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Abstract—This paper studies the joint device selection and
power control scheme for wireless federated learning (FL), con-
sidering both the downlink and uplink communications between
the parameter server (PS) and the terminal devices. In each round
of model training, the PS first broadcasts the global model to
the terminal devices in an analog fashion, and then the terminal
devices perform local training and upload the updated model
parameters to the PS via over-the-air computation (AirComp).
First, we propose an AirComp-based adaptive reweighing scheme
for the aggregation of local updated models, where the model
aggregation weights are directly determined by the uplink trans-
mit power values of the selected devices and which enables the
joint learning and communication optimization simply by the
device selection and power control. Furthermore, we provide
a convergence analysis for the proposed wireless FL algorithm
and the upper bound on the expected optimality gap between
the expected and optimal global loss values is derived. With
instantaneous channel state information (CSI), we formulate the
optimality gap minimization problems under both the individual
and sum uplink transmit power constraints, respectively, which
are shown to be solved by the semidefinite programming (SDR)
technique. Numerical results reveal that our proposed wireless
FL algorithm achieves close to the best performance by using
the ideal FedAvg scheme with error-free model exchange and full
device participation.
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I. INTRODUCTION

The future 6th generation (6G) wireless communication sys-
tems are envisioned to support various intelligent applications
and services, which are empowered by the significant increase
of wireless edge devices (e.g., mobile phones and sensors) with
growing computation and communication capabilities [1]. A
vast amount of data generated by the edge devices can be
utilized to train machine learning (ML) models to further
enhance the intelligence of those applications and services
[2]. Conventional machine learning methods, particularly those
based on deep neural networks (DNN), are centralized and
require to collect all the raw data to the central server or
cloud in order to train the artificial intelligence (AI) model
[3]. However, certain privacy and security issues arise during
the data migrations, and limited wireless resource also poses
some new technical challenges for the design of wireless AI
systems [4], [5].

To address the issues of the centralized ML, federated
learning (FL), a new distributed ML paradigm, was proposed
in [6], which achieves great success and becomes increasingly
popular in both the academia and industry. In FL, the dis-
tributed terminal devices, orchestrated by a single parameter
server (PS), collaboratively train an AI model in an iterative
fashion. During the whole iterative process, all participated
terminal devices only exchange the model parameters with
the PS and keep the raw data locally to protect the privacy
and security. Nonetheless, FL faces several new challenges
when being implemented in the wireless scenarios: 1) data
heterogeneity: different from the centralized ML, FL highly
suffers from the data heterogeneity [7], [8], which arises when
the distributions of the generated data vary from device to
device; and 2) communication complexity: the total training
process for FL consumes a large amount of communication
resources for serving large bunches of terminal devices, since
the desired ML model is in general of high dimension and
the number of updating rounds in the training process is thus
considerably large [9], [10].

Aimed at enhancing the communication efficiency of the
FL, comprehensive studies have been done from a com-
munication perspective [11]–[17], [19]–[24]. The authors in
[11] proposed a joint communication and learning framework
and formulated an optimization problem considering the user
selection and wireless resource allocation to minimize the
FL training loss. In [12], the authors identified the temporal
dependency and varying significance of the training rounds,
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and proposed a joint device selection and bandwidth allocation
scheme to maximize the weighted sum of selected clients in
the long-term view. In [13], the authors proposed an update-
aware device scheduling and resource allocation policy and
analyzed the convergence of the FL algorithm with device
scheduling. In [14], under the latency constraint, the authors
proposed a joint device scheduling and resource allocation
scheme to minimize the global loss of wireless FL, which
achieves a desirable trade-off between the number of required
training rounds and the latency per round. In [15], the au-
thors proposed a joint wireless resource and quantization bits
allocation policy to minimize the quantization error while
guaranteeing the transmission outage probability of the uplink
transmissions for the wireless FL. In [16], the authors proposed
a control algorithm to determine the learning parameter to
minimize the optimality gap between the expected and op-
timal loss function values. However, all the aforementioned
works are conducted under the digital communications, and
consequently the communication overhead and latency still
increase with the number of participated edge devices [17].
Recently, by investigating the waveform superposition nature
of the wireless multiple access (MAC) channels [18], over-
the-air computation (AirComp) enabled analog uplink trans-
mission for model aggregation methods have been proposed
for the FL [17], [19]–[24]. Specifically, in [19], the authors
proposed a joint device scheduling and beamforming design
to minimize the mean square error (MSE) of the aggregated
signals to accelerate the convergence of the AirComp FL. In
[20], the authors proposed an energy-aware device scheduling
algorithm under the energy constraint to optimize the AirComp
FL performance. In [17], the authors proposed a broadband
AirComp FL and investigated the corresponding power control
and device scheduling problem, and the authors in [21] further
adopts a one-bit quantization scheme to modify the policy
adopted in [17]. The authors in [22] proposed a gradient
aware power control scheme to enhance the performance of the
AirComp FL. In [23], the authors proposed a power control to
minimize the optimality gap between the expected and optimal
global loss values of the AirComp FL, and parallelly in [24],
the authors proposed a joint device selection and power control
for the AirComp FL with uniform power scaling and equal
weights model aggregation.

All the above researches about FL over wireless channels
only considered the uplink transmissions for the model pa-
rameters from terminal devices to the PS, assuming the avail-
ability of accurate global model at the devices through perfect
downlink transmissions. However, the downlink transmissions
usually suffer from quantization error, limited transmit power,
limited bandwidth, and additive noise, which degrades the per-
formance of the considered FL systems [25]–[29]. Therefore,
broadcasting of inaccurate global model is also an important
issue for the implementation of the FL algorithms. Without
considering the wireless channels, the authors in [25] proposed
a linear projection method to broadcast a compressed global
model to the devices, and the authors in [26] derived the
sufficient conditions for controlling the signal-to-noise ratios
(SNRs) of both the downlink and uplink transmission to
maintain the linear convergence rate of the FL algorithm [26].

Different from [25], [26] and under wireless implementations
of FL, the authors in [27], [28] provided the convergence anal-
ysis of both the digital and analog downlink transmissions and
showed the advantages of the analog downlink transmission,
and the same result was presented in [29] numerically. To the
best of our knowledge, there are few existing works addressing
how to efficiently mitigate the impact of both the downlink and
uplink wireless communications on the FL algorithm.

This paper provides a comprehensive analysis on the wire-
less FL algorithm, considering the analog (uncoded) downlink
transmissions for global model broadcasting and AirComp
enabled analog uplink transmissions for model aggregation,
due to the superiority of the analog downlink and uplink
transmissions for wireless FL as mentioned above. Compared
to the previous works that only account for the uplink com-
munications of FL [17], [19]–[24] and only focus on the
convergence analysis for FL [26]–[28], the goals of this paper
are not only to investigate the impact of both the downlink and
uplink wireless communications on the convergence behavior
of the considered FL algorithm, but also to mitigate this impact
to enhance the FL performance. The main contribution of this
paper is summarized as follows:

• We propose an AirComp-based adaptive reweighing
scheme for model aggregation, where the adaptive
weights are directly determined by the uplink transmit
power values of the participated devices in each com-
munication round. With respect to our proposed policy,
we analyze the convergence behavior of the wireless
FL algorithm and derive the upper bound on the ex-
pected optimality gap between the expected and optimal
global loss values, which determines how bias the FL
converges and theoretically quantifies the impact of both
the downlink and uplink wireless communications on the
convergence of the wireless FL algorithm, and thus needs
to be minimized to enhance the FL performance.

• With only instantaneous channel state information (CSI)
known per round of the learning process, we formulate
the optimality gap minimization problem as optimizing
over the device selection and power control round by
round, under both the individual and sum uplink transmit
power constraints, respectively. Though the optimality
gap minimization problem is a mixed integer program-
ming (MIP) problem, we transform it into a continuous
quadratically constrained ratio of two quadratic func-
tions (QCRQ) minimization problem, which is efficiently
solved by the semidefinite relaxation (SDR) technique.
Furthermore, based on the optimal SDR solution, we
derive the optimal device selection and power control to
minimize the optimality gap for both the individual and
sum uplink power constraint cases.

