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Abstract

Communication bottleneck and data privacy are two critical concerns in federated multi-armed

bandit (MAB) problems, such as situations in decision-making and recommendations of connected

vehicles via wireless. In this paper, we design the privacy-preserving communication-efficient al-

gorithm in such problems and study the interactions among privacy, communication and learning

performance in terms of the regret. To be specific, we design privacy-preserving learning algorithms

and communication protocols and derive the learning regret when networked private agents are

performing online bandit learning in a master-worker, a decentralized and a hybrid structure. Our

bandit learning algorithms are based on epoch-wise sub-optimal arm eliminations at each agent

and agents exchange learning knowledge with the server/each other at the end of each epoch.

Furthermore, we adopt the differential privacy (DP) approach to protect the data privacy at each

agent when exchanging information; and we curtail communication costs by making less frequent

communications with fewer agents participation. By analyzing the regret of our proposed algorithmic

framework in the master-worker, decentralized and hybrid structures, we theoretically show trade-

offs between regret and communication costs/privacy. Finally, we empirically show these trade-offs

which are consistent with our theoretical analysis.

Index Terms

Federated learning, multi-armed bandit, differential privacy, communication efficient learning

I. INTRODUCTION

Federated multi-armed bandits (MAB), combining the conventional MAB model and fed-

erated learning, is an emerging framework in distributed sequential decision-making, es-

pecially for many real-world wireless distributed systems [1] [2]. For example, consider
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wireless coupon distribution systems in chain stores that make local recommendations to

their customers; they wish to aggregate the overall responses without revealing users’ personal

information to provide better recommendations [3] [4] [5]. Another application example is

the Internet of Vehicles (IoV), where we need to effectively collect information from each

vehicle for joint path planning when communication resources are limited [6] [7].

Two critical concerns of federated MAB are the communication bottleneck and data privacy.

A substantial number of local agents/devices periodically exchanging local model updates

for model aggregation require a large amount of communication resources [8], which is

often scarce in wireless networks. Several communication efficient learning techniques have

been studied recently, including local model compression [9], partial device participation

[10], and less frequent aggregation [11]. On the other hand, exchanging learning model

information while protecting data privacy at local agents involves privacy mechanism design,

e.g., differential privacy [12]. Some existing works have began studying how communication

constraints and privacy requirements affect the learning performance in supervised learning

[13], however, these works did not look into this question in the federated bandit problem.

In this paper, we explore how we design federated bandit algorithms and communication

protocols to better inform what decisions to make at the distributed agents to achieve a

certain level of data privacy under communication constraints.

We consider different network structures for agents to exchange learning knowledge: a

master-worker, a decentralized, and a hybrid structure that combines the above two.

In the master-worker network structure, a central server collects M agents’ individual model

parameters and returns back an aggregated result to all agents. We propose an elimination-

based federated bandit algorithm and an epoch-based communication protocol. In this ap-

proach, an exponentially increasing number of time slots consist of an epoch and agents

locally explore a set of active arms (out of total K arms) during each epoch. At the end

of each epoch, local agents send the estimated mean of each arm with additional noise

sampled from a Laplace distribution with parameter ε, in order to fulfill the differential

privacy requirement. The server reduces the size of this active set by eliminating empirically

inferior arms based on the aggregation result and returns elimination results to agents. Our

CDP-MAB algorithm achieves a regret of O(max{K log(KT log T )
∆

,
K log T

√
log(KT log T )
√
Mε

} with a

communication cost of no more than O(c1M log T ), where c1 is the cost of building a server-

to-agent link. This indicates a trade-off between the privacy and learning performance, the

second term
K log T

√
log(KT log T )
√
Mε

in the regret increases with the decreasing of ε (higher level

of privacy), i.e., inversely proportional to ε.
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Furthermore, when communication constraints are posed, we investigate an efficient com-

munication protocol that allows only a certain number of communication epochs R and

at each epoch allows only a fraction p of users to upload learning knowledge. Again, we

consider an exponentially increasing length of epochs, but scaled according to R. In this

case, the server needs to fine-tune the elimination threshold based on insufficient collections

of learning knowledge in order to gain a certain level of confidence to remove an empirically

inferior arm. This algorithm achieves min{M,T 2/R/p3/2} times more regret than the non-

communication-constrained setting with a communication cost of c1pMR.

We next extend to a decentralized network structure where agents could exchange pro-

tected learning knowledge with their neighbors to make better decisions. We consider the

communication network as an undirected graph G(V,E) with vertices corresponding to

the agents and edges depicting neighbor relationships. We propose a multi-hop information

propagation protocol, termed Global Information Synchronization (GIS) protocol, to ensure

that all agents can receive messages from other M−1 agents after each communication round,

however, with a certain transmission delay depending on the network structure. Before the

private information is fully synchronized, all agents exploit their locally observed best arm

so far. Compared with the centralized setting, there is an additional term O(MdG) in the

decentralized regret, which can be seen as caused by the information dissemination in the

network graph G with diameter dG.

In addition, we consider a hybrid network structure combining master-worker and decen-

tralized network together with a two-layer communication protocol. Each agent first performs

local exploration and sends the protected means to a “sink agent" inside a component (local

communication). After this first-step information exchange, the second-step communication

only occurs among sink agents of each component and a server (global communication).

The server aggregates protected learning parameters and sends global elimination results to

each agent. Results show that hybrid structure can help to achieve communication efficiency

without deteriorating the regret, by reducing both agent-to-agent and server-to-agent links.

Finally, we empirically show trade-offs between learning regret and communication/privacy,

which are consistent with our theoretical findings. These results also provide important

insights into designing practical communication-efficient privacy-aware federated MAB sys-

tems.

November 3, 2021 DRAFT



4

II. RELATED WORK

The MAB model is widely used in many applications, like recommendation systems and

clinic trials, due to its simplicity and efficiency [14] [15]. Recently, privacy issues have

raised concerns in the bandit studies. Early works focus on single-agent MAB problems,

where several differential privacy-based bandit learning algorithms have been proposed by

adding noise to partial sums of rewards [16] [17]. Given a certain level of differential privacy

requirement, lower bounds of learning performance in terms of the regret have been given

in [18] [19].

There has been another line of literature recently that talks about the distributed/federated

MAB problems, where agents aim to collaboratively make decisions by exchanging infor-

mation with others [20]. Two critical concerns of federated MAB are the communication

bottleneck and data privacy. In our previous conference work [1], the MAB problem has been

extended into a multi-agent setting where both a ‘master-worker’ and a fully decentralized

structure are studied together with a tree-based privacy preserving mechanism. In [21]–[23],

federated linear bandit problem is investigated through a decentralized network of agents

via privacy preserving gossip approach. On the one hand, these works add Laplacian noise

to the local estimated means at each time slot before communication, which leads to an

O(K log2.5(T )) order privacy-related regret. Instead, we use a simple and efficient privacy-

preserving mechanism to scale this term as O(log1.5 T ). On the other hand, these works did

not take into account of communication efficiency in the protocols. They force the agents

to communication to (one of) their neighbors at each time slot to reach global consensus in

finite time slots, which incurs O(T ) communication cost.

Federated MAB under limited communication has received more attention recently [20].

The most common way is to achieve through the central server. In the master-worker structure,

a number of agents periodically upload local parameters to the server to reduce the commu-

nication rounds. Specifically, in [24], a mixture bandit model to balance the generalization

and personalization is studied. In [2], a federated bandit problem with client sampling is

studied with communication cost counted in the regret, yet without privacy preserving mech-

anisms. They implicitly bound the total communication rounds by O(log T ) using an action

elimination-based algorithm. Different from them, we study how the regret will be affected

when the communication resource is clearly constrained, for example, when the communi-

cation round is fixed. In addition, we also proved that under the proposed decentralized and

hybrid structure, the O(log T ) regret can be achieved with O(log T ) communication cost.
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III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Federated Multi-Armed Bandit Framework

We consider a federated bandit problem with M agents in either master-worker or de-

centralized network structures or both. In the master-worker structure, agents communicate

with a central server to train a model together; in the decentralized network structure, agents

communicate directly with their neighbours via a given network structure and train local

models at each agent.

All M agents are associated with K arms (e.g., movies, ads, news, or items) from an arm

set A := {1, 2, ..., K}. At time slot t, each agent i chooses to pull an arm ai(t) ∈ A. Then the

arm k ∈ A chosen by agent i ∈ [M ] generates an i.i.d. reward ri,k(t) ∈ [0, 1] from a fixed but

unknown distribution at time t. We denote by µi,k the unknown mean of reward distribution.

In our model, we first assume a homogeneous reward structure, that for all arms 1 ≤ k ≤ K,

µ1,k = µ2,k = · · · = µM,k, and thus in the rest of the paper we use µk for simplicity. Without

loss of generality, we assume that µ1 is the best arm. Then the suboptimality gap can be

defined as ∆k := µ1 − µk for any arm k 6= 1. We also denote by ∆ the minimal non-zero

suboptimality gap among all ∆k. In Section VI, we extend our setting to the heterogeneous

reward structure, where µi,k = µj,k (i 6= j) does not necessarily hold and agents aim to learn

µk ,
∑

i∈[M ] µi,k/M , and discuss its theoretical results.

The objective of the M agents is to minimize the regret, which is defined as the expected

reward difference between the best arm and the online learning policies of the agents as

follows:.

R(T ) = TMµ1 − E[
T∑
t=1

M∑
i=1

ri,ai(t)(t)], (1)

where the expectation is taken over the randomness in the choice of arms.

B. Communication Structures and Cost

In this section, we first talk in detail the communication network structures in federated

bandits, leading to different ways of information exchanging.

•Master-worker structure. In this structure, individual agents first perform local learning

(pulling some arms) according to some privacy-preserving learning strategies, and then upload

protected model parameters to a central server. The central server aggregates information sent

from local agents and sends the global parameters back to all agents. This will be conducted

iteratively.
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• Decentralized network structure. This decentralized network structure is described by

an undirected, connected graph G(V,E), where V is the set of all M agents and E is the

set of all communication links. Agents learn locally and communicate with their neighbors

iteratively to exchange their learned knowledge.

