N ],[L],i, thus it can directly
compute the packets Wdk,l,i for each l ∈ [L].

Now, consider any i ∈ [F ] such that ai,k 	= ∗. Let s � ai,k,
notice that by (15) and (19), (Y 1,s, . . . , Y H,s) is the MDS
coded version of information coded packets (Y1,s, . . . , YL,s)
with generator matrix G, where

Yl,s := Vl,s +
∑

(u,v)∈[F ]×[K]
au,v=s

Wqv ,l,u, ∀ l ∈ [L]. (22)

By the property of MDS codes, each user can decode all the
L coded packets in (22) with signals from any subset of L
servers for each s ∈ [S]. Since ai,k = s, for each l ∈ [L], the
signal Yl,s in (22) can be written as

Yl,s = Vl,s + Wqk,l,i +
∑

(u,v)∈[F ]×[K]
au,v=s,(u,v) �=(i,k)

Wqv ,l,u

(a)
= Wdk,l,i + (Vl,ai,k

+ Wpk,l,i)

+
∑

(u,v)∈[F ]×[K]
au,v=s=ai,k,(u,v) �=(i,k)

Wqv ,l,u,

where (a) follows from qk = pk + dk. Therefore, user k ∈
[K] can decode Wdk,l,i from the signal Yl,s by canceling the
remaining terms since

1) the coded packet Vl,ai,k
+ Wpk,l,i is cached by user k

by (17c);
2) for each (u, v) ∈ [F ] × [K] such that au,v = s and

(u, v) 	= (i, k), since ai,k = au,v = s, by the definition
of PDA, i 	= u, v 	= k and ai,v = au,k = ∗. Thus,
user k ∈ [K] stores all the packets W[N ],[L],u. Hence,
user k can compute Wqv,l,u for each l ∈ [L].

Remark 9 (On the Robust Decoding): From the above
decoding process, user k ∈ [K] can decode its demanded
linear function if for any i ∈ [F ] such that ai,k 	= ∗, user k
can receive any L of the coded signals Y 1,ai,k

, . . . , Y H,ai,k
.

This is less restrictive than the assumptions in our setup (i.e.,
each user can obtain a fixed subset of signals XL), since
(i) it allows the available subset L to vary over different
transmission s ∈ [S]; (ii) it only needs to decode packets
over the signals associated to s such that, ai,k = s for some
i ∈ [F ], which indicates that for s ∈ [S]\{ai,k : i ∈ [F ]},
the availability of the signals Y [H],s does not affect the
decodability of user k.

D. Security

We have

I(W[N ]; X[H]) (23a)

= I(W[N ];q[K], Y [H],[S]) (23b)

= I(W[N ];q[K], Y[L],[S]) (23c)

= I(W[N ];q[K]) + I(W[N ]; Y[L],[S] |q[K]) (23d)

= 0, (23e)

where: (23c) holds since (Y 1,s, . . . , Y H,s) is the MDS coded
version of (Y1,s, . . . , YL,s) for each s ∈ [S], and hence they
determine each other; and (23e) follows since (a) the vectors
q[K] = d[K] + p[K] are independent of W[N ], and (b) Y[L],[S]

are independent of (W[N ],q[K]) because the random variables
V[L],[S] are independently and uniformly distributed.

E. User-Side Privacy in (4c)

We have

I(d[K]\S ; CS , X[H],dS |W[N ]) (24a)

= I(d[K]\S ; CS ,q[K], Y [H],[S],dS |W[N ]) (24b)

= I(d[K]\S ; CS ,q[K], Y[L],[S],dS |W[N ]) (24c)

= 0, (24d)

where: (24c) follows since Y [H],[S] and Y[L],[S] determine
each other due to the fact that Y [H],s is the MDS coded
version of Y[L],s for each s ∈ [S]; and (24d) fol-
lows since d[K]\S = q[K]\S − p[K]\S is independent of
(CS , W[N ],q[K],dS , Y[L],[H]) since p[K]\S are independently
and uniformly distributed.

F. Server-Side Privacy in (4d)

We have

I(d[K]; Q[K],[H] W [N ],[H], V ) (25a)

= I(d[K];q[K], W[N ], V ) (25b)

= I(d[K]; W[N ], V ) + I(d[K];q[K] |W[N ], V ) (25c)

= 0, (25d)

where: (25b) follows from (18) and the fact W [N ],[H] and
W[N ] determines each other; and (25d) holds because (a) d[K]

is independent of (W[N ], V ); (b) q[K] = p[K] + d[K] are
independent of (d[K], W[N ], V ) since the vectors p[K] are
independent random variables uniformly distributed.