The reminder of this article is organized as follows. Section
II presents the system model. In Section III, we provide the
convergence analysis results of the wireless FL system in
terms of the optimality gap. In Section IV, we formulate the
optimality gap minimization problem and find the optimal
device selection and power control to minimize the optimality
gap. Numerical results are presented in Section V. Finally,
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Section VI concludes this paper.
Notation: The bold lower-case letter denotes a vector; the

bold upper-case letter denotes a matrix; the calligraphic upper-
case letter denotes a set. E(·) denotes the expectation operator.
∇ denotes the gradient operator. For a vector x, ‖x‖2 denotes
the Euclidean norm of x; xT denotes the transpose of x; xH

denotes the Hermitian transpose of a complex vector x. 〈x,y〉
denotes the inner product between vectors x and y. 0 and 1
denote the null vector and all-one vector, respectively. For a
matrix M, MT , tr(M), and rank(M) denote the transpose,
trace, and rank, of M, respectively. [M]i,j denotes the (i, j)-th
element of M. diag(x1, · · · , xn) denotes a diagonal matrix
with x1, · · · , xn being its diagonal elements. M � 0 means
that matrix M is positive semidefinite. I denotes the identity
matrix. R and C denote the sets of real numbers and complex
numbers, respectively. We denote a circularly symmetric com-
plex Gaussian (CSCG) distribution with the real and imaginary
components with variance σ2/2 by CN (0, σ2). For a set A,
|A| denotes its cardinality.

II. SYSTEM MODEL

A. Preliminaries

Parameter sever
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Fig. 1. Wireless FL system with one PS and K terminal devices.

We consider a wireless FL system, as shown in Fig.
1, where one PS coordinates a set of K terminal devices
K = {1, · · · ,K} through wireless channels to cooperatively
train a shared ML model (e.g., DNN), denoted by w ∈ Rd
of dimension d. Each terminal device k ∈ K collects its
own labeled training data, and constitutes a local data set
Dk = {(xk,i, yk,i)}Dki=1 with Dk = |Dk| data samples, where
xk,i ∈ Rn is the i-th input data with n dimensions and
yk,i ∈ R is the labeled output corresponding to xk,i. Then,
the total training data set is given as D =

⋃
k∈KDk of size

D = |D| =
∑K
k=1Dk.

Though the PS has no access to the data samples distributed
at the terminal devices due to the privacy concern, the goal
of training a global model w can be achieved by solving the
following distributed learning problem

min
w

F (w) =

K∑
k=1

qkFk(w), (1)

where qk = Dk/D is the fraction of data samples for device
k and Fk(w) is the local loss function defined as

Fk(w) =
1

Dk

Dk∑
i=1

L(w; (xk,i, yk,i)), (2)

with L(w; (xk,i, yk,i)) being an empirical sample-wise loss
function defined by the learning task that quantifies the loss
of the model w for sample (xk,i, yk,i).

For the implementation of FL algorithms, the system solves
the distributed learning problem (1) in an iterative fashion fol-
lowing the widely used broadcasting-computation-aggregation
(BCA) principle, which involves the following three steps in
each iteration: 1) the PS broadcasts a global model w to
the terminal devices; 2) terminal device k updates the global
model w to a local model wk ∈ Rd after several local learning
iterations based on its local data samples; 3) the PS aggregates
wk’s to generate a new global model w. In the following, we
discuss the considered wireless FL algorithm.

B. Wireless FL Algorithm

This paper considers the scenario where both the down-
link and uplink communications are performed in the analog
manner and the quasi-static fading channel model is adopted,
i.e., both the downlink and uplink channels remain unchanged
during each communication round (corresponding to one FL
iteration containing all the three BCA steps) and are inde-
pendent across different communication rounds following the
Rayleigh distribution. Specifically, at the t-th communication
round, the three steps of the wireless FL algorithm are de-
scribed as follows:
(1) Broadcasting: In this step, the PS broadcasts the vector

udl(t) = ps(t)w(t) to terminal devices, containing the
information of the global model w(t) and with the
downlink transmit power value ps(t) satisfying

‖udl(t)‖22 = ‖ps(t)w(t)‖22 ≤ P dl
max(t), (3)

where P dl
max(t) is the downlink transmit power budget at

the t-the round. Hence, the received vector at the k-th
terminal device is given as

vk(t) = hdl
k (t)udl(t) + nk(t)

= hdl
k (t)ps(t)w(t) + nk(t),

(4)

where hdl
k ∈ C is the complex-valued downlink channel

coefficient between the PS and terminal device k, and
nk(t) ∈ Cd is the independent identically distributed
(i.i.d.) CSCG noise vector following the distribution
CN (0, σ2

dI) with σ2
d being the downlink noise power.

With perfect knowledge of ps(t) and the CSI of the
downlink channels, terminal device k estimates the global
model by descaling the received signal vk, i.e.,

w̄k(t) =
ak(t)

ps(t)hdl
k (t)

vk(t) = w(t) + ñk(t), (5)

where w̄k(t) is the estimated global model for terminal
device k at the t-th round, ak(t) is the selection indicator
for the device k at the t-th round (ak(t) = 1 implies that
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the device k is selected to participate in the training at
the t-th round, and otherwise, ak(t) = 0), and ñk(t) =

ak(t)

ps(t)hdl
k (t)

nk(t) is the equivalent noise at the device k.
Then, terminal device k sets its current local model to
wk(t) = w̄(t).

(2) Local Model Update: In this step, terminal device k
updates its local model wk(t) by minimizing its local
objective (2) via a local optimization algorithm, e.g., the
mini-batch stochastic gradient descent (SGD) method,
based on its collected data set Dk. When implementing
the mini-batch SGD algorithm, the local dataset Dk at
the device k is divided into several mini-batch with size
B, and the device runs E SGD iterations with each
SGD iteration corresponding to one mini-batch. At the
τ -th SGD iteration, τ ∈ {1, · · · , E}, the local model is
updated as

wτ
k(t) = wτ−1

k (t)− ηt∇Fk(wτ−1
k (t);Bτk(t)), (6)

where ηt is the learning rate at the t-th round, Bτk(t) is
a mini-batch with size |Bτk(t)| = B and its data points
being independently and uniformly chosen from Dk, and
∇Fk(wτ−1

k (t);Bτk(t)) ∈ Rd is the stochastic gradient of
the local loss function with respect to (w.r.t.) the (τ−1)-th
model parameter wτ−1

k (t) and randomly sampled mini-
batch Bτk(t), i.e.,

∇Fk(wτ−1
k (t);Bτk(t)) (7)

=
1

B

∑
ξτk,i(t)∈B

τ
k(t)

∇L(wτ−1
k (t); ξτk,i(t)),

with ξτk,i(t) being the i-th training data in mini-batch
Bτk(t). The initial local model parameter at device k
before training is set as w̄(t) in (5), i.e., w0

k(t) = w̄k(t).
After E SGD iterations, the local model parameter at
device k is updated as wE

k (t).
(3) Model Aggregation: In this step, the terminal devices

upload their updated local model parameters wE
k (t)’s to

the PS, and the PS aggregates the received local models
to generate a new global model. For the uplink trans-
missions of wE

k (t)’s, the terminal devices transmit their
local model parameters concurrently through AirComp
by exploiting the waveform superposition nature of the
wireless MAC channel, since the information of interest
at the PS for aggregation is just the weighted summation
of the local model parameters. Specifically, the updated
model parameter wE

k (t) at the device k is multiplied with
a pre-processing factor βk(t), which is given as

βk(t) =
ak(t)pk(t)(hup

k (t))H

|hup
k (t)|2

, (8)

where pk(t) is the uplink transmit power value at device
k, hup

k (t) is the complex uplink channel coefficient from
device k to the PS. With perfect CSI of the uplink
channels, the received vector v(t) at the PS is given as

v(t) =
∑
k∈K

hup
k (t)βk(t)wE

k (t) + n(t)

