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Abstract—While semantic communications have shown the
potential in the case of single-modal single-users, its applica-
tions to the multi-user scenario remain limited. In this paper,
we investigate deep learning (DL) based multi-user semantic
communication systems for transmitting single-modal data and
multimodal data, respectively. We will adopt three intelligent
tasks, including, image retrieval, machine translation, and visual
question answering (VQA) as the transmission goal of semantic
communication systems. We will then propose a Transformer
based unique framework to unify the structure of transmitters for
different tasks. For the single-modal multi-user system, we will
propose two Transformer based models, named, DeepSC-IR and
DeepSC-MT, to perform image retrieval and machine translation,
respectively. In this case, DeepSC-IR is trained to optimize the
distance in embedding space between images and DeepSC-MT is
trained to minimize the semantic errors by recovering the seman-
tic meaning of sentences. For the multimodal multi-user system,
we develop a Transformer enabled model, named, DeepSC-VQA,
for the VQA task by extracting text-image information at the
transmitters and fusing it at the receiver. In particular, a novel
layer-wise Transformer is designed to help fuse multimodal data
by adding connection between each of the encoder and decoder
layers. Numerical results will show that the proposed models are
superior to traditional communications in terms of the robustness
to channels, computational complexity, transmission delay, and
the task-execution performance at various task-specific metrics.

Index Terms—Deep learning, semantic communications, mul-
timodal fusion, multi-user communications, Transformer.

I. INTRODUCTION

Conventional communication systems are regarded as trans-
mission pipes, in which the data are collected at the transmit-
ters and reconstructed at the receivers. As we step into the
era of connected intelligence [1], the widely deployed devices
have been generating unprecedented amounts of multimodal
data to serve various tasks, which makes conventional commu-
nications a new bottleneck and performance limit. There exist
two ways to address this problem: 1) evolution of hardware
to enlarge the system capacity and transmission rate, e.g.,
millimeter wave/terahertz communications [2], [3], massive
antennas array [4], and reconfigurable intelligent surfaces [5];
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2) improvement of software to optimize the utilization of
communication resources, e.g., data compression [6], resource
multiplexing [7], and semantic communications [8]. In this
work, we investigate the second approach. Moreover, we
will focus on semantic communications, the new emerging
communication paradigm, which has shown its superiority in
handling the massive volume of data.

Semantic communications are content-aware, task-oriented,
and semantic-related, in which only important, relevant, and
useful information to the users/applications are extracted from
a large amount of data and delivered to the destinations.
The existing works on semantic communications can be
categorized into two parts: full data reconstruction and task
execution.

For the data reconstruction, semantic communications gen-
erally extract the global semantic information behind data
and reconstruct the data based on the received semantic
information. Farsad et al. [9] designed the initial deep joint
source-channel coding for text transmission, in which the text
sentences are encoded into fixed-length bit streams over simple
channel environments. With the depth exploration in the se-
mantic communications, Xie et al. [10] developed more power-
ful joint semantic-channel coding, named DeepSC, to encode
text information into various length over complex channels.
Moreover, Xie et al. [11] also proposed an environment-
friendly semantic communication system, named L-DeepSC,
for the capacity-limited devices. Besides, Bourtsoulatze et
al. [12] investigated the initial deep image transmission seman-
tic communication systems, in which the semantic and channel
coding are optimized jointly. Kurka et al. [13] extended
Bourtsoulatze’s work with the channel feedback to improve the
quality of image reconstruction. Weng et al. [14] developed an
attention mechanism based semantic communication systems
to reconstruct speech signals.

For the task-specific applications, only the semantic infor-
mation useful for serving the task execution is extracted at
the transmitter, which will be directly used for the decision
making at the receiver. Lee et al. [15] developed an image
classification-oriented semantic communications for improv-
ing the recognition accuracy rather than performing image re-
construction and classification separately. Jankowski et al. [16]
considered image based re-identification for person or cars
as the communication task, in which two schemes (digital
and analog) are proposed to improve the retrieval accuracy.
Except from image based tasks, Weng et al. [17] designed
speech recognition-oriented semantic communications, named,
DeepSC-SR, to directly recognize the speech signals into
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texts. The prior works explore the possibility of semantic
communications for transmitting signals in a single-modal
single-user system. However, in practice, we must gather
multimodal data from different users/devices, transmit over
the air, and process/fuse multimodal data at the receiver. This
motivates us to develop a multi-user semantic communication
system to support multimodal data transmission. Our initial
design of the MU-DeepSC is for serving the visual question
answering (VQA) task to improve the answer accuracy [18],
which adopts Long Short Term Memory (LSTM) for the text
transmitter and Convolutional Neural Network (CNN) for the
image transmitter. However, a unified framework to support
various tasks with multimodal data is still missing in multi-
user semantic communications.

Particularly, single-modal multi-user semantic communi-
cations represent the extension of single-modal single-user
semantic communications, in which multiple single-modal in-
telligent tasks can be performed simultaneously but each user
is only associated with one intelligent task. Multimodal multi-
user semantic communications employ more than one user to
serve one multimodal intelligent task, which is suitable for the
emerging autonomous scenarios in daily life [19] and industry
[20], i.e., autonomous checkout at retail stores [21], intelligent
control at smart home [22], and human activity recognition
in smart healthcare [23]. Such scenarios are achieved by
collecting multimodal data from the various sensors so as to
provide the information in a complementary manner and fuse
them at the server/cloud. For the design of multi-user semantic
communications, we face the following challenges:

Q1: How to extract semantic information at the transmitter
for both single-modal and multimodal multi-user seman-
tic communications?

Q2: How to reduce the interference from other users for
both single-modal and multimodal multi-user semantic
communications?

Q3: How to process/fuse the received semantic information
at the receiver for multi-user semantic communications
to transmit multimodal data?

