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Abstract—The core requirement of massive Machine-Type
Communication (mMTC) is to support reliable and fast access
for an enormous number of machine-type devices (MTDs). In
many practical applications, the base station (BS) only concerns
the list of received messages instead of the source information,
introducing the emerging concept of unsourced random access
(URA). Although some massive multiple-input multiple-output
(MIMO) URA schemes have been proposed recently, the unique
propagation properties of millimeter-wave (mmWave) massive
MIMO systems are not fully exploited in conventional URA
schemes. In grant-free random access, the BS cannot perform
receive beamforming independently as the identities of active
users are unknown to the BS. Therefore, only the intrinsic
beam division property can be exploited to improve the decoding
performance. In this paper, a URA scheme based on beam-space
tree decoding is proposed for mmWave massive MIMO system.
Specifically, two beam-space tree decoders are designed based
on hard decision and soft decision, respectively, to utilize the
beam division property. They both leverage the beam division
property to assist in discriminating the sub-blocks transmitted
from different users. Besides, the first decoder can reduce the
searching space, enjoying a low complexity. The second decoder
exploits the advantage of list decoding to recover the miss-
detected packets. Simulation results verify the superiority of
the proposed URA schemes compared to the conventional URA
schemes in terms of error probability.

Index Terms—Unsourced random access, massive ac-
cess, beam-space tree decoder, Machine-Type Communication
(mMTC).

I. INTRODUCTION

A. Motivation

O
NE imminent demand for the next generation wireless

mobile communication systems is to provide instant and
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reliable access for an increasingly large number of machine-

type devices (MTDs) [1], [2]. Different from human-centric

communication, the resultant Massive Machine-Type Com-

munication (mMTC) has two distinct features. In particular,

only a small number of devices are active in each commu-

nication round due to the sporadic activity in mMTC [3].

Besides, MTDs usually transmit small data payloads adopting

short-packet signaling [4]. These make traditional grant-based

random access schemes generally not very suitable for the

mMTC scenario because of their low spectral efficiency and

exceedingly long latency [5]. Therefore, the design of reliable

and efficient grant-free random access schemes has attracted

significant attention recently, where active users transmit pilots

and data to the base station (BS) directly without permission

granted [6], [7]. In most grant-free random access schemes,

a set of pilot sequences that are designated to the users are

used for the BS to ensure its accurate user activity detection

and channel estimation [8]–[10]. However, this is neither

affordable nor feasible in the next generation multiple access

(NGMA) scenarios due to the high density, the large number of

connections therein, and the frequent collisions that may occur.

To tackle the issues, a special type of grant-free random access,

the so-called unsourced random access (URA), is introduced in

[11], in which users do not transmit preambles, all the potential

users share a common codebook, and the BS only needs to

decode a list of messages instead of the identities of active

users. This scheme can avoid the huge cost of preambles and

the extra protocol of collision resolution, thus well meeting

the requirements of next generation massive access.

On the other hand, massive or super MIMO technology,

in combination with the millimeter-wave (mmWave) technol-

ogy, have been promoted as two core technological features

for the next generation wireless communication system with

a witnessed potential to boost the capacity and efficiency.

These two underlying key technologies jointly bring additional

spatial-domain signal dimension with their excellent intrinsic

directivity and proper beamforming, and also result in salient

beam-space sparsity due to the lack of scattering in a mmWave

MIMO channel [12]–[14]. To further increase the efficiency

of the future massive access systems, such spatial-domain re-

sources and properties should be fully explored and exploited.

Various multi-user transmission schemes have been proposed

to unleash the potential and properties of the beam-space

resources, such as the typical works on beam division multiple

access (BDMA), which simultaneously serves multiple users

via different beams [15]–[17].

http://arxiv.org/abs/2112.14024v2
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However, for grant-free random access, even if the infor-

mation of the location of all potential users is stored at the

BS, the identities of active users are unknown to the BS.

Therefore, the beam dimension cannot be directly exploited in

the design of the encoding process of an unsourced grant-free

random access, which is different from previous works [15]–

[17]. Moreover, in a general URA system, the messages of

active users are divided into several sub-blocks and transmitted

in consecutive sub-slots. As the signals transmitted from active

users often experience deep fading, some sub-blocks may be

missed by the decoder at the receiver. The loss of any sub-

block in any sub-slot finally leads to the failure of recovering

the corresponding original message. The problem of packet

loss is also needed to be solved as it can cause severe

decoding performance degradation. Note that the user location

information can generally serve as a hint of the indices of the

messages originated from it. Therefore, the intrinsic beam divi-

sion property and salient spatial sparsity in a mmWave MIMO

system can provide extra extrinsic information for both multi-

user signal separation and multi-sub-block message stitching.

This motivates us to exploit the beam space properties to

design new URA schemes for next generation multiple access

to help the entire system accommodate more active users and

improve the decoding performance.

B. Related Works

Y. Polyanskiy first introduced a framework named URA

[11]. Specifically, in URA, all the users share a common

codebook, and the decoder only needs to decode a list of mes-

sages transmitted from the active users. The error probability is

defined as the average fraction of mis-decoded messages over

the number of active users, including both missed detection

and false alarm. It is obvious that the message recovery at

the BS can be formulated as a compressed sensing (CS)

problem due to the sporadic activity in mMTC, which is

similar to the conventional grant-free random access schemes

[18], [19]. However, the size of the common codebook grows

exponentially with the number of information bits. In practice,

even if a short packet is transmitted, the size of information

messages is typically at the order of 100 bits, which makes the

CS algorithms computationally intractable. In this context, V.

K. Amalladinne et al. proposed a coded compressed sensing

(CCS) scheme for URA communication [20]. In particular,

the messages from active users are first divided into several

sub-blocks. Then, a systematic linear code adds redundancy

to those sub-blocks. Once this is achieved, each sub-block

is mapped into a codeword in a common codebook and

transmitted in a certain sub-slot. Then a standard CS algorithm

implements the detection of the sub-blocks. Finally, the sub-

blocks transmitted in different sub-slots are stitched together

to obtain the original messages. Build upon the findings in

[20] and the structure of sparse regression codes (SPARCs),

A. Fengler et al. provided an improved inner decoder, and a

complete asymptotic error analysis [21].

Apart from the above works, the study of massive multiple-

input multiple-output (MIMO) URA has also attracted much

attention. A. Fengler et al. extended the URA model of

[20] to a block-fading MIMO channel by using a low-

complexity covariance-based CS (CB-CS) recovery algorithm

[22]. Considering the low code rate and spectral efficiency

of the CCS scheme, V. Shyianov et al. proposed a new

algorithmic solution to solve the massive URA problem by

leveraging the rich spatial dimensionality offered by large-

scale antenna arrays [23]. Besides, without requiring a separate

activity detection or channel estimation step, A. Decurninge

et al. introduced a structure that allows the receiver to separate

the users using a classical tensor decomposition [24]. As

URA is a special scheme of grant-free random access, A.

Fengler et al. presented a conceptually simple algorithm based

on pilot transmission, activity detection, channel estimation,

Maximum Ratio Combining (MRC), and single-user decoding

[25], which is similar to the existing grant-free random access

schemes [3], [18]. The difference is that they use a pool of

non-orthogonal pilots where every active user picks one of

them pseudo-randomly. Furthermore, X. Shao et al. proposed

a unified cooperative activity detection framework for sourced

and unsourced random access based on the covariance of the

received signals for the sixth generation (6G) cell-free wireless

networks [26].