• Hybrid network structure. We also consider a hybrid structure, where agents first form

decentralized network structures, called components, and then components are connected

with a central server. The information exchange consists of two levels: local communication

where agents within a same component exchange information with the assigned “sink agent"

and global communication where components upload information to the central server and

the central server sends back aggregated information to all agents.

In our framework, we consider that communication is constrained due to the scarce of

communication resources so that communication-efficient learning strategies are needed. In

particular, we consider the communication cost C(T ) to be the cost of building total number

of (two-way) communication links when agents exchange information up to time horizon T .

Consider that the communication happens for a total of R rounds. The r-th communication

round contains tr time slots. At each time slot 1 ≤ t ≤ tr in the r-th round, Lr,t communi-

cation links are built and each of them incurs a cost cr,t,l for 1 ≤ l ≤ Lr,t. Then, we have

the communication cost over time horizon T as:

C(T ) =
R∑
r=1

tr∑
t=1

Lr,t∑
l=1

cr,t,l. (2)

Refer to the three communication structures we introduced above. We assume that the

cost required to build a server-to-agent link is c1, while the cost required to establish an

agent-to-agent connection is c2. Therefore, cr,t,l in Eq. (2) can take the value of either c1

or c2. In general, the communication cost is related to the energy consumption, available

bandwidths, etc. to build the links. For example, in the decentralized structure, an agent-

to-agent link is established in the local area network within a short distance and with low

energy-consumption. The central server in the master-worker structure is deployed in the

remote cloud or an edge computing platform, and it consumes more energy and bandwidth

resources to establish a server-to-agent link. In this paper, we reasonably assume c1 >> c2

for the hybrid structure where we first consider the peer-to-peer communication and then the

peer-server communication.

Next, we look into details of the information that is being transmitted from an agent. Let

us denote by Hi(t) = (ai(1), ri,ai(1)(1), ..., ai(t), ri,ai(t)(t)) the historical action-reward pairs

observed by agent i until time t. Consider at some time slot t when communication happens,
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agent i creates a message Ii(t) = f(Hi(t)) and sends it to the server or its neighbors, where

f() is a privacy-preserving function of agent i’s history, such as a noised version of empirical

reward mean or cumulative sampling numbers.

C. Differential Privacy Guarantee

In the federated bandit setting, we consider a privacy model that aims to protect the private

historical data when revealing messages Ii(·) that are sent out by each agent.

Definition 1 (ε- differential privacy in federated bandits). A mechanism f(Hi(t)) is ε- differen-

tially private if for all time t when communication occurs, any adjacent histories Hi(t), H
′
i(t),

and any measurable subset O of images, we have

Pr{f(Hi(t)) ∈ O} ≤ Pr{f(H ′i(t)) ∈ O}eε (3)

where the adjacent sequences Hi(t), H
′
i(t) differ in at most one position.

We can see that ε- differentially private mechanism f() in federated bandits that generates

each message Ii(t) is individually private, regardless of the receiver’ algorithm. We next

introduce the Laplace mechanism that convert some function g(Hi(t)) into a differentially

private mechanism f(Hi(t)) by adding some Laplace noise Laplace() according to the

Laplace distribution (which can be multi-dimensional with each dimension being generated

i.i.d.).

Definition 2 (See [25]). The Laplace mechanism is defined as:

f(Hi(t)) = g(Hi(t)) + Laplace(
s(g)

ε
), (4)

where s(g) is the sensitivity function under the l1 norm:

s(g) = max
Hi(t),H′i(t)

||g(Hi(t))− g(H ′i(t))||1, (5)

which gives an upper bound on how much we must perturb its output in order to preserve

privacy.

Our design goal is to design differentially private bandit learning algorithms in the

federated bandit framework under communication constraints.
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IV. CENTRALIZED FEDERATED MULTI-ARMED BANDITS

In this section, we present the communication-efficient privacy-preserving algorithms for

federated MAB in the master-worker structure, where a server collects M agents’ individual

model parameters and returns back an aggregated result to all agents. Our algorithms need

to consider: 1) When and what to communicate? That is, how to design the communication

protocol to balance the exploration-exploitation dilemma in federated bandit learning? 2) How

to protect the privacy of messages when communication happens? More specifically, how

much noise should be added to the parameters to achieve the desired privacy level? Burying

these two questions in mind, we first design a federated bandit algorithm that considers

privacy requirements with sufficient communications, and then develop a federated algorithm

under communication constraints.

A. Centralized Differentially Private Multi-Armed Bandit Algorithm (CDP-MAB)

The CDP-MAB algorithm is described in Alg. 1. The server maintains an active arm

set I(·), initialized as I(0) = [K], and uses an elimination method to gradually eliminate

suboptimal arms while learning the optimal arm. The algorithm operates in epochs and each

of them can be divided into two sub-phases:

1) Local Exploration: In epoch r, all agents receive a new arm set I(r−1) broadcast

by the server. Agents then explore all the active arms in this set for the same number of

S(r)− S(r− 1) times (Line 4) and update the empirical means based on observed rewards.

Specifically, S(r) is doubling-increasing, so S(r)− S(r − 1) is also doubling-increasing.

2) Communication and Aggregation: : After S(r)− S(r− 1) times of local explorations,

the empirical mean of an active arm k at agent i is denoted by x̂i,k(r), which is only

calculated based on the reward at round r. Each agent first transfers x̂i,k(r) to the privacy-

preserving or protected version ŷi,k(r) with additional noise sampled from the distribution

Lap( 1
Mε[S(r)−S(r−1)]

). In order to use the previous rewards without revealing privacy, we

introduce ȳi,k(r) to record the private mean of history,

ȳi,k(r) =
S(r − 1)

S(r)
ȳi,k(r − 1) +

S(r)− S(r − 1)

S(r)
ŷi,k(r) (6)

Then, all M workers upload the protected mean ȳi,k(r),∀k ∈ I(r−1) to the server. The server

aggregates the means and privately eliminates suboptimal arms based on the confidence

interval C(r) (Line 5). If there exists only one arm (empirically best arm) in the active arm

set, then all agents just play this arm until time T .
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Algorithm 1 Centralized Differentially Private Multi-armed Bandit Algorithm (CDP-MAB)
Input: Time horizon: T ; Privacy parameter ε; number of agent M ;

Initialization: t = 1, r = 1; I(0) = [K]; xi,k(1) = ŷi,k(1) = ȳi,k(1) = 0; S(0) = 0

1: while t ≤ T do

2: while |I(r−1)| > 1 do

3: Set ∆̃r ← 2−r

4: Set S(r)← max{8 log(8|I(r−1)|r2T )

M∆̃2
r

,
8r
√

2 log(8Kr2T )

M1.5ε∆̃r
}

5: Set C(r)←
√

log(8|I(r−1)|r2T )
2MS(r)

+
r
√

8 log(8Kr2T )

M1.5εS(r)

6: for each agent i = 1, ...,M do

7: Local exploration: choose arm k ∈ I(r−1) for {S(r)− S(r − 1)} times;

8: Update local empirical mean x̂i,k(r);

9: Calculate the privacy mean ŷi,k(r) = x̂i,k(r) + Lap( 1
Mε[S(r)−S(r−1)]

);

10: Calculate the historical mean: ȳi,k(r) = S(r−1)
S(r)

ȳi,k(r − 1) + S(r)−S(r−1)
S(r)

ŷi,k(r);

11: Communication: upload ȳi,k(r) to server;

12: Global aggregation at the server: ȳk(r) = 1
M

∑M
i=1 ȳi,k(r);

13: Let ȳmax(r) = maxk∈I(r−1) ȳk(r);

14: if ȳmax(r)− ȳk((r)) ≥ 2C(r) then

15: Global elimination at the server: update I(r) = I(r−1)/{k}.

16: r = r + 1, t = t+ |I(r−1)|[S(r)− S(r − 1)]

17: All agents pull the arm until time T .

The performance of the CDP-MAB algorithm is shown in Theorem 1.

Theorem 1 (Performance of the CDP-MAB). Given time horizon T , and privacy level ε

and the cost c1 for building a server-to-agent link, for an M agent K arm federated bandit

problem, the CDP-MAB Algorithm

• is Mε-differentially private;

• incurs communication cost CC(T ) = O(c1M log T );

• incurs regret RC(T ) upper bounded by

O(max{
K∑
k=1

log(KT log T )

∆k

,
K log T

√
log(KT log T )√
Mε

}). (7)

Remark 1. Theorem 1 indicates a trade-off between the privacy and learning performance .

The regret O(
K log T

√
log(KT log T )
√
Mε

) increases with the decreasing of ε (higher level of privacy),

until reaching O(K log(KT log T )
∆

). The communication cost CC(T ) = O(c1M log T ) is the
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minimum cost needed to achieve O(log T ) order regret. We next show that any C(T ) less

than c1M log T may bring the performance loss.

proof outline: The privacy guarantee can be directly derived from the definition of the

Laplace mechanism. Since the reward of each arm is bounded by [0, 1], the sensitivity (dif-

ference of the mean of each arm) of two neighboring reward sequences is less than 1
S(r)−S(r−1)

.

Thus, the additional noise sampled from Lap( 1
Mε[S(r)−S(r−1)]

) leads to Mε-level privacy. The

regret is incurred by playing suboptimal arms before they are correctly eliminated. We define

rk as the epoch up to which ∆k exceeds 2∆̃rk . Then we investigate the regret incurred by the

following three events: i) Exploration of each suboptimal arm k before epoch rk; ii) Fail to

eliminate suboptimal arm k after the epoch rk, and iii) Optimal arm is eliminated by server.

