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Abstract

This paper provides a theoretical framework for understanding the performance of reconfigurable

intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) with zero-forcing (ZF)

detectors under imperfect channel state information (CSI). We first propose a low-overhead minimum

mean square error (MMSE) channel estimator, and then derive and analyze closed-form expressions

for the uplink achievable rate. Our analytical results demonstrate that: 1) regardless of the RIS phase

shift design, the rate of all users scales at least on the order of O (log2 (MN)), where M and N are

the numbers of antennas and reflecting elements, respectively; 2) by aligning the RIS phase shifts to

one user, the rate of this user can at most scale on the order of O
(
log2

(
MN2

))
; 3) either M or the

transmit power can be reduced inversely proportional to N , while maintaining a given rate. Furthermore,

we propose two low-complexity majorization-minimization (MM)-based algorithms to optimize the sum

user rate and the minimum user rate, respectively, where closed-form solutions are obtained in each

iteration. Finally, simulation results validate all derived analytical results. Our simulation results also

show that the maximum sum rate can be closely approached by simply aligning the RIS phase shifts

to an arbitrary user.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has been widely recognized as a cornerstone

technology for fifth-generation (5G) and beyond wireless communications [1]–[7]. Thanks to

their spatial multiplexing gains, massive MIMO systems can simultaneously provide high quality

of service for multiple users on the same time-frequency resource. Massive MIMO also has some

other appealing properties, e.g., the transmit power can be reduced inversely proportional to the

number of antennas without sacrificing the achievable rate.

However, conventional massive MIMO still has some drawbacks. The first one is the blockage

problem. Due to the complex environment and user mobility, communication links may be

blocked, in which case the channel strength could be severely degraded. Another problem is the

high cost and energy consumption of the active radio-frequency (RF) chains. Massive MIMO

commonly employs hundreds of antennas, each of which will be connected to a RF chain. Hence,

this system incurs high hardware cost and energy consumption.

The recently developed technology of reconfigurable intelligent surfaces (RISs) [8]–[13], also

referred to as intelligent reflecting surfaces (IRSs), is a promising solution for tackling the above

two issues in massive MIMO systems. On the one hand, since the RIS is a small, thin and light

surface, it can be flexibly deployed at a carefully selected location with a favorable propagation

environment. Therefore, RISs enable additional high-quality communication paths to overcome

the blockage problem. On the other hand, RISs are comprised of low-cost passive reflecting

elements, which are much cheaper than active RF chains. Therefore, it is envisioned that RISs

are beneficial for improving the energy efficiency of conventional massive MIMO systems.

Due to these appealing features, RIS-aided massive MIMO has gained growing research

interests with many activities, focusing on various applications and different perspectives, such

as channel estimation [14], dual-polarized transmission [15], millimeter wave (mmWave) com-

munications [16], hardware impairments [17], multi-RISs co-design [18], cell-free systems [19],

antenna selection [20], and power scaling law analysis [21]–[23].

To fully understand the potential of RISs, it is essential to draw theoretical insights from

information-theoretical expressions, which rigorously demonstrate the impact of the various

system parameters. Fundamental information-theoretical expressions for conventional massive

MIMO systems have been provided in, e.g., [2]–[4]. It was shown that the achievable rate

of conventional massive MIMO systems with M antennas scales on the order of O (log2 (M)).
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This naturally raises the question what the corresponding scaling law for massive MIMO systems

after the integration of RISs is. To answer this question, explicitly analytical rate expressions

are required. It has already been shown that in RIS-aided single-user systems with N reflecting

elements, the achievable rate could scale as O (log2 (N
2)) [10], [24], or even O (log2 (N

4))

[25] if two RISs cooperate. Similar scaling orders were also reported for some other RIS-

aided communication scenarios, such as the RIS-aided relay [26], RIS with scattering parameter

analysis [27], and RISs with hardware impairments [28], [29]. However, these works focused

on the simple single-user case, and cannot be easily generalized to multi-user systems.

In fact, it is challenging to provide an insightful analysis for the rate scaling order of RIS-aided

multi-user systems. This is because the resulting signal-to-interference-plus-noise ratio (SINR)

expressions are more complicated and more involved than the interference-free signal-to-noise

ratio (SNR) expressions for single-user systems, and also because the optimal RISs passive

beamforming vectors cannot be given in closed form in case of multiple users. Some initial

results were provided in [22] and [23] by considering RIS-aided massive MIMO with simple

maximal ratio combining (MRC). For uncorrelated Rayleigh fading channels, it was proved that

the achievable rate scales only as O (log2 (1)) with respect to N . This is due to the severe

multi-user interference, since the common RIS-base station (BS) channel is used by all users.

To tackle this issue, most recently, the authors in [30] firstly revealed that a rate scaling order

O (log2 (MN)) is achievable with zero-forcing (ZF), which demonstrates the huge potential of

ZF detectors in RIS-aided massive MIMO systems.

However, there are two main limitations in [30]. Firstly, ideal channel state information (CSI)

of the aggregated channel including the superimposition of the direct channel and the reflected

channel, was assumed. Secondly, the authors in [30] only considered some initial performance

analysis and RIS phase shift optimization, which lacks further insightful analysis. By contrast, this

work aims to provide an analytical framework to gain an in-depth analysis for the performance of

RIS-aided massive MIMO systems with ZF detectors under the realistic assumption of imperfect

CSI.

Specifically, in this work, we first propose a low-overhead channel estimation scheme, in

which the required pilot length is independent of N . We next perform a comprehensive theoretical

analysis to reveal the explicit rate scaling order and answer the fundamental question whether the

RIS-aided massive MIMO with ZF detectors is promising or not. Finally, based on majorization-

minimization (MM) algorithms, we respectively optimize the RIS phase shifts to maximize the
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sum user rate and the minimum user rate. The detailed contributions are summarized as follows.