C. Main Contributions

In this paper, we propose a URA scheme with beam-

space tree decoding. Specifically, we adopt the CCS scheme

[20] suitably to our case and design two beam-space tree

decoders, which are based on hard decision and soft decision,

respectively. By leveraging the beam division property to assist

in distinguishing the sub-blocks transmitted from different

users, both decoders can help the system serve more active

users. As the discriminating power is improved, the searching

space of the solution in the decoding process is reduced, such

that the first decoder has low complexity. In addition, notice

that any sub-block missed by the CS decoder would finally

lead to missed detection, which degrades the decoding per-

formance. To tackle this issue, the second decoder establishes

factor graphs at each stage during the decoding process and

implements message passing algorithm (MPA) to give each

candidate sub-block drawn from the checking relationship a

log-likelihood ratio (LLR) value. Then the reliability of every

candidate path is calculated by a path metric (PM). At every

stage, some reliable paths are kept, and finally, the surviving

path is output as the valid message. Even if a sub-block is

missed by the CS decoder, it is possible that the path of the

original message is reliable and kept. The main contributions

of this paper are summarized as follows:

• A URA scheme with beam-space tree decoding is pro-

posed for mmWave communication systems in mMTC

to accommodate more active users and to improve the

system performance.

• Two beam-space tree decoders are designed. Both of

them can exploit the intrinsic beam division property to

improve the decoding performance of the tree decoder

by enhancing the discriminating power and helping the

system serve more active users. Besides, the first decoder

is based on hard decision with low complexity. The



3

second one is based on soft decision and exploits the

advantage of list decoding to recover the packet loss,

which is the key of the proposed URA scheme.

• Simulation results verify that our URA schemes have

significantly better performances than existing works.

D. Paper Organization and Notations

The rest of this paper is organized as follows: Section

II provides a brief introduction of the considered massive

URA system. Section III provides the encoding and decoding

process of the considered system. Section IV proposes a beam-

space tree decoder with hard decision. Then, Section V designs

a beam-space tree decoder with soft decision. Next, Section

VI analyzes the performance of the proposed URA scheme.

Afterward, Section VII provides extensive simulation results

to validate the effectiveness of the proposed algorithm. Finally,

Section VIII concludes the paper.

Throughout this paper, we use bold letters to denote matri-

ces or vectors and non-bold letters to denote scalars. We denote

the i-th row and the j-th column of a matrix X with the row-

vector Xi,: and the column-vectorX:,j respectively. We denote

CA×B by the space of complex matrices of size A×B. We use

|·| to denote the absolute value of a complex number, (·)H and

(·)T to denote conjugate transpose and transpose, respectively.

The li-norm of an input vector is denoted by ‖·‖i. |K|c denotes

the number of elements of set K. The notation x ∼ CN (µ, δ2)
denotes that the random variable (r.v.) x follows the circular

symmetric complex Gaussian distribution. O(·) stands for the

big-O notation.

II. SYSTEM MODEL

Consider an uplink single-cell cellular network consisting

of Ktotal single-antenna users. The BS is equipped with Nr

antennas and NRF radio frequency (RF) chains such that

NRF < Nr, as shown in Fig. 1. Due to the sporadic user

activity of mMTC, only a small number of Ka users are active

in a transmisson process, i.e., Ka ≪ Ktotal. Each active user

has B bits of information to be transmitted in a block-fading

channel. According to [12], [14], the channel vector hk from

user k to the BS can be written as

hk =

Pc∑

p=1

Qp∑

q=1

βp,qe(θp,q), (1)

where Pc denotes the total number of clusters and within the

p-th cluster there are Qp sub-paths. βp,q and θp,q denote the

gain and the the angle of arrival (AOA) of the q-th sub-path

within the p-th cluster. For the uniform linear array (ULA),

the Nr × 1 array steering vector e(θ) can be expressed as

e(θ) = [e−
j2πd sin(θ)m

λ ]m∈J(Nr)
, (2)

where J(Nr) = {i − Nr−1
2 , i = 0, 1, 2, . . . , Nr − 1}, θ ∈

[−π
2 ,

π
2 ], λ is the signal wavelength, and d is the antenna

spacing which is usually half of the signal wavelength.

To overcome the strong path loss in mmWave channels, a

beamforming technique should be adopted. However, the BS

cannot focus in any specific direction in grant-free random

access. The reason is that even if the location of all potential

users is stored at the BS, which users are active is not prior

information known to the BS. Besides, due to the constraint

of hardware implementations and large energy consumption of

RF chains, we have NRF < Nr. Therefore, many beamforming

methods in existing works [27], [28] cannot be applied in our

system directly as NRF narrow beams cannot cover the whole

beam space. In this paper, we give a beamforming method

based on the widely used Discrete Fourier Transform (DFT)

based beamforming codebook [27], [28], to overcome the

strong path loss of mmWave channels in grant-free random

access. Specifically, the DFT based beamforming codework,

which is denoted by W, can be writtern as

W = [w1,w2, . . . ,wNr ] ∈ C
Nr×Nr , (3)

where

wi =
1√
Nr

e(θi),

θi = arcsin(
2i− 1

Nr
− 1), i = 1, 2, . . . , Nr.

(4)

Consider the process of hardware implementations, the number

of antennas is usually a multiple of the number of RF chains.

Therefore, the Nr

NRF
consecutive beamforming vectors can be

grouped and summed together to form a new beamforming

vector wi, i = 1, 2, . . . , NRF. wi is expressed as

wi = γ(w1+ Nr
NRF

(i−1) +w2+ Nr
NRF

(i−1) + · · ·+w Nr
NRF

i
), (5)

where the parameter γ is set to constrain the power of

receive beamforming, i.e., ‖wi‖22 = 1. Then the beam-

forming matrix W is obtained, where W is written as

W = [w1,w2, . . . ,wNRF ] ∈ CNr×NRF . By applying this

beamforming method, the width of every beam is π
NRF

, thus

the NRF beams can cover the whole beam space, which means

that the signals coming from all directions can be received by

the BS.

In a typical URA scenario, all the users share a common

codebook A, which is denoted by A = [a1, a2, . . . , aN ] ∈
CLp×N . The power of each codeword an ∈ CLp×1 is

constrained to 1, i.e., ‖an‖22 = 1. Let δn,k ∈ {0, 1} denote

whether user k transmits the codeword an. δn,k can be written

as

δn,k =

{
1, active user k transmits codeword an,

0, otherwise.
(6)

After receive beamforming at the receiver, the beam do-

main channel vector of the active user k is denoted by

hk = W
H
hk = [hk,1, hk,2, . . . , hk,NRF ]

T. Also, the random

noise vector is denoted by z = W
H
z = [z1, z2, . . . , zNRF ]

T,

where z is modeled by a complex circular Gaussian random

vector with i.i.d. components, i.e., z ∼ CN (0, σ2
zI). Then the

received signal on the b-th beam can be written as

yb =

Ktotal∑

k=1

N∑

n=1

hk,bδn,ka
T
n + zb, (7)

By summarizing all the NRF samples in a transmission
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Fig. 1. The system model of our proposed scheme.
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Fig. 2. (a) The matrix X exhibits the sparsity of user activity; (b) The
matrix X exhibits the sparsity of beam domain channel in mmWave
bands.

block, the received signal can be recast as

Y = A∆H+ Z = AX+ Z, (8)

where Y = [yT
1 ,y

T
2 , . . . ,y

T
NRF

] ∈ CLp×NRF , H =

[h1,h2, . . . , hKtotal
]T ∈ CKtotal×NRF , X = ∆H ∈ CN×NRF

and ∆ = {0, 1}N×Ktotal . The matrix ∆ contains only Ka

non-zero columns each of which having a non-zero entry.