Note that ii) and iii) can lead to at most MT∆k regret for arm k. We show that after epoch

rk =
⌈
log( 1

∆k
) + 1

⌉
, these events will not happen with a high probability. Yet regret caused

by i) is unavoidable and dominates the total regret. Note that, all arms in the active arm set

I(r−1) are pulled for the same number of times up to S(r) in epoch r. Thus, the exploration

number of arm k can be bounded by S(rk). Calculating the total amount of exploration and

multiplying by the reward gaps, we achieve the cumulative regret. Since rk communication

rounds are needed to identify the suboptimal arm k, we in total need
⌈
log( 1

∆
) + 1

⌉
rounds

to identify the best arm, leading to c1M
⌈
log( 1

∆
) + 1

⌉
≤ O(c1M log T ) communication cost.

The full proof is provided in detail in Appendix. B.

B. Communication-Efficient CDP-MAB

In real world applications, c1 is usually large since it is energy-consuming for the devices

to establish connections with a remote server, which leads to a large Cc(T ). We now consider

how to extend the above Alg. 1 to the case under communication constraints by utilizing

efficient communication strategies as follows:

• Less Frequent Communication. A natural strategy is to communicate less frequently.

Given the total time horizon T , we set R as the constraint for the number of communication

rounds. Therefore, T can be divided into R+ 1 epochs. How to determine the length of each

epoch r ∈ R is not trivial. Given a fixed communication round R, if agents communicate

too early, then their estimations of rewards are likely to be poor, as they are based on

fewer samples. Thus, they may not be able to get the desired learning knowledge after all

communication rounds. On the other hand, if they communicate too late, they cannot make

November 3, 2021 DRAFT
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full use of the information of others and the regret will scale with the number of agents. As

a result, choosing the right time slots for communication is crucial.

The key idea to solve this is to ensure that the algorithm can identify the best arm after the

R-th communication round with high probability. Otherwise, the time period from the end

of R-th communication to T may bring a linear growth of regret without further exploration.

The doubling-increasing epoch length in Alg. 1 may not meet this requirement since R may

be less than log(1/∆). To tackle this, we use an exponentially increasing length of epochs,

scaled according to R: ∆̃r = ∆
r
R (replacing Line 3 in Alg. 1).

• Partial Participation. Another way to reduce the communication cost is to deactivate

some of the communication links. We set p as the link participation rate. We set p as the

communication link participation rate and N = dpMe agents are enabled to communicate

with the server during each communication round. In this way, NS(r) samples can be

observed at the server after the r-th communication round. Thus, the server needs to fine-tune

the length of local exploration and elimination threshold according to p in order to have a

sufficient level of confidence to remove an empirically inferior arm.

Specifically, we redesign S(r) as Sp(r) = max{8 log(8|I(r−1)|r2T )

N∆̃2
r

,
8r
√

2 log(8Kr2T )

N1.5ε∆̃r
} (replacing

Line 4 in Alg. 1), and C(r) as Cp(r) =
√

log(8|I(r−1)|r2T )
2NSp(r)

+
r
√

8 log(8Kr2T )

N1.5εSp(r)
(replacing Line

5 in Alg. 1). Compared with S(r), Sp(r) has a scale factor of 2−r

p∆r/R or 2−r

p3/2∆r/R for the

two terms inside the max{}; so does Cp(r) for its two terms compared with C(r). At each

communication round, the server randomly select N users (i.e., M −N sleep link) to upload

their empirical arm means with additional noise sampled from Lap( 1
Nε[Sp(r)−Sp(r−1)

). Then it

reduces the active arm sized based on this partial aggregation as in Lines 11 to 14 in Alg. 1.

We show the performance of the CDP-MAB algorithm under communication constraints in

the following theorem.

Theorem 2 (Performance of the CDP-MAB Algorithm Under Communication Constraints).

Given a participation rate p and a limited number of communication rounds R, the CDP-

MAB algorithm under communication constraints,

• is Mε-differentially private;

• incurs communication cost Cp,R
C (T ) = c1 dpMeR;

• incurs regret Rp,R
C (T ) upper bounded by

O(min{M,
T 2/R

p3/2
} ·max

{
K∑
k=1

log(R2KT )

∆k

},
R
√

log(R2KT )√
Mε

}

}
) (8)

Remark 2. T 2/R

p3/2 can be seen as the performance loss term due to the limited communication.
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When p = 1 and R is larger than O(log T ), we can recover RC(T ). If each agent runs CDP-

MAB separately, we can obtain MRC(T ) regret. In order to make our performance not worse

than the non-communication case, we set the min{M, T
2/R

p3/2 } operation, which indicates that

T 2/R/p3/2 ≤M → R ≥ 4 log T
3 log pM

.

proof outline: Similar to Theorem 1, we first prove that the event Er = {|ȳk(r) − µk| <

Cp(r)} occurs for each epoch r with high probability according to the Hoeffding bound and

the concentration of the Laplace distribution. We further argue that when Er holds for all

epoch r, the best arm will not be eliminated from the active arm set and the suboptimal arm

k will be eliminated after epoch rk when ∆k exceeds 2∆rk/R. Thus, we need
⌈
R(1+log( 1

∆k
))

log( 1
∆

)

⌉
rounds to identify suboptimal arm k and R communication rounds to identify the best arm.

Calculating the total amount of explorations before rk and multiplying by the reward gap

∆k, we achieve the cumulative regret. The full proof is in Appendix C.

C. Performance Analysis

1) Privacy-regret trade-off: The final order of RC(T ) is determined by the relationship

between
√
Mε/

√
log(T ) and the smallest suboptimal gap ∆. If ∆ < ε

√
M√

log(T )
, the first term

dominate and we achieve O( log T
∆

) regret. Otherwise, we obtain a O( log1.5 T

ε
√
M

) regret. Indeed,

this is determined by the two terms of S(r). The first term in S(r) can be considered as the

number of samples needed to make x̄k(r) concentrated with µk within a certain confidence

level. The second term can be treated as the number of samples to eliminate the effect caused

by the added noise ȳk(r)− x̄k(r). Clearly, if we require a stronger privacy level (smaller ε),

more noise needs to be added on x̂k. Then there is a larger difference between x̂k and ŷk

and hence S(r) is mainly determined by ε.

2) Communication-regret trade-off: Here, p and R both indicate the trade-off between

communication and learning performance. Specifically, they result in sub-linear and expo-

nential deterioration terms. When R is larger than O(log T ), the terms T 2/R and T 1/R turn

to be a constant and p−3/2RC(T ) regret can be achieved. When p = 1, the worst-cast regret

is still MRC(T ) with R = 3 log T/4(logM).

V. DECENTRALIZED FEDERATED MULTI-ARMED BANDITS

In this section, we extend our CDP-MAB to the decentralized setting. We consider the

communication network as an undirected graph G(V,E) with vertices corresponding to the

agents and directed edges depicting neighbor relationships. Without central coordination, the
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agents remove the inferior arms after aggregating information from their neighbors. However,

the irregular connections lead to different local aggregation results after communication

round r. Thus, each agent obtains the unequal-length active arm sets. This results in the

asynchronous local exploration phases among the agents at the start of epoch r + 1. To

avoid this, we need to ensure that: i) each agent has the same number of active arms at the

beginning of each epoch. ii) the agents pull each active arm the same number of times during

the local exploration phases. The key to achieve this is to make all agents reach the global

consensus through multiple information exchanges with neighbors.

One of the simplest ideas is to use flooding protocol. In flooding protocol, an agent wishing

to disseminate a piece of data across the network starts by sending a copy of this data to

all of its neighbors. Whenever an agent receives new data, it makes copies of the data

and sends the data to all of its neighbors, except the node from which it just received

the data. The algorithm finishes when all the nodes in the network have received a copy

of the data. Though flooding can converge fast, it has implosion or the overlap problems.

Gossiping is an alternative to the flooding approach that uses randomization. Instead of

indiscriminately forwarding data to all its neighbors, a gossiping agent only forwards data

on to one randomly selected neighbor. However, gossiping distributes information slowly

and incurs large end-to-end delay. In order to achieve fast convergence and avoid repeated

message transmissions, we propose the following algorithm with a GIS (Global Information

Synchronization) communication protocol.

A. Algorithm Description

DDP-MAB operates at each agent in epochs and each of them can be divided into following

sub-phases:

1) Local exploration: : Each agent i perform S(r)− S(r− 1) times local exploration for

each arm k ∈ I(r−1), update the empirical mean x̂i,k(r) and transfer it to the private version.

Noting, we chose the same S(r) as we set in the CDP-MAB.

2) GIS communication protocol: The communication round starts after all agents finish

their local exploration and ends when they receive private means from other M − 1 agents.

We assume there is an additional synchronization clock to inform the start and end of each

communication round by monitoring the status of each agent i’s observation list lri (·), which

collects historical records of reward and arm selection information received from other agents.

Each communication round may contain multiple time slots, each of them includes three

handshake stages (ADV-REQ-DATA) for message exchange. For each agent i, the commu-
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nication slot n starts when it obtains new observations (private means) that it is willing to

disseminate. It does this by sending a message ADVi(n) to its neighbors j ∈ Ni, naming the

agent labels (ADV stage). Upon receiving an ADVi(n), the neighboring node j checks to

see whether it has already received the advertised observations. If not, it responds by sending

an REQj(n) message for the missing observations back to the sender i (REQ stage). The

communication step completes when i responds to the REQj(n) with a DATAi,j(n) message,

containing the missing observations (DATA stage). Fig. 2 shows an example of the protocol

using two-step communication and the details of the GIS protocol is shown in Alg. 2.

Algorithm 2 GIS Communication Protocol
Initialization: counter n = 0; An observation list lri (0) = {i} for all i.

1: while Communication round not ends do

2: for each agent i do

3: Local exploitation: Pull the local empirical best arm once;

4: if New observations ȳf (r) are added to lri (n) then

5: Send message ADVi(n) = {f} to neighbors j ∈ Ni

6: Receive the REQj(n) messages from j ∈ Ni.

