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Abstract—In massive multiple-input multiple-output (MIMO)
systems, hybrid analog-digital beamforming is an essential tech-
nique for exploiting the potential array gain without using a
dedicated radio frequency chain for each antenna. However, due
to the large number of antennas, the conventional channel estima-
tion and hybrid beamforming algorithms generally require high
computational complexity and signaling overhead. In this work,
we propose an end-to-end deep-unfolding neural network (NN)
joint channel estimation and hybrid beamforming (JCEHB) algo-
rithm to maximize the system sum rate in time-division duplex
(TDD) massive MIMO. Specifically, the recursive least-squares
(RLS) algorithm and stochastic successive convex approximation
(SSCA) algorithm are unfolded for channel estimation and hybrid
beamforming, respectively. In order to reduce the signaling
overhead, we consider a mixed-timescale hybrid beamforming
scheme, where the analog beamforming matrices are optimized
based on the channel state information (CSI) statistics offline,
while the digital beamforming matrices are designed at each
time slot based on the estimated low-dimensional equivalent
CSI matrices. We jointly train the analog beamformers together
with the trainable parameters of the RLS and SSCA induced
deep-unfolding NNs based on the CSI statistics offline. During
data transmission, we estimate the low-dimensional equivalent
CSI by the RLS induced deep-unfolding NN and update the
digital beamformers. In addition, we propose a mixed-timescale
deep-unfolding NN where the analog beamformers are optimized
online, and extend the framework to frequency-division duplex
(FDD) systems where channel feedback is considered. Simula-
tion results show that the proposed algorithm can significantly
outperform conventional algorithms with reduced computational
complexity and signaling overhead.

Index Terms—Deep-unfolding, hybrid beamforming, channel
estimation, mixed-timescale scheme, massive MIMO.

I. INTRODUCTION

Thanks to large-scale spatial multiplexing and highly di-
rectional beamforming, massive multiple-input multiple-output
(MIMO) has been recognized as a pivotal technology for
improving system reliability and data rate [1[]-[5]. However,
due to the exorbitant cost and energy consumption of ra-
dio frequency (RF) chains and analog-to-digital converters,
the employment of conventional fully-digital beamforming is
impractical with current technologies. Thus, hybrid analog-
digital beamforming which requires a smaller number of RF
chains has received great attention [6]], [7]. There have been a
number of algorithms proposed for hybrid beamforming and
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channel estimation in massive MIMO systems [8]—[19]. These
approaches typically require high complexity and signaling
overhead. Moreover, these two modules are generally designed
separately, which may result in performance loss.

We consider a joint design of channel estimation and hybrid
beamforming with low-complexity and reduced overhead. A
number of previous algorithms have been proposed for hybrid
beamforming in [8]-[14]. In [9], the authors proved that if
the RF chain equipped with the hybrid beamforming structure
is twice the total number of data streams, the performance
approaches that of fully-digital beamforming. In [[10] and [[11]],
a hybrid beamforming framework was suggested for improv-
ing the bit error rate and system sum rate performance, re-
spectively. Considering hardware constraints, codebook-based
methods for hybrid beamforming were investigated in [12]-
[14]. In particular, a hierarchical codebook design for hybrid
beamforming was proposed by [12] while a codebook-based
RF precoding designed to maximize the spectral efficiency
and energy efficiency simultaneously was designed in [13].
Channel estimation plays an important role in hybrid beam-
forming design [15]-[20]. The authors of [15] developed
an effective algorithm that uses an hidden Markov model
(HMM) for sparse channel estimation. In [16], the authors
proposed a compressive sensing method for channel estimation
by exploiting the spatial sparsity. A recursive least-squares
(RLS) adaptive estimation algorithm was developed for MIMO
interference channels in [[19], which provides low computa-
tional complexity and can track the time-varying channels as
the environment changes.

