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Abstract

In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which

simultaneously functions as a MIMO radar and a base station for downlink multiuser communications.

In addition to a power constraint, we require the covariance of the transmit waveform be equal to a

given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we

formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser

transmit beamforming via convex optimization. Considering that the interference cannot be completely

eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference,

and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both

of the two problems are non-convex, we show that they can be reformulated to convex optimizations via

the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms

to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC

regimes. The simulation results demonstrate significant performance improvement of DPC over transmit

beamforming, and also indicate that the degrees of freedom for the communication transmitter is

restricted by the rank of the covariance.

I. Introduction

Joint radar and communications on a single platform is an emerging technique which can

reduce the cost of the platform, achieve spectrum sharing, and enhance the performance via

the cooperation of radar and communications [1]–[3]. Because of these promising advantages,

numerous schemes are proposed in recent years to implement joint radar and communications,

X. Liu, T. Huang and Y. Liu are with the Department of Electronic Engineering, Tsinghua University, Beĳing, China (e-mail:

liuxiang16@mails.tsinghua.edu.cn, {huangtianyao; yiminliu}@tsinghua.edu.cn). T. Huang is the corresponding author.

September 7, 2021 DRAFT

http://arxiv.org/abs/2109.00779v1


2

including multi-functional waveform design [4]–[9], information embedding [10]–[15], joint

transmit beamforming [2], [6], [8], [16], [17] and so on.

We focus on the joint transmit beamforming scheme here, which achieves spatial multiplexing

of radar and communications by forming multiple transmit beams towards the radar targets

and communication receivers. Previous works based on joint transmit beamforming mainly con-

sider the joint design of a multiple-input multiple-output (MIMO) radar and downlink multiuser

MIMO communications. In particular, these works consider the optimization of the MIMO

radar performance, such as the beam pattern mismatch [2], [16] and Cramér-Rao Bound [17],

under individual signal-to-interference-plus-noise ratio (SINR) constraints at the communication

receivers. Alternatively, some variants of the design [2], [8] simultaneous optimize the perfor-

mance of radar and communications in the objective function. However, MIMO radars exhibit

performance trade-off with multiuser communications in these works. In other words, to guarantee

the SINRs at users, the achievable performance of MIMO radar is worse than the counterpart

of a separate MIMO radar without considering communications. In high speed communication

scenario, the performance loss of MIMO radar can be significant to achieve high SINRs at users

[16].

In our work, we consider a joint MIMO radar and multiuser communication system, in which

radar is the primary function and communication is the secondary function. Under this scenario,

the efficiency of MIMO radar should be first guaranteed without any performance loss of radar.

In this regard, we study the joint design, where we optimize the communication performance

under the requirement that the radar maintains its optimal performance without communications.

Literature on MIMO radar reported that the performance of MIMO radars highly depends on the

covariance of the transmit waveform [18]–[21]. Therefore, we formulate transmitter optimizations

for communications, under the transmit covariance constraint that the covariance of the transmit

waveform is equal to the given optimal one for MIMO radar without communication function.

The proposed approach in [8] considers a similar constraint, but constrains the instantaneous

covariance and needs to optimize the instantaneous transmit waveform with the constraint.

Different from [8], we constrain the average covariance, and optimize the precoding matrices as

in [2], [16], [17].

At the transmitter, linear precoding technique is usually applied to generate the transmit

waveform, which performs transmit beamforming to improve the SINRs at downlink users

[22]–[25]. For transmit beamforming, we formulate the SINR balancing [26], [27] problem
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for multiuser communications, which designs the precoding matrices by maximizing the worst

SINR at the users with the transmit covariance constraint. We show that the problem can be

reformulated to a linear conic optimization [28], and further propose an iteration method to solve

its Lagrange dual [29], which has a low complexity and converges fast.

Despite the low complexity of transmit beamforming, the numerical results show that, the

transmit covariance constraint, introduced by the radar function, typically results in low SINRs

via transmit beamforming. This still happens even if the signal-to-noise ratio (SNR) is high,

because the inter-user interference cannot be canceled under such constraint. To further eliminate

the interference, we investigate the application of dirty paper coding (DPC) [30], which reveals

that the interference in an additive white Gaussian noise (AWGN) channel does not reduce the

capacity if the interference is known at the transmitter, and was applied to the interference

canceling in downlink multiuser communications [31]–[38].

We apply DPC for the transmit design of joint radar and communications, and formulate the

SINR balancing problem for DPC with the strict radar performance constraint. Considering the

optimization is non-convex, we derive its equivalent dual problem from the Lagrange dual of the

power minimization problem, which finds the minimal transmit power to achieved given SINRs

at users. The dual problem has a convex structure, and we proposed a gradient based iteration

method to solve it. Meanwhile, we consider to maximize the sum rate of the users, which is

still a non-convex optimization problem. Using the downlink-uplink duality, we show that it is

equivalent to the sum rate maximization for an equivalent uplink channel, which is expressed as

a convex-concave saddle point problem, and further prove that the saddle point can be obtained

by solving an equivalent linear conic optimization. The simulation results in the DPC regime

show that the DPC can significantly improve the obtained SINRs at users compared to transmit

beamforming.

While the proposed DPC approaches relieve the interference issues for downlink users, it

should be noted that the hard constraint on transmit covariance matrix essentially limits the

communication performance. In particular, we reveal that the degrees of freedom of the com-

munication transmitter is limited by the rank of the transmit covariance, from the following two

observations, with the number of users denoted by  and the rank denoted by A>:

• The balanced SINR for DPC encounters a significant decrease when  exceeds A>;

• Under a high transmit SNR, the maximal sum rate for DPC is asymptotically affine in the

transmit SNR in dB. The multiplexing gain [39], (i.e., the rate gain in bits/channeluse for
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every 3dB power gain), is  with a power constraint [36], while it reduces to min( , A>)
with the transmit covariance constraint.

The rest of the paper is organized as follows. In Sec. II, we give the signal model, introduce

the transmit covariance constraint, and formulate the optimization for communications, via both

transmit beamforming and DPC. In Sec. III-V, we study the numerical methods to solve the

SINR balancing for transmit beamforming, SINR balancing for DPC and sum rate maximization

for DPC, respectively. We demonstrate the communication performance and the convergence

property of the proposed iteration algorithms via numerically results in Sec. VI. Sec. VII draws

the conclusion.

Notations: For a matrix ^, we denoted its (8, 9)-th element by ^8, 9 or [^]8, 9 . For an integer

 > 0, 1 represents a  -dimensional vector whose elements are all 1. In this paper, C(·)
represents the column space of a matrix, and (·)† represents the Moore-Penrose inverse [40].

II. Joint transmit design problems

Consider a joint transmitter which simultaneously functions as a MIMO radar transmitter

and a base station for downlink multiuser communications. In the transmitter, radar and com-

munications share transmit signal, whose expression is given in Sec. II-A, following [16].

Considering the radar performance, we introduce a transmit covariance constraint to the transmit

signal in Sec. II-B. With this radar constraint, we formulate the general transmit beamforming

optimizations for communications in Sec. II-C, and extend the optimizations to the DPC regime

in Sec. II-D.