For the matrix X = ∆H, where H = [h1,h2, . . . ,
hKtotal

]T, the i-th row of such matrix is given as

Xi,: =

Ktotal∑

k=1

δi,kh
T
k . (9)

The probability that Xi,: is identically zero is given by (1 −
2−J)Ka . Since 2J is significantly larger than Ka, the matrix X

is row-sparse, which is shown in Fig. 2(a). The reason is that

only a small number of users are active due to the sporadic

traffic of users, i.e., Ka ≪ Ktotal. For the same reason, the

matrix X is also row-sparse. Moreover, due to the lack of

scattering in mmWave bands, the signal propagates from the

transmitter to the receiver through a small number of path

clusters. This leads to the sparsity of mmWave massive MIMO

channels in the beam domain as well, i.e., the channel vector

hk is sparse. Therefore, for the matrix X, the number of non-

zero entries of its columns is less than that of X, which is

shown in Fig. 2(b). Note that the total number of users Ktotal

plays no role in the matrix X. This means that if the matrix

X is recovered, only the codeword index is known to the BS,

instead of the user’s ID, which leads to the so-called unsourced

property.

Let L and Ka denote the set of the recovered messages at

the BS and the set of the active users, respectively. Each active

user k ∈ Ka expects to transmit B bits of information, i.e.,

uk = {0, 1}B. The performance in URA is evaluated by the

probability of missed detection and false alarm, denoted by

pmd and pfa respectively, which can be given by:

pmd =
1

Ka

∑

k∈Ka

Pr(uk /∈ L), (10)

pfa =
|L\{uk|k ∈ Ka}|c

|L|c
, (11)

and the error probability of the system is defined as

perr = pmd + pfa. (12)

III. PROPOSED URA SCHEME

In this section, we first review the studies of the CCS

scheme in [20] and then propose a URA scheme. In the CCS

scheme, each active user partitions the message into several

sub-blocks and adds parity bits. The CS techniques detect the

sub-blocks transmitted by active users in all sub-slots. A tree-

based algorithm then stitched these sub-blocks to recover the

original messages.

A. Encoding Process

The transmission strategy includes two encoders: tree en-

coder and CS encoder. The tree encoder uses a systematic

linear block code based on random parity checks to add parity

bits to every sub-block. The CS encoder maps each sub-block

into a codeword in the common codebook.
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1) Tree Encoder: Divide B bits message into S sub-blocks

of size b1, b2, . . . , bS , where
∑S

i=1 bi = B. Let b1 = J and

bs < J , s = 2, 3, . . . , S. Each sub-block s is resized to

length J by appending ls = J − bs parity bits, which is

obtained by linear combinations of the information bits of

the previous sub-blocks. Mathematically, define m as a coded

message, then we have m = [m(1),m(2), . . . ,m(S)] =
[b(1), l(1),b(2), l(2), . . . ,b(S), l(S)] ∈ {0, 1}1×JS. Herein,

l(s) is obtained by

l(s) =
s−1∑

i=1

b(i)Gi,s−1, (13)

where Gi,s−1 ∈ {0, 1}bi×ls is a binary matrix. Parity bits are

computed using modulo-2 arithmetic and, as such, they remain

binary. Every sub-block has the same size bs + ls = J , and

the code rate Rtree is fixed as Rtree =
B
JS

.

2) CS Encoder: For each active user k, m(k) = [m(k)(1),
m(k)(2) . . . ,m(k)(S)] is the coded message output by the

tree encoder. m(k)(1),m(k)(2) . . . ,m(k)(S) are mapped in

to ik(1), ik(2), . . . , ik(S), which denote the indices of the

codewords in the common codebook A ∈ CLp×N , where

N = 2J . Then the active user k transmits the consecutive

codewords of length Lp, i.e., aik(1), aik(2), . . . , aik(S).

B. Decoding Process

The input to the decoder is the sum of the signals transmitted

by active users plus noise after receive beamforming. The

decoding process also consists of a CS decoder and tree

decoder. The conventional CS decoder exploits CS techniques

to recover the sub-blocks transmitted from all active users.

The tree decoder forms code trees to piece these sub-blocks

together to obtain the original messages.

1) CS Decoder: For each sub-slot s, the received signal can

be expressed as

Ys = A∆Hs + Zs = AXs + Zs, (14)

Xs is a row sparse matrix and can be recovered by CS

techniques such as Approximate Message Passing (AMP) [29].

For rich-scattering environments, an accurate and widely

used statistical model for the actual channel coefficients is the

Gaussian model. However, in mmWave communications, the

entries Hs cannot be approximated by a Gaussian distribution

due to the lack of scatterers. Thus, we design a special

activity detector for our considered scenario. Specifically, we

approximate the unknown prior distribution with Gaussian

mixture (GM) [13] and EM-GM-AMP [30] models for activity

detection and channel estimation. The coefficients in the i-th
column of Xs = [xs,1,xs,2, . . . ,xs,NRF ] are approximated to

be i.i.d with marginal pdf

pX(x; ρ,ω,µ,ν) = (1−ρ)δ(x)+ρ

I∑

i=1

ωiN (x;µi, νi), (15)

where δ(·) is the Dirac delta, ρ is the sparsity rate, and for the

k-th GM component, wk , µk, νk are the weight, mean, and

variance, respectively. The sparsity of the vector is captured

by the sparsity rate ρ. The weights, means, and variances can

be iteratively learned by the Expectation-Maximization (EM)

algorithm.

For each sub-slot s, the CS algorithm outputs the estimation

of Xs, i.e., X̂s. Via maximum-ratio-combining (MRC), the

activity detector ãk(s) is defined as

ãk(s) =





1,
NRF∑
i=1

ηi

∣∣∣x̂(s)
k,i

∣∣∣ ≥ ǫ,

0,
NRF∑
i=1

ηi

∣∣∣x̂(s)
k,i

∣∣∣ < ǫ,

(16)

where ǫ is a threshold, and ηi is expressed as

ηi =

∣∣∣x̂(s)
k,i

∣∣∣
√

NRF∑
j=1

∣∣∣x̂(s)
k,j

∣∣∣
2
. (17)

Through the activity detector, the indices of the transmitted

codewords in the common codebook A are obtained and

collected in the set Ks, which is written as Ks = {k | ãk(s) =
1, k = 1, 2, . . . , N}. As the relationship between a sub-block

and the corresponding codeword is a one-to-one mapping, if a

codeword is detected, then the corresponding sub-block can be

recovered automatically. The CS Decoder finally outputs the

set of the sub-blocks Ls = {mk(s) | k ∈ Ks} and the cor-

responding estimated channel vectors Hs = {ĥ(s)
k | k ∈ Ks}.

Notice that the index k cannot represent the identity of the

active user. The information that is known at the BS is that a

sub-block mk(s) is transmitted, it comes from a certain user

and the estimated channel gain of that user is ĥ
(s)
k . Besides, let

|Ls|c = Ks, Ks means the number of the sub-blocks collected

in sub-slot s. Ks is usually less than Ka, i.e., Ks ≤ Ka, due

to the following two reasons:

i) Since all users use a common codebook, the messages

from different users may share some sub-blocks, which

is defined as collision.

ii) Due to the poor channel condition and the mistake of the

CS decoder, some sub-blocks may be lost.