Conventional single-timescale hybrid beamformers are op-
timized based on the high-dimensional full channel state
information (CSI), which leads to large signaling overhead
and transmission delay. To address these issues, several hybrid
beamforming algorithms under the mixed-timescale scheme
have been investigated in [21]-[23]. In this approach, long-
term analog beamformers are optimized based on the channel
statistics while the short-term digital beamformers are up-
dated based on the reduced-dimensional CSI. However, these
algorithms are challenging to implement in practice owing
to the large number of iterations for convergence and high
computational complexity operations, such as matrix inversion
in each iteration.

In recent years, deep learning techniques have been widely
applied in wireless communications such as channel estima-
tion [24], signal detection [25]-[27], and CSI feedback in
MIMO systems [28]]. Compared to traditional algorithms, deep
learning-based techniques have much lower computational
complexity and often do not require CSL. In [29]-[32]], the



authors designed hybrid beamforming by employing convo-
lutional neural networks (CNNs) and multi-layer perception
(MLP) which are referred to as black-box neural networks
(NNs). However, these NNs have poor interpretability and
many samples are required for training. Deep-unfolding NNs
have been recently receiving growing interest in various areas
[33]. This approach unfolds iterative algorithms into layer-
wise networks and introduces trainable parameters to improve
system performance. Compared with black-box NNs, deep-
unfolding NNs are more interpretable and require less training
data, and have much lower computational complexity com-
pared to traditional algorithms with comparable performance.
Deep-unfolding NNs have been applied in communications
[34], for example, resource allocation [35]], [36], detection
[37]-[40], channel estimation [41]], [42], and transceiver de-
sign [43]]-[46]. In [39], the authors proposed a symbol detector
named ViterbiNet, which integrates black-box NNs into the
Viterbi algorithm.

In prior works, deep-unfolding NNs are employed for a
single module design. In this work, we propose an end-to-
end deep-unfolding framework for joint channel estimation
and hybrid beamforming (JCEHB) design in time-division
duplex (TDD) massive MIMO systems to maximize the system
sum rate. To reduce the signaling overhead, we employ the
mixed-timescale hybrid beamforming scheme where analog
beamformers are optimized offline. In addition, we extend the
framework to other application scenarios.

The main contributions of this work are as follows.

e We propose an end-to-end mixed-timescale deep-
unfolding framework for maximizing the system sum
rate in massive MIMO, which jointly designs channel
estimation and hybrid beamforming.

o We develop a RLS algorithm induced channel estimation
deep-unfolding NN (CEDUN) and an SSCA algorithm
induced hybrid beamforming deep-unfolding NN (HB-
DUN). For the CEDUN, we design the pilot training
module and unfold the RLS algorithm into a layer-
wise NN with introduced trainable parameters. For the
HBDUN, we propose a stochastic successive convex
approximation (SSCA) algorithm induced deep-unfolding
NN, where the high computational complexity operations
are replaced by trainable parameters.

o Under the mixed-timescale scheme, we develop a two-
stage joint training method for the deep-unfolding NN,
where the analog beamformers are treated as trainable
parameters and optimized offline based on the channel
statistics. During the data transmission stage, we fix
the analog beamformers and only estimate the low-
dimensional equivalent CSI by the CEDUN to update the
digital beamformers. When channel statistics change, we
employ transfer learning to fine-tune the deep-unfolding
NN.

o We extend our framework for the following different ap-
plication scenarios: (i) An online mixed-timescale scheme
where the analog beamformers are optimized in an online
manner; (ii) Frequency-division duplex (FDD) system
that incorporates channel quantization and feedback. We
propose an end-to-end deep-learning based framework
where deep-unfolding NNs are designed for channel

estimation and hybrid beamforming and black-box NNs
are designed for channel quantization and feedback, re-
spectively.

o« We provide detailed analysis of the performance and
computational complexity of the proposed deep-unfolding
algorithm. Simulation results show that our proposed
deep-unfolding can significantly outperform conventional
RLS and SSCA algorithms with reduced complexity.