A. Shared transmit signal

The transmitter is equipped with a transmit array with " antennas and sends independent

communication symbols to  users, where  ≤ " . The average transmit power is %. The transmit

signal x (=) for the shared transmit array is generated by the joint linear precoding scheme in

[16]. In particular, x (=) is the sum of linear precoded radar waveforms and communication

symbols, given by

x (=) = ]A s(=) +]2c(=), = = 0, . . . , # − 1, (1)

where # is the number of samples. Here, s(=) = [B1(=), . . . , B" (=)]) includes " orthogonal

radar waveforms, and the " × " matrix ]A is the precoding matrix for radar [11]. The
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orthogonality of radar waveforms means that (1/#)∑#−1

==0
s(=)s� (=) = O" . The  parallel

communication symbols to the users are contained in c(=) = [21(=), . . . , 2 (=)]) , precoded

by the " ×  matrix ]2.

Following [2], [16], [25], we rely on the following conditions to the communications symbols

and radar waveforms:

(a) The communication symbols to different users are mutually independent, have zero mean,

and are normalized to have unit average power. Therefore, E(s(=)s� (=)) = O" .

(b) The radar waveforms and communication symbols are statistically independent.

Given {s(=)} and {c(=)}, transmit design for joint MIMO radar and communication becomes

designing ]A and ]2.

B. Transmit covariance constraint for radar

The radar is monostatic so that the communication signals can also be used for target de-

tection because they are completely known at the radar receiver. Unlike phased array radars,

MIMO radars transmit independent or partially correlated signals from the array elements. The

performance of MIMO radar highly depends on its transmit covariance

X = E
{ 1

#

#−1∑

==0

x (=)x� (=)
}
. (2)

It was shown that the transmit beam pattern [18], the angular estimation accuracy [20], [21]

and the detection performance of radars [21] is determined by X. Substituting (1) into (2), X is

given by

X = ]A]
�
A +]2]

�
2 . (3)

Given the average transmit power %, X should obey tr(X) = %. To guarantee the radar perfor-

mance, in a solely MIMO radar without communications, the transmit covariance is optimized,

yielding X>, under a power constraint as in [18]–[20].

Then in the joint design considered in this paper, ]2 and ]A are constrained so that the

obtained X in (3) equals to X>. Hence, the joint radar and communications system achieves

the optimal radar performance as the solely radar system without communications. In the fol-

lowing, we design ]2 and ]A by transmit beamforming and DPC, respectively, to optimize the

communication performance under this constraint.

This approach is different from existing precoder design methods in [2], [16], [17] where they

sacrifice the radar performance to achieve the desired SINRs for communications. Particularly
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in their methods, ]2 and ]A are constrained to meet the minimum requirements on SINRs, and

are optimized to improve the radar performance.

C. Transmit beamforming for multiuser communications

For downlink multiuser communication, transmit beamforming is performed to increase the

signal power at intended users and reduce interference to non-intended users [22], [25]. Here,

a vector Gaussian broadcast channel (GBC) [41] is considered in which each user is equipped

with a single receive antenna. The channel is denoted by a  ×" matrix N. The channel output

of the GBC is given by [16]

r (=) = Nx (=) + v(=) = N]2c(=) + N]A s(=) + v(=). (4)

Here, the :-th elements of r (=) represents the received signal at the :-th user, and v(=) is

complex AWGN whose covariance is f2O . For convenience, we let f2 = 1 in the sequel.

In (4), each user receives the mixture of its own signals, the interference from other users,

the radar signal and the noise. Let L = N]2 and M = N]A . For the :-th user, the sum power

of received signal, including both desired signal and interference is
∑"
8=1
|L:,8 |2 +

∑"
8=1
|M :,8 |2 =

[NX>N
�]:,: , and the power of desired signal is |L:,: |2. Then, in the transmit beamforming

regime, the SINR at the :-th user is given by [2], [16]

SINR: =
|L:,: |2

∑
8≠: |L:,8 |2 +

∑"
8=1
|M :,8 |2 + 1

, (5)

for : = 1, . . . ,  . In the regime of DPC, the interference is treated differently. Hence, the

definition of SINR is different, as will be introduced later in II-D.

Our goal is to maximize a utility function 5 (SINR1, . . . , SINR ) which is increasing in the

SINRs [25], with the transmit covariance constraint. The optimization problem is stated as

max
]2 ,]A

5 (SINR1, . . . , SINR ) (6a)

s.t. X> = ]A]
�
A +]2]

�
2 . (6b)

There are some common utility functions in existing works. For SINR balancing, the utility

functions is the worst SINR of the users, given by [24]

5 (SINR1, . . . , SINR ) = min
1≤:≤ 

SINR: . (7)
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For sum rate maximization, the utility function is [24], [25]

5 (SINR1, . . . , SINR ) =
 ∑

:=1

log(1 + SINR: ). (8)

We then reformulate the optimization problems with respect to L. Letting Xℎ = NX>N
�, it

can be shown that the constraint in (6b) is equivalent to [42]

LL� � Xℎ ⇔


Xℎ L

L� O 


� 0, (9)

which is convex. Meanwhile, we let B: = ([Xℎ]:,: + 1)1/2, simplifying the SINR at the :-th as

SINR: =
|L:,: |2

B2
:
− |L:,: |2

, : = 1, . . . ,  . (10)

Introducing the slack variables W: ≤ SINR: , for : = 1, . . . ,  , we reformulate (6) into an

optimization with respective to L and $ = [W1, . . . , W ]) :

max
L,$

5 (W1, . . . , W ), s.t. (9) and |L:,: | ≥
√

W:

1 + W:
B: , : = 1, . . . ,  . (11)

After solving (11), the optimum of the original problem in (6) can be computed by

]2 = X
1/2
> (NX

1/2
> )†L, ]A = (X> −]2]

�
2 )1/2. (12)

For SINR balancing, the solver for (11) will be provided in Sec. III.

D. Dirty paper coding for multiuser communications

The numerical results in Sec. VI-B and in [16] indicate that the achievable SINRs with (6)

and (11) may be low with the transmit covariance constraint, and some trade-off designs [2],

[8], [16] were proposed to improve the SINR by relaxing the constraint. To further improve the

SINRs, one can perform non-linear precoding techniques, which eliminate the interference by

encoding the communication signals to adapt the interference. In particular, we consider DPC

[30], which reveals that the capacity of an AWGN channel corrupted by interference equals to the

capacity of an interference-free AWGN channel if the interference is known at the transmitter.

DPC was applied to GBC to eliminate the effect of inter-user interference [31]–[34], and was

shown to be able to achieved the capacity region of MIMO GBC [35].

We apply DPC to the GBC in (4) by serially encoding the source signal of each user. The

encoding operations are conducted in the order {1, . . . ,  }. When performing DPC for the :-th

user, {21 (=)}, . . . , {2:−1 (=)} are already encoded while {2:+1 (=)}, . . . , {2 (=)} are not encoded
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yet. Thus, the interference from the 1, . . . , (: − 1)-th user is known while the interference from

the : + 1, . . . ,  -th user is unknown at the transmitter. The radar interference is also known at

the transmitter. Therefore, the effective SINR at the :-th user in the DPC regime is [32]

SINR
dpc

:
=

|L:,: |2∑
8>: |L:,8 |2 + 1

, (13)

for : = 1, . . . ,  .

Comparing (5) and (13), it is observed that DPC improves the SINR compared with transmit

beamforming by eliminating the interference. It is worth noting that when Xℎ is non-singular, one

can perform zero forcing (ZF) DPC, namely completely cancel the interference, by computing a

lower triangular L via the Cholesky decomposition [40] of Xℎ, while ZF transmit beamforming

is generally not applicable, since it requires Xℎ be a diagonal matrix [16].

