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Abstract—In massive multiple-input multiple-output (MIMO)
systems, hybrid analog-digital beamforming is an essential tech-
nique for exploiting the potential array gain without using a
dedicated radio frequency chain for each antenna. However, due
to the large number of antennas, the conventional channel estima-
tion and hybrid beamforming algorithms generally require high
computational complexity and signaling overhead. In this work,
we propose an end-to-end deep-unfolding neural network (NN)
joint channel estimation and hybrid beamforming (JCEHB) algo-
rithm to maximize the system sum rate in time-division duplex
(TDD) massive MIMO. Specifically, the recursive least-squares
(RLS) algorithm and stochastic successive convex approximation
(SSCA) algorithm are unfolded for channel estimation and hybrid
beamforming, respectively. In order to reduce the signaling
overhead, we consider a mixed-timescale hybrid beamforming
scheme, where the analog beamforming matrices are optimized
based on the channel state information (CSI) statistics offline,
while the digital beamforming matrices are designed at each
time slot based on the estimated low-dimensional equivalent
CSI matrices. We jointly train the analog beamformers together
with the trainable parameters of the RLS and SSCA induced
deep-unfolding NNs based on the CSI statistics offline. During
data transmission, we estimate the low-dimensional equivalent
CSI by the RLS induced deep-unfolding NN and update the
digital beamformers. In addition, we propose a mixed-timescale
deep-unfolding NN where the analog beamformers are optimized
online, and extend the framework to frequency-division duplex
(FDD) systems where channel feedback is considered. Simula-
tion results show that the proposed algorithm can significantly
outperform conventional algorithms with reduced computational
complexity and signaling overhead.

Index Terms—Deep-unfolding, hybrid beamforming, channel
estimation, mixed-timescale scheme, massive MIMO.

I. INTRODUCTION

Thanks to large-scale spatial multiplexing and highly di-
rectional beamforming, massive multiple-input multiple-output
(MIMO) has been recognized as a pivotal technology for
improving system reliability and data rate [1]–[5]. However,
due to the exorbitant cost and energy consumption of ra-
dio frequency (RF) chains and analog-to-digital converters,
the employment of conventional fully-digital beamforming is
impractical with current technologies. Thus, hybrid analog-
digital beamforming which requires a smaller number of RF
chains has received great attention [6], [7]. There have been a
number of algorithms proposed for hybrid beamforming and
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channel estimation in massive MIMO systems [8]–[19]. These
approaches typically require high complexity and signaling
overhead. Moreover, these two modules are generally designed
separately, which may result in performance loss.

We consider a joint design of channel estimation and hybrid
beamforming with low-complexity and reduced overhead. A
number of previous algorithms have been proposed for hybrid
beamforming in [8]–[14]. In [9], the authors proved that if
the RF chain equipped with the hybrid beamforming structure
is twice the total number of data streams, the performance
approaches that of fully-digital beamforming. In [10] and [11],
a hybrid beamforming framework was suggested for improv-
ing the bit error rate and system sum rate performance, re-
spectively. Considering hardware constraints, codebook-based
methods for hybrid beamforming were investigated in [12]–
[14]. In particular, a hierarchical codebook design for hybrid
beamforming was proposed by [12] while a codebook-based
RF precoding designed to maximize the spectral efficiency
and energy efficiency simultaneously was designed in [13].
Channel estimation plays an important role in hybrid beam-
forming design [15]–[20]. The authors of [15] developed
an effective algorithm that uses an hidden Markov model
(HMM) for sparse channel estimation. In [16], the authors
proposed a compressive sensing method for channel estimation
by exploiting the spatial sparsity. A recursive least-squares
(RLS) adaptive estimation algorithm was developed for MIMO
interference channels in [19], which provides low computa-
tional complexity and can track the time-varying channels as
the environment changes.

Conventional single-timescale hybrid beamformers are op-
timized based on the high-dimensional full channel state
information (CSI), which leads to large signaling overhead
and transmission delay. To address these issues, several hybrid
beamforming algorithms under the mixed-timescale scheme
have been investigated in [21]–[23]. In this approach, long-
term analog beamformers are optimized based on the channel
statistics while the short-term digital beamformers are up-
dated based on the reduced-dimensional CSI. However, these
algorithms are challenging to implement in practice owing
to the large number of iterations for convergence and high
computational complexity operations, such as matrix inversion
in each iteration.

In recent years, deep learning techniques have been widely
applied in wireless communications such as channel estima-
tion [24], signal detection [25]–[27], and CSI feedback in
MIMO systems [28]. Compared to traditional algorithms, deep
learning-based techniques have much lower computational
complexity and often do not require CSI. In [29]–[32], the
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authors designed hybrid beamforming by employing convo-
lutional neural networks (CNNs) and multi-layer perception
(MLP) which are referred to as black-box neural networks
(NNs). However, these NNs have poor interpretability and
many samples are required for training. Deep-unfolding NNs
have been recently receiving growing interest in various areas
[33]. This approach unfolds iterative algorithms into layer-
wise networks and introduces trainable parameters to improve
system performance. Compared with black-box NNs, deep-
unfolding NNs are more interpretable and require less training
data, and have much lower computational complexity com-
pared to traditional algorithms with comparable performance.
Deep-unfolding NNs have been applied in communications
[34], for example, resource allocation [35], [36], detection
[37]–[40], channel estimation [41], [42], and transceiver de-
sign [43]–[46]. In [39], the authors proposed a symbol detector
named ViterbiNet, which integrates black-box NNs into the
Viterbi algorithm.

In prior works, deep-unfolding NNs are employed for a
single module design. In this work, we propose an end-to-
end deep-unfolding framework for joint channel estimation
and hybrid beamforming (JCEHB) design in time-division
duplex (TDD) massive MIMO systems to maximize the system
sum rate. To reduce the signaling overhead, we employ the
mixed-timescale hybrid beamforming scheme where analog
beamformers are optimized offline. In addition, we extend the
framework to other application scenarios.

The main contributions of this work are as follows.
• We propose an end-to-end mixed-timescale deep-

unfolding framework for maximizing the system sum
rate in massive MIMO, which jointly designs channel
estimation and hybrid beamforming.

• We develop a RLS algorithm induced channel estimation
deep-unfolding NN (CEDUN) and an SSCA algorithm
induced hybrid beamforming deep-unfolding NN (HB-
DUN). For the CEDUN, we design the pilot training
module and unfold the RLS algorithm into a layer-
wise NN with introduced trainable parameters. For the
HBDUN, we propose a stochastic successive convex
approximation (SSCA) algorithm induced deep-unfolding
NN, where the high computational complexity operations
are replaced by trainable parameters.

• Under the mixed-timescale scheme, we develop a two-
stage joint training method for the deep-unfolding NNs,
where the analog beamformers are treated as trainable
parameters and optimized offline based on the channel
statistics. During the data transmission stage, we fix
the analog beamformers and only estimate the low-
dimensional equivalent CSI by the CEDUN to update the
digital beamformers. When channel statistics change, we
employ transfer learning to fine-tune the deep-unfolding
NN.

• We extend our framework for the following different ap-
plication scenarios: (i) An online mixed-timescale scheme
where the analog beamformers are optimized in an online
manner; (ii) Frequency-division duplex (FDD) system
that incorporates channel quantization and feedback. We
propose an end-to-end deep-learning based framework
where deep-unfolding NNs are designed for channel

estimation and hybrid beamforming and black-box NNs
are designed for channel quantization and feedback, re-
spectively.

• We provide detailed analysis of the performance and
computational complexity of the proposed deep-unfolding
algorithm. Simulation results show that our proposed
deep-unfolding can significantly outperform conventional
RLS and SSCA algorithms with reduced complexity.

The rest of the paper is structured as follows. Section II
introduces the system model and problem formulation. Section
III proposes the mixed-timescale deep-unfolding framework
and presents the joint training method. Section IV develops the
RLS induced deep-unfolding NN for channel estimation and
Section V proposes the SSCA deep-unfolding NN for hybrid
beamforming design. Section VI extends the deep-unfolding
framework for different application scenarios. Section VII
analyzes the computational complexity and performance of the
proposed algorithm. Section VIII presents simulation results
and conclusions are drawn in Section IX.

Throughout the paper we use the following notations.
Scalars, vectors and matrices are respectively denoted by lower
case, boldface lower case and boldface upper case letters;
I represents an identity matrix and 0 denotes an all-zero
matrix. For a matrix A, AT , A∗, AH , and ‖A‖ denote
its transpose, conjugate, conjugate transpose and Frobenius
norm, respectively. For a square matrix A, Tr{A} is its trace.
For a vector a, ‖a‖ represents its Euclidean norm, E{·}
denotes the statistical expectation, and <{·} (={·}) are the
real (imaginary) part of a variable. The operator vec(·) stacks
the elements of a matrix in a column vector, | · | denotes the
absolute value of a complex scalar, and Cm×n (Rm×n) are
the space of m× n complex (real) matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for
downlink massive MIMO and then formulate our problem
mathematically.