The rest of the paper is structured as follows. Section

introduces the system model and problem formulation. Section
proposes the mixed-timescale deep-unfolding framework
and presents the joint training method. Section |[V|develops the
RLS induced deep-unfolding NN for channel estimation and
Section [V] proposes the SSCA deep-unfolding NN for hybrid
beamforming design. Section extends the deep-unfolding
framework for different application scenarios. Section
analyzes the computational complexity and performance of the
proposed algorithm. Section presents simulation results
and conclusions are drawn in Section [[Xl

Throughout the paper we use the following notations.

Scalars, vectors and matrices are respectively denoted by lower
case, boldface lower case and boldface upper case letters;
I represents an identity matrix and O denotes an all-zero
matrix. For a matrix A, AT, A*, A¥ and ||A| denote
its transpose, conjugate, conjugate transpose and Frobenius
norm, respectively. For a square matrix A, Tr{A} is its trace.
For a vector a, ||a|| represents its Euclidean norm, E{-}
denotes the statistical expectation, and R{-} (3{-}) are the
real (imaginary) part of a variable. The operator vec(-) stacks
the elements of a matrix in a column vector, | - | denotes the
absolute value of a complex scalar, and C™*™ (R™*™) are
the space of m x n complex (real) matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for
downlink massive MIMO and then formulate our problem
mathematically.

A. System Model

1) Signal Model: Consider a downlink massive MIMO
system working in TDD mode as shown in Fig. [I} The base
station (BS) is equipped with N; transmit antennas and N
RF chains, sending N, data streams to each user at the receiver
with K users, where KN, < N/ < N,. Each user is
equipped with N, receive antennas and N*¥ RF chains,
where Ny < NEF < N,. At the transmitter, the RF chains
are connected with a network of phase shifters that expands
the N*¥" digital outputs to N; precoded analog signals feeding
the transmit antennas. Similarly, at the receiver, the N, receive
antennas are followed by a network of phase shifters that feeds
the NEF RF chains. The BS sends Ny data streams to user
ke K ={1,...,K}, denoted as s, € CN+*1. Through the
beamformers at the BS, the signal u;, € CN+*! for user k can
be written as

u; = \/FFRF,kFBB,kSka (D

where P denotes the transmit power of the BS, Frr; €
RF . . .
CNexNi™ s the analog beamformer which is subject to a
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Fig. 1: Downlink massive MIMO system with hybrid beam-
forming.

unit modulus constraint, i.e., |[Fgrl;;

= ﬁ,‘di,j, and
FBB,k £ [fBB,k,la .. .,fBB’}g’NS} S CN‘RFXNS is the digital
beamformer. The digital precoder Fpp ) is normalized as
|FrrxFEB K% = Ns to ensure that the power constraint
is satisfied at the BS.

After passing through the channel and the beamformers at
the user, the received signal vector for user k is

Yk = \FWBB sWHe HiFrp Fepasy + VPWhE .

H E H H
WRF,ka FRF,mFBB,mSm+WBB,kWRF,ka7

m=1,m#k
2
where Hj € CVN-*Nt¢  represents the channel matrix,
A RE X
WBB,k: [WBB,k %wuaWBB,k,Ns} E(CNT X Ns and
Wrry € CNPXN: denote the digital and analog

beamformers for user k, respectively, and z;, € CN-*! ~ CN
(0,021) is the additive white Gaussian noise (AWGN)
with op denoting the noise power. Similar to Fpgrp,
the analog combiner satisfies a unit modulus constraint
[[Wgrlij| = ﬁ,\ﬁ, j. Using H given perfect knowledge
of the equivalent channel, the signal-to-interference-plus-noise
ratio (SINR) for stream [ of user k is given as

|WgB,k,lHeq,kaB,k,z|2

Uri=— N, )
21 Zl|WBB k. Heq B5,i51? 35 ||WBB Kl RF,k||2
T J
(4,57#k,1)
3)