Similarly, we maximize the utility function in the DPC regime. The optimization problem is

stated as

max
]2 ,]A

5 (SINR
dpc

1
, . . . , SINR

dpc

 
), s.t. (6b). (14)

We note that the SINRs in the DPC regime also explicitly depend on L. As in the transmit

beamforming regime, we can reformulate (14) into an optimization with respect to L. Introducing

the slack variables W: ≤ SINR
dpc

:
, for : = 1, . . . ,  , (14) is equivalent to

max
L,$

5 (W1, . . . , W ), s.t. (9) and
1

W:
|L:,: |2 ≥

∑

8>:

|L:,8 |2 + 1, : = 1, . . . ,  . (15)

In Sec. IV and V, we will consider the two criteria, SINR balancing and sum rate maximization,

for DPC, repectively. Prior to these DPC approaches, we first discuss below in Sec. III the SINR

balancing in the transmit beamforming regime as a benchmark.

III. SINR balancing for transmit beamforming

In this section, we provide optimization methods to solve the SINR balancing problem in the

transmit beamforming regime. The optimization problem is (11) with the target function given

by 5 (W1, . . . , W ) = min1≤:≤ W: . We will first reformulate it into a linear conic optimization

that can be effectively solved by on-the-shelf optimization solvers, shown in Sec. III-A. Later in

Sec. III-B, we will further provide a more efficient, dual program based method.

September 7, 2021 DRAFT



9

A. Conic optimization solution

While the SINR constraint in (11) are non-convex, we can convert it to a convex one, and

hence reformulate (11) to a linear conic optimization.

Defining the balanced SINR W = min1≤:≤ W: , we reformulate the optimization into

max
L,W

W, s.t. (9) and |L:,: | ≥
√

W

1 + W B: , : = 1, . . . ,  . (16)

Note that for a feasible L to (16), rotating its :-th column by a scalar phase factor 4 9\: does

not violate the feasibility [25], [38]. Therefore, we only need to consider L with real diagonal

elements. Introducing a new variable C =
√
W/(1 + W), (16) is equivalent to the following:

max
L,C

C, s.t. (9) and ℜ{L:,: } ≥ CB: , : = 1, . . . ,  . (17)

This is now solvable by linear conic programming.

The scale of (17) can be further reduced when Xℎ is singular. We let A ≤  be the rank of

Xℎ, and write the eigen decomposition of Xℎ as Xℎ = [�A[
�, where �A is a A × A diagonal

matrix and [�[ = OA . Following the constraint in (9), we let L = [�
1/2
A LD. Then (17) becomes

an optimization with respect to LD:

max
LD ,C

C, s.t. LDL
�
D � OA , ℜ{u�: f:} ≥ CB: , : = 1, . . . ,  , (18)

where f: is the :-th column in LD and u�
:

is the :-th row in [�
1/2
A . In (18), the dimension of

LD reduces to A ×  if A <  .

B. Dual program solution

Here, we propose a simpler iteration method for (18) based on its Lagrange dual program.

Define the Lagrange function [29] of (18) by

L1(LD, C,_ , d) = C + tr
{
_ (OA − LDL

�
D )

}
+

 ∑

:=1

3:

(
ℜ{u�: f: } − CB:

)
, (19)

where _ � 0 and d = [31, . . . , 3 ]) ≥ 0 are associated dual variables. We first derive the dual

of (18) by maximizing the Lagrange function with respect to LD and C, and then show that the

dual problem is equivalent to

min
d≥0

tr
{
(JJ�)1/2

}
, s.t. s) d = 1, (20)

where J = [31u1, . . . , 3 u ] and s = [B1, . . . , B ]) . The derivations are given in Appendix A.
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Generally, solving (20) can be simpler than (18) as the variable is only a  dimensional vector.

The constraints in (20) are all linear, and the objective function is actually the nuclear norm [43]

of J, which is convex in d. Nuclear norm minimization with linear constraints can be solved

by optimization softwares such as CVX [44], [45].

We also propose a gradient projection based method to solve (20). The key step is to calculate

the descend direction at a point d, denoted by �3 (d), under the constraint. Let ℎ(d) denote the

objective function in (20), which is differential if d is strictly feasible, i.e. d > 0 and s) d = 1.

The gradient of ℎ(d), denoted by ∇ℎ(d) ∈ R , is given by

[∇ℎ(d)]: = 3−1
: [(J�J)1/2]:,: , (21)

for : = 1, . . . ,  . Considering the constraints, we compute �3 (d) from a projection operation

[46]:

�3 (d) = PΩ1
(d − ∇ℎ(d)) − d, (22)

where PΩ1
(·) is the orthogonal projection onto the constraint set Ω1 = {d | d ≥ 0, s) d = 1}.

The projection does not have a close form expression. Nevertheless, it can be computed by at

most  loops. The details on the computation of the projection is omitted here, and is given in

Appendix B.

With the obtained �3 (d) from above loops, gradient projection is performed via the following

iterations:

d (ℓ+1) := d (ℓ) + U(ℓ)�3 (d (ℓ)), ℓ = 0, 1, . . . (23)

Here, the step size U(ℓ) ∈ (0, 1) can be determined by backtracking search [29]. The initial value

d (0) should be strictly feasible. The iterations in (23) can be stopped if ‖�3 (d (ℓ))‖2 is small

enough.

Then we compute C and LD for the primal problem. Let ! be the number of performed iterations

at convergence. With strong duality, C is given by C := ℎ(d (!)). From the Karush-Kuhn-Tucker (KKT)

conditions [29], it holds that _LD =
1
2
J at the optimum of (18) and its dual, where _ =

1
2
(JJ�)1/2 according to Appendix A. Thus, we compute LD via

LD :=
[
J (!) (J (!))�

]−1/2
J (!) , (24)

where J (!) =
[
3
(!)
1

u1, . . . , 3
(!)
 

u 
]
.
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IV. SINR balancing for DPC

In this section, we provide optimization methods to solve the SINR balancing problem in the

DPC regime. Like (16), we define the balanced SINR W = min1≤:≤ W: , and then the optimization

is expressed as a problem with respect to L and W:

max
L,W

W, s.t. LL� � Xℎ, (25a)

1

W
|L:,: |2 ≥

∑

8>:

|L:,8 |2 + 1, : = 1, . . . ,  . (25b)

In Sec. IV-A, we provide a power minimization based solution, which is solvable with some

on-the-shelf optimization toolboxes. Later in Sec. IV-B, we give a more efficient solution based

on its dual problem.

A. Solution via power minimization

Unlike the SINR balancing for transmit beamforming, (25) is nonconvex since the constraint

in (25b) is nonconvex. Despite its non-convexity, (25) can be solved with a polynomial time

complexity. Firstly, we formulate the corresponding power minimization problem [23], [26],

[38], which is a linear conic optimization, solvable with a polynomial time complexity. Based

on the results, the optimizer of the original problem is then obtained with bisection search, also

solvable with a polynomial time complexity.