In this paper, we investigate task-oriented multi-user seman-
tic communications for transmitting data with single modality
and multiple modalities by considering two types of sources:
image and text. We choose image retrieval and machine
translation for transmission data with single-modality, and
one of the most challenging tasks, namely, the visual ques-
tion answering (VQA) task, for illustrating transmission with
multimodal data. The main contributions of this paper are
summarized as follows:

• We propose a Transformer [24] based transmitter struc-
ture, which is applicable for both text and image trans-
mission by effectively extracting semantic information for
different tasks. This addresses the aforementioned Q1.

• We demonstrate the efficient methods for training the
proposed structure. In particular, the transmitters and
receiver in the proposed frameworks are trained jointly
to eliminate distortion from the channels and interference
from other users. This addresses the aforementioned Q2.

• Based on the proposed structure, we propose three dif-

ferent deep learning (DL) enabled multiuser semantic
communication frameworks, named DeepSC-IR for im-
age retrieval, DeepSC-MT for machine translation, and
DeepSC-VQA for VQA. Specially, we propose a novel
layer-wise Transformer, which can exploit more text in-
formation to guide image information, to fuse the text and
image information. This addresses the aforementioned
Q3.

• Based on extensive simulation results, the proposed
frameworks outperform the traditional communication
systems with lower requirements on the communication
resources and improved system robustness at the low
SNR regimes.

The rest of this paper is organized as follows. The re-
lated works of selected tasks and preliminaries are briefly
reviewed in Section II. The system model is introduced in
Section III. The proposed single-modal multi-user semantic
communications are proposed in Section IV. Section V details
the proposed multimodal multi-user semantic communications.
Numerical results are presented in Section VI to show the
performance of the proposed frameworks. Finally, Section VII
concludes this paper.

Notation: Cn×m and Rn×m represent sets of complex and
real matrices of size n×m, respectively. Bold-font variables
denote matrices or vectors. x ∼ CN (µ, σ2) means variable x
follows a circularly-symmetric complex Gaussian distribution
with mean µ and covariance σ2. (·)T and (·)H denote the
transpose and Hermitian, respectively. <{·} and ={·} refer
to the real and imaginary parts of a complex number.

II. RELATED WORKS AND PRELIMINARIES

In this section, we will first introduce the definitions of
the three intelligent tasks, including image retrieval, machine
translation, and VQA. We then briefly review the related works
on the three tasks. Because the designed models in the next
sections mainly consist of the Transformer network, we will
briefly introduce the preprocessing for image and text, and the
main components for the Transformer network.

A. Image Retrieval

The image retrieval task aims to identify the top-k similar
images by matching the sent image with those stored in a large
server, and returns the similar ones to users. For example, the
user uploads a dress image to Amazon app and wishes to find
similar dress products. Such image retrieval tasks cannot be
performed locally due to the centralized database.

Modern methods for image retrieval typically rely on DL
based models by extracting compact image-level features [25]
for image match or classification. Recent techniques mainly
focus on two parts: deep network architectures and training
algorithms. The deep network architectures include single
feedforward pass models [26], multiple feedforward pass
models [27], attention based models [28], and deep hashing
embedding based models [29]. While the training algorithms
focus on classification based learning [30], metric based learn-
ing [31], and unsupervised-based learning [32].
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B. Machine Translation

One core of communications is to transmit the meanings
behind the text, however, one of the major obstructs for
communications is the different grammars and presentations
for different languages. Therefore, for the machine translation
task, the intention is that the transmitter sends one language,
i.e., Chinese, and the receiver directly receives the desired
language, i.e., English, which aims to broken the obstruct of
communications and improve communication efficiency.

The recent successful approaches for machine translation
problems are mostly based on the classic encoder-decoder
structure [33], in which the encoder extracts the sentence-
level intermediate features at source language and the decoder
provides the entire sentence at target language based on the
intermediate features. The representative models include CNN
based models [34], Transformer based models [24], and RNN
based models, i.e., LSTM networks [35] and Gated Recurrent
Units (GRU) networks [36].

C. Visual Question Answering

In the VQA task, the semantic information from different
users is correlated. One user may transmit the vision infor-
mation collected by a camera while the other user sends the
text information collected by a sensor. Then, the transmitted
vision and text information from different users is employed
to carry out the answers at the receiver.

The core of VQA tasks is multimodal data fusion tech-
niques [37], in which the image and questions in text are first
represented as global features and then fused by a multimodal
fusion model to predict the answer. Recent approaches adopt
the visual attention mechanism by attending image features
with given question features, which include multimodal bi-
linear pooling methods [38], stacked attention network [39],
bottom-up and top-down attention mechanism [40], and co-
attention network [41].

D. Preliminaries

The text preprocessing includes two parts: tokenize and
embedding. The input sentence is first splitted into scalar-
wise tokens, each representing one word or one sub-word.
These scalar-wise tokens are then mapped into vector-shaped
tokens with learnable word vectors and used as the input to the
Transformer. The image preprocessing also includes two parts:
patchify and project. The input image is first decomposed
into fixed-sized patches, e.g. 16x16. Each patch is linearly
projected into vector-shaped tokens and used as an input to the
Transformer. An extra learnable <CLS> token is added to the
input sequence such that its corresponding output token serves
as a global representation for the input sequence. The location
prior is incorporated by adding a learnable one-dimension (1-
D) positional encoding vector to the input tokens.

Transformer network consists of the encoder layers and
decoder layers. Each encoder layer includes two main blocks:
1) a Multi-Headed Self Attention layer, which applies a self-
attention operation to different projections of input tokens;
and 2) a Feed-Forward layer. The decoder layer includes
three main blocks: 1) a Multi-Headed Self Attention layer;

2) a Multi-Headed Guided Attention layer, which applies a
attention operation to the projections of input tokens and the
output tokens of encoder; and 3) a Feed-Forward layer. All
blocks are preceded by layer normalization and followed by a
skip connection.

III. SYSTEM MODEL

As shown in Fig. 1, we consider the multi-user seman-
tic communication system, which consists of one receiver
equipped with M antennas and K single-antenna transmitters.
We will focus on the multi-user semantic communication
system with single-modal data and multimodal data to trans-
mit, respectively. The single-modal multi-user scenario means
that each user transmits independent semantic information to
perform its own task. The multimodal multi-user scenario
indicates that the data from different users are semantically
complementary.