" denotes the

low-dimensional equivalent CSI matrix. The system sum rate
K N,

is 35 > log(14Ty).
k=11=1

2) Channel Estimation: It is essential for the BS to obtain
the CSI for hybrid beamforming. Here we consider estimation
of the low-dimensional equivalent CSI. Thanks to channel
reciprocity in TDD systems, we only need to estimate the
uplink channels. Thus, we consider an uplink pilot training
stage before data transmlssmn The k-th user first sends
training pilots Xeq k€ CN" <L (o the BS, where L denotes
the length of pilots. Then, the received signal at the BS

RF
where Heq,k = ngkaFRF,k € CN-" xN

L Channel statistics coherence time
The full CSI statistics are assumed ¥ "

to be constant Superlframe ]
Frame
... - I ] .- T
The instantaneous CS| are supposed
to be constant I - - - [ - - -
Time slot
Fig. 2: Mixed-timescale frame structure.
O RF . .
Y., r € CN-" %L is given by
K
~ ~ H ~ ~
Yeq b =Heq 1 Xeg s tWgp Hi E FrruXequtlicqk, (4)
u=1,u#k

where Zeq r denotes the AWGN. The transmitted pilot signal
in the [-th pilot slot (the [-th column of Xeq &) should meet
the power constraint: ||Xeq,, 1||> < P. Then, the BS estimates
the channel H,,; € CN XNt based on the received signal
qu,k and the pilot Xeq,k, which can be expressed as

Heo s = F(Yeqrs Xegr)s (5)

where F(-) denotes a specific channel estimation algorithm.

3) Hybrid Beamforming: After acquiring the channel infor-
mation, the BS designs the hybrid beamformers based on the
channel Hy,. The hybrid beamforming design scheme Q(-) at
the transmitter can be denoted as

{Frrr, Wrrk, Feek, Wit = Q(H),Vk.  (6)

B. Mixed-Timescale Frame Structure

Generally, the dimension of the channel matrix is high in
massive MIMO systems due to the large number of antennas. It
is therefore impractical to estimate each instantaneous CSI due
to the unacceptable signaling overhead and high computational
complexity. To address this problem, we consider a practical
mixed-timescale frame structure as shown in Fig. which
takes into consideration both the instantaneous CSI and the
channel statistics. We consider a superframe during which the
channel statistics are constant. It consists of 7' frames, each
of which is made of Ty time slots. The instantaneous CSI
remains unchanged during each time slot. We introduce two
different timescales as follows:

o Long-timescale: The channel statistics are unchanged
during each superframe which consists of several time
slots.

o Short-timescale: The instantaneous CSI is constant in
each time slot.

In general, the dimension of the equivalent CSI matrix
H, < CN XN i much smaller than the dimension
of the full CSI matrix H € C¥r*Nt_ Thus, we consider
acquiring the low-dimensional equivalent CSI at each time
slot. In this way, we can optimize the analog and digital
beamformers at different timescales. We update the long-
term analog beamformers {Frpr, Wgrpr} based on the long-



term channel statistics when channel statistics [1_-] change, and
optimize the short-term digital beamformers {Fpp, Wgpp}
based on the low-dimensional equivalent CSI at each time slot.

C. Problem Formulation

We aim at jointly designing the mixed-timescale hybrid
beamforming and channel estimation to maximize the system
sum rate. The optimization problem within each frame can be
formulated as

K N,
max ZZlog(l—i—FkJ),

(72)

XY k=11=1

1
st. || [Frelij 1= —=, k.1, 4, (7b)
1 .