To formulate the power minimization problem, we assume that W is given. We then adjust the

transmit power by a scaling factor _ ≥ 0, and thus the transmit power and covariance becomes

_% and _X>, respectively. Regarding _ as a variable, the minimal transmit power problem seeks

for the minimal _ under the SINR constraints, given by

min
_,L

_, s.t. LL� � _Xℎ, (26a)

1

W
|L:,: |2 ≥

∑

8>:

|L:,8 |2 + 1, : = 1, . . . ,  . (26b)

Let _∗(W) be the optimal value of (26).

The minimal transmit power problem is a solvable linear conic optimization. In (26), the

constraint in (26a) can be recast to a semi-definite constraint as in (9). Similar to (17), we

replace |L:,: | by ℜ{L:,: } in (26b), and the constraint becomes second order cone constraints.

Therefore, the optimization in (26) can be effectively solved by linear conic solvers with a

polynomial time complexity.
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The relationship between the original problem (25) and (26) is built from this observation:

The SINR W is achievable if and only if _∗(W) ≤ 1, namely the minimal transmit power to

achieve the SINR W is less than %. Note that _∗(W) increases monotonically in W. Therefore, the

optimal W in (25), denoted by W∗>, should satisfy _∗(W∗>) = 1, and can be found by a bisection

search [26], which can be finished in polynomial time.

Similar to (18), (26) can be reformulated to an optimization with respect to LD. Let A =

rank(Xℎ), Xℎ = [�A[
� be the eigen decomposition of Xℎ, and L = [�

1/2
A LD. Then (26) is

reformulated to

min
_,LD

_, s.t. LDL
�
D � _OA , (27a)

1

W
|u�: f: |2 ≥

∑

8>:

|u�: f8 |2 + 1, : = 1, . . . ,  , (27b)

where f: is the :-th column in LD and u�
:

is the :-th row in [�
1/2
A . When A <  , the dimension

of LD is less than that of L.

Although both linear conic optimization and bisection search are solvable and have polynomial

time complexity, below we provide a more efficient approach for (25).

B. Dual program solution

This section derives the dual problem of (25), and presents a gradient projection based method

to solve it.

1) Formulation of the dual problem: The optimal value of (25) is equal to that of the following

dual program:

min
_�0

min
d≥0,W>0

W, s.t.

 ∑

:=1

3: ≥ 1, (28a)

tr(_) = 1, (28b)

_ +
∑

8<:

38u8u
�
8 �

1

W
3:u:u

�
: , : = 1, . . . ,  . (28c)

The proof starts from the Lagrange dual problem of the power minimization in (27), and derives

the dual problems of (27) and (25), sequentially, as will be detailed in Appendix C.

Note that (28) is still nonconvex, since the constraints in (28c) are bilinear. We propose

an iterative method to solve it, summarized later in Sec. IV-B4, where the inner optimization

problem is solved by fixed-point method and the outer is solved by gradient decent.
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2) Fixed-point iterations for inner minimization: Under a given _ , the inner minimization of

(28) is stated as

min
d≥0,W>0

W, s.t.

 ∑

:=1

3: ≥ 1 and (28c). (29)

Define the index set I(_) = {: | u: ∉ C(_), 1 ≤ : ≤  }. The following equations should hold

at the optimum of (29):

 ∑

:=1

3: = 1, 3: = 0 for : ∈ I(_), (30a)

W = 3:u
�
: (_ +

∑

8<:

38u8u
�
8 )†u: for : ∉ I(_). (30b)

For the case of : ∉ I(_), according to [26], [38] we compute {3: } by the fixed-point iterations

given in Algorithm 1, which converges rapidly in practice. After {3: } is obtained, W can be

computed via (30b).

Algorithm 1 Fix-point algorithm to solve (29)

1: Initialization: {3: > 0}.
2: repeat

3: Compute 3̂: from (30b), for all : ∉ I(_): 3̂: ←
[
u�
:
(_ +∑8<: 38u8u

�
8 )†u:

]−1

.

4: Store the value of {3: }, for all : ∉ I(_): 3′
:
← 3: .

5: Normalize {3: } so that their sum is 1: 3: ← 3̂:∑
 

:=1
3̂:
, ∀: ∉ I(_).

6: until
∑
:∉I(_) |3: − 3′: |2 < Y.

Output: Solution of 3: , for : ∉ I(_).

3) Gradient derivation for the outer minimization: Writing the optimal value of (29) as W> (_),
we reformulate (28) into an optimization with respect to _:

min
_�0

W> (_), s.t. (28b). (31)

We observe that, when _ ≻ 0, W> (_) is a convex and differential function. Therefore, (31) can

be solved via gradient projection.

We first give the expression of the gradient ∇W> (_) below, which we note that is non-trivial

because there is no analytical expression of the objective function W> (_). For readability, we

leave the derivation in Appendix D. We define

f̂ ∗: (_) = (_ +
∑

8<:

3∗8 (_)u8u�8 )−1u: , (32)
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where 3∗
:
(_) is the solution of (29) and (30), and a  ×  lower triangular matrix G by

G:,8 = −3∗: (_) |u�8 f̂ ∗: (_) |2, G:,: = u�: f̂ ∗: (_), (33)

for 1 ≤ : ≤  and 1 ≤ 8 < : . Letting a = (G−1))1 , we have

∇W> (_) = −
∑ 
:=1 0:3

∗
:
(_) f̂ ∗

:
(_) [ f̂ ∗

:
(_)]�

∑ 
:=1 0:

, (34)

where 0: is the :-th element in a.

Under the constraint (28b), the descend direction at a point _ ≻ 0 is computed from a

projection operation [46]:

�H (_) = PΩ2
(_ − ∇W> (_)) − _ . (35)

where PΩ2
(·) is the orthogonal projection onto the constraint set Ω2 = {_ |_ � 0, tr(_) = 1}.

The projection does not have a close form expression, but can be computed by at most  loops;

See Appendix E.

4) Summary of the iterations for the dual problem: With the initial value _ (0), which should

be strictly feasible, namely _ (0) ≻ 0 and tr(_ (0)) = 1, we update _ and d by the following

iterations for ℓ = 0, 1, . . .

(a) Update _ via _ (ℓ+1) := _ (ℓ) + U(ℓ)�H (_ (ℓ)).
(b) Update d and W via (30), yielding d (ℓ+1) := d∗(_ (ℓ+1)) and W (ℓ+1) := W> (_ (ℓ+1)).
Here, the step size U(ℓ) ∈ (0, 1) can be determined by backtracking search [29]. The iterations

of gradient descend can be stopped if ‖�H (_ (ℓ))‖� is small enough. Let ! be the number of

iterations at convergence. After (28) is solved, the balanced SINR is given by W := W (!) .

5) The solution for the primal problem: With the solution of W> obtained by the above dual

problem, we then compute the solution of the primal problem in (25). In this regard, we first

compute the optimum LD for (27). Then, the optimal L in (25) is given by L := [�
1/2
A LD.

