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Abstract—In this paper, we investigate a joint device activity
detection (DAD), channel estimation (CE), and data decoding
(DD) algorithm for multiple-input multiple-output (MIMO) mas-
sive unsourced random access (URA). Different from the state-
of-the-art slotted transmission scheme, the data in the proposed
framework is split into only two parts. A portion of the data is
coded by compressed sensing (CS) and the rest is low-density-
parity-check (LDPC) coded. In addition to being part of the
data, information bits in the CS phase also undertake the task
of interleaving pattern design and channel estimation (CE).
The principle of interleave-division multiple access (IDMA) is
exploited to reduce the interference among devices in the LDPC
phase. Based on the belief propagation (BP) algorithm, a low-
complexity iterative message passing (MP) algorithm is utilized
to decode the data embedded in these two phases separately.
Moreover, combined with successive interference cancellation
(SIC), the proposed joint DAD-CE-DD algorithm is performed
to further improve performance by utilizing the belief of each
other. Additionally, based on the energy detection (ED) and
sliding window protocol (SWP), we develop a collision resolution
protocol to handle the codeword collision, a common issue in
the URA system. In addition to the complexity reduction, the
proposed algorithm exhibits a substantial performance enhance-
ment compared to the state-of-the-art in terms of efficiency and
accuracy.

Index Terms—belief propagation, compressed sensing, LDPC,
MIMO, unsourced random access

I. INTRODUCTION

A. Background and Related Works

Next generation multiple access (NGMA) aims to support
massive connectivity scenarios for many envisioned Internet
of Things (IoT) applications, e.g. manufacturing, transporta-
tion, agriculture, and medicine, to be efficiently and flexibly
connected [1]–[6]. A generic scenario for IoT connectivity
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involves a massive number of machine-type connections [2],
known as the massive machine-type communication (mMTC),
which is one of the main use cases of the fifth-generation (5G)
and beyond [3]. Compared to human-type communications
(HTC), MTC has two distinct features: sporadic traffic and
short packet communication. The sporadic access means that
for any given time, for the sake of long battery life and
energy saving, only a small fraction within a huge number
of devices are active for data transmission [4]. While the
small data payloads result in a fall of spectrum efficiency
and an increase of latency when applied with traditional
multiple access protocols. In this regard, a number of scalable
random access schemes have been investigated in the content
of massive connectivity. Conceptually, there are two lines of
work for that end, namely, individual and common codebook-
based approaches, respectively.

In the spirit of the individual codebook based approach,
each device is equipped with a unique codebook for the
identification conducted by the base station (BS) [4], [7]. Since
the BS is interested in the IDs of devices, this framework can
be referred to as sourced random access (SRA). A typical
transmission process includes two phases in SRA, namely,
training and data transmission, respectively. In the training
phase, the BS conducts the task of device activity detection
(DAD) and channel estimation (CE) based on the pre-allocated
unique pilot sequences transmitted by active devices, while the
data transmission is performed in the following phase. The
task of DAD-CE can be modeled as the compressed sensing
(CS) problem and there have been quantities of algorithmic
solutions for this issue. Among these CS recovery techniques,
the approximate message passing (AMP) algorithm, which
is first proposed in [8] for the single measurement vector
(SMV) based problem, exhibits great performance in terms of
accuracy and complexity. Since the publication of [8], there
have been vast variants based on the AMP algorithm, such as
multiple measurement vector (MMV) AMP [4], generalized
MMV (GMMV) AMP [9], orthogonal AMP (OAMP) [10],
generalized AMP (GAMP) [11] and many other works. An-
other line of work is based on the belief propagation (BP)
algorithm [12], which models the problem as a graph and it-
eratively calculates the messages among different nodes [13]–
[16]. Thanks to the consistency of the message updating rules,
the messages can always be jointly updated within iterations to
obtain improved performance. However, the premise of these
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algorithms is that each device should have a unique pilot
sequence. As we jump out of these algorithmic solutions and
go back to the essence of the individual codebook, we find
this is inapplicable to assign each device a unique pilot in
the mMTC scenario with a huge amount of potential devices.
Meanwhile, it is a waste of resources especially with sporadic
traffic. To mitigate this issue, the study on the framework of
common codebooks is rapidly developed.

As opposed to the case of individual codebooks, active
devices choose codewords from a common codebook for their
messages. In this regard, the task of BS is only to produce
the transmitted messages regardless of the corresponding IDs,
thus leading to the so-called unsourced random access (URA).
The main difference between URA with other grant-based and
grant-free random access protocols is that the BS does not
perform device identification but only decodes the list of active
device messages up to permutations [3]. Conceptually, there
are two distinct advantages for this novel framework: i) the
BS is capable of accommodating massive devices, since all
devices share the common codebook instead of being assigned
unique preamble sequences as in traditional schemes. ii) No
device identification information is needed to be embedded
in the transmitted sequence. As such, the overhead will be
reduced, contributing to improved efficiency. The study on
URA is first reported in [17], in which Polyanskiy considered
the scenario of a massive number of infrequent and unco-
ordinated devices and discussed a random coding existence
bound in the Gaussian multiple-access channel (GMAC).
Since the publication of [17], there have been many works
devoted to approaching that bound [18]–[21], [23]–[26]. A low
complexity coding scheme is investigated in [18]. Based on the
combination of compute-and-forward and coding for a binary
adder channel, it exhibits an improved performance compared
with the traditional schemes, such as slotted-ALOHA and
treating interference as noise (TIN). However, the size of
the codebook increases exponentially with the blocklength,
resulting in difficulty in achieving that underlying bound.
To mitigate this issue, a slotted transmission framework is
proposed in [19], referred to as the coded compressed sensing
(CCS) scheme. This cascaded system includes inner and outer
codes. The outer tree encoder first splits the data into several
slots with parity bits added. The CS coding is then employed
within each slot to pick codewords from the codebook. The
blocklength, as well as the size of the codebook in each
slot, are greatly reduced, thus leading to a relaxation of the
computational burden. On the receiver side, the inner CS-based
decoder is first utilized to recover the slot-wise transmitted
messages within each slot. The outer tree decoder then stitches
the decoded messages across different slots according to the
prearranged parity. This structure is inherited by the later
works in [20], [21], where the authors exploit the concept
of sparse regression code (SPARC) [22] to conduct the inner
encoding and decode it with the AMP algorithm. Some other
coding schemes for URA are also reported in [23]–[26].
The polar coding schemes based on TIN and successive
interference cancellation (SIC) are investigated in [23], [24]. In
[25], [26], the author consider a hierarchical framework, where
the device’s data is split into two parts. A portion of the data is

encoded by a common CS codebook and recovered by the CS
techniques, while the rest is encoded by the low-density parity
check code (LDPC) [27] with the key parameters conveyed
in the former part. Besides the above works considering the
GMAC, there are also works in the fading channel [28]–[30].

Besides the above works considering a single receive an-
tenna at the BS, the study of massive URA in multiple-input
multiple-output (MIMO) systems has also drawn increasing
attention. The BS equipped with multiple antennas provides
extra dimensions for the received signal, thus offering more
opportunity for signal detection and access of a massive
number of devices. A coordinated-wise descend activity de-
tection (AD) algorithm is proposed in [31], [32], which finds
the large-scale fading coefficients (LSFCs) of all the devices
(coordinates) iteratively. The authors adopt a concatenated
coding scheme with the aforementioned tree code as the outer
code, and a non-Bayesian method (i.e., maximum likelihood
(ML) detection) is leveraged as the inner decoder based on the
covariance of the received signal, referred to as the covariance-
based ML (CB-ML) algorithm. However, the performance of
the CB-ML algorithm degrades dramatically when the number
of antennas is less than that of the active devices. There are
also some improvements to this algorithm in terms of complex-
ity or accuracy [33], [34]. The slotted transmission framework
proposed in [33] eliminates the need for concatenated coding.
That is, no parity bit is added within each slot and the slot-wise
messages can be stitched together by clustering the estimated
channels. However, the channels in [33] are assumed to be
identically distributed over all the slots, which is difficult to
hold in practice. Besides, the collision in codewords (more
than one device chooses the same codeword) will lead to
a superimposition of the estimated channels, resulting in a
failure of the stitching process. Currently, the design of an
efficient collision resolution scheme in URA remains missing.
In [34], a more efficient coordinate selection policy is devel-
oped based on the multi-armed bandit approaches, leading to a
faster convergence than the CB-ML algorithm. Nevertheless,
these slotted transmission frameworks, such as CB-ML and
its variants, all map a piece of data within each slot to a
long transmitted codeword based on the CS coding, resulting
in low efficiency. In this regard, the algorithmic design for
the MIMO massive URA with high efficiency and accuracy
remains missing.

B. Challenges

In this paper, we investigate a two-phase transmission
scheme for MIMO massive URA, where the device’s trans-
mitted data is split into two phases with CS and LDPC coded,
respectively. In this framework, no parity bits are needed
to be embedded in the CS phase, and the data is encoded
linearly in the LDPC phase instead of being mapped to a long
codeword. As such, it exhibits higher efficiency and lower
latency than the aforementioned slotted transmission scheme.
The existing schemes considering this framework all focus
on the single-antenna case. For instance, Polar coding [24]
and LDPC coding schemes [25], [26] consider the GMAC
with perfect channel state information (CSI) at the BS. In
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this regard, the above channel coding schemes can obtain
satisfying performance. However, such an assumption cannot
be established under the MIMO case. Besides, because of
the massive connectivity and sporadic traffic of devices, the
positions of active devices in the estimated equations are not
determined. Consequently, conventional linear receivers, such
as zero-forcing (ZF), are not applicable. Moreover, compared
with the fading channel models [28]–[30] where the channel of
each device is a scalar, in MIMO, the channel is a vector, and
elements among antennas share the same activity. Therefore,
elements in the channel vector should be estimated jointly
rather than separately, of which the distribution is formulated
as a multi-dimensional Bernoulli-Gaussian distribution in this
paper. In this regard, the conventional estimators, such as
the minimum mean square error (MMSE) estimation or the
maximum a posteriori (MAP) estimation, are hard to carry out
straightforwardly. Specifically, it is computationally intractable
to obtain a precise posterior distribution, since it involves
marginalizing a joint distribution of the activity and channel
with high dimensions.

Another challenge for the proposed scheme in the MIMO
case is activity detection. We note that whether in the GMAC
[24]–[26] or fading channel [28]–[30] in the single-antenna
case, the device activity can be directly detected. For instance,
since the device’s channel is a scalar in the fading channel,
it can be simply determined to be active when the estimated
channel is non-zero or larger than a given threshold. However,
it will be much involved in MIMO because there are multiple
observations of the activity in the estimated channel vector.
The existing works, such as [9], make a hard decision based
on the energy of the channel and [33] considers the LLR at
each antenna separately and sums them to obtain the final
decision. However, the threshold for the decision is hard to
obtain in practice and the distribution of the channel is not
utilized in [9]. Although [33] considers the channel distribution
and gives a closed-form expression for activity detection, the
nature that channels at each antenna share the same activity
is not considered.