G. Performance

By construction, each subfile is split into F equal-size
packets, each of length B

LF symbols, thus the subpacketization
is LF . For each user k ∈ [K], by the cached content in (17),
for each i ∈ [F ] such that ai,k = ∗, there are LN associated
packets cached by the user, one from each file (see (17b)).
For each i ∈ [F ] such that ai,k 	= ∗, there are L associated
coded packet cached at the user (see (17c)). In addition, the
pk in (17a) can be stored with N symbols. Recall that, each
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column of a (K, F, Z, S) PDA has Z “∗”s and F −Z ordinary
symbols, thus, the needed cache size is

MA = inf
B∈N+

1
B

(
(Z LN + (F − Z)L)

B

LF
+ N

)
=

F + Z (N − 1)
F

.

By (20), each server h ∈ [H ] sends S coded packets Yh,[S],
each of size B

LF symbols, and the coefficient vectors q[K] can
be sent in KN symbols, thus the achieved load is

RA = inf
B∈N+

1
B

(
HS

B

LF
+ H KN

)
=

HS

LF
.

Remark 10 (Novality of This Work): Compared to our pre-
vious work on SP-LFR systems in [10], this work extends
the key superposition scheme in [10] to distributed systems.
The prefetched contents are packets of original files, while
the multicast signals are formed by the MDS coded packets,
as indicated by (17) and (21), respectively. This inserts
the property of robust decoding in the distributed setup as
mentioned in Remark 9. As distributed systems are widely
used in practice, due to their advantages such as less storage
space at each server, robustness against server failures and so
on, the proposed scheme indicates that the techniques such
as multicast coding, key superpositions from the single server
system can be integrated with the robustness provided by MDS
code and applied to distributed systems.

VI. MAN-PDA AND ITS OPTIMALITY

A. MAN-PDA: Performance and Gap Results (Proof of
Theorem 2)

The achievability of the point (Mt, Rt) directly follows
from Theorem 1 and the (K,

(
K
t

)
,
(
K−1
t−1

)
,
(

K
t+1

)
) MAN-PDA

At in Definition 2. Moreover, the lower convex envelope
of the points in (12) can be achieved by memory-sharing
technique [2].

For the gap result, we derive the following lemma for any
C ∈ Ω.

Lemma 1: For any C ∈ Ω, for any feasible2 M ,

R∗
C(M) ≥ H

L
· R∗

C(M),

Proof: For a (N, K, L, H) system with the constraint
C, for any feasible design of caches Z[K] and signals X[H]

satisfying the constraint C, for any L ⊆ [H ], the contents
Z[K] and signal X � XL are a feasible scheme for the single
server system with the same constraint C. Thus,

H(XL)
B

≥ R
∗
C(M), ∀L ⊆ [K], |L| = L.

Therefore,

R∗
C(M) ≥ 1

B

∑
h∈[H]

H(Xh) (26a)

=
H

B
· 1
H

∑
h∈[H]

H(Xh) (26b)

2If C contains S, M ∈ [1, N ]; else M ∈ [0, N ] (see Remark 2).

≥ H

B
· 1(

H
L

) ∑
L⊆[H],|L|=L

H(XL)
L

(26c)

= H · 1(
H
L

) ∑
L⊆[H],|L|=L

R∗
C(M)
L

(26d)

≥ H

L
· R∗

C(M), (26e)

where (26c) follows from Han’s inequality [34].
Let RLSPU(M) be the lower convex envelope of the fol-

lowing points: for each t ∈ [0 : K],

(
M t, Rt

)
=

(
1 +

t(N − 1)
K

,
K − t

t + 1

)
, (27)

Notice that RLSPU(M) is achievable by the key superposition
scheme in [10] for the single server system with constraint
LSPU. Comparing (12) with (27), we see that R(M) = H

L ·
RLSPU(M) (see also Remark 5), hence by Lemma 1, for all
M ∈ [1, N ],

R(M)
R∗(M)

≤ RLSPU(M)

R
∗
LSP(M)

(a)

≤ RLSPU(M)

R
∗
LSPU

(M)
. (28)

where (a) follows from the fact R
∗
LSP(M) ≥ RLSPU(M),

since the constraint LSP is stronger than the constraint LSPU.
Thus, the claimed multiplicative gap result directly follows

from (28) and the bound for
RLSPU (M)

R
∗
LSPU

(M)
in [10, Theorem 3].