A. Semantic Transmitter

As shown in Fig. 1, we denote the source
data of the k-th user as sQk with modality
Q ⊆ {I : image, T : text,V : video,S : speech}, where
each source contains the semantic information. The semantic
information is extracted first by

zQk = S
(
sQk ;αQk

)
, (1)

where zQk ∈ RLS×1 is the semantic information with length
LS and S

(
;αQk

)
is the modalityQ semantic encoder for the k-

th user with learnable parameters αQk . Due to the limited com-
munication resource and complex communication environment
for wireless communications, the semantic information of the
k-th user is compressed by

xQk = C
(
zQk ;βQk

)
, (2)

where xQk ∈ CLC×1 is the transmitted complex signal with
length LC < LS and C (;βk) is the k-th user joint source-
channel (JSC) encoder for modality Q with learnable parame-
ters, βk. The neural JSC encoder in semantic communications
compresses semantic information to reduce the number of
transmitted symbols, as well as improve the robustness to
channel variations.

B. Semantic Receiver

When the transmitted signal passes a multiple-input
multiple-output (MIMO) physical channel, the received signal,
Y ∈ CM×LC , at the receiver can be expressed as

Y = HX + N, (3)

where XT =
[
xQ1 ,x

Q
2 , · · · ,xQK

]
∈ CLC×K denotes transmit

symbols from all K users, H = [h1,h2, ...,hK ] ∈ CM×K is
the channel matrix between the BS and users. For the Rayleigh
fading channel, the channel coefficient follows CN (0, 1);
for the Rician fading channel, it follows CN (µ, σ2) with
µ =

√
r/(r + 1) and σ =

√
1/(r + 1), where r is the Rician

coefficient. N ∈ CM×LC denotes the circular symmetric
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Fig. 1. The framework of multi-user semantic communication systems

Gaussian noise. The elements of N are i.i.d with zero mean
and variance σ2

n, and SNR is defined by
∑
k

∥∥hkx
Q
k

∥∥2/σ2
n.

Subsequently, the transmission signals are recovered by the
linear minimum mean-squared error (L-MMSE) detector with
the estimated channel state information (CSI),

X̂ = ĤH
(
ĤĤH + σ2

nI
)−1

Y, (4)

where X̂T =
[
x̂Q1 ; x̂Q2 ; · · · ; x̂QK

]
∈ CLC×K is the recovered

transmission signals, Ĥ = H + ∆H is the estimated CSI, in
which ∆H is the estimation error with ∆H ∈ CN (0, σ2

e).
The semantic information from the k-th user, ẑQk ∈ RLS×1,

is recovered by the JSC decoder as

ẑQk = C−1
(
x̂Qk ;γQk

)
, (5)

where C−1
(
x̂Qk ;γQk

)
a is JSC decoder for the k-th user with

the modality Q and the learned parameters γQk . The JSC
decoder aims to decompress the semantic information while
mitigating the effects of channel distortion and inter-user
interference. According to the independence of transmission
semantic information, we will have the single-modal semantic
receiver and the multimodal semantic receiver.

1) Single-Modal Semantic Receiver: For single-modal se-
mantic transmission, the semantic information from each user
is exploited to perform different tasks independently. The
recovered semantic information is employed for the task of
the k-th user by

pQk = S−1
(
ẑQk ;ϕQk

)
, (6)

where pQk is the result of the task, i.e., the translated sentence
for the machine learning task, and retrieval results for the
image retrieval task. S−1(;ϕQk ) is the modality Q semantic
decoder for the k-th user with learning parameters ϕQk .

2) Multimodal Semantic Receiver: With the multimodal
semantic information, the final task is performed directly by

aIn order to reduce the number of representation symbols, we use ·−1 here
to represent the decoder.

merging the semantic information from different users. This
is expressed by

p = S−1
(
ẑQ1 , ẑ

Q
2 , · · · , ẑQK ;ϕ(1,2,··· ,K)

)
, (7)

where p is the results of the multimodal task and
S−1

(
;ϕ(1,2,··· ,K)

)
is the multimodal semantic decoder with

learnable parameters ϕ(1,2,··· ,K).

IV. SINGLE-MODAL MULTI-USER SEMANTIC
COMMUNICATIONS

In this section, we focus on the multi-user semantic commu-
nication system to transmit single-modal data from multiple
users. We propose semantic communication systems for the
image retrieval task (i.e., DeepSC-IR), and the machine trans-
lation task (i.e., DeepSC-MT). Particularly, we adopt the vision
Transformer for image understanding and text Transformer for
text understanding, in which the vision Transformer and text
Transformer are assumed to have the same network structure.

A. Image Retrieval Task

Assume that DIk =
{

(sIk,j , l
I
k,j)
}D

j=1
with size D is the

training image dataset for the k-th user, where sIk,j and lIk,j are
the j-th image and its corresponding label in DIk , respectively.
SIR
(
;αIk

)
, CIR

(
;βIk

)
, and C−1IR

(
;γIk

)
represent the semantic

encoder, JSC encoder, and JSC decoder of the i-th user for the
image retrieval task, respectively.

1) Model Description: The proposed image retrieval net-
work is shown in Fig. 2. Specifically, the DeepSC-IR trans-
mitter consists of an image semantic encoder to extract image
semantic information to be transmitted and a JSC encoder to
compress the semantic information, where the semantic en-
coder includes multiple vision Transformer layers and the JSC
encoder uses dense layers with different units. Especially, we
choose only the <CLS> vector-token to be transmitted as it
represents the global image information. After transmitting and
performing signal detection, the DeepSC-IR receiver employs
the JSC decoder with different units to recover the transmitted
image semantic information.
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Fig. 2. The network structure of single-modal multi-user semantic communications, which contains the DeepSC-IR transceiver and DeepSC-MT transceiver.

The recovered semantic information after the JSC decoder
at the receiver can be used to match the other image seman-
tic information in the database by computing the euclidean
distance to find similar images as

d(zIk,j , z
I
k,i) =

∥∥zIk,j − zIk,i∥∥2 . (8)

The euclidean distance becomes the cosine similarity when
zIk,j and zIk,i are l2 normalized.