Besides, the LDPC code is efficient but sensitive to the CE
results. Therefore, the overall performance is limited by the
accuracy of CE. Moreover, with the presence of collision in
URA, if more than one device chooses the same codeword
in the CS phase, the corresponding channels will be superim-
posed and thus the subsequent LDPC decoding process will
fail.

C. Contributions
To cope with the arising issues, based on the message pass-

ing (MP) algorithm, we propose the Joint DAD-CE algorithm
to conduct the task of joint activity detection and channel
estimate in the CS phase, and MIMO-LDPC-SIC Decoding
algorithm for data decoding embedded in the LDPC phase.
Moreover, to further improve the performance, we propose the
Joint DAD-CE-DD algorithm to jointly update the messages
in these two phases by utilizing the belief of each other.
Finally, we propose a collision resolution protocol to address
the collision in URA. The key and distinguishing features of
the proposed algorithms are listed below.

• Based on the principle of the BP algorithm, we develop a
low-complexity iterative MP algorithm to decode the two
parts of data. For the CS phase, we investigate the Joint
DAD-CE algorithm to recover part of the data embedded
in the device activities, the interleaving patterns, and
channel coefficients, which are the key parameters for
the remaining data. Specifically, we derive a close-form
expression for DAD by utilizing the joint distribution of
the channel among antennas. Combined with SIC and in
the spirit of interleave-division multiple access (IDMA)
[35], we elaborate on the MIMO-LDPC-SIC Decoding
algorithm to decode the remaining data embedded in the
LDPC phase. In addition to complexity reduction, the
proposed algorithm exhibits a substantial performance en-
hancement in terms of accuracy and efficiency compared
to the state-of-the-art CB-ML algorithm.

• Thanks to the consistency of the MP algorithm, we
propose the Joint DAD-CE-DD algorithm to further im-
prove the performance. The proposed algorithm suggests
a paradigm connecting the two parts. That is, messages
in the decoding process of CS and LDPC parts can
be jointly updated by utilizing the belief of each other,
thus leading to improved performance. We employ the
correctly decoded codewords as soft pilots to conduct
CE jointly with the codewords in the CS phase, which
contributes to improved accuracy of the estimated chan-
nel. Combined with the SIC method, the accuracy of the
residual signal can be improved, leading to the enhanced
decoding performance.

• Under the current framework based on the common
codebook, a collision happens if there are more than one
device having the same preamble, which leads to a su-
perimposition of the estimated channels. Accordingly, the
superimposed channel will cause a failure in the LDPC
decoding process. To this end, we propose a collision
resolution protocol based on the energy detection (ED)
and sliding window protocol (SWP). Succinctly, the ED
is performed on the estimated channel of each device
to find out the superimposition. Then, the BS broadcasts
the indexes of the superimposed channels to all devices.
Afterwards, the devices in collision slide the window in
the data sequence and the CS coding is again performed
for retransmission.

The rest of the paper is organized as follows. In Section II,
we introduce the system model for MIMO massive URA . In
Section III, we implement the two-phase encoding scheme and
the collision resolution protocol is developed in Section IV.
Then, we elaborate on the low-complexity iterative decoding
algorithm based on BP and explain the joint update algorithm
in Section V. After verifying the numerical results and ana-
lyzing the complexity in VI, we conclude the paper in Section
VII.

D. Notations

Unless otherwise noted, lower- and upper-case bold fonts, x
and X , are used to denote vectors and matrices, respectively;
the (m,n)-th entry of X is denoted as Xm,n; Xi,: denotes
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the i-th row of X; {·}∗ denotes the conjugate of a number;
{·}T and {·}H denote transpose and conjugate transpose of a
matrix, respectively; E{·} and Var {·} denote the statistical
expectation and variance, respectively; X ∼ CN (x;µ,Σ)
means that the random vector x follows a complex Gaussian
distribution with mean µ and auto-covariance matrix Σ; {·}!
denotes the factorial; [1 : M ] denotes the set of integers
between 1 and M ; L\l denotes the entries in set {1, 2, · · · , L}
except l; Re(·) and Im(·) denote the real and imaginary parts
of a complex number, respectively; d·e denotes ceiling; i is
the imaginary unit (i.e., i2 = −1).

II. SYSTEM MODEL

Consider the uplink of a single-cell cellular network con-
sisting of Ktot single-antenna devices, which are being served
by a base station (BS) equipped with M antennas. This
paper assumes sporadic device activity, i.e, a small number,
Ka � Ktot of devices are active within a coherence time.
Each device has B bits of information to be coded and
transmitted into a block-fading channel with L channel uses.
Let vk ∈ {0, 1}B denote device k’s binary message and
f(·) : {0, 1}B → CL is some one-to-one encoding function.
Typically, in URA scenario, the implementation of f(·) is to
select the corresponding codeword ak from a shared codebook
A = [a1,a2, · · · ,a2B ] ∈ CL×2B according to vk [20], [31],
[32]. The corresponding received signal can be written as

Y =
∑

k∈Ktot

φkf(vk)h̃T
k +Z, (1)

where φk is the device activity indicator, which is modeled as
a Bernoulli random variable and defined as follows:

φk =

{
1, if device k is active,
0, otherwise ∀k ∈ Ktot. (2)

h̃k ∈ CM×1 is the channel vector of device k and Z ∈
CL×M is the additive white Gaussian noise (AWGN) matrix
distributed as CN (0, σ2IM ). In line with the state-of-the-art
setting [32], we assume for simplicity and fair comparison
that hk are i.i.d., i.e., independent of each other and un-
correlated among antennas. Specifically, the Rayleigh fading
model is considered in this paper, where h̃k =

√
βkgk and

gk ∼ CN (0, IM ) denotes the Rayleigh fading component,
and βk denotes LSFC. We would like to mention that more
realistic channel models in MIMO or massive MIMO have
been discussed and well investigated, such as the spatially
correlated fading channel [9], [36]–[39]. Due to the limited
angular spread, the channel in the virtual angular domain
exhibits a sparsity among antennas. As such, the data of
devices is not directly superimposed but staggered on differ-
ent antennas, and the multi-user interference can be further
reduced, contributing to improved performance. Nevertheless,
for the sake of consistency with the benchmarks [4], [32]
and isolating the fundamental aspects of the problem without
additional model complication, we embark throughout this
paper on the study of i.i.d. Rayleigh fading channel. The study
on the spatially correlated channel is remarkable and left for
future work.

The BS’s task is to produce a list of transmitted messages
L(Y ) without identifying from whom they are sent, thereby

leading to the so-called URA. The performance of a URA
system is evaluated by the probability of missed detection and
false alarm, denoted by pmd and pfa, respectively, which are
given by:

pmd =
1

Ka

∑
k∈Ka

P (vk /∈ L) (3)

pfa =
|L\ {vk : k ∈ Ka}|

|L|
. (4)

In this system, the code rate Rc = B/L and the spectral
efficiency µ = B·Ka

L·M . Let P denote the power (per symbol)
of each device, then the energy-per-bit Eb/N0 is defined by

Eb/N0 =
LP

2B
. (5)

III. ENCODER

As aforementioned, the existing slotted transmission scheme
exhibits low efficiency by the CS coding. To mitigate this
issue, a two-phases coding scheme is proposed in [25], [26],
which considers the T -user Gaussian multiple access (GMAC)
channel and also URA scenario. We extend this work to the
MIMO system and refer to it as the CS-LDPC coding scheme.
Similarly, the hierarchical form of the encoding process is
considered in this paper. The B bits of information are
first divided into two parts, namely, Bp and Bc bits with
Bp + Bc = B. Typically, one would want Bp � Bc. The
former Bp information bits are coded by a CS-based encoder
to pick codeword from the common codebook. Based on the
codebook, the BS is tasked to recover part of the messages,
the number of active devices, channel coefficients as well as
interleaving patterns for the latter part. The remaining Bc

bits are coded with LDPC codes. For clarity, we denote the
former and latter encoding processes as CS and LDPC phases,
respectively. Correspondingly, the total L channel uses are split
into two segments of lengths Lp and Lc, respectively, with
Lp +Lc = L. Since only a small fraction of data is CS coded
and the rest is LDPC coded, the efficiency in our scheme is
higher than those purely CS-coded schemes [19], [20], [32],
[33]. The key features of this encoding process are summarized
in Fig. 1. We elaborate on these two encoding phases below.

A. CS Phase

The URA fashion is considered in this phase. Let A ∈
CLp×2Bp denote the common codebook shared by all the
devices. That is, the columns of A = [a1,a2, · · · ,a2Bp ] form
a set of codewords with power constraint ‖ai‖22 = Lp, from
which each active device chooses in order to encode its Bp

bits of information. With a slight abuse of notation, let vpk
denote the first Bp bits of device k’s binary message, i.e.,
vpk , vk(1 : Bp) ∈ {0, 1}Bp . To apply the encoding scheme,
we convert vpk into the `1-norm binary vector ṽpk ∈ {0, 1}

2Bp

,
in which a single one is placed at the location ik. The value
ik of binary sequence vpk is obtained by regarding it as an
integer expressed in radix-2 (plus one), which we write as
ik = [vpk]

2
∈
[
1 : 2Bp

]
. Then, the coded sequence is obtained

by taking the transpose of the ik-th column of A, which we
denote by aT

ik
. This facilitates the CS architecture, which maps
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Fig. 1: The encoding process in the CS and LDPC phases.

the information to an elementary vector ṽpk, according to which
the corresponding codeword is selected from a fixed codebook.
The corresponding received signal can be written as

Y =
∑

k∈Ktot

φkaik h̃
T
k +Z, (6)

where φk is the device activity indicator, as defined in (2).
The matrix form of (6) is given by

Y = AΓH̃ +Z, (7)

where A ∈ CL×2Bp is the common codebook shared by
all devices. Γ ∈ {0, 1}2

Bp×Ktot denotes the binary selection
matrix. For each active device k ∈ Ka, the corresponding
column Γ:,k is all-zero but a single one in position ik, while for
all Ktot\Ka the corresponding column Γ:,k is all zeros. H̃ =[
h̃1, · · · , h̃Ktot

]T
∈ CKtot×M corresponds to the MIMO

channel coefficient matrix. We note that the number of total
devices Ktot plays no role in URA. In order to get rid of this
variable, with slight abuse of notation we define the modified
activity indicator and selection matrix as φr =

∑
k∈Ka

γr,k
and Φ = diag {φ1, · · · , φ2Bp}, respectively, where γr,k is the
(r, k)-th entry of Γ. Correspondingly, the modified channel is
H = [h1, · · · ,h2Bp ] with hr =

∑
k∈Ka

γr,kh̃k. Hence, (7)
can be written as

Y = AΦH +Z. (8)

Let X = ΦH = [x1, · · · ,x2Bp ]
T . The goal for the BS in the

CS phase is to detect the non-zero positions of the selection
matrix Φ and the corresponding channel vectors by recovering
X based on the noisy observation Y . Since X is row sparse,
i.e., many xn are zero, such reconstruction problem can be
modeled as the CS problem [4]. Once Φ is recovered, the
message indicators of active devices {ik,∀k ∈ Ka} are also
recovered. Moreover, ik acts as the parameter of the LDPC
code, since it determines the interleaving pattern of the data
in the LDPC phase. Considering the fact that the Bp bits of
message carries key parameters for the latter phase, we name
it the preamble. We note that it is different from the preamble

in the traditional grant-free scenario, which is a pure pilot with
no data embedded.