1) Low-overhead channel estimation: We first propose a minimum mean square error (MMSE)-

based method to estimate the aggregated channel in the systems, which is a superimposition of

cascaded RIS channels and the direct channels. The length of pilots only needs to be no smaller

than the number of users. We also analyze the impacts of various system parameters on the

mean square error (MSE).

2) Reveal rate scaling orders: We derive the closed-form ergodic rate expression and its

insightful lower and upper bounds. The lower bound shows that the data rates of all users are

guaranteed to be on the order of O (log2 (MN)), regardless of the RIS phase shift design. The

upper bound shows that the data rate of a specific user can be on the order of O (log2 (MN2)),

if the RIS phase shift is designed to align its beamforming to that user. We also demonstrate

that these two analytical results are robust to RIS phase shift quantization errors.

3) Answer the question whether the considered system is promising or not: Based on the

analytical results, we prove that RIS-aided massive MIMO systems with ZF detector are promis-

ing for three applications. It can provide ultra-high network throughput according to the high

data rate scaling order for all users; it can help reduce M inversely proportional to N without

sacrificing the data rate, which helps avoid the power hungry RF chains and is promising for

green communications; it can help all users communicate with small transmit power, inversely

proportional to N , which is promising for IoT applications.

4) Low-complexity RIS optimization: We design the RIS phase shifts to maximize the sum

user rate and minimum user rate, based on the MM algorithm with closed-form solution in each

iteration. We also show that aligning RIS phase shifts to an arbitrary user is an effective heuristic

approach for maximizing the sum user rate. In addition, we demonstrate that maximizing the

sum rate can also ensure a high minimum user date.

The rest of this paper is organized as follows. Section II describes the system and channel

model. Section III proposes the MMSE channel estimation scheme. Section IV theoretically

proves that RIS-aided massive MIMO is promising with ZF detectors. Section V proposes the

MM algorithm for solving the sum rate and minimum user rate maximization problems. Section

VI provides extensive simulations to verify the the correctness of analytical results and the

effectiveness of proposed optimization algorithms. Finally, Section VII concludes this work.

Notations: Boldface lower case and upper case letters denote the vectors and matrices, re-

spectively. The inverse, conjugate transpose, conjugate and transpose of matrix X are denoted
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Fig. 1. Massive MIMO systems assisted by an RIS.

by X−1, XH , X∗, XT , respectively. The (m,n)-th and (m,m)-th elements of the matrix are

represented by [X](m,n) and [X]mm. X � 0 and X � 0 respectively denote that X is definite

positive and semi-positive. O denotes the standard big-O notation. λmax(X) and ∠X denote

the maximal eigenvalue and the phase of matrix X. E{·} and Cov{·} denote the mean and

covariance operators.

II. SYSTEM AND CHANNEL MODEL

As shown in Fig. 1, the uplink transmission of an RIS-assisted massive MIMO system is

considered. The considered system consists of K users with a single antenna, a BS with M > K

antennas, and an RIS with N reflecting elements. Besides, we assume a quasi-static channel

model with each channel coherence interval (CCI) spanning τc time slots. In each CCI, we

denote the instantaneous channel between the users and the RIS, and that between the RIS and

the BS as H1 ∈ CN×K and H2 ∈ CM×N , respectively. Then, the cascaded user-RIS-BS channel

is G = H2ΦH1, where Φ = diag
{
ejθ1 , . . . , ejθN

}
is the RIS phase shift matrix. Meanwhile, the

direct channels between the users and the BS are denoted as D ∈ CM×K . Finally, in each CCI, the

instantaneous aggregated channels from the users to the BS are given by Q = G+D ∈ CM×K .

It has been shown in [23] that it is better to place an RIS close to the users rather than close

to the BS in the massive MIMO systems. Therefore, in this paper, we assume that the RIS is

deployed on the facade of a tall building in the proximity of the users, as illustrated in Fig. 1.

Since the RIS has a certain height and is close to the users, the user-RIS channels H1 would be

line-of-sight (LoS) dominant. For analytical tractability, we assume that the user-RIS channels

are purely LoS as follows

H1 =
[√
α1 h1, . . . ,

√
αK hK

]
, (1)
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where αk,∀k is the large-scale path loss factor for user k, and hk ∈ CN×1 is the deterministic

LoS channel between user k and the RIS.

Since the RIS is installed close to the users, it may be located far away from the BS. Therefore,

both LoS and non-LoS (NLoS) transmission paths would exist in H2. As a result, we characterize

the RIS-BS channel by Rician fading, which is expressed as

H2 =
√
β/(δ + 1)(

√
δ H2 + H̃2), (2)

where β is the path loss factor, and δ is the Rician factor which represents the ratio between

the power of LoS component H2 and the power of NLoS component H̃2. The elements of H̃2

are independent and identically distributed (i.i.d.) complex Gaussian random variables with zero

mean and unit variance. For a rich-scattering environment, we can assume δ → 0 and then

the RIS-BS channel reduces to a Rayleigh fading channel containing only NLoS paths. For a

scattering-free environment, we have δ →∞ and then the RIS-BS channel is purely LoS.

Finally, since the users might be located far away from the BS, and rich scatterers (trees, cars,

buildings and so on) are distributed on the ground, we assume that the channels between the

users and the BS are Rayleigh fading [24]. Thus, we have

D , [d1, . . . ,dK ] = D̃Ω1/2, (3)

where dk =
√
γkd̃k is the channel between user k and the BS with large-scale fading coefficient

γk and small-scale fading vector d̃k comprised of i.i.d. complex Gaussian random variables with

zero mean and unit variance. Here, Ω = diag {γ1, . . . , γK} and D̃ = [d̃1, . . . , d̃K ].