=
∑
k∈K

ak(t)pk(t)wE
k (t) + n(t),

(9)

where n(t) ∈ Cd is the i.i.d. CSCG noise vector fol-
lowing the distribution CN (0, σ2

uI). In this paper, the
uplink transmit power values at the devices satisfy the
following two types of constraints: For the individual
uplink transmit power constraint at each device, the
transmit power value of device k is supposed to satisfy

‖βk(t)wE
k (t)‖22 ≤ P kmax(t), (10)

where P kmax(t) is the individual power budget at the t-
th round of device k; for the sum uplink transmit power
constraint over all devices, the transmit power values of
the devices are supposed to satisfy

K∑
k=1

‖βk(t)wE
k (t)‖22 ≤ Ptot(t), (11)

where Ptot(t) is the sum power budget at the t-th round
of all the participated devices.
The PS scales the received signal v(t) with a factor
1/ζ(t) to aggregate and update the global model param-
eter as

w(t+ 1)

=
v(t)

ζ(t)
=

1

ζ(t)

∑
k∈K

ak(t)pk(t)wE
k (t) +

1

ζ(t)
n(t),

(12)

where ζ(t) is set as the summation of all the products
ak(t)pk(t), i.e., ζ(t) =

∑K
k=1 ak(t)pk(t), with perfect

knowledge on all ak(t) and pk(t) at the PS. Hence, based
on (9) and (12), the model aggregation is given as1

w(t+ 1) =
∑
k∈K

ρk(t)wE
k (t) + ñ(t), (13)

where ρk(t) = ak(t)pk(t)∑
j∈K aj(t)pj(t)

is the weight of wE
k (t)

for aggregation satisfying
∑K
k=1 ρk(t) = 1 and ñ(t) =

n(t)∑
j∈K aj(t)pj(t)

is the equivalent noise.

Remark 1. Due to the dynamic nature of the wireless chan-
nels, the terminal devices may encounter a relatively weak
downlink channel, i.e., |hdl

k (t)| ≈ 0, when downloading the
global model from the PS. Then, the received model w̄k(t)
at device k will be severely damaged by the equivalent
noise ñk(t), as shown in (5). Similarly, the devices may also
encounter a relatively weak uplink channel, i.e., |hup

k (t)| ≈ 0,
when uploading the updated model wE

k (t) to the PS. Then,
the device k may not be capable of transmitting wE

k (t) due to
the limited transmit power budget according to (8), (10), and
(11). Thus, device selection according to the dynamic uplink
and downlink channel conditions under the limited transmit
power budget is necessary for the wireless FL systems.

As mentioned in Remark 1, when practically implementing
the wireless FL algorithm, not all devices are able to partici-
pate the training over the whole time. Hence, when considering
both the downlink and uplink communications between the

1The proposed model aggregation scheme requires perfect CSI about both
the downlink and uplink channels. Nevertheless, our design and analysis can
be extended to the case with imperfect CSI, and the impact of imperfect CSI
will be studied for future work.
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PS and the terminal devices, we need to develop an efficient
device selection scheme while guaranteeing the convergence
of the considered algorithm.

Remark 2. In our proposed weighted model aggregation
scheme (13), under the wireless environment, the adaptive
weights in each round are determined directly by the uplink
transmit power values of the participated terminal devices,
which are controllable and can be optimized to mitigate the
impact of wireless communications on the convergence of the
considered wireless FL algorithm. This motivates us to design
a proper joint device selection and power control scheme.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior of the
considered wireless FL algorithm presented in Section II for
the general smooth non-convex learning problems. We first
present the assumptions and preliminaries, and then present the
theoretical results on convergence for the considered wireless
FL algorithm in terms of the optimality gap between the
expected and optimal global loss values.

A. Preliminaries

First, we make the following standard assumptions that are
commonly adopted in the convergence analysis of the BCA-
type FL algorithms [15], [23], [24], [30], [31].

Assumption 1 (L-smooth). The global loss function is dif-
ferentiable and the gradient is uniformly Lipschitz continuous
with a positive Lipschitz constant L, i.e., ∀v,w ∈ Rd,

‖∇F (v)−∇F (w)‖2 ≤ L‖v −w‖2, (14)

which is equivalent to

F (v) ≤ F (w) + (v −w)T∇F (w) +
L

2
‖v −w‖22. (15)

Assumption 2 (Unbiased and bounded variance mini-batch
SGD). The mini-batch SGD is unbiased, i.e.,

E[∇Fk(w;B)] = ∇Fk(w), (16)

and the variance of stochastic gradients in each device is
bounded, i.e.,

E[‖∇Fk(w;B)−∇Fk(w)‖22] ≤ µ2. (17)

Assumption 3 (Bounded Gradient Divergence). The vari-
ance of the local gradients for each local device is bounded
as

E
[
‖∇Fk(w)−∇F (w)‖22

]
≤ δ, (18)

where δ measures the data heterogeneity [32].

Based on the global model broadcasting in (5), the mini-
batch local SGD (6) and (7), and the proposed adaptive

reweighing model aggregation scheme (13), the PS updates
the global model at the (t+ 1)-th round as

w(t+ 1)

=
∑
k∈K

ρk(t)wE
k (t) + ñ(t)

(a)
=
∑
k∈K

ρk(t)

[
w0
k(t)− ηt

E∑
τ=1

∇Fk(wτ−1
k (t);Bτk(t))

]
+ ñ(t)

(b)
=
∑
k∈K

ρk(t)w̄k(t) + ñ(t)

− ηt
K∑
k=1

ρk(t)

E∑
τ=1

∇Fk(wτ−1
k (t);Bτk(t))

(c)
=w(t) +

∑
k∈K

ρk(t)

ps(t)hdl
k (t)

nk(t) + ñ(t)

− ηt
K∑
k=1

ρk(t)

E∑
τ=1

∇Fk(wτ−1
k (t);Bτk(t)),

(19)

where (a) follows the local mini-batch SGD iterations in (6),
(b) is to due to w0

k(t) = w̄k(t), and (c) follows (5) and∑
k∈K ρk(t) = 1.
Define the local model difference ∆wk(t) as

∆wk(t) = wE
k (t)−w0

k(t)

= −ηt
E∑
τ=1

∇Fk(wτ−1
k (t);Bτk(t)),

(20)

and define the virtual noisy global model w̃(t) as

w̃(t) = w(t) +
∑
k∈K

ρk(t)

ps(t)hdl
k (t)

nk(t). (21)

Thus, we can further rewrite w(t+ 1) as

w(t+ 1) = w̃(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t). (22)

B. Theoretical Results on Convergence

We first present the following lemmas and their proofs that
are used in the proof of Theorem 1.

Lemma 1. The virtual noisy global model w̃(t) defined in
(21) is unbiased, i.e.,

E [w̃(t)] = w(t), (23)

and the variance is bounded as

E
[
‖w̃(t)−w(t)‖22

]
=

dσ2
d

p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

. (24)

Proof: According to (21), we have E[w̃(t) − w(t)] =∑
k∈K

ρk(t)

ps(t)hdl
k (t)

E[nk(t)] = 0, since nk(t)’s are i.i.d. follow-
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ing the distribution CN (0, σ2
dI), which proves (23). Similarly,

we have

E
[
‖w̃(t)−w(t)‖22

]
= E

∥∥∥∥∥∑
k∈K

ρk(t)

ps(t)hdl
k (t)

nk(t)

∥∥∥∥∥
2

2


=
∑
k∈K

∣∣∣∣ ρk(t)

ps(t)hdl
k (t)

∣∣∣∣2 E[‖nk(t)‖22]

=
dσ2

d

p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

,

(25)

which proves (24).

Lemma 2. The expectation of the square norm of the model
difference at each round for device k is bounded by

E
[
‖∆wk(t)‖22

]
≤η2

tE
2
(
µ2 + 4δ

)
+ 2Eη2

tL
2
E∑
τ=1

E
[
‖wτ−1

k (t)−w(t)‖22
]

+ 4η2
tE

2E
[
‖∇F (w(t))‖22

]
.