B. LDPC Phase

Likewise, let vck , vk(Bp + 1 : B) ∈ {0, 1}Bc denote the
remaining Bc information bits of device k. vck is first encoded
into an LDPC code bck ∈ {0, 1}

L̃c , which is determined by the
LDPC parity check matrix C with size

(
L̃c −Bc

)
× L̃c. We

note that in the decoding process, if v̂ck is a valid codeword,
then mod (Cv̂ck, 2) = 0. bck is then modulated to sck. We adopt
a sparse spreading scheme introduced in [25]. That is, sck is
zero-padded into a length Lc vector s̃ck

s̃ck = [sck, 0, · · · , 0] . (9)

We then employ the index representation ik to permute the
ordering of s̃ck. This is implemented by a random interleaver
πik with interleaving pattern ik. As mentioned in [26], the
purpose for permuting the codewords is to decorrelate the
random access interference from other devices. This is similar
to the IDMA scheme since the interleaving patterns for most
of the devices are different because of the distinctive indices
ik. Hence, vck is finally encoded to πik (s̃ck). Appending it to
the coded message in the CS phase yields the final codeword
xk:

xk =
[
aT
ik
, πik (s̃ck)

]T
. (10)

The received signal including both the CS and LDPC phases
is given by

Y =
∑

k∈Ka

xkh
T
ik

+Z, (11)

where hik is assumed to follow independent quasi-static flat
fading within the above two phases in this paper. The goal
for the BS is to recover {vk,∀k ∈ Ka} based on the received
signal Y and the channel hik estimated in the CS phase. We
emphasize again that the BS only produces the transmitted
messages without distinguishing the corresponding devices.

This hierarchical encoding process appears to be similar to
the work of [26], where CS and channel coding techniques
are utilized to encode the messages. However, unlike in [26]
considering the GMAC system, our approach is in the MIMO
channel. Hence, in addition to recovering the parameters of
LDPC codes conveyed by the codebook A as in [26], the BS
is also tasked to estimate the channel coefficients. Besides,
as we will see shortly in Section V-C, a belief propagation
decoder draws a connection between the CS and LDPC phases.
That is, messages in the CE as well as DD processes can be
jointly updated by utilizing the belief of each other. Whereas
the two phases in [26] are two independent modules and work
sequentially.

IV. COLLISION RESOLUTION PROTOCOL

It is possible that two or more devices have the same
preamble message, vp, which, although, may occur in a small
probability. In this case, the collided devices will have the
same interleaving pattern in the LDPC phase, which goes
against the principles of the IDMA scheme. Moreover, they
will choose the same codeword as their coded messages in
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ik|εik > η

}
to all the devices. Based on this, active devices

can figure out whether they have been in a collision. Deivce
i to j are in collision in this case.

…Device 1
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…
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−
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…

…

(b) The collided devices slide the window with length Bp
bits forward within the total B bits to get new sequences.
The sliding length is B0, satisfying 0 < B0 < Bp.

Fig. 2: The diagram of the collision resolution protocol.

the CS phase, which results in the received signal in the CS
phase being

Ycolli =
∑

ik∈C
aik

∑
j∈Kik

h̃T
j +Z, (12)

where C and Kik denote the set of collided indexes and
collided devices corresponding to the message index ik,
respectively. In this regard, the BS can only recover the
superimposed channels of these devices, instead of their own,
which will lead to the failure of the LDPC decoding process.
Although collision may occur in a small probability, it can
occur. However, the design of an efficient collision resolution
scheme in URA remains missing.

In this paper, we develop a collision resolution protocol
based on the ED and SWP. We note that in real scenarios,
the near-far effects can be well solved with the existing power
control schemes [40]–[42]. In this regard, a flat fading channel
is considered in this paper. That is, the LSFCs βk for all the
devices are assumed to be identical, as also considered in [31],
[32]. As mentioned above, if a collision happens, the recovered
channels of the collided devices will be a superposition of their
own, that is

ĥik =
∑

j∈Kik

h̃j + z, ik ∈ C, (13)

where z ∼ CN (0, σ2IM ) denotes the Gaussian noise. And
ĥik is distributed as ĥik ∼ CN (0,

(
|Kik |+ σ2)IM

)
, which

has a higher power than those without collision. Therefore,
an effective way to detect collision is to perform ED on the
estimated channel by the BS

εik = E
[
ĥH
ik
ĥik

]
. (14)

If εik is greater than a given threshold η, then it is utilized
as evidence that there are at least two devices that have the
same preamble and thus they choose the same CS codeword
aik . Since devices themselves do not know whether they have

been in a collision, the BS needs to feed this information
back. To this end, the BS will broadcast the collided index
representations {ik|εik > η} to all the devices to help them
get the judgment. Fig. 2a showcases that device i to j realized
that a conflict occurred after receiving the indexes broadcast
by the BS. We note that in the above process, the additional
information required at the BS is only the threshold and it can
be easily preset in practice.

As illustrated in Fig. 2b, in order to get a new non-
conflicting index representation, the collided devices will slide
the window with length Bp bits forward within the total B
bits to get new sequences, denoted by vpk

′. We denote B0 as
the sliding length which satisfies 0 < B0 < Bp. The reason
behind B0 < Bp is that there should be a common part, labeled
in green in Fig. 2b, between the sequences before and after
sliding the window, so as to splice back the sequences between
different windows.

After obtaining vpk
′, the CS-based encoder is again per-

formed to encode vpk
′ to aik′ with ik′ =

[
vpk
′
]
2
∈
[
1 : 2Bp

]
.

The encoding process is the same as that in III-A. Channels
of the collided devices are expected to be recovered separately
after the retransmission. The ED will be again performed on
the recovered channels. If the collision still exists, the window
sliding process will be executed again until the maximum
number of retransmission is reached or no collision exists.
The above collision resolution protocol is summarized in
Algorithm 1. We give the analysis for this collision resolution
protocol in Appendix A, which illustrates that as the win-
dow sliding progresses, the number of collided devices will
decrease and tend to zero.

V. DECODER

The decoding process can be distilled into two key op-
erations: the recovery of the preamble as well as the key
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Algorithm 1 Collision Resolution Protocol

1: Input: estimated channel Ĥ , maximum iteration tmax,
maximum and minimum threshold η, γ

2: Output: recovered channel H̃
3: Initialize: iteration count t = 0, H̃ = [ ]
4: repeat
5: Energy detection:

εik = E
[
Ĥik,:Ĥ

H
ik,:

]
, ik ∈

[
1 : 2Bp

]
6: Feedback: the BS broadcasts {ik, εik > η}
7: Combine: H̃ ←

[
H̃; Ĥik,:

]
, {ik|γ < εik < η}

8: Window sliding and retransmission
9: Channel estimation: Ĥ

10: t← t+ 1
11: until t = tmax or {εik < η, ∀ik ∈

[
1 : 2Bp

]
}

12: return H̃

parameters for the LDPC code, and the LDPC decoding
process combined with SIC [43]. Both are carried out with the
MP algorithm. We emphasize again that the beliefs of these
two parts can be leveraged to jointly update the messages of
the decoding process, which is not considered in [25], [26].

A. Joint DAD-CE Algorithm

The recovery of the preamble as well as the channels in the
CS phase is equivalent to the joint DAD-CE problem, which
can be modeled as a CS problem. According to the formulation
in (8), the recovery of the sparse matrix X can be addressed
by the CS-based methods, such as the AMP algorithm and its
variants [4], [8]–[11]. Besides, the MP-based approaches [13],
[14] also work well on the above issues. The Bernoulli and
Rician messages are jointly updated in [13], which considers
the fading channel and grant-free scenario. This scenario is
also considered in [14], which takes advantage of estimated
data symbols as soft pilot sequences to perform joint channel
and data estimation. In this subsection, we consider the MIMO
system and derive the update rules of messages based on the
BP algorithm.

We derive the update rules of the activity indicator φk and
channel vector hk in (6), which are modeled as Bernoulli
and Gaussian messages, respectively. The Gaussian messages
can be characterized by the estimation of mean-value uk

and auto-covariance matrix Σk. That is, uk and Σk are the
estimation and estimating deviation of hk in (6), respectively.
Besides, the Bernoulli messages for the activity indicator can
be represented by pk, which is the probability of φk taking the
value one. These messages are updated iteratively between the
observation and variable nodes, which can be characterized
by the factor graph in Fig. 3, where the received signal
yl,m represents the observation node, denoted by SN, and
channel hk,m and the activity pattern φk are the variable nodes,
denoted by VN. The edges in the factor graph represent the
connections among nodes. In the BP algorithm, messages are
passed along these edges. We elaborate on the update rules of
these messages below.

ℎ , ℎ ,

ℎ , ℎ ,

… ℎ , ℎ ,

ℎ ,

ℎ ,

ℎ ,

…

…

…

,

,

,
…

,

,

,

…

,

,

,

…

Dev. 1

Dev. 2

Dev. K

Variable nodes
(VN)

Variable nodes
(VN)

Observation nodes
(SN)

Fig. 3: Factor graph of the joint DAD-CE algorithm.

1) Message Update at Observation Nodes: We denote
pV N
i→l(t) as the Bernoulli message for the activity of device
i, which is passed from VN i to SN l in the t-th iteration.
Accordingly, µV N

im→lm(t) and ΣV N
i→l(t) denote the Gaussian

messages passed from VN im to SN lm, which represent
the estimation and the estimating deviation of the channel hi,
respectively. The index m ∈ [1 : M ] denotes the m-th antenna
and also the m-th value of hi. Since the update rules of the
messages are the same with respect to different iterations, the
index of iteration is omitted in the following derivation. For
clarity, we assume there is no collision in the CS phase for
the following derivation. As such, ik, the original subscript
of h is replaced by k, since there is a one-to-one mapping
between these two terms. We emphasize that the collision
is considered in our implementation and addressed by the
proposed resolution protocol in Algorithm 1.

To give the message update rules at the SN yl,m in Fig. 4,
we first rewrite (6) as

ylm =
∑K

i=1
Aliφihim + nlm

= Alkφkhkm +
∑

i∈K\k
Aliφihim + nlm︸ ︷︷ ︸
zlkm

, (15)

where l is in Lp and K\k denotes the entries in set

ℎ ,
→
, , ,

→ →

→
→ →

→
,

ℎ , ℎ , ℎ ,
→ →

→ →→ →→→

→→
… …

… …

→

… …

Fig. 4: Message update rules at VNs and SNs. The output
message on each edge is obtained by collecting the messages
from the other edges connected with the same node.
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{1, 2, · · · ,K} except k. The term
∑

i∈K\k Aliφihim + nlm
is modeled as an equivalent Gaussian noise with zlk ∼
CN (µzlk ,Σzlk), where µzlk = [µzlk1

, · · · , µzlkm
, · · · , µzlkM

]
and µzlkm

is given by

µzlkm
=
∑

i∈K\k
Ali · pV N

i→l · µV N
im→lm. (16)

For Σzlk , the auto-covariance of zlk, since φi is the same for
M antennas, resulting in the correlation among antennas, we
should not consider the variance of zlkm at each antenna m
separately. Instead, the covariance of zlk is considered in this
paper. Rewrite (15) in a vector form:

yT
l =


yl1
yl2
...

ylM

 = Alkφk ·


hk1
hk2

...
hkM



+
∑

i∈K\k
Aliφi ·


hi1
hi2

...
hiM

+


nl1
nl2

...
nlM


︸ ︷︷ ︸

zlk

.