2) Tree Decoder: The traditional tree decoder in [20] aims

to recover the original messages transmitted from all active

users by piecing together valid sequences of the sub-blocks

drawn from L1,L2, . . . ,LS . As an initial step, the decoder

fixes a sub-block in L1 as the root of a tree and gets the

parity bits of the next sub-block by (13). All sub-blocks in L2

matching the parity bits are attached to the root. This process

then moves forward. For every candidate path at stage s, parity

bits are computed, and the matching sub-blocks in Ls are

attached to this path, forming new branches. This continues

until the last sub-slot is reached. At this point, every surviving

path is output as a valid tree message.

However, the traditional tree decoder has the following two

problems:

i) The loss of a sub-block from a particular user by the CS

decoder finally leads to missed detection of the original

message from that user.

ii) The parity bits to be attended in every sub-block are fixed,

which restricts the maximum active users that the system
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Notation Parameter Description

mi(s) The i-th sub-block detected in the s-th sub-slot

ci[l]
The index of the sub-block at stage i

in the l-th path

f
(s)
k The beam pattern of the sub-block mk(s)

Ts[l]
A set that contains the indexes of the detected

sub-blocks that meet the parity constraints

at stage s for the l-th path

Ms[l]
A set that contains the detected

sub-blocks that meet the parity constraints

at stage s for the l-th path

Mhd
s [l]

A set that contains the detected

sub-blocks that meet the parity and

beam pattern matching constraints

at stage s for the l-th path

TABLE I. This list contains the key parameters encountered in
Section IV.

can serve.

To tackle the above problems, we propose two beam-space

tree decoders, which are based on hard decision and soft

decision, respectively. The beam-space tree decoder with hard

decision has low complexity, which is suitable to the scenario

of massive connectivity. The beam-space tree decoder with

soft decision considers the problem of packet loss, which can

be applied to the scenario with poor channel condition.

IV. BEAM-SPACE TREE DECODER WITH HARD DECISION

The traditional tree decoder exploits the discriminating

power of parity bits to stitch the sub-blocks together to form

a valid message instead of the erroneous one. At any stage of

a path during the decoding process, the sub-blocks meeting

the parity constraints are attached to the path. Besides the

valid sub-block, other attached sub-blocks are the ones that

cannot be distinguished by the parity bits. These invalid sub-

blocks may finally lead to an erroneous message output by

the tree decoder. Notice that in all sub-slots, the sub-blocks

sent by different users are received by different beams at

the BS according to the location of the users and scatterers.

Therefore, the discriminating power of beams can be exploited

to distinguish the invalid sub-blocks that meet the parity

constraints. By leveraging the beam dimension, the decoding

process can be formulated as a problem of path search in the

three-dimensional space, which is shown in Fig. 3.

To better describe the decoding process of the beam-space

tree decoder with hard decision, Table I is given to sum-

marize the important parameters encountered in this Section.

Specifically, define the beam pattern of a sub-block as a

set that contains the indices of the beams that receive the

sub-block. Then different sub-blocks can be distinguished

by their beam patterns. The beam pattern f
(s)
k is written as

f
(s)
k = [f

(s)
k,1 , f

(s)
k,2 , . . . , f

(s)
k,NRF

] ∈ {0, 1}1×NRF. To get accurate

beam patterns, assume the gains of the active beams obey a

prior known Gaussian distribution, i.e., N (µ1, δ
2
1), where an

”active” beam means that at least the signal from one user is

received by the beam. And the gains of the inactive beams

Time

Beam

Code

Fig. 3. Time-beam-code sparse pattern.

obey another known Gaussian distribution, i.e., N (µ2, δ
2
2),

where µ1 > µ2 and δ1 > δ2. For the gains of the inactive

beams, as no signal is received or the signal experiences deep

fading, µ2 is close to zero. For the gains of the active beams, δ1
is large as the signals experience random fading. Using these

two prior distributions, the gains of the beams can be grouped

into two classes. And for each class, the mean and variance

of the samples are calculated and the prior distributions can

be updated, i.e., µ1 → µ̂1, µ2 → µ̂2, δ1 → δ̂1 and δ2 → δ̂2.

Then according to these updated distributions, we can give

the decision rules of the beam patterns. Specifically, f
(s)
k,m is

obtained by ĥ
(s)
k,m, which is expressed as

f
(s)
k,m =






1,
P1(

∣

∣

∣
ĥ
(s)
k,m

∣

∣

∣
)

P2(
∣

∣

∣
ĥ
(s)
k,m

∣

∣

∣
)
≥ 1,

0,
P1(

∣

∣

∣
ĥ
(s)
k,m

∣

∣

∣
)

P2(
∣

∣

∣
ĥ
(s)
k,m

∣

∣

∣
)
< 1.

(18)

where Pi(
∣∣∣ĥ(s)

k,m

∣∣∣) = 1√
2πδ̂i

e
−(|ĥ(s)

k,m|−µ̂i)
2

2δ̂2
i .

For this proposed beam-space tree decoder, take the decod-

ing process of a certain user for example. At the first stage, a

code tree is created and a detected sub-block in the first sub-

slot becomes the root of the tree and forms the first path. The

root sub-block is written as mc1[1](1) and its beam pattern is

f
(1)
c1[1]

. At later stages, the sub-blocks that meet the parity and

the beam pattern matching constraints are kept. By meeting

the parity constraints, Ts[l] is written as

Ts[l] = {i | i ∈ Ks, li(s) =
∑s−1

j=1
bcj [l](j)Gj,s−1}. (19)

And Ms[l] is obtained by

Ms[l] = {mi(s) | i ∈ Ts[l]}. (20)

After beam pattern matching, only the sub-blocks in Mhd
s [l]
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Fig. 4. The pruning process of the proposed beam-space tree decoder with hard decision.

Algorithm 1 : Beam-Space Tree Decoder with Hard Decision

Input: Fi,Li,Ki, i = 1, 2, . . . , S
Output: L

1: for k ∈ K1 do
2: for i = 2 : S do
3: For each path l:
4: Get Mhd

i [l] according to (21).

5: if Mhd
i [l] is empty then

6: Delete the path l.
7: else
8: Attach the sub-blocks in Mhd

i [l] to path l, forming new
branches.

9: end if
10: end for
11: Add the surviving paths rooted by mk(1) to L.
12: end for

are survived. Mhd
s [l] can be written as

Mhd
s [l] = {mi(s) | f (1)c1[l]

f
(s)
i

T
6= 0, i ∈ Ts[l]}, (21)

where Mhd
s [l] ⊆ Ms[l]. Also, f

(1)
i f

(s)
j

T
6= 0 means that

the sub-blocks mi(1) and mj(s) are received by at least

one same beam at the BS, then mi(1) and mj(s) have the

probability to be transmitted by the same user. By beam pattern

matching, the proposed beam-space tree decoder can reduce

the number of surviving sub-blocks in each sub-slot, which

improves the discriminating power of the decoder. A practical

pruning process of this algorithm is shown in Fig. 4. The

sub-block is received by several beams at the BS, which is

shown in the beam pattern. For every candidate path at stage

s, there are 2bs candidate sub-blocks in the common codebook

A that meet the parity constraints according to the parity bits.