(26)

Lemma 3. The sum of the expected square norm of the
difference between the local updated model at each SGD
iteration and the previous global model is bounded by

E∑
τ=1

E
[
‖wτ−1

k (t)−w(t)‖22
]

≤
2dσ2

dE
p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2 + 2η2

tE
3
(
µ2 + 4δ

)
1− 4η2

tE
2L2

+
+8η2

tE
3E
[
‖∇F (w(t))‖22

]
1− 4η2

tE
2L2

.

(27)

Lemma 4. The expectation of the square norm of the gradient
of the global loss function at each round is bounded by

‖∇F (w(t))‖22 ≤ 2L (F (w(t))− F ∗) , (28)

where F ∗ is the optimal global loss function value.

The proofs of Lemma 2, 3, 4 follow the same ideas in [15],
[31], [33], with a slight modification according to the problem
that we consider. Now, we present the main convergence
analysis results in the following theorem.

Theorem 1. Let Assumption (1)-(3) be hold. Assume the FL
algorithm terminates after T rounds, given an initial global
model w(1), the expected optimality gap between the expected
and optimal global loss values E[F (w(T + 1))] − F ∗ is
bounded by

E[F (w(T + 1))]− F ∗

≤
T∏
t=1

A(t)E[F (w(1))− F ∗] +

T−1∑
t=1

(
T∏

i=t+1

A(i)

)
G(t)

+G(T ), (29)

with

A(t) = 1 +
ηtEL(20η2

tE
2L2 + 16ηtEL− 1)

1− 4η2
tE

2L2
, (30)

and

G(t) =

(
2η2tE

2L(1 + ηtEL)

1− 4η2tE
2L2

)(
µ2 + 4δ

)
︸ ︷︷ ︸

(a)

+ ηtδE

(
K∑
k=1

1

qk
+ 1

)
︸ ︷︷ ︸

(b)

+

(
dσ2

dL(1 + 2ηtE + 4η2tE
2L2)

(1− 4η2tE
2L2)p2s(t)

)∑
k∈K

ρ2k(t)

|hdl
k (t)|2︸ ︷︷ ︸

(c)

+
2dσ2

uL(∑
j∈K aj(t)pj(t)

)2
︸ ︷︷ ︸

(d)

.

Proof: Please see Appendix. A.

Remark 3. The expected optimality gap between the expected
and optimal global loss values given in the right hand side
(RHS) of (29) reveals several important insights:

1) When the learning rate is set small enough, i.e.,
ηt ≤ 1

20EL , we have A(t) < 1, which implies
limT→∞

∏T
t=1A(t) = 0. In this case, the proposed

wireless FL algorithm converges to a biased solution,
and the expected optimality gap E[F (w(T + 1))]− F ∗
is upper bounded only by the the last two terms on
the RHS of (29), which is a linear combination of the
performance gap G(t) in each round given in (31).

2) The performance gap G(t) in each round consists of 4
terms (a)-(d) with clear physical meanings: term (a)
is caused by gradient variance and data heterogeneity,
term (b) is caused solely by data heterogeneity, and
terms (c) and (d) are caused by the downlink and uplink
wireless communications, respectively.

3) If the FL algorithm is performed in the ideal environ-
ment, where the broadcasting and model aggregation are
not decayed by wireless channels, including the channel
fading and additive noise, terms (c) and (d) equals to
zero. In this case, the proposed FL algorithm still con-
verges to a biased solution due to the impact of gradient
variance and data heterogeneity, which coincides the
analysis of inconsistency issue of FL in [34].

IV. OPTIMALITY GAP MINIMIZATION

In this section, we present the joint device selection and
power control to minimize the optimimality gap between the
expected and optimal global loss values derived in Theorem
1 for the considered wireless FL system under both the
individual and sum power constraints, respectively.

A. Problem Formulation

As mentioned in Remark 3, by properly choosing the
learning rate ηt ≤ 1

20EL to guarantee the convergence of the
proposed wireless FL algorithm, the optimality gap between
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the expected and optimal global loss values derived in (29)
becomes

Λ =

T−1∑
t=1

(
T∏

i=t+1

A(i)

)
G(t) +G(T ), (31)

which determines the performance of the algorithm when
converges and needs to be minimized. Specifically, with in-
stantaneous CSI in each round, we minimize the performance
gap G(t) over the device selection indicator ak(t), downlink
transmit power value ps(t) and uplink transmit power value
pk(t) round by round. Besides, we ignore the constant terms
(a) and (b) in G(t) that is related to the gradient variance
and data heterogeneity, and focus on minimizing the sum of
terms (c) and (d) in G(t), since the goal of this paper is
to minimize the impact of the downlink and uplink wireless
communications on the convergence of the considered wireless
FL algorithm. Hence, by dropping the notation t for simplicity,
we can formulate the following performance gap minimization
problem as

min
{a,ps,p}

(
dσ2

dL(1 + 2ηE + 4η2E2L2)

(1− 4η2E2L2)p2
s

)∑
k∈K

ρ2
k

|hdl
k |2

+
2dσ2

uL(∑
j∈K ajpj

)2 (32a)

s. t. ak ∈ {0, 1}, (32b)

p2
s ≤ P̄dl, (32c)

p ∈ P, (32d)

where a = [a1, · · · , aK ], p = [p1, · · · , pk], (32b) denotes
the feasible set of the selection indicators, and (32c) is the
downlink transmit power constraint with P̄dl = P dl

max/‖w‖22.
For the individual power constraint, P in (32d) is given as

P =
{
p : aTpTQkpa− P kmax ≤ 0, k = 1, · · · ,K

}
, (33)

which is the matrix-vector form of (10), with Qk ∈
RK×K , k = 1, · · · ,K, being a diagonal matrix with
[Qk]k,k =

‖wEk ‖
2
2

|hup
k |2

and all other entries being zero; for the
sum power constraint, P in (32d) is given as

P =
{
p : aTpTQ0pa− Ptot ≤ 0

}
, (34)

which is the matrix-vector form of (11), with Q0 =

diag
(
‖wE1 ‖

2
2

|hup
1 |2

, · · · , ‖w
E
K‖

2
2

|hup
K |2

)
∈ RK×K .

Remark 4. Intuitively, directly minimizing Λ in (31) over
multiple rounds with non-causally known CSI could result
in better performance than minimizing G(t) round by round.
However, the unavailability of non-causal information of
model parameter w(t) and wE

k (t) at the PS and device k,
which determines the downlink and uplink transmit power
constraints (32c) and (32d), hinders us to directly apply
joint optimization over multiple rounds. Though some existing
literature introduces additional assumption that E‖w(t)‖22 or
E‖wE

k (t)‖22 is upper bounded by some constants [16], [35],
which can avoid the requirement of non-causal model infor-
mation, such assumption is not satisfied for many practical
situations, especially when the model dimension is large, and

is thus beyond scope of this paper. Hence, this paper chooses
to minimize G(t) round by round with only causal CSI, since
Λ is a linear combination of G(t), as discussed above.

B. Optimal Solution

In this section, we propose a joint device selection and
power control algorithm to solve problem (32). Obviously,
the formulated optimization problem (32) is a typical MIP
problem, where the difficulty for solving this problem is the
binary selection variables a and the non-convex objective
function (32a).