A. System Model
1) Signal Model: Consider a downlink massive MIMO

system working in TDD mode as shown in Fig. 1. The base
station (BS) is equipped with Nt transmit antennas and NRF

t

RF chains, sending Ns data streams to each user at the receiver
with K users, where KNs ≤ NRF

t ≤ Nt. Each user is
equipped with Nr receive antennas and NRF

r RF chains,
where Ns ≤ NRF

r ≤ Nr. At the transmitter, the RF chains
are connected with a network of phase shifters that expands
the NRF

t digital outputs to Nt precoded analog signals feeding
the transmit antennas. Similarly, at the receiver, the Nr receive
antennas are followed by a network of phase shifters that feeds
the NRF

r RF chains. The BS sends Ns data streams to user
k ∈ K , {1, . . . ,K}, denoted as sk ∈ CNs×1. Through the
beamformers at the BS, the signal uk ∈ CNt×1 for user k can
be written as

uk =
√
PFRF,kFBB,ksk, (1)

where P denotes the transmit power of the BS, FRF,k ∈
CNt×NRFt is the analog beamformer which is subject to a
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Fig. 1: Downlink massive MIMO system with hybrid beam-
forming.

unit modulus constraint, i.e., |[FRF ]i,j | = 1√
Nt
,∀i, j, and

FBB,k , [fBB,k,1, . . . , fBB,k,Ns] ∈ CNRFt ×Ns is the digital
beamformer. The digital precoder FBB,k is normalized as
‖FRF,kFBB,k‖2F = Ns to ensure that the power constraint
is satisfied at the BS.

After passing through the channel and the beamformers at
the user, the received signal vector for user k is

yk =
√
PWH

BB,kW
H
RF,kHkFRF,kFBB,ksk +

√
PWH

BB,k

WH
RF,kHk

K∑
m=1,m 6=k

FRF,mFBB,msm+WH
BB,kW

H
RF,kzk,

(2)
where Hk ∈ CNr×Nt represents the channel matrix,
WBB,k , [wBB,k,1, . . . ,wBB,k,Ns] ∈ CNRFr ×Ns and
WRF,k ∈ CNr×NRFr denote the digital and analog
beamformers for user k, respectively, and zk ∈ CNr×1 ∼ CN
(0, σ2

kI) is the additive white Gaussian noise (AWGN)
with σk denoting the noise power. Similar to FRF ,
the analog combiner satisfies a unit modulus constraint
|[WRF ]i,j | = 1√

Nr
,∀i, j. Using (2), given perfect knowledge

of the equivalent channel, the signal-to-interference-plus-noise
ratio (SINR) for stream l of user k is given as

Γk,l=
|wH

BB,k,lHeq,kfBB,k,l|2
K∑
i=1

Ns∑
j=1

(i,j 6=k,l)

|wH
BB,k,lHeq,kfBB,i,j |2+

σ2
k

P ‖w
H
BB,k,lW

H
RF,k‖2

,

(3)
where Heq,k = WH

RF,kHkFRF,k ∈ CNRFr ×NRFt denotes the
low-dimensional equivalent CSI matrix. The system sum rate

is
K∑
k=1

Ns∑
l=1

log(1 + Γk,l).

2) Channel Estimation: It is essential for the BS to obtain
the CSI for hybrid beamforming. Here we consider estimation
of the low-dimensional equivalent CSI. Thanks to channel
reciprocity in TDD systems, we only need to estimate the
uplink channels. Thus, we consider an uplink pilot training
stage before data transmission. The k-th user first sends
training pilots X̃eq,k ∈ CNRFt ×L to the BS, where L denotes
the length of pilots. Then, the received signal at the BS

Superframe

1

Time slot

Channel statistics coherence time
The full CSI statistics are assumed 

to be constant

The instantaneous CSI  are supposed 

to be constant i sT

1 fTt
Frame

Fig. 2: Mixed-timescale frame structure.

Ỹeq,k ∈ CNRFr ×L is given by

Ỹeq,k=Heq,kX̃eq,k+WH
RF,kHk

K∑
u=1,u 6=k

FRF,uX̃eq,u+Z̃eq,k, (4)

where Z̃eq,k denotes the AWGN. The transmitted pilot signal
in the l-th pilot slot (the l-th column of X̃eq,k) should meet
the power constraint: ‖x̃eq,k,l‖2 ≤ P . Then, the BS estimates
the channel Ĥeq,k ∈ CNr×Nt based on the received signal
Ỹeq,k and the pilot X̃eq,k, which can be expressed as

Ĥeq,k = F(Ỹeq,k, X̃eq,k), (5)

where F(·) denotes a specific channel estimation algorithm.
3) Hybrid Beamforming: After acquiring the channel infor-

mation, the BS designs the hybrid beamformers based on the
channel Hk. The hybrid beamforming design scheme Q(·) at
the transmitter can be denoted as

{FRF,k,WRF,k,FBB,k,WBB,k} = Q(Hk),∀k. (6)

B. Mixed-Timescale Frame Structure

Generally, the dimension of the channel matrix is high in
massive MIMO systems due to the large number of antennas. It
is therefore impractical to estimate each instantaneous CSI due
to the unacceptable signaling overhead and high computational
complexity. To address this problem, we consider a practical
mixed-timescale frame structure as shown in Fig. 2, which
takes into consideration both the instantaneous CSI and the
channel statistics. We consider a superframe during which the
channel statistics are constant. It consists of Tf frames, each
of which is made of Ts time slots. The instantaneous CSI
remains unchanged during each time slot. We introduce two
different timescales as follows:

• Long-timescale: The channel statistics are unchanged
during each superframe which consists of several time
slots.

• Short-timescale: The instantaneous CSI is constant in
each time slot.

In general, the dimension of the equivalent CSI matrix
Heq ∈ CNRFr ×NRFt is much smaller than the dimension
of the full CSI matrix H ∈ CNr×Nt . Thus, we consider
acquiring the low-dimensional equivalent CSI at each time
slot. In this way, we can optimize the analog and digital
beamformers at different timescales. We update the long-
term analog beamformers {FRF ,WRF } based on the long-
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term channel statistics when channel statistics 1 change, and
optimize the short-term digital beamformers {FBB ,WBB}
based on the low-dimensional equivalent CSI at each time slot.

C. Problem Formulation
We aim at jointly designing the mixed-timescale hybrid

beamforming and channel estimation to maximize the system
sum rate. The optimization problem within each frame can be
formulated as

max
X ,Y

K∑
k=1

Ns∑
l=1

log(1 + Γk,l), (7a)

s.t. ‖ [FRF,k]ij ‖2=
1√
Nt
,∀k, i, j, (7b)

‖ [WRF,k]ij ‖2=
1√
Nr

,∀k, i, j, (7c)

‖ FRF,kF
i
BB,k ‖2F= Ns,∀k, (7d)

‖x̃eq,k,l‖2 ≤ P,∀k, l, (7e)

Ĥi
eq,k = Feq(Ỹeq,k, X̃eq,k),∀k, (7f)
{FRF,k,WRF,k} = Qfu(Hk),∀k, (7g)

{FiBB,k,Wi
BB,k} = Qeq(Ĥi

eq,k),∀k, (7h)

where X , {FRF,k,WRF,k,F
i
BB,k,W

i
BB,k} and Y ,

{X̃eq,k}. In particular, Hk denotes long-term channel statis-
tics, Ĥi

eq,k denotes the estimated equivalent CSI, and
{FiBB,k,Wi

BB,k} represent the digital beamformers at the i-th
time slot. In addition, Feq(·) denotes the estimation scheme for
low-dimensional equivalent CSI, and Qfu(·) and Qeq(·) repre-
sent the analog and digital beamforming schemes, respectively.
Constraints (7b) and (7c) reflect the unit modulus constraints
for analog beamformers, and (7d) and (7e) represent the
transmit power constraints. As we can see, the mixed-timescale
problem is challenging to solve. In the following, a deep-
unfolding framework is proposed for tackling this problem.

III. PROPOSED MIXED-TIMESCALE DEEP-UNFOLDING
FRAMEWORK

In this section, we propose a mixed-timescale deep-
unfolding framework, the structure of which is shown in Fig.
3. We first present how to jointly train the proposed deep-
unfolding NNs offline and then show the whole process of
the training and data transmission under the mixed-timescale
scheme.

A. The Two-Stage Joint Training
During data transmission, the analog beamformers are fixed

and only digital beamformers are updated based on the
estimated equivalent channel at each time slot. To model
the transmission process, we divide the training process for
the deep-unfolding NN into two stages where the analog
beamformers are optimized in the first stage and then fixed
in the second stage.

1In this work, channel statistics refer to the moments or distribution of
the channel fading realizations. In the mixed-timescale scheme, we need to
obtain several (potentially outdated) channel samples at each superframe, and
the analog beamformers are optimized based on the observed channel samples.

1) The First Training Stage: Fig. 3(a) denotes the deep-
unfolding NN for the first training stage, which presents the
architecture of the HBDUN that consists of the analog NN and
digital NN for designing the analog and digital beamforming,
respectively. The input of the analog NN is the full CSI sample
matrix H (possibly outdated) and the outputs are analog
beamformers {WRF ,FRF }. The input of the digital NN is
the real-time low-dimensional equivalent CSI matrix Heq and
the outputs are digital beamformers {WBB ,FBB}.