|| [WRFJC]Z-]' ||2: W?Vk7l>]7 (7C)
| FrexFipy, I= N, VEk, (7d)
||i€q,k7l||2 S P7 Vk7la (78)
: iq,k = ]:eq(qu,k,, Xeq,k), \V/k, (7f)
{Frrkr, Wrrrt = Qru(Hg), VE, (79)
{Fipr Wit = Qeq(Heg i), VE,  (Th)

where X £ {FRF’]C,WRF’bFiBB’k,WiBB’k} and y £
{ka}. In particular, Hj, denotes long-term channel statis-
tics, IAIZe 0.k denotes the estimated equivalent CSI, and
{F35. Wip, )} represent the digital beamformers at the i-th
time slot. In addition, F.,(-) denotes the estimation scheme for
low-dimensional equivalent CSI, and Q,,(-) and Q.(-) repre-
sent the analog and digital beamforming schemes, respectively.
Constraints and reflect the unit modulus constraints
for analog beamformers, and and represent the
transmit power constraints. As we can see, the mixed-timescale
problem is challenging to solve. In the following, a deep-
unfolding framework is proposed for tackling this problem.

III. PROPOSED MIXED-TIMESCALE DEEP-UNFOLDING
FRAMEWORK

In this section, we propose a mixed-timescale deep-
unfolding framework, the structure of which is shown in Fig.
We first present how to jointly train the proposed deep-
unfolding NNs offline and then show the whole process of
the training and data transmission under the mixed-timescale
scheme.

A. The Two-Stage Joint Training

During data transmission, the analog beamformers are fixed
and only digital beamformers are updated based on the
estimated equivalent channel at each time slot. To model
the transmission process, we divide the training process for
the deep-unfolding NN into two stages where the analog
beamformers are optimized in the first stage and then fixed
in the second stage.

Tn this work, channel statistics refer to the moments or distribution of
the channel fading realizations. In the mixed-timescale scheme, we need to
obtain several (potentially outdated) channel samples at each superframe, and
the analog beamformers are optimized based on the observed channel samples.

1) The First Training Stage: Fig. 3[a) denotes the deep-
unfolding NN for the first training stage, which presents the
architecture of the HBDUN that consists of the analog NN and
digital NN for designing the analog and digital beamforming,
respectively. The input of the analog NN is the full CSI sample
matrix H (possibly outdated) and the outputs are analog
beamformers {W rr, Frr}. The input of the digital NN is
the real-time low-dimensional equivalent CSI matrix H,, and
the outputs are digital beamformers {Wpgp,Fpp}.

(a) Forward Propagation: We obtain channel samples of-
fline based on the long-term channel statistics as the input
of the analog NN and the outputs are analog beamformers
{Wgr,Frr}. Then we obtain the low-dimensional equiva-
lent CSI matrices H,, which pass through the digital NN that
outputs the digital beamformers {Fpp, W p}. We introduce
the detailed structure of the HBDUN in Section The
forward propagation for the first stage P, (-) is expressed as

{Wgrr,Frr,Wgp,Fpp} =P1(YTp; H), ®)

where Y p represents the trainable parameters of the HBDUN.
Note that Y g consists of ¥ and €2, which represent the train-
able parameters of the analog NN and digital NN, respectively.
(b) Loss Function: The loss function of the first stage is
denoted as £1(Y 5; H), which is the system sum rate:

K N,
L1(Yp:H) = —ZZbg(HrkJ). )
k=11=1
(c) Back Propagation: All the trainable parameters of the
HBDUN are updated based on the stochastic gradient descent
(SGD) algorithm. Specifically, in the ¢-th round of the training
process, we update the trainable parameters as follows:

8£1 (TB; H)

T?l = TlB -n aTB )

(10)
where 7 is the learning rate.

2) The Second Training Stage: Fig. 3[b) shows the deep-
unfolding NN for the second training stage which consists
of the modules of channel estimation for low-dimensional
equivalent CSI and digital beamforming. Note that the CE-
DUN represents the NN for equivalent CSI estimation, which
consists of the pilot training NN and the RLS induced deep-
unfolding NN. The analog and digital NN are employed to
obtain analog and digital beamformers, respectively. The input
of the CEDUN is the low-dimensional equivalent CSI matrix
H,, and the output is the estimated channel matrix H,.