We adopt the two-dimensional uniform rectangular array (URA) to model the LoS channels

[10]. For an L× 1 LoS channel aL, we first decompose L into two closest integers Lx and Ly,

where 1 ≤ Lx ≤ Ly, Lx × Ly = L. Then, the l-th element of aL is given by

[aL (ϑ
a, ϑe)]l = exp

{
j2π d

λ
(b(l − 1)/Lyc sinϑe sinϑa + ((l − 1) mod Ly) cosϑ

e)
}
, (4)

where ϑa and ϑe denote the azimuth and elevation angles of arrival (AoA) or corresponding

angles of departure (AoD). Based on (4), it can be shown that aHL (ϑa, ϑe) aL (ϑ
a, ϑe) = L.

Then, we can express that

hk = aN (ϕakr, ϕ
e
kr) , 1 ≤ k ≤ K, (5)

H2 , aMaHN = aM (φar , φ
e
r) aHN (ϕat , ϕ

e
t ) . (6)
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III. CHANNEL ESTIMATION

To design the ZF detector, the channels are estimated by the BS using a pilot-based method. For

conventional massive MIMO systems, only the M ×K direct channel D needs to be estimated,

and the minimum pilot sequence length is τ = K. In RIS-aided massive MIMO systems, the

required pilot overhead can be prohibitive due to the extremely large channel dimension of

M × N in the RIS-BS link. To reduce the pilot overhead, we only estimate the aggregated

channel Q ∈ CM×K , for which the minimum pilot sequence length is still τ = K, which is the

same as for conventional massive MIMO systems.

Specifically, in each CCI, the K users are assigned mutually orthogonal pilot sequences with

length τ ≥ K. The pilot sequence of user k is denoted by sk ∈ Cτ×1. Let S = [s1, . . . , sK ],

where SHS = IK due to the orthogonality. Then, at the beginning of each CCI, τ time slots

are used for the K users to transmit the pilot signal S to the BS. The received M × τ pilot

signal at the BS can be given by Yp =
√
τpQSH +N, where τp is the transmitted pilot power

of each user, and N is the noise matrix whose elements are i.i.d. Gaussian variables following

CN (0, σ2). Then, we can obtain the observation vector for the channel of user k by multiplying

the term 1√
τp

sk to Yp, as follows

ykp =
1√
τp

Ypsk = qk +
1√
τp

Nsk, (7)

where qk, the k-th column of Q, denotes the aggregated channel of user k.

Lemma 1 Channel qk and noise 1√
τp

Nsk in (7) are complex Gaussian distributed, where qk ∼

CN (
√

αkβδ
δ+1

H2Φhk,
(
N αkβ

δ+1
+ γk

)
IM), and 1√

τp
Nsk ∼ CN (0, σ

2

τp
IM).

Proof: Please refer to Appendix A. �

From Lemma 1, it is seen that the considered channel is still Gaussian distributed as conven-

tional massive MIMO systems [6, Eq. (1)], but with the different mean and variance. Therefore,

we can still apply the well-used MMSE estimator to obtain the channel estimate of qk.

Theorem 1 The MMSE estimate of channel qk is given by

q̂k =
√

αkβδ
δ+1

H2Φhk + κk

(√
αkβ
δ+1

H̃2Φhk + dk +
1√
τp

Nsk

)
, (8)
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where κk =
N
αkβ

δ+1
+γk

N
αkβ

δ+1
+γk+

σ2

τp

∈ (0, 1). Denote the estimation error as ek = qk− q̂k, where the error

ek is independent of the estimate q̂k. Then, the MSE matrix for the channel estimation is

MSEk = E
{
eke

H
k

}
=

1
1

N
αkβ

δ+1
+γk

+ τp
σ2

IM , εkIM . (9)

Proof: Please refer to Appendix B. �

Based on (9), the MSE can be calculated as MSEk = Tr {MSEk} = M
1

N
αkβ
δ+1

+γk

+ τp

σ2
. Clearly,

the MSE is a decreasing function of τ , p, and δ, but an increasing function of M , N , αk,

β, γk, and σ2. This is because τp
σ2 represents the pilot SNR, and increasing its value improves

the estimation quality. δ is the Rician factor, and increasing its value makes the RIS-aided

channels more deterministic and therefore decreases the estimation error. Also, the increase of

N introduces more communication paths between the users and the BS, which also increases

the estimation error.

Note that in the absent of the RIS (i.e., αk = β = 0, ∀k) or for a purely LoS RIS-BS

channel (δ → ∞), the MSE matrix in (9) reduces to MSEk = γk
1+ τp

σ2
γk

IM , which is the same

as for conventional massive MIMO systems [3]. Let Q̂ = [q̂1, . . . , q̂K ] denote the estimated

aggregated channel of the K users. Then, based on (8), we have

Q̂ =
√

βδ
δ+1

H2ΦH1 +
√

β
δ+1

H̃2ΦH1Υ + D̃Ω1/2Υ + 1√
τp

NSΥ, (10)

where Υ = diag {κ1, . . . , κK}.

IV. ERGODIC RATE ANALYSIS

In the transmission phase, the K users transmit symbols x = [x1, ..., xK ]
T where x ∼

CN (0, IK), and the received signal at the BS can be expressed as

y =
√
pQx + n =

√
pQ̂x +

√
pEx + n, (11)

where n ∼ CN (0, σ2IM) and E , [e1, . . . , eK ] = Q− Q̂. To eliminate the multi-user interfer-

ence, the BS adopts the linear ZF detectors A = Q̂(Q̂HQ̂)−1 = [a1, . . . , aK ], which leads to

AHQ̂ = IK . Then, in each CCI, the BS detects the received signal as follows

r = AHy =
√
px +

√
pAHEx + AHn, (12)

whose k-th entry can be further expressed as

rk =
√
pxk +

√
p
∑K

i=1
aHk eixi + aHk n. (13)
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A. Derivatives of the Achievable Rate

Based on (13), the accurate ergodic rate of user k can now be given by

Rk = τ o E
{
log2

(
1 + p

p
∑K
i=1|aHk ei|2+σ2‖aHk ‖

2

)}
, (14)

where a factor τ o , τc−τ
τc

captures the rate loss caused by pilot overhead, and the expectation

is taken over random channel components in Q̂. It is difficult to derive an exact expression of