7: Send DATAij(n) back to serve the requests.

8: if Receive ADVj(n) = {g} message from j ∈ Ni then

9: Check whether ȳg(r) exist in lri (n). If not, send REQi(n) = {g} back to j;

10: Receive the information from DATAji(n) and update the lri (n).

11: if |lri (n)| = M for all i then

12: Communication round ends and return tdelay = n.

13: else

14: n = n+ 1.

3) Local exploitation: Each communication round lasts tdelay time slots, which can be

seen as the delay suffered before information synchronization. Instead of waiting in the

communication round, all agents are required to pull the best empirical arm based on local

observation for tdelay times.

4) Local aggregation and elimination: When communication ends, each agent i generates

the aggregated mean ȳk(r) = 1
M

∑
j∈M ȳj,k(r) for each arm k. After that, each agent i

performs local elimination with C(r) (Lines 9 and 10 in Alg. 3).
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Fig. 1. An example of GIS communication protocol.

Algorithm 3 Decentralized Differentially Private Multi-armed Bandit Algorithm (DDP-MAB)
Input: Time horizon: T ; Privacy parameter ε; number of agents M ; communication graph

G(V,E);

Initialization: t = 1, r = 1; I(0) = [K]; xi,k(1) = ŷi,k(1) = ȳi,k(1) = 0; S(0) = 0

1: while t < T do

2: while |I(r−1)| > 1 do

3: ∆̃r ← 2−r

4: Set S(r)← max{8 log(8|I(r−1)|r2T )

M∆̃2
r

,
8r
√

2 log(8Kr2T )

M1.5ε∆̃r
}

5: Set C(r)←
√

log(8|I(r−1)|r2T )
2MS(r)

+
r
√

8 log(8Kr2T )

M1.5εS(r)

6: for each agent i = 1, ...,M do

7: Local exploration: Run Line 7 - 10 in Alg.1;

8: Communication: Run GIS Communication Protocol;

9: Aggregation at agent i: ȳk(r) = 1
M

∑
j∈M ŷj,k(r)

10: Elimination at agent i: Remove k from I(r−1) if ȳmax(r)− ȳk((r)) ≥ 2C(r)

11: t = I(r−1)(S(r)− S(r − 1)) + tdelay, r = r + 1

12: All agents pull the arm until time T .

Theorem 3 (Performance of DDP-MAB). Given time horizon T and privacy parameter ε,
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the cost for building an agent-to-agent link c2, for the M agents equipped with K arms

communication over the graph G, Algorithm 3

• is (Mε)− differentially private;

• incurs communication cost CD(T ) = O(c2dG log T
∑M

i=1 di/2);

• incurs regret RD(T ) upper bounded by

O(max{
K∑
k=1

log(KT log T )

∆k

,
K log T

√
log(KT log T )√
Mε

}+M(dG − 1)) (9)

where dG is the diameter of G and di is the degree of agent i.

proof outline: The communication cost is determined by the number of agent-to-agent links

established in all communication rounds. Since i)All agents can synchronously identify the

best arm after
⌈
log( 1

∆k
) + 1

⌉
rounds; ii) Each communication rounds last tdelay time slots,

upper bounded by the diameter of the graph dG; iii) In each time slot, at most
∑M

i=1 di/2

connections are established. Multiply these three items we can conclude CD(T ).

The first term in regret is caused by local explorations of all M agents before they eliminate

all suboptimal arms, which recover RC(T ) by the same choice of S(r), C(r). The second

term is incurred by local exploitation. The communication round r contains at most dG − 1

time slots. If all 2−(r−1) suboptimal arms are successfully eliminated in the previous round,

and arm 1 is not eliminated, at most M(dG− 1)2−(r−1) regret will be introduced. If arm 1 is

eliminated, then at most MdG regret will be introduced. We complete the proof by summing

up the regrets incurred by all required communication rounds. The detailed proof can be

found in Appendix. D.

To constrain the total communication round as R to reduce the communication cost, we

can just set ∆̃r ← ∆r/R in Line 3 of Alg.3, which leads to the following results:

Corollary 1. DDP-MAB with communication round constrain R achieves the regret of

RR
D(T ) = O(min{M,T 2/R} ·max

{
K∑
k=1

log(R2KT )

∆k

,
R
√

log(R2KT )√
Mε

}
+M(dG − 1))

with communication cost CR
D(T ) = c2dGR

∑
i∈[M ] di/2.

The detailed proof is shown in Appendix. E.

Remark 3. When R is larger than O(log T ), we can recover RD(T ). To ensure our perfor-

mance not worse than the non-communication case, R ≥ 2 log T/ logM .
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B. Performance Analysis

1) Communication cost: In the centralized setting, each communication round only ac-

counts for one time slot. Thus the communication cost is determined by c1, the participating

agents and the number of total communication rounds. In the decentralized setting, the

communication cost is jointly decided by c2, the total communication round and the links

built during each round. If c1M = c2dG
∑

i∈[M ] di/2, the communication costs incurred by

these two settings are the same.

2) Regret: Compare with RC(T ), there is an additional term O(MdG) in RD(T ), which

can be regarded as the extra regret incurred by the inconsistency between local estimation and

global estimation. dG indicates the convergence rate of local estimation to global estimation

on graph G. This term only depends on the agent number M as well as the diameter of the

graph dG, and not depending on T .

3) Trade-off: There is a non-proportional trade-off relationship between the above two.

Sparse graphs build fewer agent-to-agent links in each communication round, but suffer a

considerable delay before information synchronization; Dense graphs have a fast convergence

rate but demand more connections. The graphs having both fewer edges and smaller dG,

such as star or multi-star graphs that are close to the centralized setting, can achieve the best

performance. We summarize the communication costs and regrets of several typical graphs

in Table. I.

TABLE I

COMMUNICATION COST AND REGRET OF SEVERAL TYPICAL GRAPHS

Star Ring Fully-connected d-regular

CD(T ) O(2(M − 1) log T O((M2/2) log T ) O(M((M−1)
2 log T ) O( dM logM

2 log(1/λ2)
log T 1

RD(T ) RC(T ) +O(M) RC(T ) +O(M(M − 1)) RC(T ) RC(T ) +O( M logM
log(1/λ2)

)

4) Discussion: RD(T ) achieves the similar form of regret as in [21]. That is, the decen-

tralized regret is equal to the centralized regret plus another graph-related term. In our work,

this term is determined by M and the diameter of the graph dG, while in [21], this term is

determined by M and the eigenvalue of the graph Laplacian matrix. In fact, both of these two

terms indicate the convergence rate of local estimation to global estimation on specific graph

structures. Although we can finally achieve a consistent regret using different communication

1λ2 is the second largest eigenvalue of the Laplace matrix of the graph. We omit c2 in CD(T ) for all graphs.
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protocols, their method requires O(T ) communication cost which is not communication-

efficient. Besides, the privacy mechanism they used results in a O(K log2.5(T )/ε) regret.

Compared to them, we only need O(log T ) communication cost and the privacy-related regret

is upper bounded by O(K log1.5(T )/(ε
√
M)). This also demonstrates the trade-off between

communication and privacy: more frequent communications require more noise to be added,

which further leads to a larger regret.

VI. HYBRID DIFFERENTIALLY PRIVATE MULTI-ARMED BANDIT ALGORITHM

In practice, CDP-MAB builds M server-to-agents links, thereby introducing high commu-

nication cost. Although we propose a partially sampling method to achieve communication

efficiency in Section IV-B, it inevitably brings performance loss. DDP-MAB is more suitable

for devices in a small-size network, otherwise the delay for reaching consensus in each

communication round is unacceptable. In this section, we propose a hybrid communication

structure (see Fig. 3) that combines the centralized and decentralized settings. This structure

is a natural extension of the classic wireless sensor network (WSN). Each sub-network in

WSN contains some general sensors and a sink node, that can communicate with the WSN

server through the gateway after collecting information in the sub-network.

There are Q << M components, each of them consists Mq agents. The agents belonging

to the same component are allowed to communicate over a sub-graph Gq(Eq, Vq). There also

exists a sever, coordinating the communication among components. Assume there is a sink

agent SAq of component q. The server only communicates with the sink agents, which scales

down the number of server-to-agent links from M to Q .

Fig. 2. Hybrid communication protocol for federated bandits.
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A. Algorithm Description

HDP-MAB operates in epochs and each of them can be divided into the following sub-

phases:

1) Local exploration: Each agent i perform up to S(r) times local exploration for each

arm k ∈ I(r−1), update the empirical mean x̂i,k(r) and transfer it to the private version.

Noting, we chose the S(r) as we set in the CDP-MAB and DDP-MAB. The communication

round starts when agents finish their local exploration and ends when all agents receive the

update active arm set from the server. We utilize a two-layer communication protocol:

2) Local communication and aggregation: Different from the fully-decentralized setting,

we no longer use the GIS protocol to achieve “global information synchronization”. Instead,

we use the Sink Agent Collection (SAC) protocol to realize “one-way message passing”,

where all agents in q send their private means to SAq. The local communication in q ends

when SAq observes information from other Mq − 1 agents. This inevitably introduces some

local communication delay, defined as tqdelay. However, we can wisely select SAq to minimize

this delay by Alg. 4. Given the communication graph Gq of component q, we randomly

assign any agent i as the sink agent, and calculate the shortest path from all other agents to

i. The maximum value among them is the local delay introduced by SAq = i, denoted as

delayi. Then, SAq should be the agent with minimal local delay: SAq = arg mini∈q{delayi}.

After local communication, the sink agents perform local aggregations.