A part of them are inactive, while another part of them are

discriminated by the beam pattern matching. As shown in Fig

.4, the lines of the 2-nd and the 2b3-th candidate sub-blocks

change from solid lines to dashed lines, which means that they

are deleted, as there is no overlap between their beam patterns

and the beam pattern of the root sub-block at stage 1.

Finally, the proposed beam-space tree decoder with hard

decision is summarized and given in Algorithm 1. Fs is a set

that contains the beam patterns of the sub-blocks detected in

sub-slot s, where Fs is expressed as Fs = {f (s)k | k ∈ Ks}.

V. BEAM-SPACE TREE DECODER WITH SOFT DECISION

As described above, the CS decoder cannot always detect

all the transmitted sub-blocks because the received signals

may experience deep fading. The loss of a sub-block by the

CS decoder in any sub-slot finally leads to missed detection

of the original message. This is because the traditional tree

decoder and the beam-space tree decoder with hard decision

just stitch the sub-blocks drawn from the output of the CS

decoder. At any stage, according to the parity bits, the set

of candidate sub-blocks can be obtained. At stage s, the tree

decoder keeps the intersection between the candidate set and

Ls. In this proposed algorithm, we keep all the candidate sub-

blocks and calculate the LLR values of them by implementing

the MPA algorithm, which denotes the probability of whether

the sub-blocks are transmitted. Then, we define a path metric

to calculate the reliability of the consecutive sub-blocks and

keep some reliable paths at every stage. Even if a sub-block

in a sub-slot is missed, it is possible for the path to be

reliable because the path metric measures the reliability of

the entire path. Therefore, the purpose of packet loss recovery

is achieved.

Specifically, take a user’s decoding process for example. At

stage s for the l-th path, the number of the candidate sub-

blocks is 2bs , and these sub-blocks are collected in the set

M′
s[l]. M′

s[l] is expressed as

M′
s[l] = {mi(s) | i ∈ T ′

s [l]}, (22)

where

T ′
s [l] = {i | li(s) =

∑s−1

j=1
bcj[l](j)Gj,s−1}. (23)

The difference between M′
s[l] and Ms[l] in (20) is that the

candidate sub-blocks in M′
s[l] are drawn according to the

parity bits only, thus Ms[l] ⊆ M′
s[l]. To reduce interference,

only the received signals of those candidate sub-blocks are

kept, which is denoted by Ỹs[l] ∈ CNRF×Lp . Ỹs[l] is written

as

Ỹs[l] = Ys −
∑

k∈{1,2,...,N}\T ′

s [l]

ĥ
(s)
k aTk , (24)

where k ∈ {1, 2, . . . , N}\T ′
s [l] means that k is in the set

{1, 2, . . . , N} instead of T ′
s [l]. Then a factor graph is formed,

taking the corresponding codewords as variable nodes and
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beam resources as resource nodes. Let K and T denote the

number of variable nodes and resource nodes. To exploit the

beam division property, the active beams in the beam pattern

of the root sub-block form the resource nodes. Then the

remaining received signal is defined as Ỹr
s [l] ∈ C

∥

∥

∥
f
(1)

c1[1]

∥

∥

∥

1
×Lp

.

A certain row of Ỹr
s [l] comes from the j-th row of Ỹs[l],

where j ∈ {i | f
(1)
c1[1],i

= 1}. For the sake of simplicity,

define yt as the received signal at the t-th resource, ĥk,t as

the estimated channel gain between the user transmitting the

k-th codeword and the BS at the t-th resource, ak as the k-

th possible codeword and xk ∈ {0, 1} as a random variable

that indicates whether the codeword ak is transmitted. Then

Ỹr
s [l] is written as Ỹr

s [l] = [y1,y2, . . . ,yT ], where yt can be

expressed as

yt =

K∑

k=1

ĥk,txkak + zt = ĥk,txkak + ξk,t, (25)

where

ξk,t = yt − ĥk,txkak =
∑

k′ 6=k

ĥk′,txk′ak′ + zt, (26)

and ξk,t = [ξk,t,1, ξk,t,2, . . . , ξk,t,Lp
]. To reduce the computa-

tional complexity, we resort to Gaussian Approximation (GA)

as in [31], and approximate ξk,t,j as a complex Gaussian-

distributed random variable with mean µξk,t,j
and variance

δ2ξk,t,j
, i..e., ξk,t,j ∼ CN (µξk,t,j

, δ2ξk,t,j
). µξk,t,j

and δ2ξk,t,j
can

be expressed as

µξk,t,j
=
∑

k′ 6=k

ĥk′,tak′,jPk′→t,

δ2ξk,t,j
=
∑

k′ 6=k

|ĥk′,tak′,j|
2
Pk′→t(1 − Pk′→t) + δ2zt,j ,

(27)

respectively, where

Pk′→t =
exp(Lk′→t)

1 + exp(Lk′→t)
. (28)

Lk→t is the log likelihood ratio (LLR) delivered from the k-th

variable node to the t-th resource node. Also, Lt→k denotes

the LLR delivered from the t-th resource node to the k-th

variable node, which is written as

Lt→k = ln
p(yt|xk = 1)

p(yt|xk = 0)
, (29)

where

p(yt|xk = 1)

=

Lp∏

j=1

1√
2πδ2ξk,t,j

exp

(
−|yt,j − ĥk,tak,j − µξk,t,j

|2

2δ2ξk,t,j

)
,

(30)

p(yt|xk = 0) =

Lp∏

j=1

1√
2πδ2ξk,t,j

exp

(
−|yt,j − µξk,t,j

|2

2δ2ξk,t,j

)
.

(31)

Besides, Lk→t is given as

Lk→t =
∑

t′ 6=t

Lt′→k. (32)

Finally, Lk can be expressed as

Lk =

T∑

t=1

Lt→k. (33)

Denote l(n) as the new paths that are split from the l-th path.

By implementing MPA, from path l at stage s, we can obtain

the LLRs of the candidate sub-blocks in M′
s[l], which are

written as Ls[l
(n)], n = 1, 2, . . . , 2bs . Learning from the way

of list decoding [32], we define a path metric to calculate

the reliability of the new branches from path l at stage s.

Specifically, the PM of the new branch l(n) is written as

PMs[l
(n)] =

s−1∑

i=1

ln(1 + e−Li[l]) + ln(1 + e−Ls[l
(n)])

= PMs−1[l] + ln(1 + e−Ls[l
(n)]),

(34)

where Li[l] denotes the LLR of the sub-block at stage i in

the path l. The decoder calculates the PM of all the branches

from every candidate path and keep some reliable paths at

every stage. And at the last stage, the decoder outputs the

most reliable path as the recovered message.