The relationship between the dual and primal problems is stated as follow. Given W = W∗>, the

optimum of (28) should also be the solution of the dual problem of (27). The dual of (27) is

provided in (65) of the Appendix C. From the KKT conditions, the optimal solution of (27) and

(65) obey
(
_ +

∑

8<:

38u8u
�
8

)
f: =

1

W:
3:u:u

�
: f: , : = 1, . . . ,  . (36)

From (36), we compute LD by f: :=
√
1: f̃: , where

f̃: :=
(
_ (!) +

∑

8<:

3
(!)
8

u8u
�
8

)†
u: ,

September 7, 2021 DRAFT



15

and 1: is a real factor, for : = 1, . . . ,  . The factors {1: } can be determined by solving the

following  linear SINR equations:

1

W (!)
��u�: f̃:

��2 1: −
∑

8>:

��u�: f̃8
��2 18 = 1, : = 1, . . . ,  . (37)

V. Sum rate maximization for DPC

In this section, we solve the sum rate maximization in the DPC regime, given by

max
L,$

 ∑

:=1

log(1 + W:), s.t. LL� � Xℎ and (38a)

1

W:
|L:,: |2 ≥

∑

8>:

|L:,8 |2 + 1, : = 1, . . . ,  . (38b)

This problem is from (15) with the target function being the sum rate. Since the SINR constraint

is non-convex, sum rate maximization is non-convex and hard to solve.

We solve (38) via the well-known downlink-uplink duality [32], [33], [38], which introduces

a dual uplink multiple access channel (MAC) that has the same achievable rate region as the

downlink GBC. Then the problem becomes the sum rate maximization for the MAC. From the

duality, we are able to compute the optimal L via an equivalent convex optimization.

A. Optimization reformulation based on downlink-uplink duality

This section first introduces the signal model of the dual uplink MAC with respect to the

original downlink model, given in Sec. V-A1. Based on such dual uplink MAC, we formulate

the sum rate maximization problem in Sec. V-A2. Then in Sec. V-A3, we illustrate the downlink-

uplink duality by showing that the uplink MAC and the downlink GBC have the same achievable

rate region. Based on the duality, Sec. V-A4 provides the solutions to the original downlink

transmit design problem.

1) Dual uplink MAC model: Consider a uplink MAC, in which  users simultaneously

transmit to a base station with A antennas. Each user is equipped with a single transmit antenna.

The channel is �
1/2
A [� ∈ CA× . The received signal is

yul = �
1/2
A [�xul + vul, (39)

where xul = [Gul,1, . . . , Gul, ]) includes the transmit signal of the users, and vul is additive

Gaussian noise that has uncertain covariance _ constrained by tr(_) = 1, analogy to (28b). The
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transmit power of the :-th user, denoted by 3: , for : = 1, . . . ,  , should be optimized, under

the sum power constraint
∑ 
:=1 3: ≤ 1.

For the :-th user, the receiver applies a linear filter f̂: , and the output is

f̂�: yul =

 ∑

8=1

f̂ �: u8Gul,8 + f̂ �: vul. (40)

Corresponding to the DPC strategy in the downlink regime, we use successive cancellation with

the reverse order { , . . . , 1} [32] so that the signal from the :+1, . . . ,  -th user can be subtracted

when decoding for the :-th user. Therefore, the SINR for the :-th user is

SINRmac
: =

3: | f̂ �: u: |2
∑
8<: 38 | f̂ �: u8 |2 + f̂ �

:
_ f̂:

. (41)

The sum rate is then given by
∑ 
:=1 log(1 + SINRmac

:
). Below, we formulate the sum rate

maximization for the MAC with respect to the filters { f̂: }, the transmit power d := [31, . . . , 3 ]) ,

and the noise covariance _ .

2) Sum rate maximization formulation: The maximum sum rate is defined with regard to the

worst case of noise: seeking for the noise variance _ that most worsens the sum rate. Therefore,

we only need to consider non-singular _ , i.e., _ ≻ 0, because the sum rate can be infinity when

_ is singular.

When _ is non-singular, the minimum mean square error (MMSE) filter that maximizes the

output SINR for the :-th user is given by [38]

f̂: = (_ +
∑

8<:

38u8u
�
8 )−1u: , : = 1, . . . ,  . (42)

Correspondingly, the achieved SINR for the :-th user in (41) becomes

SINRmac
: = 3:u

�
: (_ +

∑

8<:

38u8u
�
8 )−1u: , : = 1, . . . ,  , (43)

and further the sum rate is written as

 ∑

:=1

log(1 + SINRmac
: ) = log

��_ +
 ∑

:=1

3:u:u
�
:

�� − log
��_
��. (44)

Now we write the sum rate maximization for the dual MAC as

min
_�0

max
d≥0

log
��_ +

 ∑

:=1

3:u:u
�
:

�� − log
��_
�� (45a)

s.t. tr(_) = 1,

 ∑

:=1

3: = 1. (45b)
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In (45), all the constraints are convex. The objective function, denoted by 6(_ , d), is convex in

d and is concave in _ . Therefore, (45) is a convex-concave saddle point problem. Solutions to

this problem will be discussed later in Sec. V-B.

3) Downlink-uplink duality: The downlink-uplink duality is established from the power min-

imization problem and its dual. In (27), we assign individual SINR thresholds to the users, and

the power minimization becomes:

min
_,LD

_, s.t. LDL
�
D � _OA ,

1

W:
|u�: f: |2 ≥

∑

8>:

|u�: f8 |2 + 1, : = 1, . . . ,  , (46)

where W: is the given SINR for the :-th user, for : = 1, . . . ,  . Correspondingly, the Lagrange

dual problem becomes:

max
_�0

max
d≥0

 ∑

:=1

3: , s.t. (28b), and _ +
∑

8<:

38u8u
�
8 �

1

W:
3:u:u

�
: , : = 1, . . . ,  . (47)

We denote the optimal value of (46) and (47) by _∗($) and _∗
dual
($), respectively, where $ =

[W1, . . . , W ]) .

Recall that for the GBC, the SINRs W1, . . . , W are achievable if and only if _∗($) ≤ 1.

Meanwhile, we note that the inner maximization in (47) is equivalent to [38]

min
d≥0,{ f̂: }

 ∑

:=1

3: , s.t. SINRmac
: ≥ W: , : = 1, . . . ,  , (48)

which finds the minimal transmit power of the MAC to achieve the SINRs under a given _ .

Further, the optimal value of the outer maximization in (47) is the worst-case minimal transmit

power under all possible _ constrained by (28b). Therefore, _∗
dual
($) gives the minimal transmit

power to achieve the SINRs W1, . . . , W in the MAC. Since the transmit power cannot exceed 1

in the MAC, the SINRs W1, . . . , W are achievable in the MAC if and only if _∗
dual
($) ≤ 1. From

strong duality, _∗
dual
($) = _∗($), so the achievable region of the GBC and MAC are the same.

4) Solutions to the original downlink problem: We compute L for the original downlink

problem after the saddle point (_∗, d∗) is obtained. First, from the downlink-uplink duality, the

obtained SINRs in the MAC, given by

Wul,: := 3∗:u
�
(
_∗ +

∑

8<:

3∗8 u8u
�
8

)−1
u: , : = 1, . . . ,  , (49)

also give the SINRs in the GBC. Then, with the known SINRs, L is obtained by solving LD from

(46), i.e., L := [�
1/2
A LD, analogy to Sec. IV-B5. In particular, we compute LD by f: :=

√
1: f̃: ,

where

f̃: :=
(
_∗ +

∑

8<:

3∗8 u8u
�
8

)−1
u: ,
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and 1: is a real factor, for : = 1, . . . ,  . The factors {1: } can be determined by solving the

following  linear SINR equations:

1

Wul,:

��u�: f̃:
��2 1: −

∑

8>:

��u�: f̃8
��2 18 = 1, : = 1, . . . ,  . (50)

B. Solutions to (45)

To our knowledge, there are three types of methods to solve the convex concave saddle point

problem in (45):

(a) The first type is first order algorithms, such as extra-gradient and optimistic gradient descent

ascent [47], which only require the gradient;

(b) The second type is interior-point algorithms [29], [38], which solve the KKT equations via

Newton method and thus require the second derivative;

(c) The third one, as stated in [48], is to convert the saddle point problem to equivalent linear

conic problems that is acceptable to convex optimization solvers like CVX [44], [45].