2) Training Algorithm: As shown in Algorithm 1, the
training process of the DeepSC-IR consists of two phases
due to different loss functions. The first phase is to train the
semantic encoder, and the second phase is to train the JSC
codec.

In the first phase, the semantic encoder will be trained by
the function, Train Semantic Encoder. Different from
other tasks, image retrieval is performed by computing the dis-
tance between images to return similar images. Therefore, we
choose metric learning, as one type of self-supervised learning,
as the learning paradigm. Such paradigm aims at minimizing
the distance between images belonging to the same category
and maximizing the distance between images belonging to
different categories. The loss function is expressed by

LIR =E

 ∑
lIk,j=lIk,i

(
1− (zIk,j)

TzIk,i
)

+ E

 ∑
lIk,j 6=lIk,i

(
(zIk,j)

TzIk,i − ξ
)
+

,
(9)

where the operator (x)+ returns max (x, 0), zi,j is the image
semantic information, ξ is a constant margin to prevent the
training signal from being overwhelmed by easy negatives.
After training the semantic encoder with (9), the semantic
encoder becomes capable of extracting semantic image infor-
mation, which returns a smaller euclidean distance if they are
from images within the same category.

In order to compress semantic redundancy while overcom-
ing the distortion from the channels, the JSC codec is trained in
the second phase. The mean-squared error (MSE) is employed
as the loss function to minimize the difference between the

transmitted and recovered semantic image information, which
is represented as

LMSE = E
[∥∥ẑIk,j − zIk,j∥∥22] , (10)

where ẑIk,j is the semantic image information recovered at
receiver and zIk,j is the transmitted semantic image infor-
mation. By minimizing the LMSE, the JSC codec will learn
to compress and decompress semantic image information for
fewer transmitted symbols while keeping the semantic recov-
ery accurately by dealing with the distortion and interference
jointly from the channels and inter-users.

B. Machine Translation Task

Assume DTk =
{

(sTk,j ,p
T
k,j)
}D

j=1
with size D as the

training text dataset for the k-th user, where sTk,j and pTk,j
are the j-th sentence in the source language and the trans-
lated sentence in the target language, respectively. sTk,j [n]

and pTk,j [n] represent the n-th word in sentence sTk,j and
pTk,j , respectively. SMT

(
;αTk

)
, CMT

(
;βTk

)
, C−1MT

(
;γTk

)
, and

S−1MT

(
;ϕTk

)
represent the semantic encoder, JSC encoder, JSC

decoder, and semantic decoder of the k-th user for the machine
translation task, respectively.

1) Model Description: The proposed machine translation
network is shown in Fig. 2. The transmitter includes a text
semantic encoder and a text JSC encoder to extract and
compress the semantic text information, respectively, where
the text semantic encoder adopts multiple Transformer en-
coder layers and the designed text JSC encoder in Fig. 2
is with multiple dense layers. At the receiver, the designed
text JSC decoder recovers the semantic text information from
distorted signals. Subsequently, the semantic decoder consists
of multiple Transformer decoder layers to derive the translated
sentence based on the recovered semantic text information.

2) Training Algorithm: As shown in Algorithm 2,
the training process of DeepSC-MT consists of three
phases: Train Semantic Codec, Train JSC Codec,
and Train Whole Network.

The first phase is Train Semantic Codec. The seman-
tic codec, SMT

(
;αTk

)
and S−1MT

(
;ϕTk

)
, will be trained firstly

by the cross-entropy (CE) loss function, which enables the
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Algorithm 1: DeepSC-IR Training Algorithm.

Initialization: The training dataset DIk and the batch
size B.

1 Function Train Semantic Encoder():

Input: Choose mini-batch data
{

(sIk,j , l
I
k,j)
}n+B

j=n

from DIk .

2
{
SIR

(
sIk,j ;α

I
k

)}n+B

j=n
→
{
zIk,j

}n+B

j=n
,

3 Compute the LIR by (9) with
{
zIk,j

}n+B

j=n
,

4 Train αIk → Gradient descent with LIR,
Return: SIR

(
;αIk

)
.

5 Function Train JSC Codec():
Input: The semantic image information{

zIk,j

}n+B

j=n
.

6 for j = n→ n+B do
7 Transmitter:

8 CIR

(
zIk,j ;β

I
k

)
→ xIk,j ,

9 Transmit xIk,j over the channel,
10 Receiver:
11 Receive Y,
12 MIMO detection by (4) to get x̂Ik,j ,

13 C−1IR

(
x̂Ik,j ;γ

I
k

)
→ ẑIk,j ,

14 Compute the LMSE by (10) with zIk,j , ẑIk,j ,
15 Train βIk ,γ

I
k → Gradient descent with LMSE,

Return: CIR

(
;βIk

)
, C−1IR

(
;γIk

)
.

model to convert the meaning to the target sentence by learning
the target language word distribution. The CE loss function is
represented by

LMT = E

[
−
∑
n

P (pTk,j [n])log
(
P (p̂Tk,j [n])

)]
, (11)

where P (p̂Tk,j [n]) is the predicted probability that the n-th
word appears in sentence p̂Tk,j , and P (pTk,j [n]) is the real
probability that the n-th word appears in the sentence pTk,j .
After convergence, the model learns the syntax, phrase, the
meaning of words in the target language.

In the second training phase that is listed as Train
JSC Codec of Algorithm 2, the JSC codec, CMT(;β

T
k ) and

C−1MT (;γTk ), are also trained to learn the compress and de-
compress semantic text information, as well as deal with the
channel distortion and multi-user interference with the MSE
loss function given by

LMSE = E
[∥∥ẑTk,j − zTk,j∥∥22] , (12)

where ẑTk,j is the recovered semantic text information at the
receiver and zTk,j is the transmitted semantic text information.

Different from the DeepSC-IR training algorithm, there
exists a semantic decoder at the DeepSC-MT receiver. This
means that semantic errors between ẑTk,j and zTk,j can be mit-

Algorithm 2: DeepSC-MT Training Algorithm.