(a) Forward Propagation: We obtain channel samples of-
fline based on the long-term channel statistics as the input
of the analog NN and the outputs are analog beamformers
{WRF ,FRF }. Then we obtain the low-dimensional equiva-
lent CSI matrices Heq which pass through the digital NN that
outputs the digital beamformers {FBB ,WBB}. We introduce
the detailed structure of the HBDUN in Section V-B. The
forward propagation for the first stage P1(·) is expressed as

{WRF ,FRF ,WBB ,FBB} = P1(ΥB ; H), (8)

where ΥB represents the trainable parameters of the HBDUN.
Note that ΥB consists of Ψ and Ω, which represent the train-
able parameters of the analog NN and digital NN, respectively.

(b) Loss Function: The loss function of the first stage is
denoted as L1(ΥB ; H), which is the system sum rate:

L1(ΥB ; H) = −
K∑
k=1

Ns∑
l=1

log(1 + Γk,l). (9)

(c) Back Propagation: All the trainable parameters of the
HBDUN are updated based on the stochastic gradient descent
(SGD) algorithm. Specifically, in the i-th round of the training
process, we update the trainable parameters as follows:

Υi+1
B = Υi

B − η
∂L1(ΥB ; H)

∂ΥB
, (10)

where η is the learning rate.
2) The Second Training Stage: Fig. 3(b) shows the deep-

unfolding NN for the second training stage which consists
of the modules of channel estimation for low-dimensional
equivalent CSI and digital beamforming. Note that the CE-
DUN represents the NN for equivalent CSI estimation, which
consists of the pilot training NN and the RLS induced deep-
unfolding NN. The analog and digital NN are employed to
obtain analog and digital beamformers, respectively. The input
of the CEDUN is the low-dimensional equivalent CSI matrix
Heq and the output is the estimated channel matrix Ĥeq .

(a) Forward Propagation: First, we fix the trained analog
NN to obtain analog beamformers {WRF ,FRF } and the low-
dimensional equivalent CSI matrix Heq . Then Heq passes
through the pilot training NN and the RLS deep-unfolding
NN which outputs the estimated equivalent CSI matrix Ĥeq .
Finally, Ĥeq passes through the digital NN that outputs the
digital beamformers {FBB ,WBB}. We introduce the detailed
structure of the CEDUN in Section IV-B. The forward prop-
agation for the second stage P2(·) is expressed as

{WRF ,FRF ,WBB ,FBB} = P2({ΥC ,ΥB}; H), (11)

where ΥC consists of X̃eq and Ξ, which represent the
trainable parameters of the pilot training NN and the RLS
induced deep-unfolding NN, respectively.
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Fig. 3: Structure of the proposed deep-unfolding framework: (a) Deep-unfolding NN for the first training stage; (b) Deep-
unfolding NN for the second training stage.

(b) Loss Function: The loss function of the second stage is
denoted as L2({ΥC ,ΥB}; H), which is the system sum rate.

L2({ΥC ,ΥB}; H) = −
K∑
k=1

Ns∑
l=1

log(1 + Γk,l). (12)

(c) Back Propagation: The trainable parameters of the
CEDUN and digital NN are updated based on the SGD
algorithm. Note that the parameters of the analog NN are not
updated in the second training stage. Thus, in the i-th round
of the training process, we update the trainable parameters as
follows:

Υi+1
C = Υi

C − η
∂L2({ΥC ,ΥB}; H)

∂ΥC
, (13)

Ωi+1 = Ωi − η ∂L2({ΥC ,ΥB}; H)

∂Ω
. (14)

3) The Advantages of Joint Training: Compared with con-
ventional separate designs, the proposed joint design frame-
work has potential performance gains. Conventional algo-
rithms optimize the channel estimation and hybrid beamform-
ing modules separately under different objective functions,
i.e., the minimization of MSE for channel estimation and
maximization of sum rate for hybrid beamforming, respec-
tively. In comparison, the proposed joint design NN ties
the two modules tightly and jointly trains them. It provides
an end-to-end deep-unfolding framework without explicitly
estimating the CSI and both of the channel estimation and
hybrid beamforming are designed to maximize the sum rate,
which leads to better sum rate performance and is more
efficient in terms of the signaling overhead.
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Fig. 4: Training stage and data transmission of the offline
mixed-timescale scheme.

B. The Training and the Data Transmission Stage

Training and data transmission for the mixed-timescale is
shown in Fig. 4. We first obtain channel samples based on
the long-term channel statistics offline and jointly train the
deep-unfolding NN as mentioned above. Then in the data
transmission stage, we fix the analog beamformers during
the channel statistics coherence time and estimate the low-
dimensional equivalent real-time CSI by CEDUN to update
the digital beamformers. The analog beamformers obtained by
offline training can well adapt to CSI statistics when it does
not change [21]. When it changes, we obtain channel samples
and employ transfer learning [47] to fine tune the parameters
of the deep-unfolding NN, where the analog beamformers are
updated to better fit the change of CSI statistics [48].

IV. DEEP-UNFOLDING NETWORK FOR CHANNEL
ESTIMATION

In this section, we first introduce a RLS based algorithm for
estimating the low-dimensional equivalent CSI matrices and
then describe the deep-unfolding NN by introducing trainable
parameters.

A. The RLS Channel Estimation Algorithm

We focus on the expression (4), which represents the
received pilot signal for user k. We aim to obtain the esti-
mated low-dimensional equivalent channel matrix Ĥeq,k by
minimizing the mean square estimation error which is defined
as E{‖Ĥeq,k −Heq,k‖2}. The solution of the least squares
(LS) approach for solving this problem is given by

Ĥeq,k = Ỹeq,kX̃
H
eq,k(X̃eq,kX̃

H
eq,k)−1. (15)

In the RLS algorithm, the matrix inversion in (15) is re-
placed by an iterative process. The procedure of the RLS
channel estimation algorithm is presented in Algorithm 1,
where x̃neq,k and ỹneq,k are the n-th column of X̃eq,k and
Ỹeq,k, respectively. Note that gnk ,v

n
k , and Pn

k are intermediate
variables, βk ∈ (0, 1) is the forgetting factor and δ denotes a
small positive number, Wn

k denotes the weight matrix and the
estimated channel Ĥeq,k = (Wn

k )H . Moreover, the estimation
error enk descends with the update of Wn

k . The number of
iterations is the length of pilots L. In addition, the inputs of
the algorithm are the pilots and received signal, and the output
is the estimated channel matrix.

Algorithm 1 The RLS algorithm for channel estimation

1: Input: Pilot X̃eq,k and received signal Ỹeq,k;
2: Initialize the estimated matrix W−1

k = 0 and intermediate
variable P−1

k = δ−1I;
3: for n = 1, 2, . . . , L do
4: Update {gnk} based on gnk = Pn−1

k x̃n−1
eq,k ;

5: Update {vnk} based on vnk =
gnk

βk+(gn
k
)H x̃n

eq,k
;

6: Update {Pn
k} based on Pn

k = β−1
k (Pn−1

k − vnk (g
n
k )
H);

7: Calculate residual enk = ỹnk − (Wn−1
k )H x̃neq,k;

8: Update the estimated matrix Wn
k = Wn−1

k + vnk (e
n
k )
H ;

9: n = n+ 1;
10: end for

B. Deep-Unfolding NN for Channel Estimation
Based on the RLS algorithm, we propose the CEDUN

which contains the pilot training NN and RLS induced deep-
unfolding NN. In the proposed offline mixed-timescale frame-
work, we only need to estimate the low-dimensional equivalent
CSI at each time slot. To estimate the equivalent channel
Heq,k, the k-th user sends the training pilot matrix X̃eq,k, and
at the BS the received pilot signal matrix Ỹeq,k is denoted
as (4). Then X̃eq,k and Ỹeq,k are input to the RLS induced
deep-unfolding NN to obtain the estimated equivalent channel
Ĥeq,k. The structure of the CEDUN for user k is shown in
Fig. 3(b).

1) Pilot Training NN: Different from the conventional
Gaussian pilots and discrete fourier transform (DFT) pilots,
in the proposed deep-unfolding NN, we set the pilots as
trainable parameters that can adapt to the CSI statistics to
further improve the performance. As shown in Fig. 3(b), to
model the process of pilot training for estimating the low-
dimensional equivalent CSI matrix Heq,k, the input and output
of the NN are Heq,k and Ỹeq,k, respectively, and we set X̃eq

as the trainable parameter. Note that X̃eq needs to be scaled
to satisfy the power constraint (7e).

2) RLS Induced Deep-Unfolding NN: We unfold the RLS
into a network with significantly less layers. The inputs of the
n-th layer of the NN are {x̃neq,k, ỹneq,k,P

n−1
k ,Wn−1

k } and the
outputs are {Pn

k ,W
n
k}.