The implementation of the interior-point algorithms and first order algorithms is omitted here.

Considering the well-structure of the saddle point problem in (45), we show that it is equivalent

to the following convex optimization:

min
`�0

log |OA + ` | − log |` |, s.t. u�: `u: ≤ 1, ∀:. (51)

Here, the optimal ` should be non-singular. The equivalence between (45) and (51) is from the

following theorem.

Theorem 1. Let `∗ be the optimum of (51). Hence, `∗ should obey

`∗−1 − (OA + `∗)−1
=

 ∑

:=1

q:u:u
�
: , q:u

�
: `
∗u: = q: , (52)

for : = 1, . . . ,  , where {q: ≥ 0} are the dual variables. Then the saddle point of (45) can be

computed by

d∗ =
1

[
5, _∗1 =

1

[
(`∗ + OA)−1, (53)

where 5 = [q1, . . . , q ]) and [ = 1)
 
5.

Proof. The KKT condition of (51) directly yields equations in (52). To show that (_∗, d∗) is a

saddle point of (45), we only need to verify the KKT conditions; See Appendix F. �

The problem in (51) can be reformulated to a linear conic optimization; See [49]. After `∗

is obtained, we can first compute {q: } from (52), and then compute (_∗, d∗) from (53).
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C. Discussions

It is worth noting that the maximized sum rate in the DPC regime should equal to the sum rate

capacity. To see this, we introduce a new variable `′ = [�
1/2
A `�

1/2
A [�, and then (51) becomes

min
`′�0

log |Xℎ + `′| − log |`′|, s.t. `′:,: = 1, : = 1, . . . ,  , (54)

when Xℎ is non-singular. In (54), the inequality constraints becomes equality constraints since

the equality should hold at the optimum. The optimal value of (54), named Sato upper bound

[32]–[34], gives the upper bound for the sum rate capacity of the GBC. Note that the maximized

sum rate via (38) is equal to the optimal value of (51), and thus equals to the Sato upper bound.

Therefore, the sum rate capacity is achieved by DPC, which corresponds with the conclusion in

[35] that DPC achieves the capacity region of GBC with the transmit covariance constraint.

VI. Numerical results

We performed numerical simulations to demonstrate the performance of multiuser communica-

tions under the transmit covariance constraint from radar. The simulation settings are introduced

in Sec. VI-A. In Sec. VI-B, the simulation results for SINR balancing in the transmit beamforming

and DPC regimes are compared. The results of sum rate maximization is displayed in Sec. VI-C.

The convergence property of the iteration method proposed in Sec. III and IV are displayed in

Sec. VI-D.

A. Preliminaries

In the simulations, the transmit array is a uniform linear array with equal antenna spacing.

The antenna spacing is half of the wavelength, and the number of transmit antenna is " = 10.

The optimal covariance for radar X> is given by X> = %Y>, where % is the transmit power and

Y> is the power normalized covariance. For a given Y>, we performed numerical experiments

with different % to obtain the communication performance versus transmit SNR %/f2. We also

compared the communication performance under three different values of Y>, which corresponds

to three different radar transmit beam patterns. The first value is Y> = O"/" , with which the

array transmits orthogonal waveforms and forms an omni-directional beam pattern for radar. The

second value is Y> = (1/")1"1)
"

, which means that the array works in phase-array mode and

forms a single beam towards 0◦. The third value is obtained via the beam pattern matching
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Fig. 1. Three different types of transmit beam patterns for radar: omni-directional, multi-beam and phased-array single beam.

0 5 10 15 20 25 30 35 40

Transmit SNR (dB)

-10

-5

0

5

10

15

20

25

30

35

40

B
al

an
ce

d 
S

IN
R

 (
dB

)

omini-directional, TBF
phase-array, TBF
multi-beam, TBF
omini-directional, DPC
phase-array, DPC
multi-beam, DPC

Fig. 2. Balanced SINR versus transmit SNR %/f2, for  = 4.

"TBF" is the curve for transmit beamforming.
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Fig. 3. Balanced SINR versus transmit SNR %/f2, for  = 6.

"TBF" is the curve for transmit beamforming.

design in [18] to form multiple beams towards −40◦, 0◦, 40◦ with a beam width of 10◦. The

corresponding transmit beam patterns under the three values of Y> are displayed in Fig. 1.

For communications, the channel N obeys Rayleigh fading, namely the elements in N satisfy

independent standard complex normal distributions. The noise power is f2 = 1. To display

the communication performance, we run Monte Carlo tests with randomly generated N, and

computed the average performance of communications.
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B. Balanced SINR versus transmit SNR

The balanced SINR under different transmit SNR and Y> for  = 4 is displayed in Fig. 2,

in both transmit beamforming and DPC regimes. From Fig. 2, it is observed that DPC achieves

higher balanced SINR than transmit beamforming. The performance improvement of DPC over

transmit beamforming is especially impressive under a high transmit SNR. For omni-directional

and multi-beam patterns, the balanced SINR via DPC increases linearly with the transmit SNR

in dB scale, while the counterpart for transmit beamforming does not increase when the transmit

SNR is high. The reason is that the interference cannot be effectively canceled via transmit

beamforming with the transmit covariance constraint. To zero-forcing the interference, transmit

beamforming requires Yℎ = NY>N
� to be a diagonal matrix [16], while this condition generally

does not hold if N is Rayleigh fading. Since the interference cannot be eliminated, the balanced

SINR for transmit beamforming keeps constant even if the SNR is high. Conversely, DPC are

still able to cancel the interference under the transmit covariance constraint. As explained in Sec.

II-D, to zero-forcing the interference in the DPC regime, we only need Yℎ to be non-singular.

This condition can be met if the rank of Y>, denoted by A>, is not less than  when N obeys

Rayleigh fading. We note that the value of A> are 10, 4 and 1 for the omni-directional, multi-beam

and phased-array pattern, respectively. When  = 4, the condition holds for omni-directional

and multi-beam patterns, and thus the corresponding balanced SINR for DPC is respectable

under a high SNR. For phased-array mode, A> is less than  , and thus its balanced SINR in

the DPC regime becomes much lower compared to omni-directional and multi-beam patterns.

Nevertheless, DPC is still able to achieve an acceptable balanced SINR for phased-array beam

when the transmit SNR is high, while we observe that the counterpart via transmit beamforming

is even less than 0-dB.

The balanced SINR versus transmit SNR for  = 6 is shown in Fig. 3. By comparing Fig. 2

and Fig. 3, one observes that the balanced SINR becomes lower when  increases, namely the

service quality for each user can worsen when the number of users increases. We also observe

that the loss of balanced SINR in the DPC regime is slight for omni-directional beam pattern,

but is notable for the multi-beam pattern. We note that when  = 6, A> is larger than  for omni-

directional beam pattern, and thus DPC is still able to zero-forcing the interference. However,

for the multi-beam pattern, A> is less than  = 6, and thus ZF DPC is not applicable, leading to

an obvious performance degradation. Based on the above facts, we can regard the A>, the rank of
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Fig. 4. Maximized sum rate versus transmit SNR %/f2, for  = 4, 6.