Initialization: The training dataset DTk and the batch
size B.

1 Function Train Semantic Codec():

Input: Choose mini-batch data
{

(sTk,j ,p
T
k,j)
}n+B

j=n

from DTk .
2 for j = n→ n+B do
3 SMT

(
sTk,j ;α

T
k

)
→ zTk,j ,

4 S−1MT

(
zTk,j ;ϕ

T
k

)
→ p̂Tk,j ,

5 Compute LMT by (11) with pTk,j and p̂Tk,j .
6 Train αTk ,ϕ

T
k → Gradient descent with LMT.

Return: SMT
(
;αTk

)
and S−1MT

(
;ϕTk

)
.

7 Function Train JSC Codec():

Input: The semantic text features
{
zTk,j

}n+B

j=n
.

8 for j = n→ n+B do
9 Transmitter:

10 CMT

(
zTk,j ;β

T
k

)
→ xTk,j ,

11 Transmit xTk,j over the channel.
12 Receiver:
13 Receive Y,
14 MIMO detection by (4) to get x̂Tk,j ,

15 C−1MT

(
x̂Tk,j ;γ

T
k

)
→ ẑTk,j ,

16 Compute LMSE with (12).
17 Train βTk ,γ

T
k → Gradient descent with LMSE.

Return: CMT

(
;βTk

)
and C−1MT

(
;γTk

)
.

18 Function Train Whole Network():

Input: Choose mini-batch data
{

(sTk,j ,p
T
k,j)
}n+B

j=n

from DTk .
19 for j = n→ n+B do
20 Repeat line 3-4, 11-16, and 4 to get p̂Tk,j ,

21 Compute LMT by (11) with pTk,j and p̂Tk,j .
22 Train αTk ,β

T
k ,γ

T
k ,ϕ

T
k → Gradient descent with

LMT.
Return: SMT

(
;αTk

)
, S−1MT

(
;ϕTk

)
, CMT

(
;βTk

)
, and

C−1MT

(
;γTk

)
.

igated by jointly training the whole system shown as Train
Whole Network in Algorithm 2 with the loss function (11).

V. MULTIMODAL MULTI-USER SEMANTIC
COMMUNICATIONS

In this section, the multimodal multi-user semantic commu-
nications are investigated for serving the VQA task, namely
DeepSC-VQA, in which the transmitters adopt the same
structures as that of DeepSC-IR for images and DeepSC-
MT for texts. They also share the same JSC decoder design.
Particularly, a novel semantic decoder is proposed to merge
the image-text semantic information.
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Fig. 3. The proposed network structure of multimodal multi-user semantic communication system with DeepSC-VQA transceiver.

A. Model Description

Assume that the k-th user for image transmission and the i-

th user for text transmission, DI,Tk,i =
{

(sIk,j , s
T
i,j , l(k,i),j)

}D

j=1

with size D is the training dataset, where sIk,j is the j-th
image from the k-th user, sTi,j is the j-th text from the i-
th user, and l(k,i),j is the answer label for sIk,j and sTi,j .
SVQA

(
;αIk

)
, CVQA

(
;βIk

)
, C−1VQA

(
;γIk

)
are the image semantic

encoder, image JSC encoder, and image JSC decoder of the
i-th user, respectively. SVQA

(
;αTi

)
, CVQA

(
;βTi

)
, C−1VQA

(
;γTi

)
are the text semantic encoder, text JSC encoder, and text JSC
decoder of the k-th user, respectively. S−1VQA

(
;ϕ(k,i)

)
represents

joint semantic decoder of the i-th and the t-th user for the VQA
task.

As shown in Fig. 3, the proposed DeepSC-VQA network
consists of one image transmitter, one text transmitter, and
one receiver for simplicity. For the DeepSC-VQA transmitters
and receivers, we adopt the same structures as the image
transmitter of DeepSC-IR and text transmitter of DeepSC-
MT to unify the transmitter paradigm. At the receiver, the
structures of the image JSC decoder and text JSC decoder are
also the same as that of the image JSC decoder in DeepSC-
IR and that of the text JSC decoder in DeepSC-MT. Besides,
we develop a new semantic decoder network for image-text
information fusion, which includes two modules: information
query module and information fusion module.

1) Information Query: The layer-wise Transformer is
adopted. Different from the classic Transformer, where the
decoder layers exploit the output tokens of the last layer of
encoder as the input, the layer-wise Transformer employs the
output tokens of each encoder layer as the input of each
decoder layer. Such a design can leak more text information
than classic Transformer and guide the image information
query in the decoder more efficiently, which does not introduce
any costs.

2) Information Fusion: After the information query, the
layer-wise Transformer has already captured keywords in the
text information and the corresponding regions in image infor-
mation, which has reflected in the output tokens. We will then
need to fuse keywords and the corresponding image regions
to get the answer. As mentioned in Section II, the <CLS>
token represents the global descriptor. Therefore, the <CLS>
tokens in the output tokens of the Transformer encoder and
Transformer decoder represent the global text information and
global image information, respectively. Using the text <CLS>

and image <CLS>, we design the information fusion module
as shown in Fig. 3, where dropout layers are used here to
avoid over-fitting.

B. Training Algorithm

Similar to the DeepSC-MT training algorithm, the DeepSC-
VQA is trained jointly by three phases but with different loss
functions.

The first phase is Train Semantic Codec, the se-
mantic codec of DeepSC-VQA, SVQA

(
;αIk

)
, SVQA

(
;αTi

)
,

S−1VQA

(
;ϕ(k,i)

)
, is trained jointly by the CE loss function,

LVQA = E
[
−P

(
l(k,i),j

)
log
(
P
(
l̂(k,i),j

))]
, (13)

where P (l(k,i),j) and P (l̂(k,i),j) are the real and predicted
probability of answer, respectively. By reducing the loss value
of CE, the network learns to predict the answer with the
highest probability of accuracy.