(17)

The (m,n)-th (m 6= n) entry for Σzlk satisfies

(Σzlk)(m,n) =
∑

i∈K\k
|Ali|2 · pV N

i→l ·
{

(ΣV N
i→l)(m,n)

+ qV N
i→l · µV N

im→lm · (µV N
in→ln)∗

}
, m 6= n,

(18)

where qV N
i→l = 1 − pV N

i→l denotes the probability that the
Bernoulli variable φk equals to zero. If m = n, we have

(Σzlk)(m,m) =
∑

i∈K\k
|Ali|2 · pV N

i→l ·
{

(ΣV N
i→l)(m,m)

+ qV N
i→l ·

∣∣µV N
im→lm

∣∣2}+ σ2
n.

(19)

Details about the derivation of Σzlk are given in Appendix
B1. After obtaining the mean and covariance of zlk, we can
get the Gaussian messages µSN

lm→km and ΣSN
l→k passed from

SN lm to VN km as below

µSN
lm→km = E [hkm|ylm, µzlkm

,Σzlk , φk = 1]

= (ylm − µzlkm
)/Alk

(20)

ΣSN
l→k = Var [hkm|ylm, µzlkm

,Σzlk , φk = 1]

= Σzlk/ |Alk|2 ,
(21)

where E [a|b] and Var [a|b] denote the expectation and variance
of a conditioned on b, respectively.

For the Bernoulli message pSN
l→k passed for SN l to VN k,

we have

pSN
l→k =

[
1 +

P (yl|φk = 0,µzlk ,Σzlk)

P (yl|φk = 1,µzlk ,Σzlk)

]−1
=

[
1 +

P (yl = zlk|µzlk ,Σzlk)

P (yl = Alk · hk + zlk|µzlk ,Σzlk)

]−1
=

[
1 +

f(yl|µzlk ,Σzlk)

f(yl|µ′zlk ,Σ
′
zlk

)

]−1
=

f(yl|µ
′

zlk
,Σ
′

zlk
)

f(yl|µzlk ,Σzlk) + f(yl|µ′zlk ,Σ
′
zlk

)
,

(22)

where

µ
′

zlk
= Alk · µV N

k→l + µzlk (23)

Σ
′

zlk
= |Alk|2 ·ΣV N

k→l + Σzlk , (24)

which denote the mean-value and covariance of yl when
φk = 1, respectively. And f(x|µ,Σ) denotes the probabil-
ity density function (pdf) of the multi-dimensional complex
Gaussian distribution CNM (x|µ,Σ), that is

f(x|µ,Σ) =
1

πM ·det (Σ)
· exp

[
−(x− µ)HΣ−1(x− µ)

]
.

(25)
Moreover, the Bernoulli message can be simplified by the use
of log-likelihood ratio (LLR) to reduce the complexity as well
as to avoid the computation overflow. Hence, the LLR of the
message in (22) can be represented as

lSN
l→k , ln

P (φk = 1)

P (φk = 0)
= ln

pSN
l→k

1− pSN
l→k

(a)
= ln

det (Σzlk)

det
(
Σ′zlk

)+(yl − µzlk)H ·Σ−1zlk
· (yl − µzlk)

− (yl − µ
′

zlk
)H · (Σ

′

zlk
)−1 · (yl − µ

′

zlk
),

(26)
where

(a)
= is derived by the substitution of (22) and (25).

2) Message Update at Variable Nodes: Likewise, the Gaus-
sian and Bernoulli messages at VNs are updated by collecting
the incoming messages from SNs. To ensure convergence,
messages from the VN’s own are not included in the cal-
culation [12]. Typically, for the Gaussian messages, since h
follows the Gaussian distribution, the update rule at the VN
is to multiply the pdfs observed at each SN to obtain a new
one. We note that the prior Gaussian distribution of h is also
included in the multiplication. The new pdf still follows the
Gaussian distribution, of which the mean and covariance are
the updated messages at the VN. The pdf of hk passed from
VN k to SN l is given by

f(h|µV N
k→l,Σ

V N
k→l)

∝
∏

i∈L\l
f(h|µSN

i→k,Σ
SN
i→k) · f(h|µpri

k ,Σpri
k ).

(27)

Accordingly, for the Gaussian pdf f(h|µV N
k→l,Σ

V N
k→l), the

mean and covariance are give by

µV N
k→l = E

[
hk|µSN

i→k,Σ
SN
i→k, i ∈ L\l

]
= ΣV N

k→l ·
[
(Σpri

k )−1 · µpri
k

+
∑

i∈L\l
(ΣSN

i→k)−1 · µSN
i→k

] (28)

ΣV N
k→l = Var

[
hk|µSN

i→k,Σ
SN
i→k, i ∈ L\l

]
=

[∑
i∈L\l

(ΣSN
i→k)−1 + (Σpri

k )−1
]−1

,
(29)

where µpri
k = 0M×1 and Σpri

k = IM are the prior mean and
covariance of hk, L\l denotes the entries in set {1, 2, · · · , L}
except l. We give the derivations of (28) and (29) in Appendix
B2.

The derivation of the Bernoulli messages is the same as
above, which is updated by collecting the messages observed
at SNs. For pV N

k→l passed for VN k to SN l, it is obtained
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by multiplying the probability of φk = 1 passed from all the
SNs to VN k and then normalizing. Likewise, for convergence,
the message passed from SN l to VN k is not included. We
emphasize that the prior activation probability of each device
pa is also considered. As such, pV N

k→l is given by

pV N
k→l = P

(
φk = 1|

{
pSN
i→k, i ∈ L\l

}
, pa
)

=
pa ·

∏
i∈L\l p

SN
i→k

pa ·
∏

i∈L\l p
SN
i→k + (1− pa) ·

∏
i∈L\l

(
1− pSN

i→k

) .
(30)

Likewise, for complexity reduction, we also employ the LLR
to represent this message in iterations, of which the relation-
ship with the activation probability is

lV N
k→l = ln

pV N
k→l

1− pV N
k→l

= l0 +
∑
i∈L\l

lSN
i→k

pV N
k→l =

1

1 + exp
(
−lV N

k→l

) , (31)

where l0 = ln pa

1−pa
is the prior LLR of the probability for the

device being active.

3) DAD Decision and CE Output: Since the messages
above are iteratively updated between SNs and VNs, after
reaching the maximum number of iterations, the Bernoulli
and Gaussian messages will have an output at VNs. For the
Gaussian messages, similar to the above update rules, the
output is obtained by combining all the incoming messages
from SNs, i.e,

µdec
k = Σdec

k ·
[
(Σpri

k )−1 · µpri
k

+
∑

i∈L
(ΣSN

i→k)−1 · µSN
i→k

] (32)

Σdec
k =

[∑
i∈L

(ΣSN
i→k)−1 + (Σpri

k )−1
]−1

, (33)

which denote the output estimation and estimating deviation
of hk, respectively. For the Bernoulli messages, the LLR of
the DAD decision is

ldec
k = l0 +

∑
l∈L

lSN
l→k + lcek . (34)

Device k’s activity is detected as φ̂k = 1 if ldec
k > 0 and vice

versa. The term lcek in (34) is to improve the DAD accuracy
by exploiting the CE result [13], which is derived as follows.
The estimated channel hk can be modeled as ĥk = hk + εk,
where εk is the complex Gaussian noise distributed as εk ∼
CN (0,Σdec

k ). Accordingly, the distribution of ĥk with respect
to value of φk is

ĥk ∼
{
CN (µpri

k ,Σpri
k + Σdec

k ), φk = 1
CN (0,Σdec

k ), φk = 0
∀k ∈ Ktot.

(35)
Therefore, this information can be leveraged to give an extra
belief to the DAD decision. Similar to (22), lcek is given by

lcek = ln
P
(
ĥk = µdec

k |φk = 1,µpri
k ,Σdec

k ,Σpri
k

)
P
(
ĥk = µdec

k |φk = 0,Σdec
k

)
= ln

f
(
µdec

k |µ
pri
k ,Σpri

k + Σdec
k

)
f
(
µdec

k |0,Σdec
k

)
= ln

det
(
Σdec

k

)
det
(
Σpri

k +Σdec
k

) +
(
µdec

k

)H · (Σdec
k

)−1 · µdec
k

−
(
µdec

k −µ
pri
k

)H
·
(
Σpri

k +Σdec
k

)−1
·
(
µdec

k −µ
pri
k

)
.

(36)
As aforementioned, we derive the LLR expression by utilizing
the joint distribution of the channel among antennas. Finally,
we obtain the estimated channel of device k as

ĥk = φ̂k · µdec
k . (37)

0 2 4 6 8 10 12 14
Iteration
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Fig. 5: NMSE of CE by the Joint DAD-CE algorithm. Bp = 9,
Ka = 30, M = 30, Lp = 200.

The above joint DAD-CE algorithm is summarized in Algo-
rithm 2, where Niter denotes the maximum number of itera-
tions. We note that ΣV N and ΣSN both go to diagonal matri-
ces over the iteration in our numerical verification. Hence, the
corresponding matrix inverse operations can be simplified to
the divisions to reduce the complexity with little performance
loss. As shown in Fig. 5, Simplified denotes the approximation
by treating ΣV N and ΣSN as diagonal matrices and Original
means there is no approximation in Algorithm 2. We use
normalized mean square error (NMSE) for the evaluation of
the CE performance. Fig. 5 illustrates that this approximation
introduces little performance loss, which, although, has greatly
reduced the complexity as aforementioned.

B. MIMO-LDPC-SIC Decoder

After obtaining the key parameters, such as interleaving
patterns and channels by the joint DAD-CE algorithm, the
LDPC decoding problem can be addressed by the standard BP
algorithm [12], [44]. Likewise, the DD process is performed by
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Fig. 6: Factor graph for LDPC decoding.