(a) Forward Propagation: First, we fix the trained analog
NN to obtain analog beamformers {W gr, Frr} and the low-
dimensional equivalent CSI matrix H.,. Then H,, passes
through the pilot training NN and the RLS deep-unfolding
NN which outputs the estimated equivalent CSI matrix I:qu.
Finally, I:IEq passes through the digital NN that outputs the
digital beamformers {F g5, W g }. We introduce the detailed
structure of the CEDUN in Section The forward prop-
agation for the second stage Po(-) is expressed as

{Wgrr,Frr, Wgs, Fgp} =P{Yc, Y H), (11)

where Y consists of Xeq and =, which represent the
trainable parameters of the pilot training NN and the RLS
induced deep-unfolding NN, respectively.
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Fig. 3: Structure of the proposed deep-unfolding framework:

unfolding NN for the second training stage.

(b) Loss Function: The loss function of the second stage is
denoted as Lo({Y ¢, Y }; H), which is the system sum rate.

K N,

- Z Zlog(l +Txy).

k=11=1

Ly({Yc, Y} H) = (12)

(c¢) Back Propagation: The trainable parameters of the
CEDUN and digital NN are updated based on the SGD
algorithm. Note that the parameters of the analog NN are not
updated in the second training stage. Thus, in the ¢-th round
of the training process, we update the trainable parameters as
follows:
9L:({Yc, Y} H)

oY ¢

8£2({Tc, TB};
g Bl

Yol =YL~ (13)

)

QZ+1 Q’L _ H) .

(14)

(a) Deep-unfolding NN for the first training stage; (b) Deep-

3) The Advantages of Joint Training: Compared with con-
ventional separate designs, the proposed joint design frame-
work has potential performance gains. Conventional algo-
rithms optimize the channel estimation and hybrid beamform-
ing modules separately under different objective functions,
i.e., the minimization of MSE for channel estimation and
maximization of sum rate for hybrid beamforming, respec-
tively. In comparison, the proposed joint design NN ties
the two modules tightly and jointly trains them. It provides
an end-to-end deep-unfolding framework without explicitly
estimating the CSI and both of the channel estimation and
hybrid beamforming are designed to maximize the sum rate,
which leads to better sum rate performance and is more
efficient in terms of the signaling overhead.
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B. The Training and the Data Transmission Stage

Training and data transmission for the mixed-timescale is
shown in Fig. 4] We first obtain channel samples based on
the long-term channel statistics offline and jointly train the
deep-unfolding NN as mentioned above. Then in the data
transmission stage, we fix the analog beamformers during
the channel statistics coherence time and estimate the low-
dimensional equivalent real-time CSI by CEDUN to update
the digital beamformers. The analog beamformers obtained by
offline training can well adapt to CSI statistics when it does
not change [21]. When it changes, we obtain channel samples
and employ transfer learning [[47] to fine tune the parameters
of the deep-unfolding NN, where the analog beamformers are
updated to better fit the change of CSI statistics [48].

IV. DEEP-UNFOLDING NETWORK FOR CHANNEL
ESTIMATION

In this section, we first introduce a RLS based algorithm for
estimating the low-dimensional equivalent CSI matrices and
then describe the deep-unfolding NN by introducing trainable
parameters.

A. The RLS Channel Estimation Algorithm

We focus on the expression (@), which represents the
received pilot signal for user k. We aim to obtain the esti-
mated low-dimensional equivalent channel matrix Hc,, by
minimizing the mean square estimation error which is defined
as E{|[Hcyx — Hegr||?}. The solution of the least squares
(LS) approach for solving this problem is given by

He%k - YEQ kXeq k(XEq kXeq k) (15)
In the RLS algorithm, the matrix inversion in @]) is re-
placed by an iterative process. The procedure of the RLS
channel estimation algorithm is presented in Algorithm 1,
where i’e‘%k and ygm are the n-th column of X%k and
qu’ k> respectively. Note that g7, v}, and P} are intermediate
variables, 8 € (0,1) is the forgetting factor and ¢ denotes a
small positive number, W7 denotes the weight matrix and the
estimated channel H., ), = (W) Moreover, the estimation
error e;; descends with the update of W7. The number of
iterations is the length of pilots L. In add1t10n the inputs of
the algorithm are the pilots and received signal, and the output
is the estimated channel matrix.