To increase the degrees of freedom, we introduce the
structure

Yn
out = Tn

yXn
in + qny , (16)

where Xn
in and Yn

out represent the input and output of the n-
th layer, respectively, Tn

y and qny are the introduced multiplier
and offset trainable parameter of the n-th layer, respectively.
Note that $n

C , {Tn
g,k,q

n
g,k}∪ {Tn

v,k,q
n
v,k}∪ {Tn

p,k,q
n
p,k}∪

{Tn
w,k,q

n
w,k} are the multiplier and offset trainable parameters

to update the variables gnk , vnk , Pn
k , and Wn

k in the n-th layer,
respectively. As shown in Fig. 3(b), based on Algorithm 1, Gnk ,
Vnk , Unk , Wn

k represent the sub-layers of the n-th layer of the
deep-unfolding NN, i.e., (17a)-(17d).

gnk = Tn
g,k(Pn−1

k x̃neq,k) + qng,k, (17a)

vnk = Tn
v,k(

gnk
γnk + (gnk )H x̃neq,k

) + qnv,k, (17b)

Pn
k =Tn

p,k(γnk )−1(Pn−1
k − vnk (gnk )H)+qnp,k, (17c)

Wn
k = Tn

w,k(Wn−1
k + vnk (enk )H) + qnw,k. (17d)
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Thus, the trainable parameters of the deep-unfolding NN are
Ξ ,

⋃Lc
n=1$

n
C ∪ γnk , where Lc is the number of layers. All

the trainable parameters of the CEDUN are denoted as ΥC ,
X̃eq ∪Ξ.

V. DEEP-UNFOLDING NETWORK FOR HYBRID
BEAMFORMING

We next turn to design an SSCA algorithm for hybrid
beamforming and then introduce the proposed HBDUN which
unfolds the SSCA algorithm.

A. The SSCA-based Hybrid Beamforming Algorithm

For the hybrid beamforming design, we first introduce the
mixed-timescale SSCA framework [21]. Let us express the
element of analog beamformers in terms of ejφ as

FRF = ejφF ,φF ∈ CNt×N
RF
t , (18a)

WRF = ejφW ,φW ∈ CNr×N
RF
r , (18b)

where φ , {φF ,φW } denotes the angle of phase shifter. Here,
the objective function can be expressed as r0(φ,M; H), where
M , {FBB ,WBB}.

1) Long-Term Analog Beamformers: We optimize the ana-
log beamformers based on the full CSI samples H. First,
we fix the digital beamformers MJ , which means that the
digital beamformers are obtained by running the algorithm that
optimizes the short-term variables for J iterations. Then we
employ a convex surrogate function to replace the objective
function to optimize the analog beamformers. The surrogate
function in the t-th iteration is [21]

f̄ t(φ) = f t + (f tφ)T (φ− φt) + τ ‖ φ− φt ‖2, (19)

where

f tφ = (1− ρt)f t−1φ + ρt 5φ r0(φt,MJ ; H) (20)

with f−1φ = 0. Here5φr0(φt,MJ ; H) is the partial derivative
of r0(φt,MJ ; H), and the constant f t is calculated as

f t = (1− ρt)f t−1 + ρtr0(φt,MJ ; H) (21)

with f−1 = 0. We take the derivative with formula (19) to
update the long-term variable φ as

φ̄ = φ− ηf tφ, (22)

where η denotes the step size.
2) Short-Term Digital Beamformers: By fixing the analog

beamformers, we optimize the digital beamformers based on
the low-dimensional equivalent CSI matrix Heq . We adopt the
successive convex approximation (SCA) algorithm to optimize
the short-term digital beamformers [49]. For the data stream
l of user k, the MSE expression is given as

εk,l = |1−wH
BB,k,lHeq,kfBB,k,l|2

+

K,Ns∑
m,n(m6=k,n 6=l)

|wH
BB,k,lHeq,kfBB,m,n|2+σ2

k ‖wBB,k,l‖2 .

(23)

Algorithm 2 The SCA algorithm for digital beamforming
1: Input: The equivalent channel Heq .
2: Initialize tk,l = 0 and digital precoder FBB satisfying the power

constraint condition and set the maximum iteration number
Imax;

3: for i = 1, 2, 3, . . . do
4: Update digital combiner Wi

BB,k based on (24);

5: Update dual variable λik,l =
α
tik,l

logα
;

6: Update digital precoder

f iBB,k,l = λik,l

(
(K,Ns)∑
(m,n)

λim,nH
H
eq,mwi

BB,m,n

(wi
BB,m,n)

HHeq,m + τkI

)−1

HH
eq,kw

i
BB,k,l;

7: Calculate MSE εik,l based on (23);
8: Update ti+1

k,l = tik,l +
1

logα
(1− εik,lαtik,l);

9: Until desired level of convergence or i > Imax.
10: end for

The optimal digital beamformer is given by

WBB,k=(

K∑
v=1

Heq,kFBB,vF
H
BB,vH

H
eq,k+σ2

kI)−1Heq,kFBB,k.

(24)
We equivalently transform the optimization objective function
into the problem that minimizes the MSE [49]:

min
FBB

K∑
k=1

Ns∑
l=1

log(εk,l). (25)

Then we design the digital precoder FBB . By introducing a
monotonic log-concave function g(tk,l), the target optimiza-
tion function becomes [49]

min
FBB ,tk,l

K∑
k=1

Ns∑
l=1

log(g(tk,l)
−1), (26a)

s.t. εk,l ≤ g(tk,l)
−1. (26b)

We then use the first-order Taylor approximation

ḡ(tk,l, t
0
k,l) = g(t0k,l) + (tk,l − t0k,l)

∂

∂tk,l
g(t0k,l). (27)

Problem (26) can be formulated as

min
FBB ,tk,l

K∑
k=1

Ns∑
l=1

log(ḡ(tk,l, t
(i)
k,l)), (28a)

s.t. εk,l ≤ [ḡ(tk,l, t
(i)
k,l)]. (28b)

To simplify the problem, we consider a log-linear function
g(x) = αx, where α > 1. We present the SCA algorithm in
Algorithm 2, where τk denotes the Lagrange multiplier.

B. The SSCA Algorithm Induced Deep-Unfolding NN

We next unfold the SSCA algorithm leading to HBDUN.
The structure of HBDUN is shown in Fig. 3(a), where the first
network and the second network are referred to as the analog
and digital NNs, respectively. The input of the analog NN
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is the full channel samples H and the outputs are the analog
beamforming matrix {FRF,k,WRF,k}. We set the angle of the
phase shifters for analog beamformers as trainable parameters
Ψ , {ΨF ,ΨW } of the analog NN and employ the operation
ej(·) to satisfy the unit modulus constraint.

The input of the digital NN is the low-dimensional real-time
equivalent CSI matrix Heq,k and the outputs are the digital
beamforming matrix {FBB,k,WBB,k}. We next introduce
the detailed structure of the digital NN, which unfolds the
SCA algorithm into a layer-wise structure. Two non-linear
operations are defined for approximating matrix inversion: (i)
We take the inverse of the diagonal entries of matrix A and
set the other elements in A as zero, and denote the result as
A+. For example,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,A+ =

a−111 0 0
0 a−122 0
0 0 a−133

 ; (29)

(ii) we set the imaginary part of the diagonal elements of D
to zero, expressed as D−:

D=

dr,11+jdi,11 dr,12+jdi,12 dr,13+jdi,13
dr,21+jdi,21 dr,22+jdi,22 dr,23+jdi,23
dr,31+jdi,31 dr,32+jdi,32 dr,33+jdi,33

,
D−=

 dr,11 dr,12+jdi,12 dr,13+jdi,13
dr,21+jdi,21 dr,22 dr,23+jdi,23
dr,31+jdi,31 dr,32+jdi,32 dr,33

 .
(30)

Based on this, we employ the following structure to approxi-
mate the matrix inversion.

• First, we use A+B with non-linear operation A+ and
trainable parameter B, where B is introduced to improve
performance. It can be seen that A−1 = A+ if matrix
A is diagonal. We observe that the diagonal elements of
the matrix are much larger than the other elements in the
SCA algorithm.

• Secondly, we introduce the offset trainable matrix D to
better approximate the inverse matrix. We find that the
imaginary part of the diagonal elements of the inverse
matrix are close to zero. Thus, we employ D− as the
offset.

Thus, the matrix inversion A−1 is approximated by A+B +
D−. The computational complexity of matrix inversion is
O(n3) while that of the approximation is O(n2.37). Note
that we introduce trainable parameters {Bi

f,k,D
i
f,k} to ap-

proximate the inversion of variable f iBB,k,l in the i-th layer,
which reduces the computational complexity. To increase the
degrees of freedom for the parameters, the multiplier and offset
trainable parameters $i

B , {Ti
w,k,Q

i
w,k} ∪ {Ti

λ,k,q
i
λ,k} ∪

{Ti
f,k,q

i
f,k} ∪ {Ti

t,k,q
i
t,k} are introduced in updating the

variables Wi
BB,k, λik,l, f iBB,k,l, and tik,l in the i-th layer,

respectively. As shown in Fig. 3(a), based on Algorithm
2, Wi

k, Dik, Cik, and T ik represent the sub-layers of the i-
th layer of the deep-unfolding NN, i.e., (31a)-(31d), where

Ci
k ,

(K,Ns)∑
(m,n)

λim,nHH
eq,mwi

BB,m,n(wi
BB,m,n)HHeq,m + vikI.