Algorithm 2 Joint DAD-CE Algorithm

1: Input: Yp, A, µpri, Σpri, σ2
n, pa

2: Initialize: µV N = µpri,ΣV N = Σpri

3: repeat
4: SN update: µSN , ΣSN by (20)-(21)
5: SN update: lSN by (26)
6: VN update: µV N , ΣV N by (28)-(29)
7: VN update: lV N by (31)
8: until Niter reached
9: CE output: µdec, Σdec by (32)-(33)

10: DAD Decision: ldec by (34)
11: return

{
ĥk, φ̂k,∀k ∈ Ktot

}

updating messages iteratively at different nodes. Differently,
since the LDPC is a forward error correction code, besides
the observation and variable nodes, the check nodes (CNs)
are considered in the factor graph to provide an extra belief,
as shown in Fig. 6. We rewrite the received signal in the LDPC
phase as

Yc = YLp+1:L,: =
∑
k∈Ka

πik (s̃k) hT
ik

+ Z
Lp+1:L,:

, (38)

where Yc ∈ CLc×M is the last Lc rows of Y. The LDPC
decoder is tasked to recover the last Bc bits of informa-
tion based on the received signal Yc, estimated interleaving
patterns and channels using the low-complexity iterative BP
algorithm. Owing to the two-phase encoding scheme, these key
parameters can be recovered in the decoding of the CS phase.
We emphasize that once the active indicators φk are recovered,
the positions of {φk = 1, k ∈ Ktot} in the selection matrix Φ,
i.e., {ik,∀k ∈ Ka}, are determined. Thereby, the interleaving
patterns of active devices are also recovered. As shown in
(38), the zero-padded sequences s̃k are subject to different
permutations, and each is determined by the interleaving
pattern ik. Therefore, the effect of these permutations needs
to be considered when the messages are being sent to and
from the VNs, i.e., interleaving and de-interleaving in Fig. 6,
respectively.

The connections among nodes in Fig. 6 appear to be more
involved than those of Fig. 3. In the upper part of Fig. 6, the
CNs (blue color) and VNs (green color) as well as the edges
connecting them constitute the Tanner graph in LDPC. The
subscript N = L̃c − Bc denotes the number of CNs in the
LDPC code, which corresponds to the number of rows of the
LDPC check matrix. K denotes the number of active devices
estimated in the CS phase. Other subscripts are consistent with
the aforementioned. The edges between CNs and VNs are
described by the LDPC check matrix, which cannot be marked
explicitly in the graph. For example, in the check matrix of
device k, if the entry ci,j = 1, there will be an edge between
SN ck,i and VN sk,j .

,

0 0 1,5 0 1,3 ⋯
2,4 0 0 0 0 ⋯
0 3,1 3,4 0 0 ⋯
4,3 0 0 4,9 4,2 ⋯
0 5,8 5,2 0 0 ⋯

Fig. 7: The set of VNs connected with an SN is decided
by the interleaving patterns. For instance, in the diagram,
the set of VNs related with y1,3 is {s1,5, s3,4, s5,2}. Cor-
respondingly, the set of SNs connected to these VNs is
{ym,3,m = 1, 2, · · · ,M}.

The lower part of Fig. 6 refers to the graph for MIMO
detection, of which the edges between VNs and SNs (yel-
low color) are simply determined by (38) though looking
complicated. For example, the VN sk,l1

(
l1 ∈

[
1 : L̃c

])
is

connected to the l2-th SN from all antennas (i.e., ym,l2 ,m =
1, 2, ...,M, l2 ∈ [1 : Lc]). We note that l1 is not necessarily
equal to l2 in the presence of zero-padding and interleaving.
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Correspondingly, the VNs connected to SN ym,l2 depend
on whose data is interleaved to the l2-th channel use. For
instance, as illustrated in Fig. 7, the set of VNs connected to
SN y1,3 is {s1,5, s3,4, s5,2}. That is, after zero-padding and
interleaving, the fifth, fourth, and second bits of devices 1,
3, and 5 are mapped to the third channel use, respectively.
Before conducting the MP algorithm, we define the types of
messages as follows.

• Rk,n→l1 : Messages passed from CN ck,n to VN sk,l1 .
• Qk,l1→n: Messages passed from VN sk,l1 to CN ck,n.
• Pk,l1→m,l2 : Messages passed from VN sk,l1 to SN ym,l2 .
• Λm,l2→k,l1 : Messages passed from SN ym,l2 to VN sk,l1 .

The massages R and Q refer to the parity check constraints
in the LDPC code, while P and Λ are related to the received
signals in the MIMO system.

,

…, , ,
, →

, →

, →

, →
, →, →

,

,

,
,

…↑

Λ , → ,
Λ , → ,

…

Λ , → ,

…

Fig. 8: Update rules for messages R and Q at CNs and VNs
on the Tanner graph for device k. The dashed and solid lines
represent input and output messages, respectively.

We first give the MP rules for the LDPC decoding with
BPSK modulation, which is known as the sum-product algo-
rithm. As illustrated in Fig. 8, the messages R and Q are
iteratively updated between CNs and VNs. Likewise, for the
reduction of complexity, we give the updating rules in the LLR
form.

Qk,l1→n =
∑
j∈M

π−1ij
(Λj,l2→k,l1)+

∑
j∈Nc(k,l1)\n

Rk,j→l1 (39)

Rk,n→l1 = 2tanh−1

 ∏
j∈Nv(k,n)\l1

tanh

(
Qk,j→n

2

) , (40)

where Nc (k, l1) \n denotes the set of CNs connected to sk,l1
except ck,n, i.e., {ck,n, ck,n1 , · · · , ck,ni} in Fig. 8. Likewise,
Nv (k, n) \l1 denotes the set of VNs connected to ck,n except
sk,l1 , i.e.,

{
sk,l11 , · · · , sk,li1

}
in Fig. 8.

The message Λm,l2→k,l1 in (39) is the LLR with the
probability of VN sk,l1 taking different values observed at
SN ym,l2 . For BPSK modulated system, it is given by

Λm,l2→k,l1 = log
P (ym,l2 |H, sk,l1 = +1)

P (ym,l2 |H, sk,l1 = −1)

=
2

σ2
zk,l2

Re
(
h∗m,k

(
ym,l2 − µzk,l2

))
,

(41)

where H is the channel matrix, which can be estimated in the
CS phase. We note that similar to the joint DAD-CE algorithm,

,

, ,… …
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Λ , → ,Λ , → ,

,
, →, →
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, → ,,
↓

,

,

,

↑
, → ,

, → ,
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Fig. 9: Update rules for messages Λ and P at VNs and SNs
on the factor graph. The dashed and solid lines represent input
and output messages, respectively.

(41) is also obtained by treating the interference from other
devices as noise. We rewrite (38) as

ym,l2 =
∑

j∈K(m,l2),l∈L(m,l2)

hm,jπij (s̃j,l) + nm,l2

= hm,kπik (s̃k,l1)+
∑

j∈K(m,l2)\k
l∈L(m,l2)\l1

hm,jπij (s̃j,l)+nm,l2

︸ ︷︷ ︸
zk,l2

,

(42)
where nm,l2 is the Gaussian noise with zero mean and
variance σ2

n, and K(m, l2),L(m, l2) denote the set of de-
vices as well as the corresponding bits related with SN
ym,l2 , respectively. Accordingly, the set of related VNs is
{sj,l|j ∈ K(m, l2), l ∈ L(m, l2)} and we note that the sub-
scripts j and l are one-to-one mappings. For instance, Fig.
7 showcases the VNs related with SN y1,3. In this regard,
K(1, 3) = {1, 3, 5} and L(1, 3) = {5, 4, 2} and the corre-
sponding VNs are {s1,5, s3,4, s5,2}. The Gaussian noise nm,l2

and the interference from other devices are all treated as noise
denoted by zk,l2 , which is a Gaussian variable with mean
µzk,l2

and variance σ2
zk,l2

given by

µzk,l2
=

∑
j∈K(m,l2)\k
l∈L(m,l2)\l1

hm,j · E
[
πij (s̃j,l)

]
(43)

σ2
zk,l2

=
∑

j∈K(m,l2)\k
l∈L(m,l2)\l1

|hm,j |2 · Var
[(
πij (s̃j,l)

)]
+ σ2

n. (44)

And for BPSK modulation, the mean and variance of πij (s̃j,l)
is given by

E
[
πij (s̃j,l)

]
= 2 · πij (Pj,l→m,l2)− 1 (45)

Var
[(
πij (s̃j,l)

)]
= 4 · πij ((1− Pj,l→m,l2) · Pj,l→m,l2) ,

(46)

where Pj,l→m,l2 denotes the probability of VN sj,l = 1, and is
initialized to 0.5. We note that it needs to be interleaved before
the calculation. As shown in Fig. 9, Pk,l1→m,l2 is updated by
collecting the incoming messages from CNs related with VN



12

sk,l1 and those from all SNs except ym,l2 . We give the update
rule as below.

Pk,l1→m,l2 =
exp(Λ +R)

1 + exp (Λ +R)
, (47)

where

Λ =
∑

j∈M\m

π−1ij
(Λj,l2→k,l1), R =

∑
j∈Nc(k,l1)

Rk,j→l1 . (48)

Similar to (39), the message Λj,l2→k,l1 needs to be de-
interleaved in the update of P . The LLR of VN sk,l1 at the
end of an iteration is given by

Lk,l1 =
∑
j∈M

π−1ij
(Λj,l2→k,l1) +

∑
j∈Nc(k,l1)

Rk,j→l1 . (49)

The information bit v̂ck,l1 is decoded as one if Lk,l1 > 0
and zero otherwise. Since LDPC codes are described by the
parity matrix C, the iteratively decoding process is continued
till mod (Cv̂ck, 2) = 0 or the maximum number of iterations
Niter is reached.

To further improve the spectrum efficiency, the QPSK
modulation is also considered in this coding system, of which
the constellation set is S =

{
±1/
√

2,±1/
√

2i
}

. Briefly,
QPSK modulated signals can be split into two orthogonal
BPSK ones. As such, we can implement the above MP
algorithm on these two signals separately. Additionally, the
real and imaginary parts of the messages Λ and P need to
be considered separately, so does the parity of subscript l1 in
Qk,l1→n and Rk,n→l1 . It is worth noting that the range of l1
in Λ and P is half of that in Q and P , i.e.,

[
1 : L̃c/2

]
, since

there are both messages on the real and imaginary parts. In
what follows we give the updated rules of these messages.

Similar to (41), Λ is the LLR of the probability that sk,l1
takes different values in S. However, it is no longer a real
number. Instead, it is given by

Λm,l2→k,l1 =
2
√

2

σ2
zk,l2

· h∗m,k ·
(
ym,l2 − µzk,l2

)
, (50)

where the mean and variance of zk,l2 are given in (43) and
(44), respectively. And for QPSK modulation, the mean and
variance of πij (s̃j,l) is given by

E
[
πij (s̃j,l)

]
= 1/

√
2 ·
{

2 · πij
(
P r
j,l→m,l2

)
− 1

+
[
2 · πij

(
P i
j,l→m,l2

)
− 1
]
· i
}
(51)

Var
[(
πij (s̃j,l)

)]
= 2 · πij

[
P r
j,l→m,l2 −

(
P r
j,l→m,l2

)2
+P i

j,l→m,l2 −
(
P i
j,l→m,l2

)2]
,

(52)

where P r
j,l→m,l2

and P i
j,l→m,l2

are the real and imaginary parts
of Pj,l→m,l2 , respectively. Similar to (47) and (48), P r

k,l1→m,l2
and P i

k,l1→m,l2
are given by

P r

k,d l12 e→m,l2
=

exp [Re (Λ) +R]

1 + exp [Re (Λ) +R]
, l1 is odd, (53)

P i

k,
l1
2 →m,l2

=
exp [Im (Λ) +R]

1 + exp [Im (Λ) +R]
, l1 is even. (54)

As such, the range of subscript l1 in P is half of that in R as
aforementioned. Λ and R are defined in (48). The update rule
for message R is the same as (40) and that for Q is given by

Qk,l1→n =



∑
j∈M

π−1ij

(
Re
(

Λ
j,l2→k,d l12 e

))
+

∑
j∈Nc(k,l1)\n

Rk,j→l1 , l1 is odd∑
j∈M

π−1ij

(
Im
(

Λ
j,l2→k,

l1
2

))
+

∑
j∈Nc(k,l1)\n

Rk,j→l1 , l1 is even

(55)
The LLR of VN sk,l1 at the end of an iteration is given by

Lk,l1 = Qk,l1→n +Rk,n→l1 , ∀n ∈ Nc(k, l1). (56)

The decision rule and termination condition are the same as
those in the BPSK system mentioned earlier. Finally, we obtain
the decoded messages.