However, we could replace the device selection a with the
uplink transmit power value p, based on the observation that
the selection indicator a is always coupled with uplink transmit
power value p, and independent of the downlink transmit
power value ps, as shown in (32). Hence, the device is selected
only when its uplink transmit power value pk is positive.
Thus, we can drop the selection indicator a in (32a) and
(32d) and its associated constraint (32b). Besides, to minimize
the objective function (32a), the constraint (32c) should be
met with equality, i.e., p2

s = P̄dl, since (32a) monotonically
decreases with p2

s. Hence, problem (32) can be equivalently
transformed as

min
p

(
dσ2

dL(1 + 2ηE + 4η2E2L2)

(1− 4η2E2L2)P̄dl

)∑
k∈K

ρ2
k

|hdl
k |2

+
2dσ2

uL(∑
j∈K pj

)2 (35a)

s. t. p ∈ P0. (35b)

For the individual uplink power constraint case, P0 is given
as

P0 =
{
p : pTQkp− P kmax ≤ 0, k = 1, · · · ,K

}
, (36)

and for the sum uplink power constraint case, P0 is given as

P0 =
{
p : pTQ0p− Ptot ≤ 0

}
, (37)

By rearranging the objective function (35a) in the matrix-
vector form, problem (35) is equivalent to

min
p

pTΘp + 2dσ2
uL

pT11Tp

s. t. (35b),
(38)

where Θ = diag(θ) ∈ RK×K with θ = [θ1, · · · , θK ] ∈ RK

and θk =
dσ2
dL(1+2ηE+4η2E2L2)

(1−4η2E2L2)P̄dl|hdl
k |2

. Now, problem (38) is a
typical QCRQ minimization problem. It has been proved in
[36] that with the given constraint (35b) for both the individual
and sum uplink power constraint cases (36) and (37), the
QCRQ problem (38) can be equivalently rewritten as the
following homogeneous version by introducing a real auxiliary
variable s with y = sp, i.e.,

min
{y,s}

yTΘy + 2dσ2
uLs

2 (39a)

s. t. yT11Ty = 1, (39b)
y ∈ Y, (39c)
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where for the individual uplink power constraint case, Y in
(39c) is given as

Y =
{
y : yTQky − P kmaxs

2 ≤ 0, k = 1, · · · ,K
}
, (40)

and for the sum uplink power constraint case, Y in (39c) is
given as

Y =
{
y : yTQ0y − Ptots

2 ≤ 0
}
, (41)

Though problem (39) is still non-convex, it can be approxi-
mated by its SDR [37]. First, we make the change of variables
z = (yT , s)T , and rewrite (39) as

min
z

zT Θ̃z (42a)

s. t. zTCz = 1, (42b)
z ∈ Z, (42c)

where Θ̃ and C are given as

Θ̃ =

(
Θ 0
0T 2dσ2

uL

)
, C =

(
11T 0
0T 0

)
. (43)

For the individual uplink power constraint case, Z in (42c) is
given as

Z =
{

z : zT Q̃kz ≤ 0, k = 1, · · · ,K
}
, (44)

where Q̃k is given as

Q̃k =

(
Qk 0
0T −P kmax

)
, (45)

and for the sum uplink power constraint case, Z in (42c) is
given as

Z =
{

z : zT Q̃0z ≤ 0
}
, (46)

where Q̃0 is given as

Q̃0 =

(
Q0 0
0T −Ptot

)
. (47)

Next, by introducing a new variable Z = zzT , which is
positive semidefinite (PSD) with rank-one, problem (42) is
equivalent to

min
Z

tr(Θ̃Z) (48a)

s. t. tr(CZ) = 1, (48b)
Z ∈ Z0, (48c)
rank(Z) = 1, (48d)
Z � 0, (48e)

where for the individual uplink transmit power constraint case,
we obtain

Z0 =
{

Z : tr(Q̃kZ) ≤ 0, k = 1, · · · ,K
}

; (49)

for the sum uplink transmit power constraint case, we obtain

Z0 =
{

Z : tr(Q̃0Z) ≤ 0
}
. (50)

Now, problem (48) is still non-convex due to the non-convex
rank-one constrain (48d). However, we can ignore the rank-one

constraint (48d) and consider the relaxed version of problem
(48) as

min
Z

tr(Θ̃Z), (51a)

s. t. (48b), (48c), (48e), (51b)

which is convex and can be efficiently solved by using CVX
[38], where we denote the optimal solution to problem (51)
as Z∗. In the following Theorem 2, we show how to directly
derive the optimal solution to the original problem (35) based
on Z∗ for both the individual and sum uplink transmit power
constraint cases.

Theorem 2. Given the optimal solution Z∗ to problem (51) for
both the individual and sum uplink transmit power constraint
cases, we construct its K-th order leading principal submatrix
Z∗K by deleting its (K + 1)st row and column, which is
rank-one and can be decomposed as Z∗K = bbT . Then,
the optimal solution to the original problem (35) is given as
p∗ = b/

√
[Z∗]K+1,K+1, where [Z∗]K+1,K+1 is the (K+ 1)-

th diagonal element of Z∗.

Proof: The rank-one property of Z∗K can be explored by
utilizing the strong duality between problem (51) and its dual
problem, and the special structure of Φ̃, C, Q̃k, and Q̃0,
similar to the proof of Theorem 1 in [39]. Then, given the
rank-one decomposition of Z∗K as Z∗K = bbT , it’s easy to
verify that there always exists a rank-one decomposition of

Z∗ as Z∗ = b̃b̃T with b̃ =
[
bT ,

√
[Z∗]K+1,K+1

]T
. Finally,

according to Theorem 3.2 in [36], the optimal solution to the
original problem (35) is obtained as p∗ = b/

√
[Z∗]K+1,K+1.

Finally, the proposed wireless FL algorithm is summarized
in Algorithm 1. During each communication round, our pro-
posed device selection and power control scheme only requires
to solve one semidefinite programming (SDP) problem in (51).
Since the number of the constraints is less than the problem
size K + 1, the computation complexity of solving problem
(51) is O((K+ 1)6) [37], [40], which is polynomial w.r.t. the
number of the devices.

V. NUMERICAL RESULTS

This section evaluates the performance of our proposed
wireless FL algorithm for image classification on the well-
known MNIST [41] and CIFAR-10 [42] datasets, respectively,
where MNIST dataset consists of 10 classes of black-and-
white handwriting digits ranging from “0” to “9” with 60000
training and 10000 test samples, and CIFAR-10 dataset con-
sists of 10 classes of colored objects with 50000 training and
10000 test samples.

Here, both the uplink and downlink channels follow the i.i.d.
Rayleigh fading, i.e., hdl

k (t) and hup
k (t), are modeled as i.i.d.,

CSCG random variables with zero mean and unit variance. The
downlink and upink noise variances are set as σd = σu = 0.1.
Given the model dimension d, the downlink transmit power
budget P dl

max(t) is set as P dl
max(t) = 10× d and the individual

uplink transmit power budget P kmax(t) is set as P kmax(t) =
5×d, ∀k, t. We consider K = 20 local devices, and set E = 5,
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Algorithm 1 Proposed Wireless FL Algorithm
Input: initial global model parameter w(1); batch size B;

number of local SGD iterations E; learning rate ηt;
downlink transmit power budget P dl

max(t); individual up-
link transmit power budget P kmax(t); sum uplink transmit
power budget Ptot(t); communication round budget T ;

1: for t = 1 : T do
2: Obtain downlink channel gains {hdl

k (t)}Kk=1 from the
PS to terminal devices;

3: PS broadcasts w(t) to the terminal devices;
4: for k = 1 : K do
5: Terminal device k sets its current model as w̄k(t)

based on (4);
6: Terminal device k updates w̄k(t) to wE

k (t) via
mini-batch SGD (6);

7: end for
8: Obtain uplink channel gains {hup

k (t)}Kk=1 from termi-
nal devices to the PS;

9: Solve problem (38) via SDR as in Section IV to obtain
optimal p∗(t) = [p∗1(t), · · · , p∗K(t)];

10: for k = 1 : K do
11: if p∗k > 0 then
12: Set ak(t) = 1 and select device k to upload its

updated model wE
k (t) with pre-processing factor (8);

13: else
14: Set ak(t) = 0 and device k keeps silent;
15: end if
16: end for
17: The PS aggregates the received models and updates

the global model as w(t+ 1) based on (13);
18: end for

B = 100, and L = 10 [28]. The learning rates for both the two
tasks are set as ηt = 1

20EL with a decaying rate of 0.995 for
every 30 communication rounds, which satisfies the condition
in Remark 3. We consider balanced and unbalanced data size
settings, where we set Dk = 800,∀k for the balanced data
size setting, and we set Dk being uniformly distributed in the
range of [500, 1000] for the unbalanced data size setting.