Algorithm 1 The RLS algorithm for channel estimation

—_

Input: Pilot Xeq r and received signal ?eq,k;

2: Initialize the estimated matrix ‘W, 1 = 0 and intermediate
variable P, =671,

3: forn =1, 2 ,L do

4: Update {g } based on g = P}~ 1% Zq ,i,

5: Update {v}, } based on v} = fH»(gkgW;

6: Update {P}} based on P} = 3, "(P} " — vi(gi)™);

7: Calculate residual e =y — (W}~ 1) Xeq. ks

8: Update the estimated matrix W} = W™ + vi(ep)";

9: n=n-+1;

10: end for

B. Deep-Unfolding NN for Channel Estimation

Based on the RLS algorithm, we propose the CEDUN
which contains the pilot training NN and RLS induced deep-
unfolding NN. In the proposed offline mixed-timescale frame-
work, we only need to estimate the low-dimensional equivalent
CSI at each time slot. To estimate the equivalent channel
H,, 1, the k-th user sends the training pilot matrix X(,q , and
at the BS the received pilot signal matrix qu , is denoted
as H Then Xeq . and qu , are input to the RLS induced
deep-unfolding NN to obtain the estimated equivalent channel
I:I€q7k. The structure of the CEDUN for user k£ is shown in
Fig. 3[b).

1) Pilot Training NN: Different from the conventional
Gaussian pilots and discrete fourier transform (DFT) pilots,
in the proposed deep-unfolding NN, we set the pilots as
trainable parameters that can adapt to the CSI statistics to
further improve the performance. As shown in Fig. [B(b), to
model the process of pilot training for estimating the low-
dimensional equivalent CSI matrix H, j, the input and output
of the NN are H,, 5 and Y., 1, respectively, and we set X,
as the trainable parameter. Note that Xeq needs to be scaled
to satisfy the power constraint (7).

2) RLS Induced Deep-Unfolding NN: We unfold the RLS
into a network with significantly less layers. The inputs of the
n-th layer of the NN are {x .,y ., Pr~', W} ™'} and the
outputs are {P}, W7'}.

To increase the degrees of freedom, we introduce the
structure

Ygut - TZX;Ln + qZ? (16)
where X7 and Y, represent the input and output of the n-

th layer, respectively, T} and q,, are the introduced multiplier
and offset trainable parameter of the n-th layer, respectively.
Note that wg, = {T7 ., qy , }U{Ty . dp .} U{Ty . ap .} U
{Ty s Dy, . are the multiplier and offset trainable parameters
to update the variables gr, v, Py, and W{ in the n-th layer,
respectively. As shown in Fig. [3{b), based on Algorithm [T} G,
Vi, Uy, Wi represent the sub-layers of the n-th layer of the

deep-unfolding NN, i.e., (T7a)-(T7d).

gr = Ty (PYT'X0, ) +dp ks (172)
8k n
v =T" (n—)—i—qv , (17b)
g g f)/k: (gk)HXeq k ok
Pr=Tp(vi) " (Py ' — vy (gk‘)H)Jqu,m (17¢)
K= w,k(WZ_l +vie)™) +al . (17d)



Thus, the trainable parameters of the deep-unfolding NN are
E 2 Uk, @l uAp, where L. is the number of layers. All
the trainable parameters of the CEDUN are denoted as Y ¢ =

X, UE.

V. DEEP-UNFOLDING NETWORK FOR HYBRID
BEAMFORMING

We next turn to design an SSCA algorithm for hybrid
beamforming and then introduce the proposed HBDUN which
unfolds the SSCA algorithm.