Obtain Equivalent

 CSI Matrix
Update Digital Beamformers

1

Data Transmission Stage

Time slot

Superframe 

1 fTt
Frame

i sT

Obtain full CSI matrix and 

update analog beamformers

Fig. 5: Frame structure of the online mixed-timescale scheme.

In addition, the constant 1
logα is set as trainable parameter µik

to speed up convergence.

Wi
BB,k = Ti

w,k

(
(

K∑
v=1

Heq,kF
i−1
BB,vF

i−1H
BB,vHH

eq,k + σ2
kI)−1

Heq,kF
i−1
BB,k

)
+ Qi

w,k, (31a)

λik,l = Ti
λ,k(µikα

tik,l) + qiλ,k, (31b)

f iBB,k,l=Ti
f,k

(
λik,l((C

i
k)+Bi

f,k+(Di
f,k)−)HH

eq,kw
i
BB,k,l

)
+qif,k,

(31c)

tik,l = Ti
t,k(ti−1k,l + µik(1− εk,lαti−1

k,l )) + qit,k. (31d)

Thus, the trainable parameters of the digital NN are Ω ,⋃Lh
i=1{Bi

f,k,D
i
f,k} ∪$i

B ∪ µik, where Lh is the number of
layers of the digital NN. All the trainable parameters of the
HBDUN are denoted as ΥB , Ψ ∪Ω. In addition, to avoid
gradient explosion and satisfy the power constraint, we nor-
malize FiBB,k by Ns at each layer to

√
Ns

‖FRF,kFiBB,k‖F
FiBB,k.

It is interesting to investigate the relationship of the analog
beamformers in the proposed deep-unfolding algorithm and
the conventional SSCA-based algorithm. In SSCA, φ is up-

dated based on the gradient
∂r0((φ,M); H)

∂φ
|φ=φi while Ψ

is updated in the HBDUN based on the gradient

∂L1(ΥB ; H)

∂Ψ
|Ψ=Ψi =

∂r0((Ψ,P1({Ψ,Ω}; H)); H)

∂Ψ
|Ψ=Ψi

=
∂r0((Ψ,P1({Ψi,Ω}; H)); H)

∂Ψ
|Ψ=Ψi

+(
∂r0
∂P1

)
T ∂P1({Ψi,Ω}; H)

∂Ψ
|Ψ=Ψi .

(32)

The gradient of the SSCA algorithm is the same as the first
term in (32) except that the hybrid beamformers are acquired
by the HBDUN. The second term is the gradient of the NN
which only exists in the deep-unfolding NN but not in the
SSCA algorithm. This term further ties the analog and digital
beamformers.

VI. EXTENSIONS OF THE MIXED-TIMESCALE
DEEP-UNFOLDING FRAMEWORK

In this section, we extend the framework proposed in
Section III for other scenarios. In particular, we propose a
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Fig. 6: Structure of the proposed online deep-unfolding framework: (a) Long-term deep-unfolding NN; (b) Short-term deep-
unfolding NN.

mixed-timescale deep-unfolding framework where the analog
beamformers are optimized online. Besides, we propose an
end-to-end deep-learning based framework and employ it in
the FDD system, where channel quantization and feedback are
considered in the design.

A. Online Mixed-Timescale Deep-Unfolding Framework

1) Scenarios for Offline and Online Optimization: It is
appropriate for optimizing analog beamformers offline in
scenarios where CSI characteristics are known and a number
of channel samples can be collected before data transmission
stage. Besides, when channel statistics change, we need to
collect channel samples to fine-tune the deep-unfolding NN.
During the time it takes to collect channel samples, the analog
beamformers are not optimized. Thus, if it is difficult to collect
channel samples, the offline optimization is not appropriate. If
we do not know the CSI statistics or it is difficult to collect
a large number of channel samples, the analog beamformers
need to be updated online. In this way, we collect channel
samples and optimize analog beamformers at the same time
during data transmission. The performance gradually improves
as the number of collected samples increases and eventually
converges when there are enough channel samples.

2) Online Mixed-Timescale Scheme: In the online mixed-
timescale scheme, we optimize long-term analog beamformers
and short-term digital beamformers at different timescales. The
frame structure is shown in Fig. 5. In particular, at the end of
each frame, we obtain full CSI samples and optimize analog
beamformers using the long-term deep-unfolding NN while at
each time slot, we obtain equivalent CSI matrices to optimize
the digital beamformers using the short-term deep-unfolding
NN.

3) Structure of the Online Deep-Unfolding Framework:
We propose a mixed-timescale deep-unfolding framework for
online training, the structure of which is shown in Fig. 6.
At the end of each frame, we train the long-term deep-
unfolding NN, as shown in Fig. 6(a), to optimize the analog
beamformers. The long-term deep-unfolding NN consists of
long-term CEDUN for full CSI estimaiton and HBDUN for

hybrid beamforming. At each time slot, we train the short-
term deep-unfolding NN shown in Fig. 6(b) to optimize the
digital beamformers. The training process is similar to that in
Section III-A.

B. End-to-End Deep-Learning Framework for FDD systems
1) Channel Estimation and Feedback for FDD Systems:

In FDD systems, there is no channel reciprocity. To acquire
downlink CSI, the BS needs to send pilots to the users. Then
the users estimate the CSI matrix H which is quantized as bits
and fed back to the BS. The BS recovers the CSI matrix for
hybrid beamforming based on the feedback bits. During the
data transmission in the mixed-timescale scheme, we fix the
analog beamformers and only estimate the equivalent CSI at
each time slot. Thus, we only need to feed the equivalent CSI
back to the BS.

2) Structure of the Deep-Learning Based Framework for
FDD systems: In an end-to-end FDD system, the modules of
channel estimation and hybrid beamforming are required to
have strong generalization and interpretability, which can be
designed by deep-unfolding approaches. However, the module
of channel feedback, which is used to extract and compress
channel features and recover the channel, does not need to have
strong interpretability and generalization for signal-to-noise
ratio (SNR). Black-box NNs can effectively extract channel
features and reduce feedback overhead [50], which are suitable
for channel feedback design. Besides, it is difficult to unfold
the conventional algorithm [51]–[53] for channel quantization
and feedback due to the non-differentiable procedures. Thus,
we propose an autoencoder based on the CRNet in [54] which
significantly compresses the channel matrix and reduces the
transmission overhead. The structure of the feedback autoen-
coder is shown in Fig. 7, and consists of several convolution
layers and fully connected (FC) layers. The dimension of the
equivalent CSI matrix is much lower than that of full CSI
matrix and less information needs to be fed back.

We jointly design the feedback autoencoder and deep-
unfolding NNs in the proposed deep-learning framework. Here
the RLS induced deep-unfolding NN and the channel quanti-
zation module are deployed at the users while the pilot training
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Fig. 7: Architecture of the deep-unfolding framework for FDD systems.

NN, channel recovery module, and HBDUN are deployed at
the BS.

The performance of the autoencoder only depends on the
equivalent CSI statistics but not on the transmit power or the
channel noise. Thus, the autoencoder is not required to have
a strong generalization ability for SNR and can be trained
separately. The training process is thus as follows.
• Training Stage I: First we jointly train the deep-

unfolding NN except for the autoencoder according to
Section III.A.

• Training Stage II: Then we separately train the autoen-
coder for channel quantization and recovery. We fix the
analog beamformers and obtain the equivalent CSI matrix
Heq , which is the input of the autoencoder. Its output
is the recovered CSI matrix H̄eq . The loss function is
normalized mean square error (NMSE), which is defined
as follows:

NMSE =
‖ H̄eq −Heq ‖

2

2

‖ Heq ‖22
. (33)

• Training Stage III: Finally, we load the well-trained
models into the deep-unfolding NN and the autoencoder
and cascade them as shown in Fig. 7. Then we jointly
train them with the sum rate as the loss function.

VII. COMPUTATIONAL COMPLEXITY AND PERFORMANCE
ANALYSIS

In this section, we first develop a black-box NN for the
JCEHB design for comparison. Then we analyze the computa-
tional complexity of the conventional algorithms, the proposed
deep-unfolding NN and the black-box NN. We further analyze
the convergence of the proposed deep-unfolding NN based
algorithm.

A. The Black-Box NNs for JCEHB Design

The structure of the black-box NN is shown in Fig. 8.
For the analog beamforming design, we propose the analog
black-box NN which sets the phase of analog beamformers as
trainable parameters similar to the proposed deep-unfolding
NN. For channel estimation and digital beamforming design,
we propose the channel estimation and digital black-box

Digital Black-Box NN

CL BN Relu CL BN Relu

… … 

Black-box NN

Analog Black-Box NN

CL BN Relu

Black-box NN

… 

Channel Estimation Black-Box NN

H ,RF RFF W ,BB BBF W
eqH ˆ

eqH

Fig. 8: Architecture of the black-box NN.