After training the semantic codec, JSC codecs are trained to
compress by JSC encoder to reduce the number of transmitted
symbols, and then decompress by the JSC decoder to recover
semantic information accurately over multiple user physical
channels. The image and text JSC codec are trained jointly by
the function Train JSC Codec, in which the loss function
is designed as

L(VQA)
MSE = E

[∥∥ẑIk,j − zIk,j∥∥22 +
∥∥ẑTi,j − zTi,j∥∥22] , (14)

where zIk,j and zTi,j are the transmitted semantic image and
text information, respectively. ẑIk,j and ẑTi,j are the recovered
semantic image and text information at the receiver, respec-
tively.

There exists error propagation from the JSC decoders to the
semantic receiver because of the imperfect semantic informa-
tion recovery in the low SNR regimes. Therefore, the whole
DeepSC-VQA network is trained jointly with loss function
(13) to reduce the error propagation, which is the function
Train Whole Network.

VI. SIMULATION RESULTS

In this section, we compare the proposed multi-user seman-
tic communication systems with traditional source coding and
channel coding methods over various channels, in which both
the perfect and imperfect CSI are considered.
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A. Implementation Details

1) The Datasets: We choose four popular datasets com-
monly used for the image retrieval task. Stanford Online
Products [42] consists of 120,053 online products images
representing 22,634 categories, in which 11,318 categories
are used for training and the remaining 11,316 categories are
used for testing. CUB-200-2011 [43] has 200 bird categories
with 11,789 images. We split the first 100 classes for training
and the rest of 100 classes for testing. Cars196 [44] contains
16,185 images corresponding to 196 car categories with the
first 98 categories to be used for training. The remaining 98
categories are used for testing. In-Shop Clothes [45] contains
72,172 cloth images belonging to 7,986 categories, in which
3997 categories are used for training and the other 3985
categories will be used for testing.

For the machine translation task, we adopt the WMT 2018
Chinese-English news track, which contains 202,221 pairs for
training and 50,556 pairs for testing. The dataset is filtered
into the length of English sentences with 5 to 75 words.

For the VQA task, we adopt the popular dataset:
CLEVR [46], which consists of a training set of 70,000 images
and 699,989 questions and a test set of 15,000 images and
149,991 questions.

2) Training Settings: The image semantic encoder of
DeepSC-IR is based on the public implementation of DeiT-
small modelb with 6 Transformer encoder layers. The setting
of the Train Semantic Encoder of DeepSC-IR is the
Adam optimizer with learning rate 3 × 10−5, weight decay
5 × 10−4, batch size of 64, and epoch of 40. The setting
of the Train JSC Encoder of DeepSC-IR is the Adam
optimizer with learning rate 1 × 10−3, batch size of 64, and
epoch of 100. During the training phase, the data augmentation
is used to resize the image to 256 × 256 and then take
a random crop of size 224 × 224 combined with random
horizontal flipping. In the test phase, the images are resized
to 256 × 256 first and centrally cropped to 224 × 224.

The text semantic codec of DeepSC-MT is based on the
public implementation of the Transformer modelc with 6
Transformer encoder layers and decoder layers. The setting
of the Train Semantic Codec of DeepSC-MT is the
Adam optimizer with learning rate 1× 10−5, betas of 0.9 and
0.98, batch size of 64, and epoch of 10. The setting of the
Train JSC Codec of DeepSC-MT is the Adam optimizer
with learning rate 1×10−3, batch size of 64, and epoch of 20.
The setting of the Train Whole Network of DeepSC-MT
is the same as that of Train Semantic Codec but with
epoch of 20.

The image semantic encoder of DeepSC-VQA is also based
on the pre-trained DeiT-small model but the other parts are
trained from scratch, where the text semantic encoder is with
6 Transformer encoder layers and the semantic decoder is with
4 Transformer encoder layers and decoder layers. We freeze
the image semantic encoder to speed up training. The output
dimension for the vision Transformer and text Transformer are
set differently, which requires the dimension increasing oper-

bhttps://github.com/facebookresearch/deit.
chttps://huggingface.co/Helsinki-NLP.

ations after the image JSC decoder. The dimension-increasing
operations successively include the dropout layer, dense layer
from 384 to 512, ELU activation layer, dropout layer, and
dense layer from 512 to 512, and ELU activation layer. The
setting of the Train Semantic Codec of DeepSC-VQA
is the Adam optimizer with learning rate 1 × 10−4, betas of
0.9 and 0.98, batch size of 64, and epoch of 80. The setting
of the Train JSC Codec of DeepSC-VQA is the Adam
optimizer with learning rate 1× 10−3, batch size of 128, and
epoch of 30. The setting of Train Whole Network of
DeepSC-MT is the same as that of the Train Semantic
Codec but with epoch of 10. The data augmentation is used
to resize images to 224 × 224 with BICUBIC interpolation
for both training and testing.

3) Benchmarks and Performance Metrics: Our benchmark
will adopt several typical source and channel coding methods.
• Error-free Transmission: The full, noiseless images and

texts are delivered to the receiver, which will serve as the
upper bound.

• Traditional Methods: To perform the source and channel
coding separately, we use the following technologies,
respectively:

– 8-bit unicode transformation format (UTF-8) encod-
ing for text source coding, a commonly used method
in text compression;

– Joint photographic experts group (JEPG) for image
source coding, a widely used method in image com-
pression;

– Turbo coding for text channel coding, popular chan-
nel coding for a small size file;

– Low-density parity-check code (LDPC) for image
channel coding, and classic channel coding for big
size files.

In the simulation, all coding rates of channel codings are 1/3.
Perfect and imperfect CSI are set with σ2

e = 0 and σ2
e = 0.025,

respectively. We set r = 2 for Rician channels and H = I for
AWGN channels.

The Recall@1 evaluation metric is adopted as performance
metric for the image retrieval task. Bi-lingual evaluation un-
derstudy (BLEU) score is adopted for the machine translation
task. Answer accuracy is used for VQA task.