B. MAN-PDA:Optimality Within PDA Based RSP-LFR
Schemes (Proof of Theorem 3)

Consider a single server network with constraint LSPU as
in [10]. For any (K, F, Z, S), the scheme proposed in [10]
from PDA A achieves the memory-load pair

(
MA, RA

)
=(

1 + Z(N−1)
F , S

F

)
. The following conclusion was proved

in [10].
Lemma 2 (From [10, Theorem 2]): Given a (K, F, Z, S)

PDA A, if the associated scheme for the single server
system with constraint LSPU achieves a memory-load pair
(MA, RA), then necessarily

RA ≥ K(N − MA)
N − 1 + K(MA − 1)

. (29)

In particular, the memory-load pairs {(M t, Rt) : t ∈ [0 : K]}
given in (27) satisfy (29) with equality. Moreover, if MA =
M t and RA = Rt for some t ∈ [0 : K], then F ≥

(
K
t

)
.

Now consider a (K, F, Z, S) PDA A. Assume that the
associated RSP-LFR scheme achieves the memory-load pair
(M, R) = (MA, RA), then

R = RA =
H

L
· RA (30a)

≥ H

L
· K(N − MA)
N − 1 + K(MA − 1)

(30b)

=
HK(N − M)

L(N − 1 + K(M − 1))
(30c)

=
H(K − x)
L(1 + x)

∣∣∣∣
x=K M−1

N−1

, (30d)
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where: (30a) follows from Remark 5; (30b) follows from (29);
and (30c) follows from the fact M = MA = MA by
Remark 5. Therefore, we proved (13).

The fact that memory pairs {(Mt, Rt) : t ∈ [0 : K]}
satisfy (13) with equality can be verified trivially. Moreover,
if M = MA = Mt and R = RA = Rt, then MA = M t and
RA = Rt, by the facts Mt = M t, Rt = H

L ·Rt and Remark 5.
Therefore, by Lemma 2, it must hold that F ≥

(
K
t

)
. Thus,

by Theorem 1, the subpacketization of the RSP-LFR scheme
is at least L

(
K
t

)
.

VII. IMPROVED LOAD-MEMORY TRADEOFFS IN LESS

CONSTRAINED SYSTEMS

The basic idea for improving the load-memory tradeoff
in less constrained systems is that in the case the security
condition (4b) is not imposed (i.e., the constraint C does not
contain S), some redundant signals may be removed when
N ≤ K as in [4], [5]. Notice that in such less constrained
systems, R∗

C(M) is defined on M ∈ [0, N ].
Consider a fixed MAN-PDA At in (11), where F =

(
K
t

)
and S =

(
K

t+1

)
. Notice that each row of At is associated to

a subset of size t, i.e., for any given a ∈ F
N
q and l ∈ [L] or

h ∈ [H ], each linear combination of files Wa,l,u or W a,h,u is

associated to the subset Tu ⊆ [K]. For notational simplicity,

in this section, for each u ∈ [
(
K
t

)
], denote

Wa,l,Tu := Wa,l,u, W a,h,Tu := Wa,h,u. (31)

Moreover, each signal Yl,s or Y h,s is associated to a subset
J ⊆ [K] of size t + 1, i.e., the subset J such that s =
κt+1(J ). Denote

Yl,J := Yl,κt+1(J ), Y h,J := Y h,κt+1(J ). (32)

In RP-LFR, RP-FR and R-LFR systems, the security con-
dition (4b) is not imposed. Thus, the security keys can be
dropped, i.e., instead of generating the random variables
in (16) we set

Vl,s = 0, ∀ l ∈ [L], s ∈ [S]. (33)

Therefore, with notations as in (31) and (32), by (21) and (22),
we have

Yl,J =
∑
j∈J

Wqj ,l,J\{j}, Y h,J =
∑
j∈J

Wqj ,h,J\{j},

where (Y 1,J , . . . , Y H,J ) is the MDS coded version of
(Y1,J , . . . , YL,J ) with generator matrix G.