For the proposed scheme, we only present the results with
the individual uplink transmit power constraint, and the cases
with the sum uplink transmit power constraint are omitted
for conciseness, since their results are the same as the in-
dividual uplink transmit constraints cases. For performance
comparison, we consider three baselines: a) the ideal FedAvg
scheme [6], where the broadcasting and model aggregation are
not decayed by the wireless channels including the channel
fading and additive noise, with full device participation and
fixed weight qk in (1) for device k; b) the device selection
with MSE threshold scheme, where maximum downlink power
transmission and MSE threshold based device selection [19]
are adopted; c) the truncated channel inversion scheme, where
maximum downlink power transmission and truncated channel
inversion for the uplink transmission and model aggregation
in [28] and [43] are adopted.

A. MNIST dataset

For this task, we aim to train a convolution neural network
(CNN) as the classifier model, which consists of three 3 × 3
convolution layers (each with 8, 16, and 32 channels, respec-
tively), each followed by a 2×2 max pooling layer with stride
2; fully connected layer with 10 units; and finally a softmax
output layer. All convolutional layers are also followed by
batch normalization layers and mapped by ReLU activation.
We consider both the i.i.d. and non-i.i.d. cases for this task. For
the i.i.d. case, we randomly assign training samples to each
device k; while for the non-i.i.d. case, we split the training
samples into 5 disjoint subsets with each subset containing 2
classes of images, and each subset is chose to randomly assign
training samples to K/5 devices. Hence, each device only
contains two classes of images and different devices contains
different classes of images.
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(a) i.i.d. case
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(b) non-i.i.d. case

Fig. 2. Test accuracy vs. the communication round with balanced data size.

Fig. 2 compares the performance of all the four schemes
w.r.t. the communication round in terms of the test accuracy
with balanced data size on the MNIST dataset. For the i.i.d.
case in Fig. 2(a), it is observed that the test accuracies
of the ideal FedAvg scheme, the proposed scheme, and the
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device selection with MSE threshould scheme increase with
the communication round and finally converge. The proposed
scheme achieves comparable test accuracy performance to the
ideal FedAvg scheme, where the average accuracy over the
last 20 communication rounds for the ideal FedAvg scheme
is 93.09% and the average accuracy over the last 20 commu-
nication rounds for the proposed scheme is 92.75%. Besides,
the proposed scheme outperforms the device selection with
MSE threshould scheme, whose average accuracy over the
last 20 communication rounds is 89.14%. It is observed that
all the above three schemes outperform the truncated channel
inversion scheme, whose average accuracy over the last 20
communication rounds is 83.34%. For the truncated channel
inversion scheme, the test accuracy first increase with the
communication round during round the first 125 rounds, and
then becomes unstable during the rest communication rounds,
and does not guarantee convergence. A possible explanation
for this phenomenon is that the device selection of the trun-
cated channel inversion scheme is only based on the uplink
channel conditions, and the equal weight aggregation in this
scheme gives more weight for the local model that damaged
by the downlink communications, which degrades the training
performance.

For the non-i.i.d. case in Fig. 2(b), all the schemes suffer
from performance degradation compared to the i.i.d. case in
Fig. 2(a), except for the ideal FedAvg scheme, whose average
accuracy over the last 20 communication rounds is 92.32%.
The average accuracy over the last 20 communication rounds
for the proposed scheme is 90.87%, which is slightly worse
than that of the ideal FedAvg scheme, but still larger than that
of the device selection with MSE threshold scheme, whose
average accuracy over the last 20 communication rounds is
77.86%. The truncated channel inversion scheme still has the
worst performance, whose convergence is still not guaranteed.
Besides, the increasing trend of the proposed scheme becomes
less stable compared to that in the i.i.d. case in Fig. 2(a), which
is obviously caused by the non-i.i.d. data distributions.

Fig. 3 compares the performance of the four schemes w.r.t.
the communication round in terms of the test accuracy with un-
balanced data size on the MNIST dataset. For the i.i.d. case in
Fig. 3(a), similar to the balanced data size scenario in Fig. 2(a),
the test accuracies of the ideal FedAvg scheme, the proposed
scheme, and the device selection with MSE threshold scheme
increase with the communication round and finally converge.
The average accuracy over the last 20 communication rounds
of the proposed scheme is 91.73%, which is slightly lower than
the test accuracy of the ideal FedAvg scheme, whose average
accuracy over the last 20 communication rounds is 93.11%, but
still larger than both the device selection with MSE threshold
and truncated channel inversion schemes and, whose average
accuracies over the last 20 communication rounds are 89.74%
and 86.77%, respectively.

For the non-i.i.d. case in Fig. 3(b), all the four schemes
suffer from performance degradation compared to the i.i.d.
case in Fig. 3(a), where the average accuracies over the last
20 communication rounds for the ideal FedAvg, proposed,
device selection with MSE threshold, and truncated channel
inversion schemes are 90.3%, 88.97%, 85.34%, and 83.91%,
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(a) i.i.d. case
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(b) non-i.i.d. case

Fig. 3. Test accuracy vs. the communication round with unbalanced data size.

respectively. Obviously, the performance of the proposed
scheme is still slightly worse than the ideal FedAvg scheme.
Note that even the increasing trends of the test accuracy for
the truncated channel inversion scheme are still unstable for
both the i.i.d. and non-i.i.d. cases, they shows the conver-
gence trend, which is slightly different from the balanced
data size case in Fig. 2. This is possibly due to that the
equal weight aggregation for the truncated channel inversion
scheme combats the participation of the local model damaged
by the downlink communications in certain level, since the
weight for perfect model aggregation is inherently different in
this unbalanced data size case. However, the performance of
our proposed scheme still outperforms the truncated channel
inversion scheme with unbalanced data size.

B. CIFAR-10 dataset

For this more challenging task, we aim to train a more
complex CNN model, which consists of three 5×5 convolution
layers (each with 32, 32, and 64 channels, respectively), each
followed by a 3×3 max pooling layer with stride 2; two fully
connected layers (the first with 64 units and mapped by ReLU
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activation, and the second with 10 units); and final softmax
output layer. All convolutional layers are also followed by
batch normalization layers and mapped by ReLU activation.
We consider the similar i.i.d. and non-i.i.d. cases to that in
Section V-A, where we assign training samples in the same
way.
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Fig. 4. Test accuracy vs. the communication round with balanced data size.

Fig. 4 compares the performance of all the four schemes
w.r.t. the communication round in terms of the test accuracy
with balanced data size on the CIFAR-10 dataset. For the
i.i.d. case in Fig. 4(a), it is observed that the test accuracies
of the ideal FedAvg scheme, the proposed scheme, and the
device selection with MSE threshold scheme increase with the
communication round and finally converge, while the truncated
channel inversion scheme fails to converge. The proposed
scheme still achieves comparable test accuracy performance
to the ideal FedAvg scheme, where the average accuracy
over the last 20 communication rounds for the ideal FedAvg
scheme is 72.52% and the average accuracy over the last 20
communication rounds for the proposed scheme is 71.52%,
and outperforms the performance of the device selection with
MSE threshold scheme, whose average accuracy over the last

20 communication rounds is 66.47%. For the non-i.i.d. case
in Fig. 4(b), the convergences of the ideal FedAvg scheme,
the proposed scheme, and the device selection with MSE
threshold scheme are still guaranteed. However, all the above
three schemes suffer from performance degradation compared
to the i.i.d. case in Fig. 2(a), and their average accuracies over
the last 20 communication rounds drop to 66.94%, 65.87%,
and 62.97%, respectively. In this case, the truncated channel
inversion scheme still fails to converge.
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Fig. 5. Test accuracy vs. the communication round with unbalanced data size.