B. Single-Modal Multi-User Semantic Communication

The Recall@1 performance comparison for different chan-
nels on CUB-200-2011 and for different datasets over Rician
channels are shown in Fig. 4 and Fig. 5, respectively. From
Fig. 4, for different channels on CUB-200-2011, the proposed
DeepSC-IR provides a significant gain at the low SNR regimes
and approaches to the upper bound at the high SNR regimes
among the reported methods, outperforming the JPEG-LDPC
with 8-QAM by a margin of more than 24dB gain for 0.4
Recall@1 over fading channels. Even when using imperfect
CSI, the DeepSC-IR still outperforms the benchmarks with
slight performance degradation at Recall@1. From Fig. 5, for
different datasets over Rician channels, the DeepSC-IR also
outperforms the JPEG-LDPC with 8-QAM in the three popular
datasets at Recall@1 with more than 24 dB gain, respectively.
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Fig. 4. Recall@1 comparison between DeepSC-IR and JPEG-LDPC with 8-QAM over different channels, in which the dataset is CUB-200-2011.
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Fig. 5. Recall@1 comparison between DeepSC-IR and JPEG-LDPC with 8-QAM for different datasets under Rician channels.
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Fig. 6. BLEU score comparison between DeepSC-MT and UTF-8-Turbo with QPSK for English-to-Chinese under AWGN channels, Rayleigh channels, and
Rician channels.

Besides, exploiting imperfect CSI considerably decreases the
performance at Recall@1 for the traditional method, especially
in In-Shop Clothes but is only with a slightly performance
degradation for DeepSC-IR.

The BLEU score performance comparison for different
channels on English-to-Chinese is reported in Fig. 6 and
on Chinese-to-English is shown in Fig. 7. From Fig. 6, on
English-to-Chinese over different channels, the DeepSC-MT
outperforms the UTF-8-Turbo with QPSK at the low SNR
regimes over AWGN, as well as at all SNR regimes over
fading channels. More inaccurate CSI decreases BLEU score
for both systems, in which the DeepSC-MT outperforms the
benchmark and retains its high robustness to imperfect CSI.

On Chinese-to-English over fading channels in Fig. 7, the
DeepSC-MT performs well except at the high SNR regimes.
Although the UTF-8-Turbo in BSPK has a higher BLEU score
than DeepSC-MT as SNR increases, it performs worse than
DeepSC-MT at all SNR regimes w.r.t. imperfect CSI.

C. Multimodal Multi-User Semantic Communication
The answer accuracy performance comparison for VQA

task over different channels is presented in Fig. 8, in which
the benchmark consists of UTF-8-Turbo with BPSK for text
and JPEG-LDPC with 8-QAM for image. The DeepSC-VQA
outperforms the benchmark at the low SNR regimes over
the AWGN channels and at all SNR regimes over fading
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Fig. 7. BLEU score comparison between DeepSC-MT and UTF-8-Turbo with BPSK for Chinese-to-English under AWGN channels, Rayleigh channels, and
Rician channels.
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Fig. 8. Answer accuracy comparison between DeepSC-VQA and traditional methods, including UTF-8-Turbo with BPSK for text and JPEG-LDPC with
8-QAM for image, in which different channels are considered.
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Fig. 9. Recall@1, BLEU score, and answer accuracy comparisons versus the number of users over Rician channel with SNR=18dB.

channels. In particular, the DeepSC-VQA achieves the upper
bound at approximate SNR=9dB over fading channels. The
answer accuracy of benchmark considerably decreases from
the AWGN to fading channels for benchmarks but experiences
only little performance degradation at the low SNR regimes
and no performance loss at the high SNR regimes for DeepSC-
VQA. Similarly, for imperfect CSI, the robustness of DeepSC-
VQA is also better than that of benchmark with more than
24dB gain at 0.7 answer accuracy. This also verifies the
effectiveness of the design of semantic decoder of DeepSC-
VQA.

D. Different Number of Users

In Fig. 9, different tasks versus the different number of
users are compared. All proposed methods perform steadily as
the number of users increases but the benchmarks experience
performance improvement or degradation. The difference in
performance trends between benchmarks are because of the
gains from channel coding and low-order modulation methods.
Both for image retrieval task and VQA task, the DeepSC-IR
and DeepSC-VQA outperform their benchmarks at Recall@1
and at answer accuracy, respectively, in which the performance
at Recall@1 and answer accuracy of benchmarks decrease first
and achieve floor as the number of users increases. For the
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TABLE I
THE NUMBER OF TRANSMITTED SYMBOLS COMPARISON BETWEEN MULTI-USER SEMANTIC COMMUNICATION SYSTEMS AND TRADITIONAL

SOURCE-CHANNEL COMMUNICATION SYSTEMS.

Task Dataset Methods Average Number of Transmitted
Symbols for One Image or One Word Ratio

Image Retrieval

Cars196

DeepSC-IR / JPEG-LDPC with 8-QAM

128/499, 920 0.02%
CUB-200-2011 128/247, 312 0.05%
In-Shop Clothes 128/60, 696 0.21%

Stanford Online Products 128/174, 808 0.07%

Machine Translation English-to-Chinese DeepSC-MT / UTF-8-Turbo with QPSK 77/76 101.31%
Chinese-to-English DeepSC-MT / UTF-8-Turbo with BPSK 77/68 113.23%

VQA CLEVR: Text DeepSC-VQA / UTF-8-Turbo with BPSK 77/152 50.66%
CLEVR: Image DeepSC-VQA / JPEG-LDPC with 8-QAM 25, 216/55, 624 45.33%

machine translation task, the BLEU score of the benchmark
increases with the number of users, making the benchmark
outperform DeepSC-MT with respect to perfect CSI. Besides,
for imperfect CSI, all proposed semantic communication sys-
tems outperform the corresponding benchmarks with relatively
little performance degradation.