However, this scheme is not suitable in the case that

collision occurs. As mentioned above, active users select code-

words from a common codebook A. Even if the dimension of

A is large, collisions may still occur. If the traditional tree

decoder fixes a sub-block transmitted by two active users at

the first stage, then the decoder finally outputs two valid tree

messages. According to [25], we give E{Ck,s} as the average

number of collisions of k users on consistent s sub-blocks

started from the first one, which is written as

E{Ck,s} =

(
Ka

k

)

(N
s∏

i=2

2bs)
k−1

. (35)

The collision of more than two users is ignored because the

number is usually much smaller than 1. As s grows, the

collision can be ignored when k = 2. In other words, it is

impossible for the valid messages of the collision users to

be the new branches of the same candidate path. However,

when the depth of a code tree grows, the LLR of a sub-block

has less impact on the PM of the entire path. Therefore, the

remaining paths at stage s may all come from the new branches

of the most reliable path at stage s − 1, leading to missed

detection. Actually, there is no need to keep all new branches

from a candidate path because the valid messages of collision

users come from different candidate paths. Denote Lsplit as

the number of splitting paths, which means that only Lsplit

new branches from a candidate path are kept according to the

PM. Then for the current stage, keep Lsave most reliable paths,

where Lsave > Lsplit. This pruning process is shown in Fig. 5.

The number of candidate sub-blocks at stage s is 2bs , which

is equivalent to the process in Fig. 4. At stage s, for the new

branches of a path, a factor graph is created to implement

the MPA algorithm and give the candidate sub-blocks LLRs.

Then the most reliable Lsplit paths are kept, and others are

deleted, which is shown in Fig. 5 that the lines of those deleted

sub-blocks change from solid to dashed. Finally at stage s,
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Fig. 5. The pruning process of the proposed beam-space tree decoder with soft decision.

Algorithm 2 : Beam-Space Tree Decoder with Soft Decision

Input: Fi,Li,Ki, i = 1, 2, . . . , S
Output: L

1: for k ∈ K1 do
2: for i = 2 : S do
3: if i ≤ S′ then
4: For each path l:
5: Get M′

i[l] according to (22).
6: Form a factor graph and implement MPA algorithm to

get LLR values of the sub-blocks in M′

i[l].
7: Calculate PMi[l

(n)] by (34), keep the Lsplit most reli-
able paths and delete others.

8: For all the new paths:
9: Keep the Lsave most reliable paths and delete others.

10: else
11: For each path l:
12: Get Mhd

i [l] according to (21).

13: if Mhd
i [l] is empty then

14: Delete the path l.
15: else
16: Attach the sub-blocks in Mhd

i [l] to path l, forming
new branches.

17: end if
18: end if
19: end for
20: For every pair 〈um,un〉 in the surviving paths:
21: Get Ps(um,un) according to (36).
22: if Ps(um,un) > τ then
23: Keep the more reliable one according to (34) and delete the

other.
24: end if
25: Add the remaining paths to L.
26: end for

for the 2bs−1Lsplit paths, the most reliable Lsave paths are

kept and others are deleted. Lsplit is chosen according to the

trade-off between the computational complexity and decoding

performance of the decoder.

At the last stage, the number of messages output by the

decoder cannot be determined because whether a collision

occurs is unknown to the decoder. Notice that the traditional

tree decoder outputs all the paths meeting the parity constraints

as valid messages. When a collision occurs, the traditional

tree decoder outputs several paths as the recovered messages.

Besides, more parity bits are pushed towards later stages to

reduce the probability of error according to [20]. Thus, we

exploit the discriminating power of the parity bits at later

stages to output the results of the beam-space tree decoder with

soft decision. To summarize, list decoding is implemented at

the former S′ stages to keep the missed sub-blocks, and the

sub-blocks that are full of parity bits are exploited to prune

the erroneous paths at the latter S − S′ stages.

However, due to the loss packet recovery, the missed

detection rate decreases while the false alarm rate increases.

The reason is that some undetected sub-blocks may be kept

in the decoding process. Some of them are not transmitted

actually, which may lead to false alarm. As the valid messages

from collision users are not similar with each other, the invalid

messages can be discriminated. Specifically, define a similarity

metric Ps(ui,uj), which is denoted by

Ps(ui,uj) =

S∑
s=1

I(bi(s) = bj(s))

S
, (36)

where I(·) is the indicator function, ui and uj are two

messages output by a code tree. Calculate every pair of the

outputs from a code tree, if Ps(ui, uj) > τ , then keep the

more reliable one according to the PM, otherwise keep both,

where τ is a threshold. By leveraging the similarity metric,

the invalid messages meeting the parity constraints are deleted.

The beam-space tree decoder with soft decision is summarized

and given in Algorithm 2.

VI. PERFORMANCE ANALYSIS

The performance of our proposed URA system is connected

with the reliability of CS techniques in each sub-slot and the

efficiency of message stitching across different sub-slots. In the

remainder of this section, we ignore the collision that different

active users share a sub-block in the first sub-slot.
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Take the decoding process of user k for example. Let pcs
be the probability that at least one sub-block of user k is not

output by the CS decoder, ptree be the probability of error,

pmd
tree be the probability of missed detection, and pfatree be the

probability of false alarm. ptree is written as

ptree = pmd
tree + pfatree

= pcsp
md
tree|cs + pcsp

md
tree|cs + pfatree,

(37)

where pcs = 1 − pcs, which denotes the probability that the

CS decoder is error-free. pmd
tree|cs denotes the probability that

the message of user k is not output by the tree decoder in the

case that the CS decoder is error-free.

A. Tree Code Analysis

In this subsection, we analyze the error probability of all the

tree decoders. Denote ptree, p̃tree, p̂tree as the error probability

of the traditional tree decoder, the beam-space tree decoder

with hard decision and the beam-space tree decoder with soft

decision.

For the traditional tree decoder and the beam-space tree

decoder with hard decision, it is obvious that pmd
tree|cs =

1, p̃md
tree|cs = 1 because these two decoders cannot deal with the

problem of packet loss. In contrast, ptree|cs = 0, p̃tree|cs = 0
because there is no missed detection when the CS decoder is

error-free. Thus, we use pfatree, p̃
fa
tree to analyze the performance

of the two decoders, respectively.

Let L(j), L̃(j) be the number of erroneous paths of the

traditional tree decoder and the beam-space tree decoder with

hard decision at stage j, respectively. Define pmatch as the

probability of the event that the intersection between the beam

patterns of two sub-blocks are not empty. Assume the signal

transmitted from an active user is received by Nb beams

at the BS. According to (21), the beam pattern matching is

implemented by f
(1)
i f

(s)
j

T
6= 0. Then pmatch is given as

pmatch =

Nb∑
i=1

(
Nb

i

)(
NRF−Nb

Nb−i

)

(
NRF

Nb

) = 1−
(
NRF−Nb

Nb

)
(
NRF

Nb

) . (38)

pmatch ≪ 1 because of the lack of scatterers in the mmWave

communication system, i.e., Nb ≪ NRF.

For the beam-space tree decoder with hard decision, we give

the expected values of L̃(j) in Theorem 1.

Theorem 1: The expected values of L̃(j), which is denoted

by E[L̃(j)], can be expressed as

E[L̃(j)] =

j∑

q=2

pmatch
j−q+1Kj−q(K − 1)

j∏

s=q

2−ls , (39)

where K = Ka, j = 2, . . . , S.

Proof: According to [20], for j ≥ 3, E[L(j)] is written as

E[L(j)] = 2−ljE[L(j−1)] + 2−lj (K − 1). (40)

For j = 2, E[L(2)] is given as

E[L(2)] = (K − 1)2−l2 . (41)

By implementing beam pattern matching, the expected erro-

neous paths E[L̃(j)] at every stage are reduced. For j = 2,

E[L̃(2)] can be expressed as

E[L̃(2)] = pmatch(K − 1)2−l2 . (42)

For j ≥ 3, E[L(j)] is written as

E[L̃(j)] = 2−ljpmatchE[L̃
(j−1)] + 2−ljpmatch(K − 1). (43)

Using (42) as initial condition, E[L̃(j)] is rewritten as (39).