Note that the estimated number of active devices K is
not guaranteed to be equal to Ka. Therefore, not all the
decoded messages satisfy the parity check. We denote V̂ ={
v̂ck, k ∈ K̂

}
and K̂ as the set of successfully decoded mes-

sages and the corresponding devices, respectively. And we
have

∣∣∣K̂∣∣∣ ≤ Ka. To further improve the performance, we
combine the MIMO-LDPC decoder with the SIC method and
we denote it as the MIMO-LDPC-SIC algorithm, which works
as follows.

Let Ĥ ∈ CK×M and K denote the channel matrix and the
set of active devices estimated in the CS phase. Let V̂0 and
K̂0 respectively denote the sets of correctly decoded messages
(i.e., those that satisfy the check) and the corresponding
devices obtained by the decoder, which are initialized to empty
sets. With Yc, interleaving patterns {πik , k ∈ K} and Ĥ , the
decoder outputs the set of successfully decoded messages V̂
and the corresponding devices K̂. Then we have V̂0 ← V̂0∪V̂ ,
K̂0 ← K̂0 ∪ K̂ and H = Ĥk,: for k ∈ K\K̂0. The residual
signal is updated by

Y = Yc −
∑

k∈K̂0

πik (s̃k) Ĥk,:, (57)

where s̃k ∈ CLc×1 is the k-th codeword in V̂0 after modulation
and zero-padding. The updated Y and H as well as the
interleaving patterns are sent to the MIMO-LDPC decoder
for the next round of decoding. This iterative process ends
when K̂ = ∅ or K\K̂0 = ∅. The overall decoding algorithm is
summarized in Algorithm 3.

We note that the stitching of the messages in the CS and
LDPC phases is easy. In URA, devices are not identified, as
such, the IDs can not be employed to distinguish the messages.
We have known that the interleaving patterns and channels{
πik , ĥk, k ∈ K̂0

}
obtained in the CS phase acting as key

parameters participate in the decoding process in the LDPC
phase. For each decoded message in V̂0, it is decoded with a
specific interleaving pattern πik as well as the channel ĥk. As
aforementioned, πik is uniquely determined by the message
index representation ik, which directly corresponds to device
k’ preamble. Therefore, πik and ĥk establish a connection
of devices’ messages in the two phases. Briefly, if v̂c is
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Algorithm 3 MIMO-LDPC-SIC Decoding Algorithm

1: Input: Yc, Ĥ , L = {ik, k ∈ K}, σ2
n

2: Initialize:
Y =Yc, H=Ĥ , V̂0←∅, K̂0←∅, Rk,n→l1 = 0,
BPSK: Pk,l1→m,l2 = 0.5, QPSK: Pk,l1→m,l2 = 0.5+0.5i.

3: repeat
4: repeat
5: Λ update: Λm,l2→k,l1 by (41) or (50).
6: Q update: Qk,l1→n by (39) or (55).
7: R update: Rk,n→l1 by (40).
8: P update: Pk,l1→m,l2 by (47) or (53)-(54).
9: L update and hard decision: Lk,l1 by (49) or (56).

10: until Niter reached or mod(Cv̂c, 2) = 0.
11: Output: V̂ , K̂
12: V̂0 ← V̂0 ∪ V̂ , K̂0 ← K̂0 ∪ K̂.
13: H = Ĥk,: for k ∈ K\K̂0.
14: Y = Yc −

∑
k∈K̂0

πik (s̃k) Ĥk,:.
15: until K̂ = ∅ or K\K̂0 = ∅.
16: Return: V̂0, K̂0

successfully decoded with the participation of πik and ĥk,
it is exactly the latter Bc bits of message of device k. As
such, the stitching of the messages in two phases will not be
a problem.

C. Joint Update

The above CS and LDPC decoders can recover the B bits of
information with their work in tandem. Besides, thanks to the
consistency of the above MP algorithm, the BP-based decoder
can draw a connection of the decoding process in the CS and
LDPC phases. That is, messages in the CE as well as the
MIMO-LDPC decoding processes can be jointly updated by
utilizing the belief of each other, thus leading to improved
performance. This joint update algorithm is denoted as joint
DAD-CE-DD algorithm and elaborated as follows.

For the successfully decoded devices K̂0, the corresponding
messages

{
πik (s̃k) , k ∈ K̂0

}
can be leveraged as soft pilot

sequences joint with their codewords
{
aik , k ∈ K̂0

}
in the CS

phase to carry out a second CE. This longer pilot sequence will
lead to a better CE performance, which has been confirmed
in our simulation in Fig. 15. We note that the subsequent
CE is conducted via the above joint DAD-CE algorithm with
devices’ activity fixed. In this regard, the Gaussian messages{
µSN
lm→km,Σ

SN
l→k, µ

V N
lm→km,Σ

V N
l→k

}
in (20)-(21) and (28)-(29)

are iteratively updated with a longer observation sequence
{yl, l ∈ [1 : Lp + Lc]}. Besides, it is worth noting that in
the CE output in (32)-(33), the prior mean and covariance
µpri
k ,Σpri

k are no longer zero and IM , respectively. Instead,
they are the output estimation µdec

k and estimating deviation
Σdec

k of hk in the first CE, respectively.
Remark 1: We remark that messages in the MP algorithm

exhibit the property of consistency and unity. As such, mes-
sages among different parts can always be jointly processed
and updated. For instance, recalling the Joint DAD-CE algo-
rithm, where the Bernoulli messages are updated by utilizing

Algorithm 4 Joint DAD-CE-DD Algorithm

1: Input: Yp, Yc, A, µpri, Σpri, σ2
n, pa

2: . CS Phase:
Joint DAD-CE Algorithm

3: . Collision Resolution Protocol
4: Output: µdec, Σdec, L = {ik, k ∈ K}
5: . Joint DAD-CE-DD Algorithm:
6: Initialize: Ỹr = Yc, Ṽ = ∅, K̃ = ∅
7: repeat
8: . LDPC Phase:
9: Input: Ỹr, µdec, L, σ2

n

10: MIMO-LDPC-SIC Decoding Algorithm
11: Output: V̂0, K̂0

12: Ṽ ← Ṽ ∪ V̂0, K̃ ← K̃ ∪ K̂0

13: Ỹc =
∑

k∈K̂0
πik (s̃k)µdec

k +Z
14: . CS Phase:
15: Input: Yp, A, Ỹc, V̂0, µdec, Σdec, σ2

n

16: CE (Activity fixed)
17: . Collision Resolution Protocol
18: Output: µ̃dec, Σ̃dec

19: Ỹr = Yc −
∑

k∈K̃ πik (s̃k) µ̃dec
k

20: until K̂0 = ∅ or K\K̃ = ∅
21: Return: Ṽ , K̃, L =

{
ik, k ∈ K̃

}
, µ̃dec

the Gaussian messages. Likewise, in the MIMO-LDPC-SIC
Decoding algorithm, the MP algorithm can be applied to
MIMO detection or LDPC decoding. In the proposed algo-
rithm, we combine these two parts and update the underlying
messages jointly, i.e., the LLR message of the symbol in
MIMO detection can be involved in the LDPC decoding
process, and vice versa. Moreover, the property is again
exploited in the Joint DAD-CE-DD algorithm. By leveraging
the belief of the estimated channel and the correctness of the
LDPC codewords, the CE can be again performed aided with
the correctly decoded codewords in the LDPC phase, thus
connecting these two phases. Throughout the paper, we take
into consideration the idea of the joint update for the messages
in MP-based algorithms.

One might argue that for the correctly decoded messages,
improving the accuracy of the corresponding channels will
not bring substantial performance improvements. Nevertheless,
according to the SIC method in (57), by improving the channel
accuracy of those devices whose messages are successfully
decoded, the residual signal of the incorrectly decoded mes-
sages can be obtained more accurately. We denote the residual
signal with improved accuracy as Ỹr. Consequently, Ỹr will
improve the performance for those messages that have not
been successfully decoded yet. And this is the reason why
the channel needs to be estimated twice or more times. We
give a brief diagram for this algorithm in Fig. 10, where
Ỹc denotes the noisy signal reconstructed from the correctly
decoded messages.

We note this data-aided CE algorithm appears to be similar
to the work in [14], which employs the data as soft pilots to
conduct CE jointly with the real pilot sequences. However,
the convergence and correctness of the estimated data cannot
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Fig. 10: The diagram of the joint DAD-CE-DD algorithm.

be verified, which may result in the propagation of errors and
failure of the joint data and channel estimation. Whereas the
convergence of the proposed algorithm can be guaranteed.
The proposed Joint DAD-CE-DD algorithm consists of two
modules, namely, the Joint DAD-CE algorithm for activity
detection and channel estimation, and the MIMO-LDPC-SIC
Decoding algorithm for data decoding. Messages are passed
between these two modules. For arbitrary channel estimation
results as input, the decoding process will be executed by the
MIMO-LDPC-SIC Decoding algorithm. Once a codeword is
successfully decoded (i.e., satisfies the check), it will not be
changed in subsequent iterations. Therefore, the number of
correctly decoded codewords is monotonically non-decreasing
at each iteration. Correspondingly, the error rate Pe is mono-
tonically non-increasing, and also, it is bounded below by zero.
According to the well-known monotone convergence theorem
[45], the proposed algorithm is guaranteed to converge. Be-
sides, with the correctly decoded codewords aided to estimate
the channel, an improved CE accuracy can be guaranteed and
it contributes to a higher probability of successfully decoding
for those who have not yet. This iterative algorithm ends when
no more messages are correctly decoded or all the messages
are decoded successfully, which is summarized in Algorithm
4.