(14) due to the expectation operator before the logarithm symbol. Since the function f (x) =

log2 (1 + 1/x) is convex of x, we utilize the Jensen’s inequality to obtain the following lower

bound

Rk ≥ Rk (Φ)
(a)
= τ o log2

(
1 +

p

p
∑K

i=1 E {aHk E {eieHi } ak}+ σ2E{‖aHk ‖
2}

)
(15)

(b)
= τ o log2

(
1 +

p

(p
∑K

i=1 εi + σ2) E{[(Q̂HQ̂)−1]kk}

)
, (16)

where εi is defined in (9), (a) utilizes the independence between the channel estimate and the

estimation errors, and (b) is due to the result in (9) and
∥∥aHk ∥∥2 = [AHA

]
kk

= [(Q̂HQ̂)−1]kk.

Theorem 2 The achievable rate of user k is lower bounded by

Rk (Φ) = τ o log2

1 +
p (M −K)(

p
∑K

i=1 εi + σ2
) [(

Λ + βδ
δ+1

HH
1 ΦHaNaHNΦH1

)−1]
kk

 , (17)

where Λ = β
δ+1

ΥHH
1 H1Υ + ΩΥ2 + σ2

τp
Υ2.

Proof: Please refer to Appendix C. �

The rate expression in Theorem 2 depends only on the slowly varying statistical CSI. There-

fore, when designing the phase shifts to maximize the rate in (17), we only need to update the

RIS’s phase shifts over a much large time scale, which could effectively reduce overhead and

computational complexity. Before the design of the phase shifts, we first analyze (17) to shed

some light on the benefits of the RIS, and to answer the question whether RIS-aided massive

MIMO is promising or not.

B. Conventional Systems without RIS

Corollary 1 When the RIS is switched off (i.e., αk = β = 0,∀k), the data rate (17) reduces to

Rk
w/o = τ o log2

(
1 + p(M−K)

p
∑K
i=1

1
τp

σ2
+ 1
γi

+σ2
× γ2k

γk+
σ2

τp

)
. (18)
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When the RIS is switched off, the RIS-aided massive MIMO systems degrade to the con-

ventional massive MIMO systems with Rayleigh fading channels (Q → D), which has been

studied in [3]. As expected, the obtained rate (18) is the same as [3, Eq. (42)]. Based on (18), it

can be seen that the rate is on the order of O (log2 (M)), and the rate can maintain a non-zero

value when the power is scaled down proportionally to p = Eu/
√
M , as the number of antennas

M →∞, where Eu is a constant. Specifically, we have

limp= Eu√
M
,M→∞ Rk

w/o → τ o log2
(
1 + τE2

uγ
2
kσ
−4) . (19)

Note that the achievable rate in (18) and power scaling law in (19) will serve as baselines

and help us identify the benefits enabled by introducing an RIS.

C. What’s New After Integrating An RIS?

The order of magnitude of Rk (Φ) in (17) with respect to M is O (log2 (M)), since εk and Λ

are independent of M . However, it is challenging to determine how Rk (Φ) scales with N , due

to the unknown value of Φ and the inverse operator. For tractability, we propose an insightful

lower bound Rk for Rk (Φ) in the following.

Corollary 2 A Φ-independent lower bound Rk is given by

Rk (Φ) ≥ Rk = τ o log2

1 +
p (M −K)(

p
∑K

i=1 εi + σ2
)
[Λ−1]kk

 , (20)

where equality holds when δ = 0, and the gap Rk (Φ)−Rk enlarges after optimizing Φ. Besides,

(20) can be approximated as

Rk ≈ τ o log2

(
1 +

p (M −K)

p
∑K

i=1 εi + σ2
×
(
N αkβ

δ+1
+ γk

)2
N αkβ

δ+1
+ γk +

σ2

τp

)
, (21)

which scales on the order of O (log2 (MN)).

Proof: Please refer to Appendix D. �

Interestingly, if we treat N αkβ
δ+1

+ γk as a new path-loss factor, (21) possesses the same form

as (18). This reveals two fundamental impacts of the RIS: i) Positive effect: RIS enhances the

channel strength by a factor N αkβ
δ+1

; ii) Negative effect: RIS results in larger channel estimation

errors εk. However, the channel strength always increases with N since
(N

αkβ

δ+1
+γk)

2

N
αkβ

δ+1
+γk+

σ2

τp

is an
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increasing function of N , but the estimation error saturates to εk → σ2

τp
as N →∞. Therefore,

for large N , the benefits of the RIS outweigh its drawbacks in massive MIMO systems.

Corollary 2 proves that even with imperfect CSI, RIS-aided massive MIMO systems can

achieve an ergodic rate at least on the order of O (log2 (MN)). This promising gain comes

from the additional N paths contributed by the RIS for each user, such that more signals can be

collected by the BS. Compared with O (log2 (M)) in conventional systems, Corollary 2 proves

that much higher capacity can be achieved after integrating an RIS. More importantly, the scaling

law O (log2 (MN)) indicates that if we want to maintain a fixed rate, the number of antennas

can be reduced inversely proportional to the number of RIS elements. For better understanding,

we provide a quantitative relationship for a special case.

Corollary 3 When δ = 0 and for large N , to achieve SNRk = C0 for a given N , the required

number of antennas M is approximately given by

M ≈ C0(K + τ)σ2

τp (Nαkβ + γk)
+K = 2C0

σ2

p
× 1

Nαkβ + γk
+K, if τ = K. (22)

Proof: When δ = 0, we have Rk (Φ) = Rk. Then, using (21), for large N , we have εk ≈ σ2

τp
,

and SNRk ≈ p(M−K)

K σ2

τ
+σ2

(Nαkβ + γk). Solving the equation SNRk = C0 completes the proof. �

Corollary 3 corresponds to the scenarios with rich scattering. Eq. (22) clearly exhibits the

inverse proportional relationship between M and N . Meanwhile, intuitively, M increases with

C0, K, and σ2

p
, but decreases with the link strengths αkβ and γk. Since the RIS’s reflecting

elements consume much less energy than RF chains, Corollary 3 states that the energy efficiency

can be remarkably improved by integrating an RIS.