Algorithm 4 Find Sink Agents

Input: set of communication graph {Gq(Vq, Eq)}Qq=1

Output: Sink Agents {SA1, ..., SAQ}, tdelay

1: for component q = 1 to Q do

2: for each agent i ∈ [Mq] do

3: compute the shortest distances sd(i, j) between agent j 6= i and i;

4: delayi = max{sd(i, j)} − 1;

5: SAq = arg mini∈q{delayi}, t
q
delay = maxi∈[Mq ]{sd(i, SAq)}

6: tdelay = maxq∈Q{tqdelay}

Remark 4. In the fully-decentralized setting, each node cannot access the structure of the

entire graph, but can only gradually exchange messages with its neighbors. While in the

hybrid structure, the server has stronger information collection and computing capabilities,

so that it can find all sink agents {SA1, ..., SAQ} by running Alg. 4.
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3) Global communication and aggregation: The global communication will be exactly

the same as the protocol in Alg. 1 by treating the sink agents as participants. After the

server collects the information, it performs global aggregation and elimination, and finally

broadcasts the updated results to all agents.

4) Local exploit: Since global communication does not introduce extra delay, the delay of

the whole communication round is determined by the slowest component that completes the

sink agent collection, which is tdelay = maxq∈Q{tqdelay}. All agents exploit the locally observed

best empirical arm during tdelay.

Algorithm 5 Hybrid Differentially Private Multi-armed Bandit Algorithm (HDP-MAB)
Input: Time horizon: T ; Privacy parameter ε; number of agents M ; a set of communication

graph {Gq(Vq, Eq)}Qq=1

Initialization: t = 1, r = 1; I(0) = [K]; xi,k(1) = ŷi,k(1) = ȳi,k(1) = 0; S(0) = 0;

{SA1, ..., SAQ} = FindSinkAgents(G1(V1, E1), ..., GQ(VQ, EQ))

1: while t < T do

2: while |I(r−1)| > 1 do

3: Set ∆̃r ← 2−r

4: Set S(r)← max{8 log(8|I(r−1)|r2T )

M∆̃2
r

,
8r
√

2 log(8Kr2T )

M1.5ε∆̃r
}

5: Set C(r)←
√

log(8|I(r−1)|r2T )
2MS(r)

+
r
√

8 log(8Kr2T )

M1.5εS(r)

6: for component q = 1 to Q do

7: Local exploration: Agent i ∈ [Mq] runs Line 7 - 10 in Alg.1;

8: Local communication: Agent i ∈ [Mq] sends ȳi,k(r) to SAq;

9: Local aggregation: SAq aggregates ȳq,k(r) =
∑
j∈q ȳj,k(r)

Mq
;

10: Global communication: SAq upload ȳq,k(r) to the server;

11: Local exploitation: Agent i ∈ [Mq] keeps pulling local empirically best arm

until receive the update I(r) from server.

12: for the server do

13: Receive messages from all sink agents.

14: Global aggregation: ȳk(r) =
∑
q∈Q ȳq,k(r)

Q

15: Global elimination: remove k from I(r−1) if ȳmax(r)− ȳk(r) ≥ 2C(r)

16: Broadcast the update I(r) to all agents.

17: t = |I(r−1)|(S(r)− S(r − 1)) + tdelay, r = r + 1,

18: All agents pull the arm until time T .
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Theorem 4 (Performance of HDP-MAB). Given time horizon T , privacy parameter ε and

the communication cost weight c1, c2. Consider Q components are connected to a server.

Inside component q, Mq agents with K arms communicate over a graph Gq. Algorithm 5

• is (Mε)− differentially private;

• incurs communication cost CH(T ) = O((c2M maxq∈Q{dqG}+ c1Q) log T );

• incurs regret RH(T ) upper bounded by

O(max{
K∑
k=1

log(KT log T )

∆k

,
K log T

√
log(KT log T )√
Mε

}) +M max
q∈Q
{dqG − 1} (10)

where dqG is the diameter of component q. The detailed proof can be found in Appendix.F.

To constrain the total communication rounds as R to realize communication efficiency, we

can just set ∆̃r ← ∆r/R in Line 3 of Alg.5, which leads to the following results:

Corollary 2. Alg.5 with communication round constrain R achieves the regret of

RR
H(T ) = O(min{M,T 2/R} ·max

{
K∑
k=1

log(R2KT )

∆k

,
R
√

log(R2KT )√
Mε

}
+M max

q∈Q
{dqG})

(11)

with communication cost CR
H(T ) = O(c2M maxq∈Q{dqG − 1}+ c1Q)R.

This result can be obtained by combining the proof of Theorem 4 and Corollary 1.

Remark 5. When R is larger than O(log T ), we can recover RH(T ). To ensure our perfor-

mance not worse than the non-communication case, R ≥ 2 log T/ logM .

B. Performance Analysis

1) Communication cost: Employing the hybrid structure is helpful to achieve commu-

nication efficiency. On the one hand, the GIS protocol only allows information exchange

between neighbors to completely diffuse the information. The communication cost thereby

is determined by dG and the number of graph edges. The SAC protocol realizes one-way

information aggregation to a fixed sink node with the help of the server, which reduces

the number of agent-to-agent links inside a component. On the other hand, the number of

server-to-agents links is only proportional to the number of components Q, not M , which

significantly reduces the burden of the uplink.

2) Regret: Compared with RD(T ), the additional term of RC(T ) no longer depends on

dG but maxq∈Q{dqG}. If M is distributed in different components, the size of each sub-graph

and corresponding local delay decrease, which ultimately leads to the reduction of the regret
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introduced by the local exploitation. In one extreme case, when Q = M , each agent is directly

connected to the server, then the delay of each communication round is 0 and we recover

RC(T ). In addition, we can recover RD(T ) with Q = 1.

3) Trade-off: The above results provide important insights into designing practical commu-

nication efficient federated MAB systems. i) Instead of utilizing the master-worker structure,

we can reduce the number of server-to-agent links by disturbing the agents into different

components. ii) Second, the unbalanced agent distribution may cause a large delay as it is

determined by the slowest component that completes the local communication. Thus, we

should try to ensure the balance of agents in each component. iii) Finally, enforcing the sub-

graph to be close to the center (or multi-center) rather than fully connected or ring structure

can also help reduce communication costs as well as regrets.

C. Discussion

1) Comparison of three communication structures: We summary the procedure of one

specific epoch for three algorithms in Fig. 3 and compare their performance in terms of

communication cost, delay and regret.

Fig. 3. Comparison of three communication structures.
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• Communication cost. CC(T ) is determined by the number of server-to-agent links and

the number of communication rounds required to remove all inferior arms; CD(T ) and

CH(T ) are decided by he number of built agent-to-agent links, the required communi-

cation rounds as well as the tdelay of each round.

• Delay. The centralized setting does not introduce delay. The tdelay in decentralized

communication is introduced by the GIS protocol, and in hybrid communication it is the

maximum value of delay introduced by local communication among all components.

• Regret. RC(T ) achieves O(log T ) regret. Both RD(T ) and RH(T ) have the addable

items based on RC(T ), which are caused by the local exploit during tdelay. The items are

only related to the graph structure and do not scale with T . Thus, both three algorithms

can achieve the same O(log T ) order regret without considering privacy.

2) Heterogeneous reward structure: We now discuss the extension of the above algorithms

to the heterogeneous rewards setting. Similar to [2], [21]: We consider that for arm k and

players i, j, the expected mean µi,k and µj,k are not equal in general. There exists a true

reward or global reward of arm k ∈ [K] that equals to the average of the means of all

agents’ expected rewards: µk = 1
M

∑M
i=1 µi,k, that implies the true reward can be obtained

by averaging and thus cancelling out local biases. No individual agents can make a correct

inference by simply collecting individual rewards. Therefore, they must collaborate with each

other to estimate the true rewards in a federated fashion. We claim that our methods in this

work can be applied to the above heterogeneous setting without modification.

Corollary 3. Under the heterogeneous reward setting,

• Our CDP-MAB can achieve RC(T ) regret ;

• Our DDP-MAB can achieve RD(T ) +O(M(dG − 1) log(T )) regret;

• Our HDP-MAB can achieve RH(T ) +O(M maxq∈Q{dqG − 1} log T ) regret.

Proof. The core idea of our work and [2][21] is the same: Through communication, the

estimated mean at the server (or each agent) can converge on the average value of empirical

means from all M agents, which can cancel local bias. In the centralized and hybrid setting,

the server can capture the global knowledge without local bias. In other words, the server can

observe unbiased estimation of true means, which directly avoids the impact of heterogeneity.

In the decentralized setting, our proposed GIS protocol ensures that each agent can receive

empirical means from other M − 1 agents in each epoch. Then, the local estimated mean

(at each agent) can converge to the averaged empirical means in finite time slots. That is,

each agent can reach consensus, like the server in the centralized setting. Note that both
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our decentralized and hybrid algorithm have a local exploitation phase. During this period,

we need to pull the local empirical optimal arm, which may be inconsistent with the global

optimal one. Since we need O(log T ) communication rounds, each of them lasts for at most

dG (in the decentralized setting) or maxQq=1{d
q
G} (in the hybrid setting) time slots. So local

exploitation can introduce at most O(log T ) order regret under the heterogeneous reward

setting, which does not affect the final regret order.

VII. EXPERIMENTS

In this section, we conduct experiments to empirically verify the theoretical results of

previous sections, that is, the trade-offs between communication, privacy and learning regret

under different communication protocols.

A. Centralized Setting

Experimental Settings: We consider M = 50 agents connected with a central server. Each

of them plays a Bernoulli MAB with 100 arms. The means are randomly generated from

[0, 1]. We set c1, the communication cost to build a server-to-agent link, equal to 25. We first

consider the homologous reward structure, where all agents see the same set of arm means.

1) Privacy-regret trade-off: In this part, we allow all agents to communicate with the

server at each communication round and only investigate the effect of privacy level ε. We

consider 4 different privacy parameters ε = {0.1, 0.3, 0.5, 1}. Fig. 4 shows that the regret

increases with the decreasing of ε (higher level of privacy), since larger noises are added on

the local update estimations. ε = 1 indicates the non-private case.