Based on Theorem 1, we give the upper bound of the false

alarm rate of the beam-space tree decoder with hard decision

in Corollary 1.

Corollary 1: p̃fatree is bounded by

p̃fatree ≤ E[L̃(S)]. (44)

Proof: p̃fatree is the probability of false alarm, which means

that the number of erroneous paths at the last stage is at least

one. Therefore, p̃fatree is written as

p̃fatree = Pr(L̃(S) ≥ 1) ≤ E[L̃(S)]. (45)

The inequality (45) is obtained by the application of Markov

inequality.

For the beam-space tree decoder with soft decision,

p̂md
tree|cs < 1 because the decoder considers the problem of

packet loss. p̂md
tree|cs > 0 because the decoder keeps limit reli-

able paths at every stage. As Lsave grows, p̂md
tree|cs decreases.

Besides, notice that the decoder outputs the most reliable path

at the last stage. If the recovered message is invalid, then

missed detection and false alarm occur simultaneously, i.e.,

p̂md
tree = p̂fatree.

B. CS Analysis

A fundamental limitation of compressed sensing is that the

required signal dimension Lp to reliably identify a subset of

Ka transmitted codewords among a set consisting of N code-

words in the common codebook scales as Lp = O(Kalog
N
Ka

).
Lp is almost linearly with Ka. Ka is bounded by Ka =
O(Lp/log

N
Lp

).

In our scenario, although Ka active users transmit code-

words simultaneously, only a small number of codewords is

received by a certain beam at the BS. The average number of

codewords received by a beam is given as

Ka =

(
NRF−1
Nb−1

)
(
NRF

Nb

) Ka =
NbKa

NRF
. (46)

Denote pb = Nb

NRF
, then Ka is bounded by

Ka = O
(

Lp

pblog
N
Lp

)
. (47)

Similarly, Lp is bounded by

Lp = O
(
Kalog

N

Ka

)
= O

(
pbKalog

N

pbKa

)
. (48)
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Considering the limitation of both the CS decoder and the

tree decoder, we give the upper bound of the number of active

users Ka in Lemma 1.

Lemma 1: In our scenario, the number of active users, i.e.,

Ka, is bounded by

Ka ≤ min

(
c1

Lp

pblog
N
Lp

,
2J(1−Rtree)+1

pb

)
, (49)

where c1 is a constant.

Proof: Denote the average number of sub-blocks detected

in a certain beam as Kv, where Kv = pbKa. According to the

limitation of the tree decoder given in [33], Kv is bounded by

Kv ≤ 2J(1−Rtree)+1. Substituting Kv by Ka in the inequality,

the bound of Ka is obtained, i.e., Ka ≤ 2J(1−Rtree)+1

pb
.

C. Asymptotic Analysis

In this subsection, we study the proposed algorithms in

the context of large settings. The asymptotic analysis in [20]

shows that the probability of false alarm goes to zero in

the logarithmic regime with constant code rate Rtree. In

this subsection, we analyze the impact of the beam division

property on system performance in the asymptotic regime

while fixing the number of parity bits.

Lemma 2: Fix NRF = αKa, for some α < 1 and consider

the number of active users Ka → ∞. For the CS decoder, the

required signal dimension Lp is given as

Lp = O
(

1

c2
log(c2N)

)
, (50)

where c2 is a constant.

Proof: According to (48), Lp is rewritten as

Lp = O
(
Kapblog

N

Kapb

)
= O

(
NbKa

NRF
log

N
NbKa

NRF

)

= O
(

1

c2
log(c2N)

)
.

(51)

This completes the proof.

Lemma 2 shows that as the number of RF chains and

active users increases together while keeping a fixed ratio, the

number of active users Ka plays no role in the required signal

dimension Lp. This means that the decoding performance

of the CS decoder is guaranteed by exploiting the beam

division property while keeping the dimension of the common

codebook A.

Theorem 2: Fix NRF = αKa, J = logKa

ε
for some 0 < α <

1, ε ≪ 1, consider the number of active users Ka → ∞ and

the number of paths Lsave → ∞. The decoding performance of

the beam-space tree decoder with hard decision and the beam-

space tree decoder with soft decision, i.e., p̃fatree and p̂fatree, is

close to zero.

Proof: For the beam-space tree decoder with hard deci-

sion, according to (38), pmatchKa = (1− (NRF−Nb
Nb

)

(NRF
Nb

)
) 1

α
NRF →

N2
b

α
. For the sake of similarity, assume 2−ls = c3 ≪ 1 for s =

2,3,. . . ,S. Then E[L̃S ] is approximated as

E[L̃S ] →
S∑

q=2

(
N2

b

α
)

S−q+1

cS−q+1
3 =

S∑

q=2

(
c3N

2
b

α
)

S−q+1

=
c4(1− cS−1

4 )

1− c4
≈ c4,

(52)

where c4 is a constant.

According to Corollary 1, p̃fatree is rewritten as

p̃fatree ≤ E[L̃(S)] ≈ c4 ≪ 1. (53)

For the beam-space tree decoder with soft decision, let the

number of paths Lsave → ∞. At every stage, although 2bs →
∞ sub-blocks are drawn by the checking relationship, most of

the new paths are not reliable. Only pmatchKa +1 → N2
b

α
+1

codewords are needed to be verified. Without the process of

pruning, (
N2

b

α
+1)S−1 possible paths are kept at the last stage.

As Lsave → ∞, the valid path is reliable and kept. At the

last stage, the valid path has a high probability of being the

most reliable path according to the PM and being output by

the decoder as a result.

It can be seen from Theorem 2 that in the regime, the de-

coding performance of the beam-space tree decoder with hard

decision and the beam-space tree decoder with soft decision

is guaranteed by exploiting the beam division property.

D. Computational Complexity Analysis

We denote Ctree, C̃tree, Ĉtree as the computational complex-

ity of the traditional tree decoder, the beam-space tree decoder

with hard decision and the beam-space tree decoder with soft

decision. For the sake of simplicity, let K be the candidate sub-

blocks in every sub-slot and ignore the collision. According

to [20], the expected computational computational complexity

of the traditional tree decoder, i.e., E[Ctree], is given as

E[Ctree] = (S − 1)K +

S−1∑

j=2

E[L(j)]K. (54)

The computational complexity of the beam-space tree de-

coder with hard decision, i.e., E[C̃tree], is written as

E[C̃tree] = (S − 1)K +

S−1∑

j=2

E[L̃(j)]K. (55)

Notice that E[C̃tree] ≪ E[Ctree] because E[L̃(j)] ≪ E[L(j)].
Therefore, the beam-space tree decoder with hard decision has

low computational complexity.

For the beam-space tree decoder with soft decision, the

computational complexity Ĉtree is given as

Ĉtree = Nb2
b2Imax +

S∑

j=3

LsaveNb2
bjImax, (56)

where 2bj and Nb are the number of variable nodes and

resource nodes of the factor graph, Imax is the max number

of iterations of MPA.
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VII. NUMERICAL RESULTS

In this section, we investigate the performance of our

proposed scheme in terms of error probability. We consider

a simulation scenario where the BS employs a ULA antenna

array with Nr = 256, and the RF chains are set to NRF = 16.