Corollary 4 If the RIS-BS channel is purely LoS (δ → ∞), RIS-aided massive MIMO systems

perform no worse than conventional massive MIMO systems, i.e., Rk (Φ) ≥ Rk
w/o.

Proof: Substituting δ →∞ into (20), εk, and κk, it can be shown that Rk = Rk
w/o. Then, we

have Rk (Φ) ≥ Rk = Rk
w/o. �

Corollary 4 corresponds to the scenario where the RIS is carefully deployed to reduce the

scatters and obstacles between the BS and the RIS. In this case, the additional channel estimation

error in εk,∀k, caused by the RIS, vanishes. Therefore, the RIS only has the positive effect of

enhancing the channel strength, which improves the achievable rate. We emphasize that even

though we can only prove that RIS-aided systems are no worse than conventional systems when
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δ →∞, in general, it could perform much better because the second lower bound Rk is not as

tight as the first lower bound Rk (Φ) if Φ is carefully designed.

D. Power Scaling Law

In conventional massive MIMO systems, an attractive feature is that the transmit power can

be scaled down proportionally by increasing M [2]–[4]. After introducing an RIS, we reveal a

new power scaling law with respect to N , and compare it to (19).

Corollary 5 As N →∞, when the power is scaled proportionally to p = Eu/N , the achievable

rate in (17) can maintain a non-zero value ~Rk (Φ)→ τ o log2

(
1 +
−−→
SNRk

)
, where

−−→
SNRk =

Eu(M −K)∑K
i=1

Eu
τEu
σ2

+ δ+1
αiβ

+ σ2
× 1

[Ξ−1]kk
≥ Eu(M −K)∑K

i=1
Eu

τEu
σ2

+ δ+1
αiβ

+ σ2
×

(
αkβ
δ+1

)2
αkβ
δ+1

+ σ2

τEu

. (23)

with Ξ = diag

{
(
α1β
δ+1

)2

α1β
δ+1

+ σ2

τEu

, . . . ,
(
αKβ

δ+1
)2

αKβ

δ+1
+ σ2

τEu

}
+ βδ

δ+1

HH
1 ΦHaNaHNΦH1

N
.

Proof: Substitute p = Eu
N

into (17). As N → ∞, we have κk →
αkβ

δ+1
αkβ

δ+1
+ σ2

τEu

, Eu
N
εi → Eu

δ+1
αiβ

+ τEu
σ2

,
ΥHH

1 H1Υ

N
→ diag {κ21α1, . . . , κ

2
KαK}, ΩΥ2

N
→ 0, and σ2

τp
Υ2

N
→ σ2

τEu
Υ2, which help us arrive at

the first equation in (23). Then, using the inequality in (51), we can obtain the lower bound. �

Comparing (23) with (19), it can be seen that this new scaling law has a high order of

magnitude with respect to M . Besides, by comparing (23) with (18), it is interesting to find

that (23) can be interpreted as the SNR achieved by a conventional massive MIMO system with

transmit power Eu and path-loss αkβ
δ+1

. To sum up, for large M and N , transmit power can be

significantly reduced while achieving high data rates.

E. Comparison with MRC-based Systems

Corollary 6 When p or M or N is large, ZF-based RIS-aided massive MIMO outperforms its

MRC-based counterpart. Besides, the severe fairness problem in MRC-based RIS-aided massive

MIMO system [23, Remark 2] does not exist in the considered ZF-based systems.

Proof: According to Corollary 2, when p or M grows without bound, it is found that Rk ≥

Rk →∞,∀k. Thus, all users can have infinite data rates. However, as proved in [23, Remark 2],

when using MRC detectors, due to the mutual interference, the rate is still bounded when p or

M is large. Meanwhile, the rates of all users in the considered system are at least on the order
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of O (log2 (N)). However, when using MRC, the rate of only one user can be on the order of

O (log2 (N)), while the rates of all other users degrade to zero when N is large, which results

in a serious fairness problem. �

ZF-based RIS systems perform better since RIS-aided systems suffer from severe multi-

user interference. This is because multiple users share the common RIS-BS channel, and thus

the K users’ channels are highly correlated. The highly correlated channels result in severe

interference and low data rate. However, by using ZF, the severe multi-user interference issue

can be addressed, which leads to promising performance for various aspects.

F. The Upper Bound

The analysis based on the lower bound Rk is rigorous but conservative, since it ignores the

performance gain achieved by optimizing Φ. We next provide an upper bound to unveil the

maximum gain achieved by optimizing Φ.

Corollary 7 The rate is upper bounded by Rk(Φ) ≤ Rk = τ o log2
(
1 + SNRk

)
, where

SNRk =
p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1
+ γk)

2

N αkβ
δ+1

+ γk +
σ2

τp

+
∣∣aHNΦhk

∣∣2 αkβδ
δ + 1

}
(24)

≤ p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1
+ γk)

2

N αkβ
δ+1

+ γk +
σ2

τp

+N2αkβδ

δ + 1

}
. (25)

Based on (24), Rk is at least on the order of O (log2 (MN)). Based on (25), Rk is on the

order of O (log2 (MN2)).