A. Improved Tradeoff in RP-LFR
System (Proof of Theorem 4)

In RP-LFR system, the robust correctness, user-side and
server-side privacy conditions are guarantted for all LFR
demands. Notice that, the point (0, HN

L ) can be achieved by

trivially transmitting the whole coded subfiles W [N ],h to the

users for any server h ∈ [H ]. The point
(
MLP

K , RLP
K ) = (N, 0)

can be achieved by trivially storing all the N files at each user.
In the following, we describe the scheme achieving the point

(
MLP

t , RLP
t ) in (14) for each fixed t ∈ [0 : K −1]. The lower

convex envelope of those points can be achieved by memory-
sharing technique.

1) Placement Phase: The cached contents of the users are
generated as in (17) according to At, i.e., with notations as
in (31), user k ∈ [K] caches

Ck = {Wn,l,T : n ∈ [N ], l ∈ [L], T ⊆ [K], |T | = t, k ∈ T }
(34a)

∪{Wpk,l,T : l ∈ [L], T ⊆ [K], |T | = t, k /∈ T }
(34b)

∪{pk}. (34c)

2) Delivery Phase: The queries q[K] are generated as
in (18). Let I ⊆ [K] be a subset such that the vectors qI form
a maximum linear independent vector group of the vectors
q[K]. Each server h ∈ [H ] sends

XLP
h =

(
q[K], Y h(I)

)
, (35)

where

Y h(I) � {Y h,J : J ⊆ [K], |J | = t + 1, J ∩ I 	= ∅}. (36)

3) Robust Correctness: For any fixed J ⊆ [K] of size
t + 1, (Y 1,J , . . . , Y H,J ) is the MDS coded version of
(Y1,J , . . . , YL,J ) with generator matrix G. Thus with signals
from any L servers, each user can decode

{Yl,J : l ∈ [L],J ⊆ [K], |J | = t + 1,J ∩ I 	= ∅}.

Moreover, for each fixed l ∈ [L], by the results in [5], the
signals {Yl,J }J⊆[K],|J |=t+1 can be decoded from the signals
{Yl,J }J⊆[K],|J |=t+1,J∩I�=∅. As a result, each user k ∈ [K]
can decode

{Yl,J : l ∈ [L],J ⊆ [K], |J | = t + 1}
= {Yl,s : l ∈ [L], s ∈ [S]},

i.e., all the signals in (22). By continue with the same
arguments following (22), each user can correctly decode its
demanded linear combination of the files.

4) User/Server-Side Privacy: The proof that the scheme
guarantees the server-side and user-side privacy conditions fol-
low the same line of reasoning as in (24) and (25), respectively.

5) Performance: By (34), each user stores NL
(
K−1
t−1

)
+

L
(
K−1

t

)
packets, each of size B

L(K
t )

, and a vector pk ∈ F
N
q of

length N . The needed memory size is given by

MLP
t = inf

B∈N+

1
B

(B
(
NL

(
K−1
t−1

)
+ L

(
K−1

t

))
L

(
K
t

) + N
)

= 1 +
t(N − 1)

K
.

Let rankq(q[K]) be the rank of vectors q[K], i.e., the car-
dinality of I. By (35) and (36), each server sends

(
K

t+1

)
−(K−rankq(q[K])

t+1

)
packets, and K vectors of length N . Notice

that the worst case is rankq(q[K]) = min{N, K}, therefore,
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the load is given by

RLP
t = inf

B∈N+

1
B

(HB
((

K
t+1

)
−

(
K−min{K,N}

t+1

))
L

(
K
t

) + NK
)

=
H

((
K

t+1

)
−

(
K−min{K,N}

t+1

))
L

(
K
t

) .

Gap Result: Let RLPU(M) be the load-memory tradeoff
achieved by the scheme in [9] in the single server case, where
user-side privacy is guaranteed for all LFR demands, which is
given by the lower convex envelope of the point (0, N) and
the following points

(
M

LPU

t , R
LPU

t )

=
(

1 +
t(N − 1)

K
,

(
K

t+1

)
−

(
K−min{K,N}

t+1

)
(
K
t

) )
,

where t ∈ [0 : K]. Notice that, for the corner points with
M = 0 and M ∈ {MLPU

t : t ∈ [0 : K]}, it always hold

RLP(M) =
H

L
· RLPU(M). (37)

Since the corner points coincide on M , (37) hold for all M ∈
[0, N ]. Moreover,

RLP(M)
R∗

LP(M)

(a)

≤ RLPU(M)

R
∗
LP(M)

(b)

≤ RLPU(M)

R
∗
LPU

(M)
, (38)

where: (a) follows from Lemma 1 and (37); and (b) follows
from the fact R

∗
LP(M) ≥ R

∗
LPU

(M), since the constraint
LP is stronger than the constraint LPU. Then the gap result

directly follows from bound for
RLPU (M)

R
∗
LPU

(M)
in [9, Theorem 6].