Fig. 5 compares the performance of the four schemes w.r.t.
the communication round in terms of the test accuracy with
unbalanced data size on the CIFAR-10 dataset. For the i.i.d.
case in Fig. 5(a), similar to the balanced data size scenario in
Fig. 4(a), the test accuracies of the ideal FedAvg scheme, the
proposed scheme, and the device selection with MSE threshold
scheme still increase with the communication round and finally
converge, while the truncated channel inversion scheme still
fails to converge. The performance of the proposed scheme
is still slightly worse than the ideal FedAvg scheme, where
the average accuracies over the last 20 communication rounds
for the ideal FedAvg and proposed schemes are 72.39% and
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70.14%, respectively. The proposed scheme still outperforms
the device selection with MSE threshold scheme, whose
average accuracies over the last 20 communication rounds is
65.05%. For the non-i.i.d. case in Fig. 5(b), the truncated
channel inversion scheme still fails to converge, while the
convergences of the rest three schemes are still be guaranteed.
Similar to the balanced data size case in Fig. 4, those three
schemes suffer from performance degradation compared to the
i.i.d. case in Fig. 5(a), where the average accuracies over the
last 20 communication rounds for the ideal FedAvg scheme,
proposed scheme, and the device selection with MSE threshold
scheme drop to 66.84%, 65.02%, and 60.52%, respectively.
Obviously, the performance of the proposed scheme is still
slightly worse than the ideal FedAvg scheme, and better than
the device selection with MSE threshold scheme. Intuitively,
the reason why the truncated channel inversion scheme fails
to converge for the CIFAR-10 dataset in Fig. 4 and 5 is
the selection criterion is only based on the uplink channel
conditions and it hardly able to mitigate the impact of both
the downlink and uplink communications on the convergence
of FL for a more complex task.

VI. CONCLUSION

In this paper, we studied the joint device selection and
power control for the wireless FL system, considering both
the analog downlink and uplink communications between the
PS and terminal devices. We first proposed an AirComp-based
adaptive reweighing scheme for model aggregation, where the
weights are determined by the selected devices and their uplink
transmit power values. Then, we analyzed the convergence
behavior of the proposed algorithm, in terms of the expected
optimality gap between the expected and optimal global loss
values, and revealed how the downlink and uplink wireless
communications affects the convergence of the considered
FL algorithm. Based on the obtained theoretical results, we
formulated an optimality gap minimization problem, for both
the individual and sum uplink transmit power constraints,
respectively, where we minimized the optimality gap round
by round with instantaneous CSI in each round and derived
the optimal joint device selection and power control by using
the SDR technique for both the two constraint cases. Finally,
numerical results showed that the proposed scheme performs
very close to the ideal FedAvg scheme, and significantly
outperforms other baseline schemes, i.e., the device selection
with MSE threshold and conventional truncated channel in-
version AirComp schemes, for both the i.i.d./non-i.i.d data
distributions, and balanced/unbalanced data sizes across the
devices.

APPENDIX A
PROOF OF THEOREM 1

First, according to (15), we have

F (w(t+ 1))

≤F (w(t)) + 〈w(t+ 1)−w(t),∇F (w(t))〉

+
L

2
‖w(t+ 1)−w(t)‖22

(a)
=F (w(t)) +

L

2

∥∥∥∥∥w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t)

∥∥∥∥∥
2

2

+

〈
w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t),∇F (w(t))

〉
,

(52)

where (a) follows from (22). By taking expectation on both
sides of (52), we obtain

E [F (w(t+ 1))]

≤E [F (w(t))]

+ E

[〈
w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t),∇F (w(t))

〉]
︸ ︷︷ ︸

A1

+
L

2
E

∥∥∥∥∥w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t)

∥∥∥∥∥
2

2


︸ ︷︷ ︸

A2

. (53)

Next, we bound the terms A1 and A2 in the RHS of (53) in
the following.

First, we study the term A2.

A2

=E

∥∥∥∥∥w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t)

∥∥∥∥∥
2

2


(a)

≤2E
[
‖w̃(t)−w(t)‖22

]
+ 2E

∥∥∥∥∥
K∑
k=1

ρk(t)∆wk(t) + ñ(t)

∥∥∥∥∥
2

2


(b)
=

2dσ2
d

p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+ 2E

∥∥∥∥∥
K∑
k=1

ρk(t)∆wk(t) + ñ(t)

∥∥∥∥∥
2

2


(c)

≤ 2dσ2
d

p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+ 4E

∥∥∥∥∥
K∑
k=1

ρk(t)∆wk(t)

∥∥∥∥∥
2

2


+

4dσ2
u(∑

j∈K aj(t)pj(t)
)2

(d)

≤4

K∑
k=1

ρk(t)E
[
‖∆wk(t)‖22

]
+

4dσ2
u(∑

j∈K aj(t)pj(t)
)2

+
2dσ2

d

p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2

, (54)

where (a) follows the inequality ‖x1 + x2‖22 ≤ 2‖x1‖22 +
2‖x2‖22, (b) follows (24) in Lemma 1, (c) follows the latter
inequality again, and uses the fact that ñ(t) = n(t)∑

j∈K aj(t)pj(t)

with n(t) being the CSCG noise vector, and (d) follows the
Jensen’s inequality.

Combining (54) with Lemmas 2 and 3, we finally bound
the term A2 as

A2 ≤4

K∑
k=1

ρk(t)E
[
‖∆wk(t)‖22

]
+

4dσ2
u(∑

j∈K aj(t)pj(t)
)2

+
2dσ2

d

p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

≤4η2
tE

2
(
µ2 + 4δ

)
+ 16η2

tE
2E
[
‖∇F (w(t))‖22

]
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+
2dσ2

d

p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

+
4dσ2

u(∑
j∈K aj(t)pj(t)

)2

+ 8Eη2
tL

2
K∑
k=1

ρk(t)

E∑
τ=1

E
[
‖wτ−1

k (t)−w(t)‖22
]

≤4η2
tE

2
(
µ2 + 4δ

)
+ 16η2

tE
2E
[
‖∇F (w(t))‖22

]
+

2dσ2
d

p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

+
4dσ2

u(∑
j∈K aj(t)pj(t)

)2

+ 8Eη2
tL

2
K∑
k=1

ρk(t)

 2dσ2
dE

p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2

1− 4η2
tE

2L2

+
2η2
tE

3
(
µ2 + 4δ

)
+ 8η2

tE
3E
[
‖∇F (w(t))‖22

]
1− 4η2

tE
2L2

)

=
4η2
tE

2

1− 4η2
tE

2L2

(
µ2 + 4δ

)
+

4dσ2
u(∑

j∈K aj(t)pj(t)
)2

+
16η2

tE
2

1− 4η2
tE

2L2
E
[
‖∇F (w(t))‖22

]
+

2dσ2
d(1 + 4η2

tE
2L2)

(1− 4η2
tE

2L2)p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

(55)

Then, we study the term A1.

A1

=E

[〈
w̃(t)−w(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t),∇F (w(t))

〉]

=E

[〈∑
k∈K

ρk(t)

ps(t)hdl
k (t)

nk(t) +

K∑
k=1

ρk(t)∆wk(t) + ñ(t),

∇F (w(t))〉]

(a)
=E

[〈
K∑
k=1

ρk(t)∆wk(t),∇F (w(t))

〉]

=− ηt
E∑
τ=1

E

[〈
K∑
k=1

ρk(t)∇Fk(wτ−1
k (t);Bτk(t)),∇F (w(t))

〉]
(b)
= − ηt

E∑
τ=1

E

[〈
K∑
k=1

ρk(t)∇Fk(wτ−1
k (t)),∇F (w(t))

〉]

(c)
= − ηt

2

E∑
τ=1

E

∥∥∥∥∥
K∑
k=1

ρk(t)∇Fk(wτ−1
k (t))

∥∥∥∥∥
2

2


− ηt

2

E∑
τ=1

E
[
‖∇F (w(t))‖22

]
+
ηt
2

E∑
τ=1

E

∥∥∥∥∥
K∑
k=1

ρk(t)∇Fk(wτ−1
k (t))−∇F (w(t))