E. Number of Transmitted Symbols

The numbers of transmission symbols for different methods
are compared in Table I. For image transmission, the proposed
multi-user semantic communication systems significantly de-
crease the number of transmission symbols, especially for the
image retrieval task with the DeepSC-IR only transmitting
0.02% symbols of the benchmarks for one image. For text
transmission, although the proposed methods transmit a similar
or slightly more number of symbols compared with the bench-
mark in machine translation task, they achieve approximately
50% saving in the numbers of symbols when the benchmark
employs a lower order modulation in the VQA task. This sug-
gests that the proposed multi-user semantic communications
can decrease the transmission delay with a lower number of
transmission symbols and hence are suitable for lower latency
scenarios.

F. Computational Complexity

The computational complexity for different methodsd is
compared in Table II. For image transmission, all of the
proposed methods have a lower computational complexity
than traditional methods, in which the complexity of DeepSC-
IR can decrease by more than one order of magnitude. For
text transmission, the proposed DeepSC-MT shows a similar
computational complexity in English transmission but has
a slightly higher computational complexity in the Chinese
transmission compared to the benchmarks. Such a slightly
higher computational complexity can provide robustness to
noise in low SNRs. This suggests that the proposed multi-
user semantic communication systems achieve lower power
consumption when transmitting a large size of data.

dWe only analyze the complexity of channel coding for both methods
because the other parts are shared in both methods and the complexity of
source coding is low and can be omitted.

G. Visualization Results

The visualized results for the considered tasks including
image retrieval, machine translation, and VQA are shown in
Fig. 10, Table III, and Fig. 11, respectively. Fig. 10 shows
top-4 similar image retrieval results for DeepSC-IR and JPEG-
LDPC at 18 dB over Rician channels. The proposed DeepSC-
IR returns similar images successfully with the query image
but the traditional method fails due to the destroyed received
image. Table III provides the received translation results on
Chinese-to-English. The proposed DeepSC-MT demonstrates
reasonable translations results in both scenarios with perfect
and imperfect CSI, but the traditional method fails to convey
the sentence when CSI cannot be estimated exactly.

Fig. 11 shows the results of the VQA task and the attention
visualizations for the layer-wise Transformer. The proposed
DeepSC-VQA correctly answers the question. In the attention
visualizations, the proposed DeepSC-VQA can effectively
query the key regions in the image layer by layer with the
received semantic image and text information. Specifically, the
words “shape, red tiny” in the sentence has a higher magnitude
in the first layer, finding the key red tiny object in the image.
The second layer highlights the words “are there other” to find
other objects in the image and neglect the red tiny object. The
third and fourth layers double-check the other objects with the
red tiny object to give the final answer.

VII. CONCLUSIONS

In this paper, we have explored task-oriented multi-user se-
mantic communications to transmit data with single-modality
and multiple modalities, respectively. We considered two
single-modal tasks, image retrieval and machine translation,
as well as one multimodal task, visual question answering
(VQA). In this context, we have proposed three Transformer
based transceivers, DeepSC-IR, DeepSC-MT, and DeepSC-
VQA, which share the same transmitter structures but with
different receiver structures. Each transceiver is trained jointly
by the proposed training algorithm. In addition, all of the
proposed multi-user semantic communication systems were
found to outperform the traditional ones in the low SNR
regimes and provide graceful performance degradation with
imperfect CSI. For both image retrieval and VQA tasks, the
proposed DeepSC-IR and DeepSC-VQA can provide more
than 18 dB gain and reduce by more than 50% the number of
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN MULTI-USER SEMANTIC COMMUNICATION SYSTEMS AND TRADITIONAL SOURCE-CHANNEL

COMMUNICATION SYSTEMS.

Task Dataset Methods Computational Complexity

Additions Multiplications

Image Retrieval

Cars196

DeepSC-IR / JPEG-LDPC with 8-QAM

8.2× 105/9.0× 109 8.2× 105/1.7× 1010

CUB-200-2011 8.2× 105/4.4× 109 8.2× 105/8.4× 109

In-Shop Clothes 8.2× 105/1.0× 109 8.2× 105/2.1× 109

Stanford Online Products 8.2× 105/3.1× 109 8.2× 105/6.0× 109

Machine Translation English-to-Chinese DeepSC-MT / UTF-8-Turbo with QPSK 5.9× 105/1.0× 105 5.9× 105/1.6× 105

Chinese-to-English DeepSC-MT / UTF-8-Turbo with BPSK 5.9× 105/4.5× 104 5.9× 105/7.3× 104

VQA CLEVR: Text DeepSC-VQA / UTF-8-Turbo with BPSK 5.9× 105/1.0× 105 5.9× 105/1.6× 105

CLEVR: Image DeepSC-VQA / JPEG-LDPC with 8-QAM 1.6× 108/1.0× 109 1.6× 108/1.9× 109

(a) DeepSC-IR

(b) JPEG-LDPC

Query Image

Fig. 10. Part of the results for image retrieval at 18 dB over Rician Channels.

TABLE III
PART OF THE RESULTS FOR MACHINE TRANSLATION ON CHINESE TO ENGLISH AT 18 DB OVER RICIAN CHANNELS.

Transmission Sentence 与此同时,过去二十年来卡塔尔想尽办法扩张其影响力并已经收到成效,该国的吸引力已经蔚为可观。

Reference Translated Sentence Meanwhile, Qatar’s diligent efforts to expand its influence over the last two decades have paid off,
with the country developing considerable power of attraction.

DeepSC-MT perfect CSI Meanwhile, over the past two decades, Qatar has been able to expand its influence
by doing everything it can, and has been successful, and the country’s appeal is already strong.

DeepSC-MT imperfect CSI Meanwhile, over the past two decades, Qatar has been able to reap the benefits of its efforts
to expand its reach, and the country’s appeal is already strong.

UTF-8-Turbo with BPSK perfect CSI At the same time, over the past two decades Qatar had tried to expand its influence
and had already borne fruit, and the country’s appeal had become significant.

UTF-8-Turbo with BPSK imperfect CSI Could not decode

transmission symbols and computational complexity compared
to traditional communications. In particular, compared with
traditional methods, DeepSC-IR only needs 1‰ transmission
symbols on average and decreases the complexity by more
than one order of magnitude. As we result, we can conclude
that multi-user semantic communication systems are an at-
tractive alternative to traditional communication systems for
particular tasks.
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