Fig. 4. Regrets of CDP-MAB with different privacy level ε.
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2) Communication-regret trade-off: We then fix the privacy-preserving level and discuss

the effect of communication-reduction strategies.

Participating rate p: we first consider 5 different participating rates p = {0.2, 0.4, 0.6, 0.8, 1}.

Among that, p = 1 indicates the fully participating case that all agents send their perturbed

models to the server after each epoch. Figure. 5 shows that the regrets at T decrease as p

increases.

Communication round R: We then fix the participating rate as p = 1, and show the effect

of the communication rounds constraints. We consider the number of communication rounds

R varying in {2, 3, 4, 5}. Fig.6 shows that the regrets decrease with R increase. It is worth

noting that the regret we reached at R = 4 and 5 are almost the same. This is because we

need about log(T ) ≈ 4 communication rounds before eliminating all suboptimal arms. When

R > 4, the term T−2/R in Thereon 2 tends to a constant and do not affect the total regrets.

Fig. 5. Regrets of CDP-MAB with participating rate p. Fig. 6. Regrets of CDP-MAB with rounds R.

Combination of p and R: we finally combine these two communication constraints p and R

with privacy parameter ε = 1. With different pairs of (p,R), we compare the final cumulative

regret RC(T ) achieved at time slot T as well as the total communication cost CC(T ). Fig. 7

shows a clear trade-off between the communication cost and learning performance. Note that

R = 5, p = 1 is close to the largest amount of required communication cost of the centralized

setting. Correspondingly, the regret of this case is close to the performance in Fig. 4 with

ε = 1.

3) Heterogeneous reward setting: We use a 5-agent 10-armed small instance to illustrate

the effectiveness of CDP-MAB on heterogeneous rewards. For the definition of heteroge-

neous reward, please refer to Section VI-D. From Fig. 8 we see that our proposed method

obtain similar regrets under two reward structures, which reached 1/M of the single-agent
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Fig. 7. Regrets of CDP-MAB with participate rate p and

communication rounds R.

Fig. 8. Regrets of Single-MAB vs. CDP-MAB under

different reward structures.

performance under homogeneous reward. For heterogeneous rewards, the single-agent method

cannot converge due to the inconsistency between the local and global best arm. After

completing the local best arm identification and entering the exploit phase, the inconsistency

will bring a linear regret with T .

B. Decentralized Setting

In this part we investigate how the properties of graphs can affect the learning performance

in the decentralized setting.

1) Network structure: We consider a 50-agent 100-armed homogeneous problem instance.

We set c2, the communication cost for each agent-to-agent link as 1. The agents are connected

based on four kinds of graphs: {Fully-connected, Star, Ring, Random}. Some examples are

shown in Fig. 9.

From Fig. 10 we can see that the Star and Fully-connected graph achieve the smallest

regrets while the Ring graph incurs larger regret. This is consistent with our results in Theorem

3. The RD(T ) is equal to the RC(T ) plus an item dominated by the diameter of the graph. The

diameters of Fully-connected and Star graph are 1 and 2 respectively, thus their performances

are close to the centralized setting. The SPIN protocol runnning in the Ring graph has the

largest delay, leading to the largest regret caused by the local exploitation.

The communication cost is determined by both the diameter and the total number of

edges. Therefore, regret and communication cost are not directly proportional. The Star

graph is closest to the centralized setting and has the smallest communication cost, since
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Fig. 9. Examples of 5-agent graph structures. Fig. 10. Regrets of DDP-MAB with different graph

structures.

the information can be completely diffused in the network as long as it is transmitted in two

steps. To achieve this goal, we need to create M(M − 1)/2 edges in the fully-connected

graph, which introduces a huge communication cost.

C. Hybrid Setting

In this section, we divide 100 agents into several components with different properties.

We set c1 = 50 and c2 = 1.

1) Component structures: We list the structure of each component q a in Table II. The

sub-graphs in case1, case2 and case3 are both fully connected, however, the number of agents

assigned in each component is different. Case 1, case 4 and case 5 have the same number

of agents in each components while communicating over different structures of sub-graphs.

In particular, case 3 can be regarded as the fully-decentralized setting where all agents are

located at the vertices of one graph. Case 6 can be regarded as a centralized setting since

there is only one agent in each component, which is directly connected to the server.

From Fig. 11 we can see that, although case1, case2 and case3 can finally achieve similar

per-agent regrets, while the communication cost gradually increases. This is because main-

taining a fully connected graph with more agents requires us to establish more agent-to-agent

links. Case 1, case 4 and case 5 have a balanced agents distribution. Comparing these three

case, the sub-graphs close to central setting (like star graph) achieve smaller communication
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TABLE II

DIFFERENT SETTINGS FOR HYBRID STRUCTURE

{Mq} structures

case 1 {20,20,20,20,20} fully-connected

case 2 {63,24,10,6,7} fully-connected

case 3 {100} fully-connected

case 4 {20,20,20,20,20} Random

case 5 {20,20,20,20,20} Star

case 6 {1,...,1}× 100 -

cost. It also implies that the hybrid structure significantly reduces the communication cost

compared with the centralized setting (case 6) or the fully-decentralized setting(case 3).

2) Heterogeneous Reward: Finally, we examine the influence of heterogeneous reward

on the above three communication structures. Fig. 12 is consistent with our statements in

Corollary 3. The CDP-MAB achieves the smallest regret. As we analyzed before, it can

completely avoid the local bias by the coordination of the server. The other two structures

are slightly affected by the heterogeneous reward. The reason is that the agents perform local

exploitation during communication rounds (waiting for consensus or sink agent collection).

Due to the smaller size of the sub-graph, the hybrid structure can achieve smaller delay as

well as better performance than the decentralized network.

Fig. 11. Regrets of HDP-MAB with different compo-

nent structures.

Fig. 12. Regrets of HDP-MAB under different reward

structures.
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VIII. CONCLUSION

In this paper, we propose a privacy-preserving communication-efficient framework to tackle

the privacy leakage and large communication overhead issues in the FMAB problem. To

protect the user privacy, we use DP techniques by adding noise before the agents send

their local parameters. Theoretical results show that the DP mechanism brings a trade-off

between privacy and utility. Furthermore, partial participation and less frequent communi-

cation strategies are utilized to reduce the communication cost. Decentralized structure is

combined with GIS protocol to realize global information synchronization at the end of each

communication round. Hybrid structure and SAC protocol are together considered to complete

local aggregation inside the component first, and then implement global aggregation at the

server. The above two schemes introduce an additional item related to the graph/component

structure on the basis of the centralized setting regret. We compared the effectiveness of the

three structures from both theoretical and experimental results.
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APPENDIX

A. Useful facts

Fact 1 (Chernoff-Hoeffding bound). Let X1, ..., Xt be a sequence of real-valued random

variables with common range [0, 1], and such that E[Xt|X1, ..., Xt−1] = µ. Let St =
∑t

i=1Xi.

Then for all a ≥ 0,

P (St ≥ tµ + a) ≤ e−2a2/t, P (St ≤ tµ − a) ≤ e−2a2/t
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Fact 2 (Concentration Bound of Laplace Distribution [25]). Let X1, X2, ..., Xn be i.i.d random

variables following the Lap(λ) distribution. Let Sn =
∑n

i=1Xi be the sum of n variables.

Then, for any ν ≥ λ
√
n and 0 < a <

√
8ν2

λ
, we have,

Pr{Sn ≥ a} < e
a2

−8ν2

B. Proof of Theorem 1

Proof. Consider two streams of arm-rewards that differ on the reward of a single arm in a

single timestep. This timestep plays a role in a single epoch r. Moreover, let a be the arm

whose reward differs between the two neighboring streams. Since the reward of each arm

is bounded by [0,1] it follows that the difference of the mean of arm a between the two

neighboring streams is less than 1
S(r)−S(r−1)

. Thus, adding noise of Lap( 1
Mε[S(r)−S(r−1)]

) to

x̂i,k(r) guarantees Mε-DP.

The regret incurred by Algorithm 1 can be decomposed by the local exploration of each

suboptimal arm k before it it is eliminated by the central server. We define rk to be the epoch

up to which ∆k exceeds 2∆̃rk = 2−rk+1. We then show that after round rk, arm k will be

eliminated properly with high probability.

Step 1: We first define the event: ER = {∀k, r, |ȳk(r)− µk| ≤ C(r)} for all arm k in all

epoch r and then bound the probability it happens.

Step 1.1: We decompose ȳk(r) as

ȳk(r) =
1

M

M∑
i=1

ȳi,k(r) =
1

M

M∑
i=1

{
S(r − 1)

S(r)
ȳi,k(r − 1) +

S(r)− S(r − 1)

S(r)
ŷi,k(r)

}

=
1

M

M∑
i=1

r∑
j=1

S(j)− S(j − 1)

S(r)
ŷi,k(j) (12)

=
1

M

M∑
i=1

r∑
j=1

S(j)− S(j − 1)

S(r)
x̂i,k(j) +

1

M

M∑
i=1

r∑
j=1

S(j)− S(j − 1)

S(r)
li,k(j)

, x̄k(r) + lk(r)

where x̄k(r) = 1
M

∑M
i=1

∑r
j=1

S(j)−S(j−1)
S(r)

x̂i,k(j), which is averaged over MS(r) samples of

arm k. lk(r) = 1
M

∑M
i=1

∑r
j=1

S(j)−S(j−1)
S(r)

li,k(j), which is the accumulated noise term added

on x̄k(r) at the end of each epoch r. We then decompose the elimination threshold C(r) as

C(r) = c(r) + h(r) . In particular, c(r) =
√

log(8|I(r−1)|r2T )
2MS(r)

, h(r) =
r
√

8 log(8Kr2T )

M1.5εS(r)
.