NN, which adopt the DNN that consists of conventional FC
layers and batch normalization (BN) layers. ReLU is used
as the activation function. Specifically, the full CSI sample
Hk passes through the analog black-box NN and analog
beamformers {FRF,k,WRF,k} are obtained. Then we obtain
the equivalent CSI matrix Heq,k which passes through the
channel estimation black-box NN that outputs the estimated
equivalent channel matrix Ĥeq,k. Finally, Ĥeq,k passes through
the digital black-box NN which outputs the digital beamform-
ers {FBB,k,WBB,k}. The input of the black-box NN is the
full CSI matrix and the outputs are hybrid beamformers. The
loss function of the black-box NN is the system sum rate.

B. Computational Complexity

We analyze the computational complexity of the conven-
tional RLS and SSCA algorithm, the proposed deep-unfolding
NN, and the black-box NN.

1) Conventional Algorithms: The computational complex-
ity of the RLS algorithm is

O(LrK(NRF
t )2), (34)

where Lr is the number of iterations. The computational
complexity of the SSCA algorithm is

O(Ls(KNs(N
RF
t )3+K2N2

s (NRF
t )2NRF

r +KNs(N
RF
t )2NRF

r )),
(35)

where Ls is the number of iterations.
2) Proposed Deep-Unfolding NN: The computational com-

plexity of the CEDUN is

O(LcK(NRF
t )2), (36)
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where Lc (Lc � Lr) represents the number of layers of the
CEDUN. The computational complexity of the HBDUN is

O(Lh(KNs(N
RF
t )2.37+K2N2

s (NRF
t )2NRF

r +KNs(N
RF
t )2NRF

r )),
(37)

where Lh (Lh � La) represents the number of layers of the
HBDUN. Compared to the traditional algorithms, the proposed
deep-unfolding NN has a lower computational complexity:
• The number of layers of the proposed deep-unfolding NN

is reduced, i.e., Lc � Lr, Lh � Ls.
• The HBDUN approximates the matrix inversion operation

with computational complexity O(n3) by matrix multi-
plication operation with lower computational complexity
O(n2.37).

3) Black-Box NN: The computational complexity of the
proposed black-box NN is

O(

Lb−1∑
l=1

KFc,lFc,l+1 +

Ld−1∑
l=1

KFh,lFh,l+1), (38)

where Lb and Ld denote the numbers for fully connected
layers of channel estimation and digital black-box NN, re-
spectively, and Fc,l and Fh,l denote the output sizes of the l-th
layer for channel estimation and hybrid beamforming black-
box NN, respectively.

C. Performance Analysis for the Deep-unfolding NN

We show that the performance of one layer of the deep-
unfolding NN can approach that of several iterations of the
conventional iterative algorithm. We take the HBDUN as an
example; the CEDUN can be analyzed in the same way.

We consider the update of t as an example, where WBB

and FBB are treated as constants. As shown in Algorithm 2, in
the i-th iteration of the SCA algorithm, we have the following
mapping from tik,l to ti+2

k,l :

ti+2
k,l =tik,l+

2

logα
− 1

logα
(1+α

1
logα (1−εi+1

k,l α
tik,l ))εik,lα

tik,l .

(39)
Similarly, we have the following mapping from tjk,l to tj+1

k,l
in the HBDUN:

tj+1
k,l = Tj

t,kt
j
k,l −Tj

t,kµ
j
kε
j
k,lα

tjk,l + qjt,k. (40)

We need to prove that tj+1
k,l approaches ti+2

k,l , i.e., ‖tj+1
k,l −

ti+2
k,l ‖2 < ζ, for any ζ > 0.

For deterministic channels, we can demonstrate that there
exist trainable parameters Tj

t,k, µ
j
k and qjt,k that satisfy

‖tj+1
k,l − ti+2

k,l ‖2 < ζ. Based on (39) and (40), we obtain the
following formulation:

Tj
t,k = 1,∀k, (41a)

qjt,k =
2

logα
,∀k, (41b)

µjk =
1

logα
(1 + α

1
logα (1−εi+1

k,l α
tik,l )),∀k, (41c)

where εi+1
k,l can be obtained by WBB and FBB in the i-th

iteration according to (23). For channels that follow a certain
distribution, we need to show that EH{‖tj+1

k,l − ti+2
k,l ‖2} < δ.

By taking Tj
t,k = 1 and qjt,k =

2

logα
,∀k, we need to prove

that

EH{‖(µik−
1

logα
(1+α

1
logα (1−εi+1

k,l α
tik,l )))εik,lα

tik,l‖}<ζ. (42)

Based on Cauchy—Schwarz Inequality, we have

EH{(µik −
1

logα
(1 + α

1
logα (1−εi+1

k,l α
tik,l )))εik,lα

tik,l}

≤ EH{‖(µik −
1

logα
(1 + α

1
logα (1−εi+1

k,l α
tik,l )))‖}.

(43)

Then we set

µik = EH{
1

logα
(1 + α

1
logα (1−εi+1

k,l α
tik,l ))}. (44)

According to The Law of Large Numbers, (43) converges to
0 with a sufficiently large number of channel samples. Thus
there exists the trainable parameter µjk which satisfies (42) for
any ζ > 0, i.e., the performance of one layer of the proposed
deep-unfolding NN can approach that of two iterations of
the corresponding conventional iterative algorithm. Indeed,
we can extend that the performance generated by one layer
of the deep-unfolding NN with a more complex structure
can approach that of multiple iterations of the conventional
iterative algorithm.

VIII. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
deep-unfolding algorithm based on simulation results.

A. Simulation Setup
The simulation setting is given as follows. We set Nt = 64,

NRF
t = 16, Nr = 32, NRF

r = 4, K = 4, and Ns = 4. We set
the SNR as 10 dB and the number of the layers for CEDUN
and HBDUN are 16 and 5, respectively. The CSI matrix is
given by

H =

√
NtNr
NcNray

NC∑
i=1

NRay∑
l=1

αilar(φ
r
il)a

H
t (φtil), (45)

where Nc and Nray are the number of clusters and propagation
rays, respectively, αil ∼ CN (0, σ2

α) is the complex gain, and
φril and φtil denote the angle of arrival (AoA) and angle of
departure (AoD) for the l-th ray in the i-th cluster, respectively.
The ar(φ

r
il) and at(φ

t
il) denote the receive and transmit array

response vectors, respectively, and for a uniform linear array
with N antenna elements and angle φ, the response vector can
be expressed as

a(φ) =
1√
N

[
1, e−j2π

d
λ sin(φ), · · · , e−j2π dλ (N−1) sin(φ)

]T
,

(46)
where d and λ denote the distances between the adjacent
antennas and carrier wavelength, respectively. We set Nc =
4, Nray = 2, σ2

α = 0.1, φril ∼ U(−π/3, π/3) and φtil ∼
U(−π/3, π/3). We use Python (version 3.6) as the program-
ming language and use the library of Pytorch (version 1.8.1)
to build the deep learning framework. Besides, the simulations
are carried out on a computer with Intel i5 CPU running at
2.8GHz and with 16GB RAM.
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Fig. 9: Signaling bits versus the number of frames.

We provide the following benchmarks as comparison:
• Joint design NN: The proposed mixed-timescale deep-

unfolding NN which jointly trains the CEDUN and
HBDUN.

• Separate Design NN: The proposed mixed-timescale
deep-unfolding NN which separately trains the CEDUN
and HBDUN with the minimization of MSE and the max-
imization of sum rate as the loss function, respectively.

• HBDUN: The proposed deep-unfolding NN for the de-
sign of hybrid beamforming with perfect CSI.

• RLS-SSCA: The cascaded RLS algorithm for the design
of channel estimation and the SSCA algorithm for the
hybrid beamforming design.

• RLS-ZF: The cascaded RLS algorithm for the design of
channel estimation and the zero-forcing (ZF) algorithm
for the hybrid beamforming design.

• Black-box NN: The proposed black-box NN for the
JCEHB design.

B. Pilot Overhead

We compare the signaling bits for the feedback of pilots
versus the number of frames for the single-timescale and
mixed-timescale schemes in Fig. 9. For the full CSI estimation,
the users need to transmit the pilots W̃RF,k ∈ CNr×NRFr ,
F̃RF,k ∈ CNt×NRFt , and X̃k ∈ CNRFt ×L. The number of
feedback signaling bits for pilots is given by

Qf = q(NrN
RF
r +NtN

RF
t +NRF

t L), (47)

where q denotes the number of bits for quantifying each
element of pilot matrix. For the equivalent CSI estimation,
the users only need to feed back the pilot X̃eq,k ∈ CNRFt ×L

and the number of feedback signaling bits is given by

Qeq = qNRF
t L. (48)

For the single-timescale scheme, we need to estimate full CSI
at each time slot. Thus, the number of feedback signaling bits
for the single-timescale scheme over each superframe is given
by

Qsingle = TfTsQf , (49)

where Tf is the number of frames in a superframe and Ts is
the number of time slots in each frame.

In the offline mixed-timescale scheme, we need to estimate
CSI statistics for offline training. We can estimate full CSI
and employ the expectation-maximum (EM) algorithm [55]
or maximum likelihood (ML) algorithm to estimate the distri-
bution function of channel parameters, e.g., AoAs, AoDs, and
complex gains. During the data transmission stage, we only
need to estimate the equivalent CSI at each time slot. Thus,
the pilot overhead of the offline mixed-timescale scheme over
each superframe is given by

Qoffline = TfTsQeq +NsampleQf , (50)

where Nsample represents the number of estimated channel
samples for CSI statistics estimation.