Y>, as the degrees of freedom of the communication transmitter. In the DPC regime, increasing

 generally does not cause serious loss of service quality if  does not exceed the degrees

of freedom, while the loss can be more significant when  exceeds it. It is worth noting that

when  exceeds A>, simultaneously servicing for  users via transmit beamforming is almost

unrealistic, since the balanced SINR is extremely low.

C. Maximized sum rate versus transmit SNR

The maximized sum rate versus transmit SINR in the DPC regime is given in Fig. 4, for

 = 4, 6. In Fig. 4, the sum rate is asymptotically affine in the transmit SNR in dB, and

the slope of the line determines the multiplexing gain [36], [39] of multiuser communications,

which equals to the rate gain in bits/channeluse for every 3-dB transmit power gain. With a

power constraint, it is proven in [36] that the multiplexing gain of the GBC is  . With the

considered transmit covariance constraint, the results is different. For instance, we read from

Fig. 4 that the multiplexing gain for the multi-beam pattern does not increase when  increases

from 4 to 6. A similar result is observed from the curve for phase-array mode. Nevertheless, for

omni-directional beam pattern, the multiplexing gain increases from 4 to 6 when  increases

from 4 to 6. In summary, one can find that the multiplexing gain is min{ , A>} with the transmit

covariance constraint. The explanation is from the fact that ZF DPC is asymptotic optimal under

a high SNR. When  ≤ A>, the GBC can be simplified to  AWGN channels to the  users via

ZF DPC, and thus the multiplexing gain is  . However, when  > A>, to meet the constraint
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LL� � Xℎ, L should have at most A> non-zero diagonal elements if it is lower triangular. In

other words, to zero forcing the interference, only A> users are active while the others are inactive.

Therefore, when  > A>, the multiplexing gain is restricted by A>, and the sum rate gain is not

obvious if  exceeds A>.

D. Convergence performance of the iteration algorithms

The convergence performance of the iteration algorithms to solve the SINR balancing problem

for transmit beamforming in Sec. III-B is displayed in Fig. 5. In Fig. 5, the SINR gap W (ℓ) − W∗

versus iteration time ℓ in 10 experiments with randomly distributed N is demonstrated, for

 = 4, Y> = (1/")O" and % = 10. Here, W∗ is the balanced SINR obtained by the linear conic

programming in (17), and W (ℓ) is the temporary SINR after the ℓ-th iteration, given by

C (ℓ) := tr
{
(J (ℓ)[� (ℓ)]�)1/2

}
, W (ℓ) := [C (ℓ)]2/(1 − [C (ℓ)]2).

From Fig. 5, we observe that the iteration algorithm in Sec. III-B converges fast. In some

experiments, the SINR gap is less than 10−4 after no more than 10 iterations. We note that

the optimal d in (20) may locate at the boundary, i.e. have zero elements. In this case, the

algorithm may need more iterations to converge, as indicated by the curves in the right of Fig. 5.

Nevertheless, the algorithm can still find an acceptable approximate solution with a few iterations.

Considering the interference control, the number of users for transmit beamforming should be

limited. Therefore, the dimension of the variable d can be low in practice, and it is hopeful to

implement the algorithm in real time.

The convergence performance of the iterative algorithms to solve the SINR balancing problem

for DPC in Sec. IV-B is displayed in Fig. 6, which gives the SINR gap W (ℓ) − W∗> versus iteration

time ℓ in 10 experiments. In each experiment, N is randomly generated with  = 4, and Y> =

(1/")O" . To perform the experiments, we first let the balanced SINR be W∗> = 10, next compute

the minimal power %′ to achieve the SINR by solving (27), and then perform the iteration

algorithm to solve (28) with the power %′, i.e. with X> = %
′Y>.

Compared with the the iteration algorithm for transmit beamforming, the algorithm for DPC

needs more iterations to achieve a small SINR gap. This is mainly because the optimization in

(28) has a more complex structure and a higher dimension than that in (20). In the experiments,

we observe that the iterations converge within a moderate number of times when the optimal

_ is non-singular, while the SINR gap decreases slower when the optimal _ is singular. For
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Fig. 5. The SINR gap W (ℓ) − W∗ versus iteration time ℓ for

the SINR balancing in the transmit beamforming regime.
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Fig. 6. The SINR gap W (ℓ) − W∗> versus iteration time ℓ for

the SINR balancing in the DPC regime.

practical applications, a trade-off between the accuracy and computation time can be considered.

In other words, we can control the number of iterations and obtain an approximate solution. To

improve the algorithm efficiency, one may further consider deep leaning enabled acceleration

schemes as in [27].

VII. Conclusion

In this paper, we consider the transmit design of a joint MIMO radar and downlink multiuser

communications system, in which the communication performance is optimized under a transmit

covariance constraint from radar. In particular, we formulate the SINR balancing problem in both

transmit beamforming and DPC regimes, and the sum rate maximization in the DPC regime.

Further, we proposed methods to solve these problems via convex optimization. Despite the low

complexity of transmit beamforming, the achievable SINR via transmit beamforming may be low

even if the transmit SNR is high. As the theoretically optimal scheme for multiuser precoding,

DPC has a impressive performance gain over transmit beamforming, with increased complexity

for encoding and optimization. In the simulations, it is observed that the degrees of freedom for

the communication transmitter is restricted by the rank of the transmit covariance.
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Appendix A

The Lagrange dual of (18)

The dual objective function is defined by 61(_ , d) = maxLD ,C L1(LD, C,_ , d). Under the con-

ditions that

s) d = 1, 3:u: ∈ C(_) for : = 1, . . . ,  , (55)

where s = [B1, . . . , B ]) , 61(_ , d) is finite and its expression is

61(_ , d) = tr
{
_ + 1

4
_†JJ�

}
, (56)

where J = [31u1, . . . , 3 u ]. Thus, the Lagrange dual problem of (18) is

min
_,d

tr
{
_ + 1

4
_†JJ�

}
, s.t. (55), d ≥ 0, _ � 0. (57)

To solve the dual problem, we consider to optimize _ with a given d. From equation (2.4) in

[50], one has

tr
{
_ + 1

4
_†JJ�

}
≥ tr

{
(__†JJ�)1/2

}
= tr

{
(JJ�)1/2

}
, (58)

where the inequality holds with equality when _ =
1
2
(JJ�)1/2. In (58), we use the equality that

__†J = J since the columns of J should be in C(_) according to (55). Note that (58) gives

the optimal value of (57) under a given d. Therefore, the dual problem in (57) is equivalent to

(20).

Appendix B

Computation of the projection onto Ω1

The projection of a point d = [31, . . . , 3 ]) ∈ R onto Ω1 is expressed as

x = arg min
x̂

1

2
‖d − x̂‖22, s.t. x̂ ≥ 0, s) x̂ = 1, (59)

where s = [B1, . . . , B ]) > 0. Letting ) = [\1, . . . , \ ]) ≥ 0 and E be the dual variables

associated with the constrains x̂ ≥ 0 and s) x̂ = 1, x should be the solution of the KKT system

[29]:

G: = 3: + \: − EB: = 0, s)x = 1, \:G: = 0, G: ≥ 0, \: ≥ 0, (60)

where G: is the :-th element in x, for : = 1, . . . ,  .