Therefore, for arm k, after epoch r, we have

Pr{|ȳk(r)− µk| ≤ C(r)} ≥ Pr{|µk − x̄k(r)| ≤ c(r)} · Pr{|lk(r)| ≤ h(r)} (13)
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The first term indicates the gap between non-private aggregated estimated mean and the true

unknown reward mean. According to the Hoeffding’s inequality,

Pr{|x̄k(r)− µk| ≥ c(r)} ≤ 2e−2MS(r)c(r)2

= 2e−2MS(r)· log(8|I(r−1)|r2T )
2MS(r) =

1

4|I(r−1)|r2T
(14)

Using the union bound for all arms k in I(r−1) and for all epoch r, we have

Pr{∀k, r, |x̄k(r)− µk| ≤ c(r)} ≥ 1− 1

2T
(15)

The second term represents the accumulated noise added on x̄k(r). Since the noise is gen-

erated using the Laplace mechanism, we use the concentration property of the Laplace

distribution to bound the this term. Specifically, for li,k(j) ∼ Lap( 1
Mε[S(j)−S(j−1)]

), setting

ν =
√
M

Mε[S(j)−S(j−1)]
for any 0 < a <

√
8ν2

λ
, we want

Pr{| 1

M

M∑
i=1

li,k(j)| ≥ a} ≤ 2e
M2a2M2ε2[S(j)−S(j−1)]2

−8M = e− log(4|I(j−1)|j2T ) =
1

4|I(j−1)|j2T
(16)

By solving above equation, we can get a =

√
8 log(8|I(j−1)|j2T )

M1.5ε[S(j)−S(j−1)]
. That is,

Pr
{
|
∑M

i=1 li,k(j)

M
| ≥

√
8/M log(8|I(j−1)|j2T )

Mε[S(j)− S(j − 1)]

}
≤ 1

4|I(j−1)|j2T
(17)

Using the union bound for all arms k in I(r−1) and for all epoch r, we have

Pr
{
∃k, r, |

∑M
i=1 li,k(r)

M
| ≥

√
8/M log(8|I(r−1)|r2T )

Mε[S(r)− S(r − 1)]

}
≤ 1

2T
(18)

Thus, we have probability at least 1− 1
2T

, for all arms k in I(r−1) and for all epoch r

|lk(r)| =
1

M

M∑
i=1

r∑
j=1

S(j)− S(j − 1)

S(r)
|li,k(j)|

≤
r∑
j=1

S(j)− S(j − 1)

S(r)

√
8 log(8|I(j−1)|j2T )

M1.5ε[S(j)− S(j − 1)]

≤
r
√

8 log(8Kr2T )

M1.5εS(r)
≤ h(r) (19)

Combing Eq. (15) and Eq. (19), we have Pr{ER} ≥ 1− 1
T

.

Step 2: We continues the proof under the assumption that ER holds.

Step 2.1: We first argue that the optimal arm 1 is never eliminated if ER holds. Indeed,

For any epoch r and any arm k in the epoch we have |ȳk(r) − µk| ≤ c(r) + h(r). Denote
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a∗(r) be the arm has the highest private empirical mean in current epoch r. It is easy to

verify that ȳa∗(r)(r)− ȳ1(r) ≤ 2C(r) since

ȳa∗(r)(r)− ȳ1(r) ≤ ȳa∗(r)(r)− ȳ1(r)− (µa∗(r) − µ1)

≤ |(ȳa∗(r)(r)− µa∗(r))− (ȳ1(r)− µ1)|

≤ |(ȳa∗(r)(r)− µa∗(r))|+ |(ȳ1(r)− µ1)|

≤ 2(c(r) + h(r)) (20)

Thus, the optimal arm is never eliminated.

Step 2.2: We next argue that if ER holds, in epoch rk, the algorithm eliminates suboptimal

arm k with gap ∆k larger than 2∆̃rk . With the choices of c(r), h(r) and S(r), we have,

c(rk) =
√

log(8|I(rk−1)|r2
kT )

2MS(rk)
≤
√

log(8|I(rk−1)|r2
kT )

2M ·
8 log(8|I(rk−1)|r2

k
T )

M∆̃2
rk

= ∆̃rk/4

h(rk) =
rk
√

8/M log(8Kr2
kT )

MεS(rk)
≤ rk

√
8/M log(8Kr2

kT )

Mε
8rk

√
2/M log(8Kr2

k
T )

Mε∆̃rk

= ∆̃rk/4

Thus, c(rk) + h(rk) ≤ ∆̃rk/2. So for arm k,

ȳk(rk) + (c(rk) + h(rk))
(a)

≤ µk + 2(c(rk) + h(rk))
(b)

≤ µk + ∆k − 2(c(rk) + h(rk))

(c)
= µ1 − 2(c(rk) + h(rk))

(d)

≤ ȳ1(rk)− (c(rk) + h(rk)) ≤ ȳa∗(rk)(rk)− (c(rk) + h(rk)) (21)

That is ȳk(rk) ≤ ȳa∗(rk)(rk)− 2(c(rk) +h(rk)) = ȳa∗(rk)(rk)− 2C(rk), which guarantees that

suboptimal arm k is eliminated after round rk. In Eq.(19), (a) and (d) use the condition that

ER holds; (b) uses the elimination threshold that ∆k ≥ 2∆̃rk ≥ 4(c(rk) + h(rk)). And (c) is

from the fact µk = µ1 −∆k.

Step 3: We conclude by computing the total number of arms pulls ni,k(T ) required for

each suboptimal arm k at each agent i. Specifically, arm k 6= 1 does not survive round rk

with rk =
⌈
log( 1

∆k
) + 1

⌉
since ∆k ≥ 2∆̃rk .

ni,k(T ) ≤ S(rk)

≤ max{8 log(8|I(rk−1)|r2T )

M∆̃2
rk

,
8rk
√

2 log(8Kr2
kT )

M1.5ε∆̃rk

}

≤ max{
16 log(8K(

⌈
log( 1

∆k
) + 1

⌉
)2T )

M∆2
k

,

32
⌈
log( 1

∆k
) + 1

⌉
)

√
2 log(8KT (

⌈
log( 1

∆k
) + 1

⌉
)2)

M1.5ε∆k

= O(max{ log(KT log T )

M∆2
k

,
log T

√
log(KT log T )

M1.5ε∆k

}) (22)
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The last equality is due to the fact that
⌈
log( 1

∆k
) + 1

⌉
< log T . When ER does not hold, the

maximum regret is ∆max · T · Pr{ĒR} ≤ ∆max ≤ 1. Therefore, we only consider the regret

when ER holds with probability 1 − 1/T . Summing up all M agents and K arms we can

conclude,

RC(T ) =
M∑
i=1

K∑
k=1

∆k · ni,k(T ) = O(max{
K∑
k=1

log(KT log T )

∆k

,
K log T

√
log(KT log T )√
Mε

})

(23)

C. Proof of Theorem 2

Proof. The communication cost Cp,R
C (T ) can be directly derived from CC(T ) by replacing

the participants M as pM and required communication round O(log T ) as fixed R.

We use the similar techniques in Theorem 1 to investigate the regret. The regret incurred

by Algorithm 1 can be decomposed by the local exploration of each suboptimal arm k

before it it is eliminated by the central server. We define rk to be the epoch up to which ∆k

exceeds 2∆̃rk = 2∆r/R. We then show that after round rk, arm k will be eliminated properly

with high probability. Notice the ∆̃rk used in Theorem 1 is doubling-decreasing, while it

is exponentially decreasing with scale R in the modified algorithm. This directly leads to a

different rk required for eliminate arm k.

Step 1: Compared with S(r) set in Alg.1, the Sp(r) has a scale factor of 2−r

p∆r/R or 2−r

p3/2∆r/R

for the two terms inside the max{}. Since the value of Cp(r) is determined by Sp(r), it

is scaled equally with respect to C(r) set in Alg.1. This means that the events the event

ER = {∀k, r, |ȳk(r)− µk| ≤ Cp(r)} for all arm k in all epoch r still holds with probability

1 − 1
T

, where ȳk(r) = 1
N

∑N
i=1 ȳi,k(r) is the empirical averaged mean aggregate from N

participants.

Step 2: If ER holds, in any epoch r, two of the following events happens:

1) the optimal arm always remains in epoch r;

2) the algorithm eliminates all suboptimal arms with gap ∆k larger than 2∆̃rk = 2∆r/R. This

also demonstrates that the second best arm with gap ∆ is removed from the active arm set

after the R−th communication since ∆̃R = ∆R/R = ∆.

We conclude by computing the total number of arms pulls ni,k(T ) required for each

suboptimal arm k at each agent i. Specifically, arm k 6= 1 does not survive round rk with,
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rk =

⌈
R(1 + log( 1

∆k
))

log( 1
∆

)

⌉
(24)

Since arm k is still in the active arm set at the end of round rk − 1, we have

∆k < 2∆̃rk−1 = 2∆
rk−1

R =
2∆

rk
R

∆1/R
=

2∆̃rk

∆1/R
(25)

Using 2∆̃rk ≥ ∆1/R ·∆k, we can upper bound the number of times arm k was pulled by

agent i as:

ni,k(T ) ≤ Spk(rk) ≤
1

M
max

{
8 log(8|I(rk−1)|r2

kT )

p∆̃2
rk

,
8rk
√

2 log(8Kr2
kT )

√
Mp3/2ε∆̃rk

}

≤ 1

M
max

{
96 log(r2

kKT )

p∆2
k ·∆2/R

,
16rk

√
6 log(r2

kKT )√
Mp3/2ε∆k ·∆1/R

}

≤ 1

M
max

{
96 log(R2KT )

p∆2
k ·∆2/R

,
16R

√
6 log(R2KT )√

Mp3/2ε∆k ·∆1/R

}

= O(
1

M
max

{
∆−2/R

p∆2
k

log(R2KT ),
∆−1/R

√
Mp3/2ε∆k

R
√

log(R2KT )

}
)

≤ O(
1

M
max

{
log(R2KT )

p∆2
k

T 2/R,
R
√

log(R2KT )√
Mp3/2ε∆k

T 1/R

}
)

≤ O(
T 2/R

p3/2M
max

{
log(R2KT )

∆2
k

,
R
√

log(R2KT )√
Mε∆k

}
) (26)

The second last equality is due to the fact ∆ = O( 1
T

). If ∆ < 1
T

, even if we play suboptimal

arms for all T slots, we can only incur a regret less than 1. The last equality is due to

T 2/R > T 1/R and p > p3/2.