Proof: Please refer to Appendix E. �

We emphasize that (24) holds for all K users but (25) does not. This is because (25) is

achieved by aligning the RIS phase shifts to a specific user k, i.e., aHNΦhk = N . However, when

aHNΦhk = N , it is known that aHNΦhi, ∀i 6= k, is bounded even for N → ∞ [23]. Thus, the

additional N -fold gain in (25) comes from the concentration of passive beamforming on user

k. Combining the lower bound in Corollary 2 and this upper bound, we highlight the following

conclusion:

Remark 1 If we align the RIS phase shifts for one user, the rate of this user will scale at most

on the order of O (log2 (MN2)), while the rates of the other users scale at least on the order

of O (log2 (MN)), which is high as well.
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Based on these two achievable rate scaling laws, the sum user rate will be high for large

M and N , if we simply align the RIS phase shifts for an arbitrary user, which constitutes a

low-complexity heuristic approach for the sum-rate maximization problem.

Corollary 8 The quantization error caused by RIS discrete phase shifts does not impact the

derived achievable rate scaling orders.

Proof: First, the lower bound Rk does not depend on Φ, and hence, is not affected by

quantization errors. Secondly,
∣∣aHNΦhk

∣∣2 ≥ N2 cos2
(
π
2b

)
holds for an RIS with b-bit quantization

[24]. Therefore, scaling order O (log2 (MN2)) still holds for Rk. �

G. Summary

We summarize that RIS-aided massive MIMO with ZF detectors is promising for

• Green communications (Corollary 3) : The number of BS antennas can be reduced

inversely proportional to the number of RIS elements, while maintaining a constant rate.

• Enhanced mobile broadband (Corollary 2, 7, 8, Remark 1) : According to the rate

scaling orders, ultra-high throughput requirement can be achieved for large M and N .

• Internet of things (Corollary 5) : For large M and N , all users can significantly reduce

their transmit powers while maintaining high data rates.

V. RIS PHASE SHIFT DESIGN

In this section, based on the derived rate expression in (17) and the low-complexity MM

technique [31], we aim to solve the sum user rate maximization (Max-Sum) and the minimum

user rate maximization (Max-Min) problems, respectively. The Max-Sum problem maximizes the

utility but may sacrifice fairness. On the contrary, the Max-Min problem guarantees fairness but

may sacrifice utility. Thus, simultaneously investigating both problems can help us understand

which optimization criterion is more suitable for the considered systems. For tractability, variable

Φ is rewritten as Φ = diag
{
vH
}

, where v =
[
ejθ1 , . . . , ejθN

]H . Then, we can transform the

design of Φ to the design of vector v.

Lemma 2 The rate in (17) can be rewritten as Rk (v) =
τo

ln(2)
ln
(
1 + vHBv

vHCkv

)
, where

B = 1
N

IN + βδ
δ+1

diag
{
aHN
}

H1Λ
−1HH

1 diag {aN} ,

Ck =
p
∑K
i=1 εi+σ

2

p(M−K)

(
[Λ−1]kk B− βδ

δ+1
zkz

H
k

)
,

(26)
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and zHk =
[
Λ−1HH

1 diag {aN}
]
(k,:)

. Besides, we have B � 0 and Ck � 0.

Proof: We can complete the proof by substituting the last equality in (51) into (17), and using

ΦHaN = diag {aN}v and 1 = 1
N

vHINv. Besides, we have B � 0 due to Λ−1 � 0, which

results in vHBv > 0. Since the rate Rk (v) must be non-negative due to its definition in (15),

we obtain vHCkv ≥ 0, which means that Ck � 0. �

Define fk(v) , ln
(
1 + vHBv

vHCkv

)
for brevity. Since the same factor τo

ln(2)
is included in Rk (v) ,∀k,

we can ignore it and formulate the following two optimization problems

Max-Sum : max
v

∑K

k=1
fk(v), s.t.

∣∣[v](n)∣∣ = 1, ∀n. (27)

Max-Min : max
v

min
k

fk(v), s.t.
∣∣[v](n)∣∣ = 1,∀n. (28)

To successfully solve the above two problems under the MM algorithm framework, tractable

lower-bound surrogate functions need to be constructed for objective functions in (27) and (28),

and then closed-form optimal solutions are expected to be derived via the surrogate functions.

A. Max-Sum Problem

Lemma 3 For a fixed point vn, a lower bound of fk(v) is given by

fk(v) ≥ fk(v | vn) = constk+2Re
{
(fnk )

H v
}
, (29)

where

constk = fk (vn)−
vHn Bvn
vHn Ckvn

− ψkvHn (λmax (Ck + B) IN − (Ck + B))vn −Nψkλmax (Ck + B) ,

(fnk )
H = ωkv

H
n B− ψkvHn ((Ck + B)− λmax (Ck + B) IN) ,

ωk =
1

vHn Ckvn
, ψk =

vHn Bvn
(vHn Ckvn) (vHn Ckvn + vHn Bvn)

. (30)

Proof: Please refer to Appendix F. �

Then, the Max-Sum problem (27) can be directly solved based on the proposed surrogate

function fk(v | vn) in Lemma 3. Denoted by vn the solution in the n-th iteration, the closed-

form optimal solution in the (n+ 1)-th iteration is given by

vn+1 = argmax
v

∑K

k=1
fk (v | vn) = exp

{
j∠
(∑K

k=1
fnk

)}
. (31)
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B. Max-Min Problem

Next, we focus on the Max-Min problem (28), which is more challenging since the objective

function min
k
fk(v) is non-differential. Therefore, we first adopt the log-sum-exp approximation

in [32] to obtain a lower-bounded smooth objective function, as follows

min
k
fk(v) ≥ min

k
fk(v | vn) ≥ f̃ (v) , − 1

µ
ln
(∑K

k=1
exp

{
−µfk(v | vn)

})
, (32)

where µ > 0 is a constant for controlling the approximation accuracy, and the last inequality

can be proved similar as [32, (15)].