In the online mixed-timescale scheme, we need to estimate
full CSI at the end of each frame and estimate equivalent CSI
at each time slot. Thus, the pilot overhead of the online mixed-
timescale scheme over each superframe is given by

Qonline = Tf (TsQeq +Qf ). (51)

In Fig. 9, we consider a superframe where channel statistics
do not change. The number of frames in a superframe depends
on the coherence time of the channel. When the CSI statistics
change fast, the number of frames in a superframe is small and
the CSI statistics need to be estimated frequently in the offline
scheme, which leads to high pilot overhead. In contrast, when
the CSI statistics change slow, the number of frames is large
and the pilot overhead can be reduced in the offline scheme.
Here, we assume that the superframe consists of 16 frames,
i.e., Tf = 16.

It can be observed that when the number of frames is
samll, e.g., the number of frames is 2, the pilot overhead
of offline mixed-timescale scheme is larger than that of the
other two schemes due to the estimation for CSI statistics.
As the number of frames increases, the pilot overhead of
three schemes increase. We can observe that when the number
of frames is large, the pilot overhead of the single-timescale
scheme is much larger than that of the mixed-timescale scheme
since we need to estimate the full CSI at each time slot in
the single-timescale scheme. In addition, the pilot overhead
of online and offline mixed-timescale is almost the same.
Thus, taking both of the offline training stage and the data
transmission stage into consideration, the pilot overhead of
the mixed-timescale schemes is much smaller than that of the
conventional single-timescale schemes.

C. System Sum Rate

Fig. 10 illustrates the sum rate of the proposed network
and the benchmarks for different values of SNR. Firstly it
can be seen that for all algorithms, the sum rate increases
gradually with SNR. The proposed separate deep-unfolding
NN can achieve comparable performance compared to the
conventional SSCA and RLS algorithms, which indicates the
effectiveness of our proposed deep-unfolding NN. The results
also illustrate the superiority of the joint design compared to
the separate NN. Besides, both of the proposed deep-unfolding
NNs significantly outperform the black-box NN. It is mainly
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Fig. 10: The sum rate versus the SNR.
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Fig. 11: The sum rate versus the number of RF chains NRF
t .

because the proposed deep-unfolding NNs are designed based
on the iterative optimization algorithms.

Fig. 11 indicates the sum rate of the proposed algorithm
and the benchmarks for different numbers of the RF chains
NRF
t . We can see that the sum rate achieved by different

algorithms increases with the number of RF chains. Moreover,
it is observed that the sum rate of the proposed joint design NN
exceeds that of the conventional iterative algorithms. Besides,
we can see that the performance gap between the joint design
NN and separate design NN becomes larger as NRF

t increases,
which illustrates the performance gain of the joint design NN.

Table I manifests the sum rate versus the number of users K.
We normalize the sum rate of NNs by the corresponding value
of the RLS-SSCA algorithm. We can see that when K is small,
e.g., K = 2, the proposed separate design NN can achieve
97.23% performance of the conventional iterative algorithms
and the joint design NN outperforms the conventional iterative
algorithms. It can be seen that the sum rates of deep-unfolding
NNs and black-box NNs both degrade with the increase of
K. It is mainly because as K increases, the problem turns
more complex and it is difficult for NNs to find a satisfactory
solution.

Table II presents the sum rate versus the number of training
samples. We normalize the results by the sum rate of the RLS-
SSCA algorithm. It is obvious that the samples required by
the deep-unfolding NN for training are much fewer than that
of the black-box NN. In reality, it is challenging to obtain a
large quantity of training samples. Thus, the proposed deep-
unfolding NN is more practical.

Table III and Table IV indicate the sum rate versus the
number of layers/iterations for deep-unfolding NN and con-
ventional iterative algorithms. We normalize the results by
the sum rate which is achieved by the conventional algorithm
with 90 layers of the RLS algorithm and 70 layers of the
SSCA algorithm. We can see that the deep-unfolding NNs
achieve better performance than the conventional algorithms
with much less number of layers. It is observed that with
more layers, the sum rate achieved by the joint deep-unfolding
NN improves firstly and then fluctuates. It is mainly because
when there are few layers, e.g., 3 layers of the HBDUN,
the degree of freedom limits its learning capability. Thus,
the sum rate improves with the number of layers. When the
number of layers is large, e.g., 8 layers of the HBDUN,
the numerical error caused by the matrix multiplication and
inversion becomes large. Then the learning capability of the
NN is limited and the sum rate fluctuates. Note that the
layers of the CEDUN is the length of the pilots and we can
observe that our proposed deep-unfolding NN can save the
pilot resources compared to the RLS algorithm. Considering
both the sum rate and training time, the optimal choice is 5
layers for the HBDUN and 16 layers for the CEDUN.

Table V shows the training and testing time of different
algorithms with different numbers of RF chains NRF

t and
users K. It is observed that the training time of the deep-
unfolding NN is much less than the black-box NNs, which
indicates that the deep-unfolding NN converges faster. It is
because that the CEDUN and HBDUN employ the structure
of the RLS and SSCA algorithms, respectively. Moreover, the
gap of CPU training time between the deep-unfolding NN and
black-box NN increases with NRF

t and K. Furthermore, the
testing time of the black-box NN and the joint design NN
is much less than that of the RLS-SSCA algorithm, which
becomes more obvious as NRF

t and K increase.
We investigate the impact of finite resolution phase shifters

on the deep-unfolding NN. Specifically, we considered a
uniform quantization scheme for the analog phase shifters. Fig.
12 presents the sum rate versus the SNR for different numbers
of phase shifter quantization bits QRF . It can be seen that
the sum rate of the proposed deep-unfolding NN improves
with QRF as expected. In particular, the performance with
QRF = 8 bits can approach the performance with infinite
resolution phase shifters.

Fig. 13 indicates the sum rate versus the SNR of the
one/two-stage training and benchmarks. The curve “Two-stage
Training” shows the sum rate of the proposed two-stage
training while the curve “One-stage Training” shows that of
one-stage training where we jointly train the whole network
shown in Fig.3 (b) in one stage. We see that the performance
of two-stage training is better than that of one-stage training
as expected, which illustrates the advantage of the proposed
two-stage training method.
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TABLE I: The sum rate versus different numbers of K.

K 1 2 3 4 5 6
RLS-SSCA (bits/s/Hz) 10.18 19.55 24.78 29.64 35.84 42.63
Separate Design NN 98.33% 97.23% 97.06% 96.77% 95.60% 95.33%

Joint Design NN 103.53% 102.32% 100.31% 100.07% 99.49% 98.78%
Black-box NN 86.95% 85.65% 85.01% 83.99% 83.42% 81.94%

TABLE II: The sum rate versus the number of training samples.

Training samples 200 300 400 500 600 700 800 900 1000
Deep-unfolding NN 90.14% 94.41% 96.25% 98.09% 99.44% 100.11% 101.30% 101.31% 101.31%

Training samples 2000 3000 4000 5000 6000 7000 8000 9000 10000
Black-box NN 76.77% 77.59% 78.90% 80.52% 82.27% 83.22% 84.62% 85.44% 85.57%

TABLE III: The sum rate versus the number of HBDUN/SSCA layers/iterations.

The number of layers of HBDUN 3 4 5 6 7 8 9
sum rate 85.14% 92.65% 101.25% 101.79% 101.79% 100.86% 101.02%

The number of layers of SSCA 30 35 40 45 50 55 60
sum rate 84.84% 89.44% 92.43% 96.99% 98.86% 100% 100%

TABLE IV: The sum rate versus the number of CEDUN/RLS layers/iterations.

The number of layers of CEDUN 8 10 12 14 16 18 20
sum rate 92.18% 95.44% 98.15% 99.09% 101.25% 101.46% 101.5%

The number of layers of RLS 40 50 60 70 80 90 100
sum rate 79.64% 86.69% 91.85% 95.47% 100% 100% 100%
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Fig. 12: The sum rate versus the SNR for different numbers
of phase shifter quantization bits QRF .

Fig. 14(a) illustrates the generalization ability for different
numbers of K and SNR. We train the joint deep-unfolding
NN in the case of K = 6 and SNR = 10 dB and test
it under different values of K and SNR, such as K = 4
and SNR = 5 dB. The performance of “Joint Design NN”
is obtained when the testing scenario is the same as the
training scenario while the performance of “Joint Design NN
(mismatch)” is obtained when there is a mismatch between
testing scenario and training scenario. It can be observed
that there is only a tiny performance gap between the two
curves, which demonstrates that the deep-unfolding NN has
satisfactory generalization ability for different numbers of K
and SNR. It is also observed that the performance gap becomes
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Fig. 13: The sum rate versus the SNR for one/two-stage
training and benchmarks.

smaller when K increases.
Fig. 14(b) illustrates the generalization ability for the length

of pilot L and the complex channel gain. We train the joint
deep-unfolding NN in the case of L = 26 and σα = 0.1 and test
it under different values of L and σα, such as L = 22 and σα =
0.08. Again, there is only a tiny performance gap between the
two curves, which demonstrates that the deep-unfolding NN
has satisfactory generalization ability for different values of L
and σα. The performance gap becomes larger with decreasing
L since the number of layers of the CEDUN decreases with
L and the channel estimation error becomes larger.