Summing up all M agents and K arms, the regret is upper bounded by,
M∑
i=1

K∑
k=1

∆k · ni,k(T ) = O(
T 2/R

p3/2
max

{
log(R2KT )

∆k

,
R
√

log(R2KT )√
Mε

}
) (27)

In order to make our performance not worse than the non-communication case, we need to

ensure that T 2/R/p ≤ M → R ≥ log T/ log pM . We can conclude the cumulative regret of

the modified algorithm by setting the min{M, T
1/R

p3/2 } operation.

D. Proof of Theorem 3

We first investigate CD(T ). According to our definition of communication cost, it is

determined by the number of connections established in all communication rounds.

We first analyze the total number of required communication rounds. Consider that S(r)

and C(r) we set in Alg.2 are the same as Alg.1, and the GIS protocol can ensure that each
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agent can aggregate the same average mean as the server in Alg.1 after communication round

r. So we can directly use the conclusion in Theorem 1, that is, all agents can synchronously

identify the best arm after
⌈
log( 1

∆k
) + 1

⌉
rounds.

We next examine the number of connections established by each communication round.

First, the duration of each round is tdelay time slots. In each time slot, the upper bound

of connections is the number of edges in the graph
∑M

i=1 di/2. It is also known that the

max tdelay is the diameter of the graph dG, which is the time delay for the two vertices

farthest apart on the graph to receive information from each other. Thus, the upper bound of

connections established by each communication round is dG
∑M

i=1 di/2. Multiply this with

the total required communication round we can conclude CD(T ).

We then calculate the regret RD(T ), which can be further divided into two terms as:

O(
K∑
k=1

log(KT log T )

∆k

,
K log T

√
log(KT log T )√
Mε︸ ︷︷ ︸

(1)

+M(dG − 1)︸ ︷︷ ︸
(2)

) (28)

Step 1: RD(1)(T ) is caused by local explorations of suboptimal arms. Each agent is evenly

allocated S(r) times on each k ∈ I
(r−1)
i . Note our GIS protocol ensures that all agents

can observe totally S(r) samples at the end of round r. Thus, although the agents perform

aggregation and elimination independently, they can generate the same aggregated means

ȳi,k(r) and the same active arm set I(r)
i for all i ∈ [M ], k ∈ [K]. The advantage of this is to

ensure that no additional asynchronous delay is introduced in the next exploration phases. In

this way, each agent can be seen as a “central server” in Alg.1 connected with other M − 1

agents. With the same selection S(r) and C(r), following the analysis of Theorem 1, we can

conclude that RD(1)(T ) = RC(T ). Therefore, the impact of decentralized setting is mainly

reflected in the second item.

Step 2: RD(2)(T ) is incurred by inappropriate exploitation on suboptimal arms during

communication. Before the end of communication round r, each agent can only greedily

exploit empirically best arm based on local observations in this round. Therefore, The regret

introduced at this stage is related to the accuracy of the estimation and tdelay.

Step 2.1: The largest tdelay will not exceed the diameter of the graph (dG − 1), because

this is the time slots that the two farthest nodes on the graph need to pass through to receive

the observations from each other.

Step 2.2: Next, we examine the regrets introduced in each slot of tdelay when exploit

suboptimal arm. Recall the proof in Theorem 1, when event ER holds, suboptimal arm

with ∆k > 2−(r−1) will be eliminated after round r − 1 (Step 2.2) and the optimal arm is
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never eliminated (Step 2.1). Therefore, each pull can cause at most 2−(r−1) regret and each

communication round incurs at most M(dG − 1)2−(r−1) regret. Summing up all required

round we obtain:

M(dG − 1)

dlog( 1
∆

)+1e∑
r=1

(2−(r−1)) = M(dG − 1)(1 + 1/2 + 1/4 + ...+ 2− log( 1
∆

))

= 2M(dG − 1)(1− 2− log( 1
∆

)) = 2M(dG − 1)(1−∆) (29)

If event ER does not hold, the max regret that can be caused by each pull is 1. Then at

most MdG regret will be introduced at round r and MdG
⌈
log( 1

∆
) + 1

⌉
will be incurred by

all communication rounds. We can bound the RD(2) by:

R(2) = Pr{ER}(2M(dG − 1)(1−∆)) + Pr{ĒR}(M(dG − 1))

≤ (1− 1

T
)(2M(dG − 1)(1−∆)) + (

1

T
)M(dG − 1)

⌈
log(

1

∆
) + 1

⌉
≤M(dG − 1)(2 +

log T

T
) = O(M(dG − 1)) (30)

The last equality is due to the facts log T/T → 0 with large T . We complete the proof by

summing up RD(1)(T ) +RD(2)(T ).

E. Proof of corollary 1

Proof. The communication cost CR
D(T ) can be directly derived CD(T ) by replacing the

required communication rounds as R.

We then calculate the regret RR
D(T ), which can be further divided into two terms as:

O(min{M,T 2/R} ·max

{
K∑
k=1

log(R2KT )

∆k

,
R
√

log(R2KT )√
Mε

}
︸ ︷︷ ︸

(1)

+M(dG − 1)︸ ︷︷ ︸
(2)

) (31)

The first term is caused by local explorations of all M agents, which recover the result of

Alg.1 RR
D(1)(T ) = Rp,R

C (T ) with p = 1.

Next, we examine the second term introduced in each slot of tdelay when exploit suboptimal

arm. Recall the proof in Theorem 2, when event ER holds, suboptimal arm with ∆k > 2∆̃rk =

2∆r/R will be eliminated after round r − 1 and the optimal arm is never eliminated (Step

2). Therefore, each pull can cause at most ∆(r−1)/R regret and each communication round

incurs at most MdG∆(r−1)/R regret. Summing up all required round we obtain:

M(dG − 1)
R∑
r=1

(∆r/R) = M(dG − 1)(1 + ∆1/R + ∆2/R + ...+ ∆R/R)

= M(dG − 1)(
1−∆

1−∆1/R
) (32)

November 3, 2021 DRAFT



38

If event ER does not hold, the max regret that can be caused by each pull is 1. Then at most

MdG regret will be introduced at round r and MdGR will be incurred by all communication

rounds. We can bound the RR
D(2) by:

RR
D(2)(T ) ≤ Pr{ER}(M(dG − 1)(

1−∆

1−∆1/R
)) + Pr{ĒR}(M(dG − 1)R)

≤M(dG − 1)(
1−∆

1−∆1/R
+
R

T
) = O(M(dG − 1)) (33)

The last equality is due to the facts: i) 1−∆
1−∆1/R + R

T
≤ 1 since R ≥ 1; ii) R is no larger than

T . We complete the proof by summing above two terms.

F. Proof of Theorem 4

Proof. We first investigate the communication cost. In the local communication of q, the

connection between i and SAq holds only when ŷi,k(r) is sent from i to SAq, after that,

the connection broken. In the global communication, at most Q connections are required.

Therefore the cost in each round is c2

∑
q∈Q
∑

i∈[Mq ]
sd(i, SAq) + c1Q where sd(i, j) is the

shortest distance between agent i and j. Summing all communication round before we identify

the best arm, the communication cost

CH(T ) = (c2

∑
q∈Q

∑
i∈[Mq ]

sd(i, SAq) + c1Q)

⌈
log(

1

∆
) + 1

⌉
We conclude the result with the fact sd(i, SAq) ≤ dqG and

⌈
log( 1

∆
) + 1

⌉
< log T .

The proof of regret is similar as Theorem 3. We also divide the regret as RH(1)(T ) and

RH(2)(T ). The first term is caused by local explorations of all M agents, which recover

the result of Alg.1 RH(1)(T ) = RC(T ). The second term is incurred by greedily pulling the

empirical best arm during tdelay, which is determined by the slowest component that finish the

sink agent collection:tdelay = maxq∈Q{maxi∈[Mq ]{sd(i, SAq)}}. Obviously, the largest tdelay

will not exceed the largest diameter of the all graphs maxq∈Q{dqG−1}. Next, we follow Step

2.2 to examine the regrets introduced in each slot of tdelay when exploit suboptimal arm.

Recall the proof in Theorem 1, when event ER holds, suboptimal arm with ∆k > 2−(r−1)

will be eliminated after round r− 1 (Step 2.2) and the optimal arm is never eliminated (Step

2.1). Therefore, the incurred regret is upper bounded by:

M max
q∈Q
{dqG − 1}

dlog( 1
∆

)+1e∑
r=1

(2−(r−1)) = M max
q∈Q
{dqG − 1}(1 + 1/2 + 1/4 + ...+ 2− log( 1

∆
))

= 2M max
q∈Q
{dqG − 1}(1− 2− log( 1

∆
)) = 2M max

q∈Q
{dqG − 1}(1−∆) (34)
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If event ER does not hold, the max regret that can be caused by each pull is 1. We have,

RH(2)(T ) ≤ Pr{ER}(2M max
q∈Q
{dqG − 1}(1−∆)) + Pr{ĒR}(M max

q∈Q
{dqG − 1})

≤ (1− 1

T
)(2M max

q∈Q
{dqG − 1}(1−∆)) + (

1

T
)M max

q∈Q
{dqG − 1}

⌈
log(

1

∆
) + 1

⌉
≤M max

q∈Q
{dqG − 1}(2 +

log T

T
) = O(MdG max

q∈Q
{dqG − 1}) (35)

The last equality is due to the fact log T
T
→ 0 with large T . We complete the proof by summing

RH(1)(T ) and RH(2)(T ).
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