Lemma 4 For a fixed point vn, f̃ (v) in (32) is lower bounded by

f̃ (v) ≥ f̃ (v | vn) = c̃onst + 2Re
{[(∑K

k=1
lnk (f

n
k )

H
)
+
(
2µmax

k
‖fnk ‖

2
)

vHn

]
v
}
, (33)

where

c̃onst = f̃ (vn)− 2Re
{∑K

k=1
lnk (f

n
k )

H vn

}
+ 2N

(
−2µmax

k
‖fnk ‖

2
)
, (34)

lnk =
exp

{
−µfk(vn | vn)

}∑K
k=1 exp

{
−µfk(vn | vn)

} . (35)

Proof: Please refer to Appendix G. �

Based on the MM algorithm, the Max-Min problem (28) can be solved by maximizing the

lower bound f̃ (v | vn) in each iteration. Given the solution vn in the n-th iteration, the closed-

form optimal solution at the (n+ 1)-th iteration is

vn+1 = argmax
v

f̃ (v | vn) = exp
{
j∠
{(∑K

k=1
lnk f

n
k

)
+
(
2µmax

k
‖fnk ‖

2
)

vn

}}
. (36)

Finally, the framework for solving Max-Sum problem (27) and Max-Min problem (28) are

summarized in Algorithm 1, where steps 4 − 9 are used to accelerate the convergence of the

MM technique [33].

VI. NUMERICAL RESULTS

In this section, we verify the correctness of our derived results and give insights. Unless

otherwise stated, as in [23], we set K = 8, M = N = 64, δ = 1, τc = 196, τ = K, p = 30 dBm,

σ2 = −104 dBm and µ = 10. The BS and the RIS are located at (0, 0) and (0, 700), respectively.

The users are randomly located at a circle centred at (10, 700) of radius 10 m. The path-loss,

the AoA and AoD are set the same values in [23]. The theoretical result in (17) is verified via
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Algorithm 1 MM algorithm.
1: Initialize v0, n = 0;

2: repeat

3: Given vn, obtain solution v
(1)
n+1 from (31) or (36);

4: Given v
(1)
n+1, obtain solution v

(2)
n+1 from (31) or (36);

5: 4v1 = v
(1)
n+1 − vn, and 4v2 = v

(2)
n+1 − v

(1)
n+1 −4v1;

6: ρ = −‖4v1‖
‖4v2‖ , and vn+1 = − exp {j∠ (vn − 2ρ4v1 + ρ24v2)};

7: while vn+1 does not lead to an increasing objective value in (27) or (28) do

8: ρ = (ρ− 1) /2, and vn+1 = − exp {j∠ (vn − 2ρ4v1 + ρ24v2)};

9: end while

10: n← n+ 1;

11: until The objective value in (27) or (28) converges.

Monte-Carlo simulations based on (14). The MRC-based system for perfect and imperfect CSI

are evaluated based on [34] and [23], respectively.

To begin with, we evaluate the lower bounds Rk in (20) and (21), and the upper bound Rk in

(24) and (25), respectively. Without loss of generality, we denote the user nearest to and furthest

from the RIS as users 1 and 8, respectively. Four phase shifts designs are considered for the

RIS:

• Case 1: Align the phase shifts to the nearest user 1, i.e., aHNΦh1 = N .

• Case 2: Align the phase shifts to the furthest user 8, i.e., aHNΦh8 = N .

• Case 3: Set the phase shifts θn,∀n, randomly in [0, 2π].

• Case 4: Set Φ = IN .

Fig. 2(a) illustrates the rate of one user when the RIS phase shifts are aligned to it. To be

specific, we respectively plot the rate of user 1 in Case 1, and the rate of user 8 in Case 2.

We also plot the corresponding upper and lower bounds. Firstly, we observe that when the RIS

phase shifts are aligned to user 1 or user 8, their rates tightly approach the upper bound in (25),

which validates that the derived scaling order O (log2 (MN2)) in (25) is achievable. Secondly,

the theoretical results match well with the simulation results, which verifies the correctness of

our derivatives. Besides, it is seen that user 1 has better performance than user 8, since it locates

closer to the RIS and then has a higher path-loss factor. Thirdly, we can see that the approximate
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Fig. 2. Rate of a user under different RIS designs.

lower bound (21) perfectly matches with the accurate lower bound (20) for all considered values

of N , which verifies the reliability of our previous analysis based on (20). Finally, when N

is doubled from N = 200 to N = 400, the increment of the rate in lower bound and that in

Case 1 are almost τ o log2 (2) = 0.96 and τ o log2 (2
2) = 1.92, respectively, which confirms the

theoretical scaling orders O (log2 (MN)) and O (log2 (MN2)).

Fig. 2(b) shows the rate of user 1 when the RIS phase shifts are not aligned to it, i.e., in Case

2 - 4. We can observe that in these three cases, the upper bound (24) and lower bound (20) are

tight, which means that the rate scales accurately on the order of O (log2 (MN)). This is because

the RIS phase shifts cannot be aligned simultaneously to many users. Then, only one user’s rate

can scale as O (log2 (MN2)) while the rates of all other users scale only as O (log2 (MN)).

Therefore, the scaling order O (log2 (MN)) obtained based on the lower bound is appropriate

for understanding the system capacity since it corresponds to the rate of most of the users.

Fig. 3(a) illustrates the sum user rate. The RIS’s phase shifts are designed by solving the

Max-Sum problem (27), denoted as Case 5. We also design the RIS’s phase shifts based on

Case 1 (aligned to user 1), Case 2 (aligned to user 8) and Case 3 (set randomly). Firstly, we

can observe some performance loss caused by channel estimation errors. This is because the

length of the pilots is τ = K = 8, which is very small compared to the large M and N .