We show the generalization ability of the deep-unfolding
NN for the channel with different AoAs/AoDs and clus-
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TABLE V: The CPU running time of the analyzed algorithms.

(NRF
t ,K) CPU training time (min) CPU testing time (s)

Joint Design NN Black-box NN RLS-SSCA Joint Design NN Black-box NN
(8,2) 46.82 80.57 2.94 0.26 0.13

(16,2) 59.13 96.81 3.11 0.28 0.14
(32,2) 76.34 110.45 3.42 0.30 0.14
(16,4) 189.23 350.41 11.20 0.96 0.36
(32,4) 274.23 435.54 12.81 1.021 0.40
(32,6) 394.25 740.61 26.45 1.58 0.76
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Fig. 14: The generalization ability:(a) The number of user K and SNR. (b) The length of pilot L and the complex gain of
rays.
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Fig. 15: The generalization ability for the channel with differ-
ent AoAs/AoDs and clusters/rays.

ters/rays in Fig. 15. We train the deep-unfolding NN in the
scenario where Nc = 4, Nray = 2, φril ∼ U(−π/3, π/3)
and φtil ∼ U(−π/3, π/3). The performance of “Joint Design
NN (no mismatch)” is obtained when the testing scenario is
the same as the training scenario. The performance of “Joint
Design NN (mismatch)” is obtained when Nc = 3, Nray =
3, φril ∼ U(−π/2, π/2) and φtil ∼ U(−π/2, π/2) in the testing
scenario, which is different from that of training scenario. It
can be seen that there is a small gap between the performance
of “Joint Design NN (no mismatch)” and “Joint Design
NN (mismatch)”, which demonstrates that the deep-unfolding
NN achieves satisfactory generalization ability for different
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Fig. 16: The convergence performance when the CSI statistics
change.

AoAs/AoDs and numbers of clusters/rays. Furthermore, we
employ transfer learning to fine-tune the deep-unfolding NN
when the channel statistics change. The “Transfer learning”
shows the performance of the deep-unfolding NN after transfer
learning and is very close to that of “Joint Design NN (no
mismatch)”, which indicates the deep-unfolding NN can adapt
to the change of CSI statistics after transfer learning.

Fig. 16 presents the convergence performance of the pro-
posed deep-unfolding NN. It can be seen that when the
channel statistics change, the sum rate decreases first, and then
increases within several numbers of training batches, which
shows that the proposed deep-unfolding NN combined with
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Fig. 18: The sum rate of online optimization versus the SNR.

the method of transfer learning can track the channel variation
rapidly. If the channel statistics change fast, we can slightly
update the analog beamformers to track the variation.

Fig. 17 shows the sum rate of online and offline training ver-
sus the number of frames. We collect 50 channel samples each
frame to train the deep-unfolding NN in the online training. It
can be seen that the sum rate of offline training is stable as the
number of frames increases because the deep-unfolding NN is
well-trained before data transmission. The sum rate of online
optimization gradually improves and eventually converges as
the number of frames increases because the deep-unfolding
NN is optimized based on the collected channel samples. The
converge performance of online training is close to that of
offline training.

Fig. 18 illustrates the sum rate of the proposed deep-
unfolding NN and the benchmarks for different values of
SNR. The analog beamformers are optimized online in these
algorithms. It is observed that the sum rate increases with
SNR for all the algorithms. The performance of the deep-
unfolding NN is prominently better than that of the black-
box NN. Besides, the proposed joint design deep-unfolding
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Fig. 19: The sum rate versus different numbers of feedback
bits.

NN achieves comparable performance of the RLS and SSCA
algorithm, which indicates the effectiveness of the proposed
framework of online optimization.

Fig. 19 illustrates the sum rate versus different numbers of
feedback bits in the FDD system. For conventional algorithms,
the optimal Lloyd-Max algorithm is employed to quantize the
channel parameters {φril, φtil,<{αil},={αil}} and the phase
of analog beamformers {φW ,φF }. The performance of “Sep-
arate Design NN (FDD)” is obtained where the deep-unfolding
NNs and the feedback autoencoder are trained separately.
The performance of “Joint Design NN (FDD)” is obtained
where the deep-unfolding NNs and the feedback autoencoder
are jointly trained according to the aforementioned training
process. It can be observed that the proposed deep-learning NN
outperforms the conventional algorithm with the same number
of feedback bits. The joint design NN with 48 feedback bits
achieves the same sum rate with the SSCA-RLS algorithm
with 112 feedback bits, which verifies that the proposed deep-
learning NN can significantly reduce the number of feedback
bits. The joint design NN achieves better performance than
the separate design NN, which indicates the effectiveness of
our end-to-end joint design deep-learning framework.

IX. CONCLUSION

In this work, a mixed-timescale deep-unfolding based
JCEHB framework has been proposed for hybrid massive
MIMO systems. We developed a RLS algorithm induced
deep-unfolding NN and an SSCA algorithm induced deep-
unfolding NN for channel estimation and hybrid beamform-
ing, respectively. Specifically, we introduced some trainable
parameters and non-linear operations to replace the high
complexity operations and increase the convergence speed. In
addition, we propose a mixed-timescale deep-unfolding NN
where analog beamformers are optimized online, and extend
the framework to the FDD systems where channel feedback
is considered. Furthermore, we analyzed the computational
complexity and performance of the proposed deep-unfolding
algorithm. The simulation results showed that the proposed
deep-unfolding algorithm can outperform the conventional
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iterative algorithms. For the future study, it is worth generating
our deep-unfolding framework to solve more complex wireless
systems around the research hot spots, such as multi-cell
MIMO, drones and intelligent reflecting surface systems.
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[49] J. Kaleva, A. Tölli, and M. Juntti, “Decentralized sum rate maximization
with QoS constraints for interfering broadcast channel via successive
convex approximation,” IEEE Trans. Signal Process., vol. 64, no. 11,
pp. 2788–2802, Jun. 2016.

[50] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive mimo
csi feedback,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 748–751,

Mar. 2018.
[51] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common sparsity based

adaptive channel estimation and feedback for FDD massive MIMO,”
IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169–6183, Jul. 2015.

[52] X. Rao and V. K. N. Lau, “Distributed compressive csit estimation and
feedback for FDD multi-user massive MIMO systems,” IEEE Trans.
Signal Process., vol. 62, no. 12, pp. 3261–3271, May 2014.

[53] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Jul. 2015.

[54] Z. Lu, J. Wang, and J. Song, “Multi-resolution CSI feedback with deep
learning in massive MIMO system,” in IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–6.

[55] L. Bai, C.-X. Wang, G. Goussetis, S. Wu, Q. Zhu, W. Zhou, and E.-H. M.
Aggoune, “Channel modeling for satellite communication channels at q-
band in high latitude,” IEEE Access, vol. 7, pp. 137 691–137 703, Sep.
2019.


	I Introduction
	II  System Model and Problem Formulation
	II-A System Model
	II-A1 Signal Model
	II-A2 Channel Estimation
	II-A3 Hybrid Beamforming

	II-B Mixed-Timescale Frame Structure
	II-C Problem Formulation

	III Proposed mixed-timescale Deep-Unfolding Framework
	III-A The Two-Stage Joint Training
	III-A1 The First Training Stage
	III-A2 The Second Training Stage
	III-A3 The Advantages of Joint Training

	III-B The Training and the Data Transmission Stage

	IV Deep-unfolding Network for Channel Estimation
	IV-A The RLS Channel Estimation Algorithm
	IV-B Deep-Unfolding NN for Channel Estimation
	IV-B1 Pilot Training NN
	IV-B2 RLS Induced Deep-Unfolding NN


	V Deep-unfolding Network for Hybrid Beamforming
	V-A The SSCA-based Hybrid Beamforming Algorithm
	V-A1 Long-Term Analog Beamformers
	V-A2 Short-Term Digital Beamformers

	V-B The SSCA Algorithm Induced Deep-Unfolding NN

	VI Extensions of the Mixed-Timescale Deep-Unfolding Framework
	VI-A Online Mixed-Timescale Deep-Unfolding Framework
	VI-A1 Scenarios for Offline and Online Optimization
	VI-A2 Online Mixed-Timescale Scheme
	VI-A3 Structure of the Online Deep-Unfolding Framework

	VI-B End-to-End Deep-Learning Framework for FDD systems
	VI-B1 Channel Estimation and Feedback for FDD Systems
	VI-B2 Structure of the Deep-Learning Based Framework for FDD systems


	VII Computational Complexity and Performance Analysis
	VII-A The Black-Box NNs for JCEHB Design
	VII-B Computational Complexity
	VII-B1 Conventional Algorithms
	VII-B2 Proposed Deep-Unfolding NN
	VII-B3 Black-Box NN

	VII-C Performance Analysis for the Deep-unfolding NN

	VIII  Simulation Results
	VIII-A Simulation Setup
	VIII-B Pilot Overhead
	VIII-C System Sum Rate

	IX Conclusion
	References