D. Complexity

In this section, we compare the complexity of the proposed
algorithm with the existing alternative in terms of the real-
number multiplication (or division), addition (or subtraction),
and other operations (eg., exp, log, tan, tan−1), as shown in
Table I. As a divide-and-conquer strategy, there are inner and
outer decoders in the CB-ML algorithm, referred to as ML and
tree decoder, respectively. The complexity of our algorithm is
mainly incurred by the Joint DAD-CE algorithm and MIMO-
LDPC decoder. In Table I, the parameters α and c satisfy
that Bp = α log2Ka, Lp = c log2Ka, respectively. We note
that the complexity of the tree decoder is defined by the total
number of parity check constraints that need to be verified
[19], and this is obtained in the regime that Bp and Ka tend
to infinity. Nevertheless, in practice, it increases exponentially
with the number of slots S. Besides, the tree code in [32]
verifies the estimated codewords in each segment successively,
and the check and estimate are performed separately. While
during the LDPC decoding process in our algorithm, the
check and estimate of the codeword are performed jointly
and simultaneously, both by calculating the soft messages.
Once the codeword is estimated, the corresponding check is

completed. As for the inner code, the complexity of the ML
decoder is nearly the same order as that of our algorithm.
However, as a consequence of the coordinate descent algo-
rithm, there are 2Bp cycles in the ML decoding per iteration,
which can only be computed successively. On the contrary, as a
remarkable property of the MP algorithm, all computations in
our algorithm can be decomposed into many local ones, which
can be performed in parallel over the factor graph. Hence, our
algorithm has lower time complexity. In general, the proposed
algorithm exhibits a complexity linear with K,M,L, which is
lower than the existing CB-ML algorithm.

VI. NUMERICAL RESULTS

A. Parameter Settings

In this section, we assess the overall performance of the
proposed framework with the metric defined in (3)-(4). The
CB-ML proposed by Fengler et. al. in [32] serves as the
baseline in this paper. For the sake of fair comparison to
the benchmarks, and isolating the fundamental aspects of the
problem without additional model complication, we consider
the flat path loss model in the simulation, i.e., the channel is
i.i.d. Rayleigh fading model and the LSFC is fixed to βk = 1
in all schemes. We note again that this can be achieved by the
well-studied power control schemes [40]–[42] in practice. As
such, the carrier frequency is not specified in the simulation,
since it can be arbitrary and does not affect the performance
of the proposed algorithm, when considering flat path loss
model. The user distribution is considered to be uniformly
distributed in the cell. The noise variance is set to σ2

n = 1 and
is known to all schemes. The maximum scheduling times for
the collision resolution protocol is tmax = 3. For the joint
DAD-CE algorithm, MIMO-LDPC-SIC decoder, and Joint
DAD-CE-DD algorithm, the maximum number of iterations
is set to Niter = 20, 30, and 20, respectively. We fix the
message length to B = 96 with Bp = 12 and Bc = 84. The
length of the CS codeword is Lp = 100 in both schemes. In
the channel coding part, we employ the (3, 6)-regular LDPC
code [27] with the rate 0.5. In our scheme, the length of
channel use varies with the number of zeros padded in the
sequence. However, it is discretely valued in the CB-ML
scheme and changes with the number of slots denoted as S.
Since the length of the information is fixed, we can change
S by adjusting the parity check allocation, which is given in
Table II according to the principle in [19]. We note that the
slot length J = 12 aligns with Bp.

In Table II, (3,9) means that the first three are data bits and
the last nine are parity bits and so on. For more details, we
refer the reader to [32] for CB-ML algorithm and [19] for the
tree coding scheme.

B. Results

We first evaluate the error rate performance of the proposed
schemes compared with the CB-ML scheme as a function of
the code rate. The relationship between the code rate Rc and
channel use L is Rc = B/L. In Fig. 11, we fix the energy-
per-bit Eb/N0 = 10 dB, the number of antennas and active
devices M = 30 and Ka = 50, respectively. In our schemes,
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TABLE I: COMPLEXITY COMPARISON PER ITERATION

Algorithms Real Multi. / Div. Real Add. / Sub. Others

CB-ML
ML decoder O(KL2

p) O(KL2
p) \

Tree decoder O
(
K
α/c
a log2Ka

)
, Bp,Ka →∞ \

Joint DAD-CE-DD
Joint DAD-CE O(KMLp) O(KMLp) exp / log: O(KLp)

MIMO-LDPC O(K̂ML̃c) O(K̂ML̃c) exp: O(K̂ML̃c), tanh / tanh−1: O(K̂NNv)

Note: K = 2Bp , K̂,N,Nv denote the estimated number of active devices, the rows and row weights of the parity check matrix, respectively.

TABLE II: The parity check allocation for different number
of slots.

S Parity Check Allocation

12 (12,0), (3,9), (9,3), · · · , (9,3), (0,12)
13 (12,0), (4,8), (8,4), · · · , (0,12)
14 (12,0), (7,5), (7,5), · · · , (7,5), (0,12)
15 (12,0), (7,5), (7,5), · · · , (7,5), (0,12), (0,12)
16 (12,0), (6,6), (6,6), · · · , (6,6), (0,12)
17 (12,0), (6,6), (6,6), · · · , (6,6), (0,12), (0,12)
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Fig. 11: Performance of the proposed URA schemes as a
function a the code rate. Eb/N0 = 10 dB, M = 30, Ka = 50.

No-colli-avoid refers to the scheme that there is no collision
avoidance or the joint update. That is, the CS and LDPC
phases work sequentially and potential collision may exist
in the CS phase. For the other three schemes, the collision
resolution protocol has been implemented and No-SIC denotes
that the SIC method is not utilized in the LDPC phase nor do
the two phases work jointly. Joint-BPSK and Joint-QPSK refer
to the joint update algorithm with the SIC method in BPSK
and QPSK modulations, respectively. As illustrated in Fig. 11,
there is a substantial performance enhancement compared to
the CB-ML algorithm. The main reason is that the employed
LDPC code has a higher code rate than the tree code proposed
in [19]. As such, the proposed algorithm can work well in a
relatively high rate region while the CB-ML algorithm can not.
Once we set a high rate, there will be a substantial performance
enhancement. However, this improvement decreases with the
decrease of rate. For the target error rate Pe = 0.1, the

required code rate of the proposed Joint-BPSK is increased
by 1.45 times that of CB-ML, while the Joint-QPSK increases
even more. For instance, the proposed Joint-QPSK and Joint-
BPSK outperform CB-ML with a nearly 0.8 dB gap and a
1.5 dB gap at Rc = 0.06, respectively. Additionally, we note
that Joint-QPSK exhibits an overall 0.7 dB performance gain
compared with Joint-BPSK in terms of the error rate. This
is because only half of the channel use is needed for the
QPSK than BPSK modulation and thus more zeros can be
padded into the sequence. Consequently, the interference of
devices in the QPSK system is further reduced, resulting in
improved performance. Altogether, the gain of the collision
resolution protocol increases with the decrease of the code
rate. However, there is no much gain for the work of joint
update. This is because the gain mainly comes from the
reduction of interference of devices, which has been reduced
to a relatively low level by the zero-padding. As such, the
joint update cannot provide more gains. Nevertheless, as we
will see shortly, there is a certain gain by the joint update
under a higher interference scenario.

For the sake of complexity reduction, we employ BPSK
modulation instead of QPSK in the subsequent simulations
since both of them have already outperformed CB-ML. In Fig.
12, we compare the error rate performance of the proposed
algorithms with respect to Eb/N0, the number of antennas M
and active devices Ka, respectively. The number of channel
uses is fixed to L = 1600. Correspondingly, the data is split
into 16 slots in the CB-ML algorithm, of which the parity
check allocation is given in Table. II. The other parameters are
set as Eb/N0 = 10 dB, M = 30 and Ka = 50. As illustrated
in Fig. 12, the state-of-the-art method CB-ML suffers from
high error floors, which stems from the poor parity check
constraints. In contrast, with collision resolution, the proposed
Joint and No-SIC schemes exhibit water-falling curves in
terms of the error rate with respect to Eb/N0 and Ka, while
they gradually stabilize with respect to M . This is because the
interference of devices cannot be reduced to infinitesimal by
increasing M . As such, error still exits even for a large M .

Moreover, we evaluate the performance of the proposed
Joint-DAD-CE-DD algorithm under a large-scale antenna with
respect to different channel uses. As showcased in Fig. 13, the
performance of the proposed algorithm is almost linear with
the antennas, but with different slopes under different channel
uses. We note that CB-ML cannot work at L = 1600, while the
Joint-DAD-CE-DD algorithm can achieve Pe < 10−4 when
M > 140. Besides, the proposed algorithm only needs half of
the channel uses, i.e., L = 800 to outperform CB-ML when
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Fig. 12: Performance of the proposed URA schemes as a function of Eb/N0, the number of antennas M and active devices
Ka, respectively. Parameter settings: Eb/N0 = 10 dB, M = 30, Ka = 50, L = 1600.
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Fig. 13: Performance of the proposed Joint-DAD-CE-DD
algorithm as a function of M and channel use. Parameter
settings: Eb/N0 = 8 dB, Ka = 70, Lp = 100.

M ≥ 90. To sum up, the proposed algorithms outperform
CB-ML in terms of error rate and spectral efficiency, with an
explicit gain with respect to various variables.

In order to provide more insights about the performance
gain of different methods, we compare the error rate and
CE performance among the methods in terms of Eb/N0. In
this regard, we fix the channel use to L = 268 with BPSK
modulation and no zero is padded, resulting in the increase of
interference among devices. Besides, the code rate Rc = 0.36,
which is relatively high and the CB-ML cannot work under
this circumstance. In Fig. 14, No-Joint refers to the scheme
with the SIC method but no joint update. Firstly, it is obvious
that the collision resolution-based schemes all outperform the
No-colli-avoid scheme with the increase of Eb/N0. Then, the
performance gain of the SIC method in the LDPC phase is
about 0.3 dB or even more when Eb/N0 increases according
to the comparison of No-SIC and No-Joint. Finally, by the
comparison of No-Joint and Joint, there is also about 0.3 dB
gain coming from the work of joint update and it decreases
with the increase of Eb/N0. At a higher Eb/N0, such as 20
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Fig. 14: Error rate of the proposed URA schemes as a function
of Eb/N0. M = 30, Ka = 40, L = 268, Rc = 0.36.

dB, there is nearly no performance gain by the joint update.
This demonstrates that under a higher interference level of
devices, the joint update algorithm can provide a certain gain,
which gradually decreases with the increase of Eb/N0.

The NMSE is employed to evaluate the CE performance. In
Fig. 15, the AMP algorithm investigated in [4] is utilized as a
baseline for comparison. When Eb/N0 ranges from 13 to 15
dB, the performance of Joint and No-Joint is of slight differ-
ence and both are slightly worse than AMP. However, the Joint
scheme outperforms AMP with an ultra-linear speed when
Eb/N0 exceeds 15 dB. As aforementioned, this gain exactly
comes from the Joint-DAD-CE-DD algorithm, where the real
pilot sequences as well as correctly decoded messages jointly
conduct the task of CE. Figs. 14 and 15 demonstrate that the
joint update indeed contributes to the improved accuracy of
both the DD and CE. In general, the proposed algorithms
provide substantial performance enhancements compared with
CB-ML in terms of efficiency and accuracy.
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Fig. 15: NMSE of CE with the proposed URA schemes as a
function of Eb/N0. M = 30, Ka = 40, L = 268, Rc = 0.36.