The multipath channel consists of Pc = 3 clusters each of

which containing Qp = 10 sub-paths. It is assumed that the

location of users obeys a two-dimensional Poisson distribution.

The transmit power is fixed as P = 20 dBm for all users.

For the tree code scheme, B = 94 bits of information are

split into S = 32 sub-blocks with length J = 10 bits. Data

profile and parity profile are given as [10, 3, . . . , 3, 0, 0, 0] and

[0, 7, . . . , 7, 10, 10, 10], respectively. For the beam-space tree

decoder with soft decision, Lsave = 24, Lsplit = 8. As a

reference, we compare the proposed beam-space tree decoders

with the traditional tree decoder [20] and the CB-CS algorithm

[22]. For the sake of simplicity, in the following figures, TD

means tree decoder, HD means hard decision, and SD means

soft decision.

15 17.5 20 22.5 25 27.5 30
10-4

10-3

10-2

10-1

100

Fig. 6. The error probability of different URA schemes versus Eb/N0

when Ka = 50.

Fig. 6 depicts the error probability of different URA

schemes versus Eb/N0 when Ka = 50. The difference

between the tree decoder (beam domain) and the tree de-

coder (spatial domain) is whether the tree decoding process

is performed after receive beamforming. Comparing these

two algorithms, we can see that the decoding performance

is significantly improved after receive beamforming because

the detection performance of CS techniques is improved by

exploiting the sparsity of beam domain channel and the

beamforming gain. Besides, at the BS the signals are re-

ceived after beamforming, which means that the dimension

of the received signals is determined by the number of RF

chains instead of the number of antennas. Therefore, the high

dimension of antennas can not be exploited by the CB-CS

algorithm in mmWave scenarios. In addition, there is a gap

between the beam-space tree decoder with hard decision and

the traditional tree decoder (beam domain). The reason is that

getting accurate beam patterns of the sub-blocks, which means

that whether the signal is received by every beam at the BS

should be accurately determined, is harder than the activity

detection of these sub-blocks. Therefore, the beam patterns of

the sub-blocks obtained by (18) may not always be accurate,

resulting in a decrease in the decoding performance. Besides, it

is observed that for the considered Eb/N0, the beam-space tree

decoder with soft decision achieves the best performance. Such

advantages come from the fact that this algorithm considers

the problem of packet loss.

50 75 100 125 150
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10-3
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10-1

100

Fig. 7. The error probability of different URA schemes versus Ka

when Eb/N0 = 25 dB.

Fig. 7 plots the decoding performance with different active

users when Eb/N0 = 25 dB. Initially, in the regime with a few

number of active users, the error probability of all algorithms

increases slowly. However, when the number of active users

continues to increase, the error probability of the tree decoder

increases sharply to 1, which means that the tree decoder

cannot discriminate and stitch the valid sub-blocks when the

number of active users is large. Actually, allocating more

parity bits can help the traditional tree decoder accommodate

more active users while the computational complexity of the

CS techniques and the tree decoders grows. It is observed

that the error probability of the two beam-space tree decoders

increases slowly when the number of active users is large. Such

an advantage of the beam-space tree decoders mainly comes

from enhancing the discriminating power of the decoder by

exploiting beam resources.

Then we study the impact of the number of parity bits on the

system performance. For J = 11, data profile and parity profile

are given as [11, 3, . . . , 3, 0, 0, 0] and [0, 8, . . . , 8, 11, 11, 11],
respectively. In Fig. 8, we compare the performance of the

tree decoder (beam domain), the beam-space tree decoder

with hard decision, and the beam-space tree decoder with

soft decision. It is observed that allocating more parity bits

can improve the decoding performance, which is seen in

Fig. 8(a). Notice that as the number of active users grows,

the error probability of the tree decoder and the beam-space

tree decoder with hard decision increase sharply to 1. This

is because the number of parity bits added to sub-blocks is

fixed, the max number of active users the system can serve is

limited. Once beyond the limit, the decoders cannot recover
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(a) The error probability.
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(b) The missed detection rate.
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(c) The false alarm rate.

Fig. 8. The performance of different URA schemes with different
sub-block lengths versus Ka when Eb/N0 = 25 dB.

any original message of the active users, thus pmd = 1,

pfa = 0. As the beam-space tree decoder with hard decision

exploits the beam division property, more active users can

be served by the system. For the beam-space tree decoder

with soft decision, the number of candidate sub-blocks to be

kept is determined by the list numbers, not the parity bits.

Therefore, the decoder is implemented successfully as the

number of active users is sufficiently large. Besides, Fig. 8(b)

shows that the missed detection rate of the tree decoder (beam

domain) and the beam-space tree decoder with hard decision

decreases slowly as the number of parity bits increases. This is

because these two algorithms do not deal with the problem of

packet loss. Besides, as the number of parity bits is increased,

the discriminating power of the tree decoder is improved.

Therefore, the false alarm rate of the tree decoder (beam

domain) decreases, which is shown in Fig. 8(c). Since the

beam-space tree decoders exploit beam resources to improve

the discriminating power, there is no false alarm when J = 11.

50 75 100 125 150 175 200
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10-3
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100

Fig. 9. The error probability of different URA schemes versus Lp.
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Fig. 10. The error probability of different URA schemes versus Ka

when the BS is equipped with different antennas and RF chains and
Eb/N0 = 25 dB.
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Fig. 9 depicts the error probability of different URA

schemes with different spectral efficiency when Ka = 50.

The total spectral efficiency is calculated by KaB
LpS

. As the

number of observations controls the spectral efficiency, the

code length Lp is set as the axis. It can be seen that as

the spectral efficiency increases, Lp decreases, and the error

probability increases. The reason is that as fewer observations

are obtained, the performance of activity detection and channel

estimation decreases.

Next, we evaluate the decoding performance with different

active users when the BS is equipped with different antennas

and RF chains in Fig. 10. It can be observed that as the

number of antennas and RF chains grows, the error probability

decreases, and more active users can be served. The reason is

that the BS can generate more narrow beams for the receive

beamforming simultaneously, which means that the spatial

resolution of the beams is improved, and the beam division

property can be exploited completely.

32 48 64 80 96 112 128
10-4

10-3

10-2

10-1

Fig. 11. The error probability of different URA schemes versus Ka

while keeping a fixed ratio between antennas and users.

Besides, Fig. 11 plots the increasing number of users and

antennas together while keep a fixed ratio, i.e., Ka

Nr
= 1

2 . It can

be observed that as the number of users and antennas increases,

the error probability increases slowly. The reason is that al-

though the number of users increases, more antenna array gain

is obtained, and the beam division property is exploited. For

the conventional tree decoder, as the beam division property

is not exploited, the error probability increases more rapidly.

VIII. CONCLUSION

An URA scheme with beam-space tree decoding under

the framework of bit partition and slotted transmission was

proposed in this paper. Specifically, we designed two beam-

space tree decoders, which are based on hard decision and

soft decision, respectively. Both of them exploit the intrinsic

beam division property to improve the system performance

and help the system serve more active users. Besides, the first

decoder can reduce the solution searching space and has low

complexity, while the second decoder exploits the advantage of

list decoding to recover the miss-detected packets. Simulation

results validated that our proposed URA scheme was superior

with respect to error probability.

The beam division property is an intrinsic property in

mmWave communication systems due to channel propagation.

Therefore, this property exploited by our proposed decoders

can also be exploited by other schemes under the scenarios of

NGMA to help the system serve more users and improve the

system performance.
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