B. Improvement in RP-FR System (Proof of Theorem 5)

In RP-FR system, the robust correctness, user-side and
server-side privacy conditions are guaranteed for all FR
demands. The proof of Theorem 5 follows similarly to the
proof of Theorem 4 in Section VII-A, with the following
distinctions.

1) Placement Phase: Instead of generating p1, . . . ,pK uni-
formly from F

N
q , we let p1, . . . ,pK generated uniformly from{

(x1, . . . , xN )� ∈ F
N
q :

∑
n∈[N ] xn = q − 1

}
.

2) Performance: Since the queries q1, . . . ,qK are gener-
ated as in (18) and the demands d1, . . . ,dK ∈ {e1, . . . , eN},
the queries are uniformly distributed over the N − 1 dimen-
sional subspace

{
(x1, . . . , xN )� ∈ F

N
q :

∑
n∈[N ] xn = 0

}
.

Thus, in the worst case, rankq(q[K]) = min{K, N −1}. As a

result, the achieved memory-load pair (MFP
t , RFP

t ) is given
by

(MFP
t , RFP

t )

=
(

1 +
t(N − 1)

K
,
H

((
K

t+1

)
−

(
K−min{K,N−1}

t+1

))
L

(
K
t

) )
.

3) Gap Result: Let RFPU(M) be the lower convex envelope
of the point (0, N) and points

{(
M

FPU

t , R
FPU

t

)
: t ∈ [0 : K]

}
,

where

rl(M
FPU

t , R
FPU

t )

=
(

1 +
t(N − 1)

K
,

(
K

t+1

)
−

(
K−min{K,N−1}

t+1

)
(
K
t

) )
,

which is proved to be achievable in the single server case for
all FR demands in [9, Theorem 1]. Following the same line of
reasoning as to obtain (38), we have RFP(M) = H

L ·RFPU(M)
for all M ∈ [0, N ], and

RFP(M)
R∗

FP(M)
≤ RFPU(M)

R
∗
FP(M)

≤ RFPU(M)

R
∗
FPU

(M)
.

Then gap result directly follows from the upper bound for
RLPU (M)

R
∗
LPU

(M)
in [9, Theorem 5].

C. Improvement in R-LFR System (Proof of Theorem 6)

In the R-LFR system, only the robust correctness condi-
tion must be guaranteed for all LFR demands. As a result,
in addition to dropping the security keys (see (33)), the privacy
keys can also be dropped, i.e., set to zero. In particular,
the stored contents in (34b) and (34c) can be dropped, i.e.,
set to zero. The correctness can be easy verified by setting
p1 = · · · = pK = 0 and following the same line of reasoning
as in Section VII-A. The distinctions are in performance and
gap results.

1) Performance: In the modified scheme for R-LFR system,
only the contents in (34a) are stored. The delivered signals are
the same as in (35). Thus, the achieved memory-load pair is
given by

(ML
t , RL

t ) =
(

tN

K
,
H

((
K

t+1

)
−

(
K−min{K,N}

t+1

))
L

(
K
t

) )
,

where t ∈ [0 : K]. The lower convex envelope of those points
can be achieved by memory-sharing.

2) Gap Result: Let RF(M) be the lower convex envelope
of the points

{(
M

F

t , R
F

t

)
: t ∈ [0 : K]

}
where

(M
F

t , R
F

t ) =
(

tN

K
,

(
K

t+1

)
−

(
K−min{K,N}

t+1

)
(
K
t

) )
,

which is proved to be achievable in the single server case for
all FR demands in [4]. Following the same line of reasoning
as to obtain (38), we have RL(M) = H

L · RF(M) for all
M ∈ [0, N ], and

RL(M)
R∗

L(M)
≤ RF(M)

R
∗
L(M)

≤ RF(M)

R
∗
F(M)

.

Then the gap result follows from the upper bound for RF(M)

R
∗
F(M)

in [36, Theorem 1].



980 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Fig. 2. Load-memory tradeoffs for robust systems (a) N ≥ K+1+
√

3K2+1
2

;

(b) K < N <
K+1+

√
3K2+1

2
; (c) N ≤ K .