VII. CONCLUSION

In this paper, we have investigated a joint DAD, CE, and DD
algorithm for MIMO massive URA. Different from the state-
of-the-art slotted transmission scheme, the data in the proposed
framework has been split into only two parts. A portion of
the data is coded by CS and the rest is LDPC coded. Based
on the principle of the BP, the iterative MP algorithm has
been utilized to decode these two parts of data. Moreover, by
exploiting the concept of the belief within each part, a joint
decoding framework has been proposed to further improve
the performance. Additionally, based on the ED and SWP, a
collision resolution protocol has been developed to resolve the
codeword collision issue in the URA system. In addition to the
complexity reduction, the proposed algorithm has exhibited a
substantial performance enhancement compared to the state-
of-the-art in terms of efficiency and accuracy. The possible
avenues for future work are various. More realistic channel
models can be taken into consideration for MIMO URA. By
utilizing the sparsity in the virtual angular domain of the
spatially correlated channel, the multi-user interference can
be further reduced. In addition, the proposed algorithm can be
extended to handle more practical scenarios in the presence
of asynchronization and frequency offset. Moreover, although
this paper only studies LDPC codes, other codes, such as
Turbo codes and Polar codes, could be applied if iterative soft
decodings with superior performance exist in a desired block
length.

APPENDIX

A. Analysis of the Collision Resolution Protocol

Let φ = diag{Φ} denote the vector composed of diagonal
elements of Φ and Mp = 2Bp . Φ is the modified selection
matrix defined in (8). Then we have φ =

[
φ1, φ2, · · · , φMp

]
,

which is drawn independently from the signal space

S = {φ ∈ {0, · · · ,Ka}Mp |
Mp∑
i=1

φi = Ka} (58)

according to the multinomial probability mass function :

p(φ) = P{φ =
(
φ1, φ2,· · · ,φMp

)
} =

Ka!

φ1! · · ·φMp !
· 1

Mp
Ka

(59)
for φ ∈ S. Then the probability of no collision among devices
equals the probability that Ka entries in φ are one and the
others are zero, which is given by

Pno−colli =
Ka!

Mp
Ka
·
(
Mp

Ka

)
=
Mp(Mp − 1) · · · (Mp −Ka + 1)

Mp
Ka

.

(60)

1) The first window sliding: The number of devices in
collision is

k0 = Ka · (1− Pno−colli). (61)

Let n0 and ki0 denote the numbers of collided messages in
the first Bp bits and collided devices with each message,
respectively, which satisfies

∑n0

i=1 k
i
0 = k0.

− : Common part

: Sliding part

Fig. 16: The first window sliding. Collided devices slide the
window forward with window length and sliding length Bp

and B0, respectively.

For the i-th collided message, the probability of no collision
in the sliding part is

Pno−colli−1 =
Mp1(Mp1−1)· · ·(Mp1−ki0 + 1)

Mp1
ki
0

, i ∈ [1 : n0] ,

(62)
where Mp1 = 2B0 . Besides, the common part is for devices
to splice back the messages among different windows. If the
common parts of different collided messages are the same,
the message of one device will be spliced to the other’s. As
such, an error occurs. Therefore, this probability should also
be taken into consideration. The probability that the common
parts of different messages are different is

Pno−colli−1′ =
Mp1′(Mp1′ − 1) · · · (Mp1′ − ni0 + 1)

Mp1′
n0

, (63)

where Mp1′ = 2Bp−B0 . Pno−colli−1 refers to the probability
of no collision after sliding once, while Pno−colli−1′ represents
the probability that messages of one device cross windows can
be spliced back successfully after sliding and retransmission.
However, there may still be collision after sliding once, which
requires another round.

2) The second window sliding: For the i-th collided mes-
sage, the number of devices in collision after sliding once is

ki1 = ki0 · (1− Pno−colli−1), i ∈ [1 : n0] . (64)

Without loss of generality, we consider the i-th collided
message in the first sliding. Likewise, let ni1 and kj2 denote
the numbers of collided messages and the corresponding
devices after the first sliding, respectively, which satisfies∑ni

1
j=1 k

j
2 = ki1.
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− : Common part

: Sliding part

Fig. 17: The second window sliding with window length and
sliding length Bp and B0, respectively.

For the sliding part, the probability of no collision is

Pno−colli−2 =
Mp1(Mp1−1)· · ·(Mp1−kj2+1)

Mp1
kj
2

, j ∈
[
1 : ni1

]
.

(65)
Note that in the common part, if there are identical sequences
among nii messages, there will not be an error. What needs to
be considered is whether the sequences among n0 messages
are the same or not. Thus, the probability of no collision in
the common part is

Pno−colli−2′ =
P
∑

ni
1

Mp1′∏n0

i=1 P
ni
1

Mp1′

. (66)

Here we denote Pr
n as the permutations, i.e., n!/(n− r)!. It is

obvious that Pni
1

Mp1′
< (Mp1′)

n0 since nii < n0. However,
the relationship between

∑n0

i=1 n
i
1 and n0 is unknown. As

such, the relationship between Pno−colli−2′ and Pno−colli−1′

is also unknown. Fortunately, since kj2 < ki1 < ki0, we have
Pno−colli−2 > Pno−colli−1, which demonstrates that as the
window sliding progresses, the probability of devices in a
collision will decrease.

3) The l-th window sliding: In order to draw a general
conclusion, we extend the above derivation to the l-th (l > 2)
window sliding. Similarly, we denote nil−1 and kjl as the
numbers collided messages and corresponding devices after
the (l−1)-th sliding, respectively, which satisfies

∑ni
l−1

j=1 k
j
l =

kil−1. As such, the probability of no collision after the l-th
sliding is given by

Pno−colli−l =
Mp1(Mp1−1)· · ·(Mp1−kjl +1)

Mp1
kj
l

, (67)

where j ∈
[
1 : nil−1

]
. And the number of collided devices

after the the l-th sliding is

kjl+1 = kjl · (1− Pno−colli−l), j ∈
[
1 : nil−1

]
. (68)

Obviously, we have

kjl+1 < kjl < · · · < kj2 < ki1 < ki0 < · · · < Ka. (69)

Consequently, the probability of no collision satisfies

Pno−colli−l > · · · > Pno−colli−1 > Pno−colli. (70)

In this regard, we further have

kjl+1 < Ka · (1− Pno−colli−l) · · · (1− Pno−colli)

< Ka · (1− Pno−colli)
(l+1),

(71)

which demonstrates that as the sliding times l goes to infinity,
the number of collided devices will eventually approach zero.

Although the collision probability of the common part does
not show an obvious trend of decreasing, in practice, we can
reduce the collision probability by controlling the length of
the window. There is a compromise between the collision
probability of common and sliding parts. A longer sliding
length will result in a lower collision probability in the sliding
part, but at the same time, it will also increase that of the
common part. Since the collision probability of the sliding
part will eventually approach zero, the sliding length can be
shorter in practice to minimize the collision probability of the
common part.

B. Derivation of the Gaussian and Bernoulli Messages in V-A

1) Derivation of Σlk at SNs: According to the formulation
in (17), since the activity and channel among different devices
are both independent from each other, the (m,n)-th (m 6= n)
entry for Σzlk is given by

(Σzlk)(m,n)

=
∑

i∈K\k
|Ali|2E

{[
φihim − φ̂i · ĥim

]
·
[
φihin−φ̂i · ĥin

]∗}
=
∑

i∈K\k
|Ali|2E

{[
φihim − pV N

i→l · µV N
im→lm

]
·
[
φihin−pV N

i→l · µV N
in→ln

]∗}
=
∑

i∈K\k
|Ali|2 ·

{
E
[
φ2i · him · h∗in

]
−(pV N

i→l)
2 · µV N

im→lm · (µV N
in→ln)∗

}
,

(72)

where

E
[
φ2i · him · h∗in

]
= E

[
φ2i
]
· E [him · h∗in] .

= pV N
i→l ·

[
(ΣV N

i→l)(m,n) + µV N
im→lm · (µV N

in→ln)∗
]
.

(73)

Then we can rewrite (72) as

(Σzlk)(m,n)

=
∑

i∈K\k
|Ali|2 · pV N

i→l ·
{

(ΣV N
i→l)(m,n)

+(1− pV N
i→l) · µV N

im→lm · (µV N
in→ln)∗

}
=
∑

i∈K\k
|Ali|2 · pV N

i→l ·
{

(ΣV N
i→l)(m,n)

+qV N
i→l · µV N

im→lm · (µV N
in→ln)∗

}
, m 6= n,

(74)
where qV N

i→l = 1 − pV N
i→l denotes the probability that the

Bernoulli variable φk equals zero. Therefore, the covariance
of zlk is not diagonal. If m = n, we have

(Σzlk)(m,m) =
∑

i∈K\k
|Ali|2 · pV N

i→l ·
{

(ΣV N
i→l)(m,m)

+ qV N
i→l ·

∣∣µV N
im→lm

∣∣2 }+ σ2
n.

(75)

This completes the derivation.
2) Derivation of Gaussian Messages at VNs: We give the

derivations of (28) and (29) here. Rewrite the multivariate
complex Gaussian pdf in (25) to canonical notation as

f(x|µ,Σ) = exp
[
−xHΓx+ ηHx+ xHη + ζ

]
, (76)
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where
Γ = Σ−1, η = Σ−1µ

ζ = −ηHΓ−1η + ln |Γ| −M lnπ,
(77)

Therefore, the product of n Gaussian pdfs is
n∏

i=1

fi(x) = exp
[
− xH

(∑n

i=1
Γi

)
x+

(∑n

i=1
ηi

)H
x

+ xH
∑n

i=1
ηi +

∑n

i=1
ζi

]
,

(78)
where∑n

i=1
ζi = −

∑n

i=1

(
ηH
i Γ−1i ηi + ln|Γi|

)
−nM lnπ. (79)

We make a simple substitution as below

Γn =
∑n

i=1
Γi, ηn =

∑n

i=1
ηi

ζn = −ηH
n Γ−1n ηn + ln |Γn| −M lnπ.

(80)

Then we can rewrite (78) as
n∏

i=1

fi(x) = exp
[
− xHΓnx+ ηH

n x+ xHηn + ζn

+
∑n

i=1
ζi − ζn

]
= c · exp

[
−xHΓnx+ ηH

n x+ xHηn + ζn
]
,
(81)

where c =
∑n

i=1 ζi−ζn is a constant for normalization. Since
the n Gaussian pdfs are independent, the product of which still
follows the Gaussian distribution. Comparing with (77) and
(78), the covariance and mean of the Gaussian distribution in
(81) are

Σn = Γ−1n =
(∑n

i=1
Σ−1i

)−1
µn = Σn ·

∑n

i=1
ηi = Σn ·

∑n

i=1
Σ−1i µi.

(82)

Similarly, in (27), it is the product of Gaussian pdfs{
f(h|µSN

i→k,Σ
SN
i→k), i ∈ L\l

}
and f(h|µpri

k ,Σpri
k ). Accord-

ing to the rule in (82), we can obtain (28) and (29).
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