To solve (60), we let A: = 3:/B: . Without loss of generality, it is assumed that A1 ≤ · · · ≤ A .

First, we note that E should obey E < A . If E ≥ A , we have G2
:
= G:\: + G: (3: − EB:) ≤ 0
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for all : . Then x = 0, which is not feasible. There should exist an integer 1 ≤ 9 ≤  such that

E ∈ [A 9−1, A 9 ). If 9 = 1, the interval is (−∞, A1). Similarly, we have G: = 0 for all : < 9 . In

addition, for : ≥ 9 , we have G: − \: = 3: − EB: > 0, so \: = 0. Based on these conclusions, we

have

G: = 0, ∀: < 9, G: = 3: − EB: , ∀: ≥ 9 . (61)

Since s)x = 1, E should be given by

E =

∑ 
:= 9 3: − 1
∑ 
:= 9 B:

. (62)

The problem is that 9 is unknown. Nevertheless, we can search for a 9 so that E( 9) ∈ [A 9−1, A 9 ),
where E( 9) is the value of E computed by (62). Since 9 is an integer in [1,  ], the times of

searching is not larger than  . Once 9 is obtained, the projection x can be computed via (61)

and (62).

Appendix C

The dual of (25)

The Lagrange function [29] of (27) is

L2(LD, _,_ , d) = _ + tr
(
_ (LDL�D − _OA)

)
+

 ∑

:=1

3:

{∑

8>:

��u�: f8
��2 + 1 − 1

W

��u�: f:
��2
}
, (63)

where d = [31, . . . , 3 ]) ≥ 0 and _ � 0 are dual variables. The dual function is 62(_ , d) =
minLD ,_ L2(LD, _,_ , d). It can be shown that 62(_ , d) is finite under the conditions of (28b) and

(28c) [38], repeated as follows:

tr(_) = 1, (28b)

_ +
∑

8<:

38u8u
�
8 �

1

W
3:u:u

�
: , : = 1, . . . ,  . (28c)

When these conditions hold, the dual function is given by 62(_ , d) =
∑ 
:=1 3: . Therefore, the

dual problem of (27) is

max
_�0

max
d≥0

 ∑

:=1

3: , s.t. (28b) and (28c). (65)

It can be proven that (27) has strong duality [38], so the optimal value of (65), denoted by

_∗
dual
(W), equals to _∗(W). Then, W∗> should satisfy _∗

dual
(W∗>) = 1. In other words, W∗> is the minimal

W ≥ 0 so that _∗
dual
(W) ≥ 1. Note that _∗

dual
(W) ≥ 1 means there exists a pair of feasible solution

_ , d in (65) satisfying
∑ 
:=1 3: ≥ 1. Therefore, W∗> is equal to the optimal value of the dual

problem in (28).
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Appendix D

The gradient of the objective function in (31)

To derive the gradient, we note that W> (_), d∗(_) is the solution of the equations in (30).

When _ ≻ 0, the index set I(_) is empty. Computing the differential to the equations in (30),

we have

1) dd = 0, (66a)

dW − d3:u
�
: f ∗: (_) = −3∗: (_) [ f ∗: (_)]� (d_ +

∑

8<:

d38u:u
�
: ) f ∗: (_), (66b)

for : = 1, . . . ,  . We rewrite (66b) into a matrix form:

Gdd = dW1 + b, (67)

where the :-th element in b is 3∗
:
(_) [ f ∗

:
(_)]�d_ f ∗

:
(_) and G is defined in (33). Combining

(66a) and (67), one has

1) G
−11 dW + 1) G

−1b = 0. (68)

Letting 0: be the :-th element in a = (G−1))1 , there is

dW = − 1
∑ 
:=1 0:

tr
{  ∑

:=1

0:3
∗
: (_) f̂ ∗: (_) [ f̂ ∗: (_)]�d_

}
, (69)

from which one can obtain the gradient in (34).

Appendix E

Computation of the projection onto Ω2

The projection of a Hermitian matrix _ ∈ CA×A onto Ω2 is

arg min
^

1

2
‖_ − ^‖2� , s.t. tr(^) = 1, ^ � 0. (70)

To solve (70), we write the eigen decomposition of _ as _ = \�H_
� , where \ is a A × A unitary

matrix and �H is diagonal. Letting �G = \�^\, the optimization in (70) is reformulated to

min
�G

1

2
‖�H − �G ‖2� , s.t. tr(�G) = 1, �G � 0. (71)

It can be observed that �G should be diagonal at the optimum. We let H: and G: be the (:, :)-th
elements in �H and �G , respectively. Then (71) is equivalent to

min
x

1

2
‖y − x‖22, s.t. 1)A x = 1, x ≥ 0. (72)

where x = [G1, . . . , GA]) and y = [H1, . . . , HA]) . Here, (72) has the same form as the optimization

in (59), and can be solved with no more than  loops. Once the optimal x is obtained, the

projection is given by \diag(x)\� .
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Appendix F

Proof for Theorem 1

In this proof, we verify that _∗ and d∗ meet the KKT condition of (45), which is stated as

(_∗ +
 ∑

:=1

3∗:u:u
�
: )−1 − [_]∗−1 + aOA = 0, (73a)

tr(_∗) = 1, _∗ ≻ 0, (73b)

u�9 (_∗ +
 ∑

:=1

3∗:u:u
�
: )−1u 9 − [ + i 9 = 0, (73c)

 ∑

:=1

3∗: = 1, 3∗9 ≥ 0, i 9 ≥ 0, i 93
∗
9 = 0, (73d)

for 9 = 1, . . . ,  . Here, a, [ and {i: } are the dual variables associated with the constraints

tr(_) = 1,
∑ 
:=1 3: = 1 and d ≥ 0, respectively, and their values are given by

[ = 1) 5, a = [, i: = [
(
1 − u�: `∗u:

)
, (74)

for : = 1, . . . ,  .

In the following, we check the conditions in (73) one by one. First, we point out an important

relationship between d∗, _∗ and `∗. From (52), one has

(1/[) [`∗]−1
= _∗ +

 ∑

:=1

3∗:u:u
�
: . (75)

Then

(_∗ +
 ∑

:=1

3∗:u:u
�
: )−1 − [_∗]−1

= [`∗ − [_∗]−1
= −aOA ,

i.e. (73a) holds, and

u�9 (_∗ +
 ∑

:8=1

3∗:u:u
�
: )−1u 9 = [u

�
9 `
∗u 9 = [ − i: ,

i.e. (73c) holds. In (73b), _∗ ≻ 0 is trivial, and

tr(_∗) = 1

[
tr((`∗ + OA)−1) = A

[
− 1

[
tr((`∗ + OA)−1`∗). (76)

Multiply the left and right side of (52) by `∗ and take the matrix trace, we have

tr((`∗ + OA)−1`∗) = A −
 ∑

:=1

q:u
�
: `
∗u: . (77)
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Substituting (77) into (76), one has

tr(_∗) = 1

[

 ∑

:=1

q:u
�
: `
∗u: =

1

[

 ∑

:=1

q: = 1, (78)

so (73b) holds. Finally we show that (73d) holds. The first three conditions in (73d) are trivial.

According to (52), it can be shown that

i 93
∗
9 = q 9 (1 − u�9 `∗u 9 ) = 0. (79)

Therefore (73d) holds and the proof is completed.
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