VIII. NUMERICAL RESULTS

In Fig. 2, we plot the achievable memory-load tradeoff
under different constrains (Theorems 2, 4, 5 and 6) for the
three regimes:

a) N ≥ K+1+
√

3K2+1
2 , see Fig. (2a);

b) K < N < K+1+
√

3K2+1
2 , see Fig. (2b); and

c) N ≤ K , see Fig. (2c).

We choose parameters (N, K, L, H) =
(30, 10, 15, 20), (25, 20, 15, 20), (10, 30, 15, 20), respectively.
From the figures, we observe:

1) For N ≥ K+1+
√

3K2+1
2 (Fig. (2a)), the MAN-PDA based

scheme in the RSP-LFR system achieves the same tradeoff
as that in the RP-LFR and RP-FR systems on the interval
M ∈ [1, N ]. This is because:

i) there is no redundant signals to be removed in RP-LFR
or RP-FR;

ii) the privacy keys and security keys are stored in the
superposition form;

iii) the lower convex envelope of (0, HN
L ) and {(Mt, Rt) :

t ∈ [0 : K]} are formed by connecting (0, HN
L ) and

(M0, R0), (M1, R1), . . . , (MK , RK) sequentially. This
can be verified by letting the slope of the line connecting
(0, HN

L ) and (M0, R0) be no larger than the slope of
connecting (M0, R0) and (M1, R1), i.e.,

R0 − HN/L

M0 − 0
≤ R1 − R0

M1 − M0
, (39)

which indicates that N should satisfy N ≥
K+1+

√
3K2+1

2 .

The improved tradeoff in R-LFR system is due to the saved
memory for keys for the regime M ∈ [1, N ], and there is no
need to guarantee privacy by sending all coded files at M = 0
(i.e., the point (0, K) is achievable in R-LFR system).

2) For K < N < K+1+
√

3K2+1
2 (Fig. (2b)), similar

phenomena are observed as in the case N ≥ K+1+
√

3K2+1
2 ,

except that now there is slightly improvement in RP-LFR
and RP-FR systems over the RSP-LFR system in the interval
M ∈

[
1, 1 + N−1

K

]
. This improvement comes from taking

the lower convex envelope with the additional point (0, HN
L )

(observe that (39) does not hold). Notice that for the case
N > K (Fig. (2a) and (2b)), all the tradeoffs are proved to be
within a constant multiplicative gap of the optimal tradeoff in
their respective setups.

3) For the case N ≤ K (Fig. (2c)), the tradeoff in RP-LFR
and RP-FR systems significantly smaller than that in the
LSP-LFR system for small M regime, because:

i) The trivial point (M, R) = (0, HN
L ) can be achieved,

and thus memory-sharing the other points with this point
increases the performance.

ii) For M ∈ {Mt : t ∈ [0 : K − N ]}, some redundant
signals are removed in RP-LFR and RP-FR, similarly
to [4], [5].

In this case, due to the use of security keys in the RSP-LFR
system, the counterpart of redundant signals in RP-LFR and
RP-FR system can not be obtained from the counterpart of
the transmitted signals. Notice that, the tradeoff in RP-FR
is slightly better than that in the RP-LFR system, since the
number of removed redundant signals in RP-FR system is(
K−N+1

t+1

)
, which is larger than that in the RP-LFR system(

K−N
t+1

)
. The improvement in the R-LFR system over RP-LFR/

RP-FR systems comes from the saved memory size for privacy
keys.

IX. CONCLUSION

A PDA-based key superposition RSP-LFR scheme is pro-
posed for MDS distributed storage systems that simultaneously
guarantees content security against a wiretapper having access
to the delivery signals and demand privacy against both servers
and colluding users. The load-memory tradeoff turns out to
be the single-server one scaled by the inverse of the rate
of the MDS code in order to guarantee robustness against
link/server failures. The performance of MAN-PDA-based
RSP-LFR scheme is shown to be to within a multiplicative gap
of at most eight from optimal in all regimes, except for small
memory regime with less files than users. Moreover, in three
less restrictive systems without the security constraint (i.e.,
RP-LFR, RP-FR, and R-LFR systems), some redundant signals
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can be removed to further improve the load-memory tradeoff,
which are proved to be within a constant multiplicative gap of
the optimal tradeoff in their respective setups.
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