A. The SSCA-based Hybrid Beamforming Algorithm

For the hybrid beamforming design, we first introduce the

mixed-timescale SSCA framework [21]. Let'us express the

element of analog beamformers in terms of ¢/¢ as
FRF = ej¢Fa d)F € CNtXNtRFa

j N, x NEF
WRF:e'7¢W7¢W€C " Ty

(18a)
(18b)

where ¢ = {¢F, ¢w } denotes the angle of phase shifter. Here,
the objective function can be expressed as ro(¢, M; H), where
M2 {FBB,WBB}.

1) Long-Term Analog Beamformers: We optimize the ana-
log beamformers based on the full CSI samples H. First,
we fix the digital beamformers M, which means that the
digital beamformers are obtained by running the algorithm that
optimizes the short-term variables for J iterations. Then we
employ a convex surrogate function to replace the objective
function to optimize the analog beamformers. The surrogate
function in the t-th iteration is [21]]

Flo)=F+(F) (@—d)+7] 00" |

where

19)

Fo=0=p")F "+ 0" Ve ro(e', M7 H)

with f(;l = 0. Here /470 (¢!, M7; H) is the partial derivative
of ro(¢*, M”; H), and the constant f* is calculated as

fr=0-p")f""+p'ro(¢", M7 H)

with f~1 = 0. We take the derivative with formula to
update the long-term variable ¢ as

d) = ¢ - 77.f (27
where 7 denotes the step size.

2) Short-Term Digital Beamformers: By fixing the analog
beamformers, we optimize the digital beamformers based on
the low-dimensional equivalent CSI matrix H.,. We adopt the
successive convex approximation (SCA) algorithm to optimize

the short-term digital beamformers [49]. For the data stream
l of user k, the MSE expression is given as

(20)

2y

(22)

eri =1 = wip . Hegrfnp 81 [°
K,Ng
+ Y WEp e HegkfBB.ma ™07 IWaB R -

m,n(m#k,n#l)
(23)

Algorithm 2 The SCA algorithm for digital beamforming

1: Input: The equivalent channel He,.

2: Initialize t;; = O and digital precoder F g satisfying the power
constraint condition and set the maximum iteration number
Irna:c;

3: fori=1,2,3,... do _

4: Update digital combiner Wi j, based on l)

atk.l

log o ?

W

Update dual variable A}, ; =
Update digital precoder

4

(K,Ns)
1 H 7
E )‘m,nHeq,mWBB,m,n

(m,n)

% %
fBB,Ic,l = )‘k,l (

—-1
i H H i .
(WBB,m,n) Hegm + TkI) H., rWEBB.k;

7: Calculate MSE e};’l based on ; ‘

8: Update tfjfll =ty + @(1 - e};,latz’l);
9: Until desired level of convergence or ¢ > Imaq.
10: end for

The optimal digital beamformer is given by

K
WBB,k:(Z H., Fpp Fhp L +0il) Heg F ok

v=1
(24
We equivalently transform the optimization objective function
into the problem that minimizes the MSE [49]:

K N,
min Z Z log(ex,1)-

F
BB p—11=1

(25)
Then we design the digital precoder Fpp. By introducing a

monotonic log-concave function g(ty;), the target optimiza-
tion function becomes [49]

K Ng
D0 log(g(te) ™),

min (26a)
Fpp,tr, 1 =1
s.t. €kl < g(th)*l. (26b)
We then use the first-order Taylor approximation
_ 0
gtk t) ;) = g(t] ;) + (b — tg’l)aTMg(tg’l)' (27)
Problem can be formulated as
K N, _
i log(§ () 2
puin D0 log(g(tr, t1), (28a)
k=1 1=1
st eny < [g(tra b)) (28b)

To simplify the problem, we consider a log-linear function
g(x) = o, where o > 1. We present the SCA algorithm in
Algorithm [2] where 73, denotes the Lagrange multiplier.

B. The SSCA Algorithm Induced Deep-Unfolding NN

We next unfold the SSCA algorithm leading to HBDUN.
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