∥∥∥∥∥
2

2


≤− ηtE

2
E
[
‖∇F (w(t))‖22

]
+
ηt
2

E∑
τ=1

E

∥∥∥∥∥∇F (w(t))−
K∑
k=1

ρk(t)∇Fk(wτ−1
k (t))

∥∥∥∥∥
2

2


(d)

≤ − ηtE

2
E
[
‖∇F (w(t))‖22

]

+ ηt

E∑
τ=1

E

∥∥∥∥∥∇F (w(t))−
K∑
k=1

ρk(t)∇Fk(w(t))

∥∥∥∥∥
2

2


︸ ︷︷ ︸

B1

+ ηt

E∑
τ=1

E

∥∥∥∥∥
K∑
k=1

ρk(t)
(
∇Fk(w(t))−∇Fk(wτ−1

k (t))
)∥∥∥∥∥

2

2

 ,
︸ ︷︷ ︸

B2

(56)

where (a) is due to the fact that both
∑
k∈K

ρk(t)

ps(t)hdl
k (t)

nk(t)

and ñ(t) are zero mean vectors and independent of∇F (w(t)),
(b) follows Assumption 2, (c) follows the identity 〈x1,x2〉 =
1
2 (‖x1‖22+‖x2‖22−‖x1−x2‖22), and (d) follows the inequality
‖x1 + x2‖22 ≤ 2‖x1‖22 + 2‖x2‖22.

For (56), we further need to bound the terms B1 and B2.
First, we obtain

B1 =ηt

E∑
τ=1

E

∥∥∥∥∥∇F (w(t))−
K∑
k=1

ρk(t)∇Fk(w(t))

∥∥∥∥∥
2

2


=ηtEE

∥∥∥∥∥
K∑
k=1

qk∇Fk(w(t))−
K∑
k=1

ρk(t)∇Fk(w(t))

∥∥∥∥∥
2

2


(a)
=ηtEE

[∥∥∥∥∥
K∑
k=1

(qk − ρk(t))∇Fk(w(t))

−
K∑
k=1

(qk − ρk(t))∇F (w(t))

∥∥∥∥∥
2

2


=ηtEE

[∥∥∥∥∥
K∑
k=1

qk − ρk(t)
√
qk

√
qk (∇Fk(w(t))

−∇F (w(t)))‖22
]

(b)

≤ηtE

(
K∑
k=1

(ρk(t)− qk)2

qk

)
K∑
k=1

qkE [‖∇Fk(w(t))

−∇F (w(t))‖22
]

(c)

≤ηtE

(
K∑
k=1

1

qk
+ 1

)
K∑
k=1

qkδ

=ηtδE

(
K∑
k=1

1

qk
+ 1

)
, (57)

where (a) is due to
∑K
k=1(qk − ρk(t)) = 0, ∀t, (b) follows

the Cauchy-Schwarz inequality, and (c) follows Assumption
3 and

∑K
k=1 qk =

∑K
k=1 ρk(t) = 1.

Then, we bound the term B2 as

B2 =ηt

E∑
τ=1

E

∥∥∥∥∥
K∑
k=1

ρk(t)
(
∇Fk(w(t))−∇Fk(wτ−1

k (t))
)∥∥∥∥∥

2

2


(a)

≤ηt
K∑
k=1

ρk(t)

E∑
τ=1

E
[
‖∇Fk(w(t))−∇Fk(wτ−1

k (t))‖22
]

(b)

≤ηtL2
K∑
k=1

ρk(t)

E∑
τ=1

E
[
‖wτ−1

k (t)−w(t)‖22
]
, (58)

where (a) follows the Jensen’s inequality and (b) follows (14)
in Assumption 1.
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Combining (56)-(58), we obtain

A1 ≤−
ηtE

2
E
[
‖∇F (w(t))‖22

]
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+ ηtL
2
K∑
k=1

ρk(t)

E∑
τ=1

E
[
‖wτ−1

k (t)−w(t)‖22
]

(a)

≤ − ηtE

2
E
[
‖∇F (w(t))‖22

]
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+ ηtL
2
K∑
k=1

ρk(t)

 2dσ2
dE

p2s(t)

∑
k∈K

ρ2k(t)

|hdl
k (t)|2

1− 4η2
tE

2L2

+
2η2
tE

3
(
µ2 + 4δ

)
+ 8η2

tE
3E
[
‖∇F (w(t))‖22

]
1− 4η2

tE
2L2

)

=
2η3
tE

3L2

1− 4η2
tE

2L2

(
µ2 + 4δ

)
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+
2dσ2

dηtEL
2

(1− 4η2
tE

2L2)p2
s(t)

∑
k∈K

ρ2
k(t)

|hdl
k (t)|2

+
20η3

tE
3L2 − ηtE

2− 8η2
tE

2L2
E
[
‖∇F (w(t))‖22

]
, (59)

where (a) follows Lemma 3.
Finally, combining (53), (55), and (59), we obtain

E [F (w(t+ 1))]

≤E [F (w(t))]

+

(
ηtE(20η2tE

2L2 + 16ηtEL− 1)

2− 8η2tE
2L2

)
E
[
‖∇F (w(t))‖22

]
+

(
2η2tE

2L(1 + ηtEL)

1− 4η2tE
2L2

)(
µ2 + 4δ

)
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+

(
dσ2

dL(1 + 2ηtE + 4η2tE
2L2)

(1− 4η2tE
2L2)p2s(t)

)∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+
2dL(∑

j∈K aj(t)pj(t)
)2 . (60)

By subtracting F ∗ at both sides of (60), we have

E [F (w(t+ 1))− F ∗]
≤E [F (w(t))− F ∗]

+

(
ηtE(20η2tE

2L2 + 16ηtEL− 1)

2− 8η2tE
2L2

)
E
[
‖∇F (w(t))‖22

]
+

(
2η2tE

2L(1 + ηtEL)

1− 4η2tE
2L2

)(
µ2 + 4δ

)
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+

(
dσ2

dL(1 + 2ηtE + 4η2tE
2L2)

(1− 4η2tE
2L2)p2s(t)

)∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+
2dσ2

uL(∑
j∈K aj(t)pj(t)

)2
(a)

≤
(

1 +
ηtEL(20η2tE

2L2 + 16ηtEL− 1)

1− 4η2tE
2L2

)
E [F (w(t))− F ∗]

+

(
2η2tE

2L(1 + ηtEL)

1− 4η2tE
2L2

)(
µ2 + 4δ

)
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+

(
dσ2

dL(1 + 2ηtE + 4η2tE
2L2)

(1− 4η2tE
2L2)p2s(t)

)∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+
2dσ2

uL(∑
j∈K aj(t)pj(t)

)2
=A(t)E [F (w(t))− F ∗] +G(t), (61)

with

A(t) = 1 +
ηtEL(20η2

tE
2L2 + 16ηtEL− 1)

1− 4η2
tE

2L2
, (62)

and

G(t) =

(
2η2tE

2L(1 + ηtEL)

1− 4η2tE
2L2

)(
µ2 + 4δ

)
+ ηtδE

(
K∑
k=1

1

qk
+ 1

)

+

(
dσ2

dL(1 + 2ηtE + 4η2tE
2L2)

(1− 4η2tE
2L2)p2s(t)

)∑
k∈K

ρ2k(t)

|hdl
k (t)|2

+
2dσ2

uL(∑
j∈K aj(t)pj(t)

)2 , (63)

where (a) follows Lemma 4. Assume the FL algorithm
terminates after T rounds, given an initial global model w1,
we carry out recursions as

E[F (w(T + 1))]− F ∗

≤A(T )E [F (w(T ))− F ∗] +G(T )

≤A(T ) (A(T − 1)E [F (w(T − 1))− F ∗] +G(T − 1))

+G(T )

≤ · · ·

≤
T∏
t=1

A(t)E[F (w1)− F ∗] +

T−1∑
t=1

(
T∏

i=t+1

A(i)

)
G(t)

+G(T ). (64)

Thus, this completes the proof.
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