However, the ZF-based perfect and imperfect CSI cases have a similar growth rate (i.e., a nearly

constant gap). This is because the channel estimation error εk saturates for large N and then

does not degrade the scaling order. Secondly, it is seen that ZF-based systems perform much



19

0 20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

60

70

(a) Sum user rate

0 20 40 60 80 100 120 140 160 180 200

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) Minimum user rate

Fig. 3. Sum user rate and minimum user rate.

better than MRC-based and RIS-free systems, especially when N is large. This is consistent with

our analytical results. Thirdly, the rate in Case 5 is much higher than that in Case 3. However,

a near-optimal performance is achieved by Case 1 and Case 2. Especially, in Case 1 where

the RIS phase shifts are aligned to the nearest user, the rate is almost the same as the optimal

result. This is because by aligning the RIS’s phase shifts to a user, the rate of this user scales

on the order of O (log2 (MN2)), while the rates of all other users scale still on the order of

O (log2 (MN)), which corresponds to a large sum user rate for large M and N . Since directly

setting aHNΦhk = N is a very simple and low-complexity approach, aligning the RIS’s phase

shifts to an arbitrary user is a high-quality sub-optimal solution for practical systems. Finally,

we can again observe the tightness of the lower bound (20) when Φ is not optimized.

Fig. 3(b) evaluates the minimum user rate. We design the RIS by solving the Max-Min problem

(28), denoted as Case 6. We also consider Case 1 (aligned to user 1), Case 2 (aligned to user

8), Case 3 (set randomly), and Case 5 (Max-Sum). It is seen that our optimal design in Case 6

yields better minimum user rates compared with other cases. However, despite some performance

loss, Cases 1, 2, 3, and 5 also achieve relatively high minimum user rates. This is because the

dominant limitation, namely the multi-user interference, is eliminated. Thus, even the lowest rate

grows still on the order of O (log2 (MN)), which is guaranteed to be high with large M and

N . Meanwhile, we can see that the minimum rates in Case 2 are better than that in Case 1, 3,

and 5. This is because in Case 2, the RIS’s phase shifts are aligned to the furthest user who has

the lowest path-loss factor. Intuitively, compared with Case 1 which aligns the RIS phase shifts
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to the nearest user, Case 2 is more fair and then achieves a better minimum user rate.
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Fig. 4. M - N trade-off and power scaling law.

Fig. 4(a) evaluates the trade-off between M and N with respect to the sum user rate and

the minimum user rate, respectively. As expected, in both cases, M can be reduced inversely

proportional to the increase of N while maintaining a constant rate. Meanwhile, after optimizing

Φ, M can be further decreased compared to random phase shifts. We can see that the reduction

of M is more obvious if the target is stringent. This comes from the decreasing slope of the

logarithm function. Without the RIS, the rate is on the order of O (log2 (M)), and very large M

is needed to achieve a high rate target. However, if the rate is on the order of O (log2 (MN)),

the high data rate target can be met with moderate M but large N , since the product MN is

very large. Besides, when δ = 0 (in Corollary 3), we verify the theoretical relationship (22) by

using the path-loss of user 8. As can be observed, the derived results are accurate when N > 40.

Finally, Fig. 4(b) validates the derived power scaling law in (23), where the power is scaled

proportionally to p = 10/N . As N → ∞, it is verified that the rate tends to the derived

asymptotic limit, and it is larger than the lower bound. Also, by doubling M from 32 to 64, we

can find a significant increase of the limit. This is because (23) is on the order of O (log2 (M)).

VII. CONCLUSION

This work demonstrates that RIS-aided MIMO with ZF detectors is a promising system

architecture for many applications. We derive theoretical expressions for the ergodic rate, based

on which two low-complexity MM algorithms are proposed to respectively optimize the sum
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user rate and the minimum user rate. We demonstrate that by aligning the RIS phase shifts to

a user, the rate scaling order of that user can approach O (log2 (MN2)), while the rate scaling

order of the other users is guaranteed to be O (log2 (MN)). Therefore, with a low-complexity

RIS design, high system throughput can be realized. We also prove that by increasing N , the

M required to maintain a constant rate can be reduced inverse proportionally. Besides, we prove

that as N →∞, the transmit power of all users can be scaled proportionally to p = 1/N while

maintaining high rates.

APPENDIX A

Based on the definitions of H1, H2, and D, we can expand the channel of user k as follows

qk =

√
αkβδ

δ + 1
H2Φhk +

√
αkβ

δ + 1
H̃2Φhk +

√
γkd̃k. (37)

Firstly, since H̃2 consists of i.i.d. CN (0, 1) elements, vector
√

αkβ
δ+1

H̃2Φhk is comprised of

mutually independent elements. Secondly, the elements of vector
√

αkβ
δ+1

H̃2Φhk are linear com-

binations of independent Gaussian random variables. Therefore, vector
√

αkβ
δ+1

H̃2Φhk consists

of i.i.d. Gaussian variables, following
√

αkβ
δ+1

H̃2Φhk ∼ CN
(
0, N αkβ

δ+1
IM
)
. Meanwhile, we have

√
γkd̃k ∼ CN (0, γkIM). Since the sum of independent Gaussian vectors is still a Gaussian

vector [35], we have√
αkβ

δ + 1
H̃2Φhk +

√
γkd̃k ∼ CN

(
0,

(
N
αkβ

δ + 1
+ γk

)
IM

)
. (38)

Combining (37) and (38), it is proved that qk is a Gaussian distributed vector, where E {qk} =√
αkβδ
δ+1

H2Φhk, and Cov {qk} = E{(qk − E {qk}) (qk − E {qk})H} =
(
N αkβ

δ+1
+ γk

)
IM .

Following a similar procedure, we can derive the distribution of the noise matrix 1√
τp

Nsk,

which is omitted here for brevity.

APPENDIX B

Since the channel qk and the noise Nsk are Gaussian distributed random variables, the

considered observation vector ykp in (7) is consistent with the complex Bayesian linear model

[36, Eq. (15.63)] [2, Lemma B.17]. Therefore, we can directly apply the results in [36, Eq.

(15.64)] and [36, Eq. (15.67)] to obtain the MMSE channel estimate of qk and the MSE matrix.

In particular, using the distribution in Lemma 1, we have

q̂k=

√
αkβδ

δ + 1
H2Φhk+

(
N
αkβ

δ + 1
+γk

)
IM

((
N
αkβ

δ + 1
+ γk +

σ2

τp

)
IM

)−1(
ykp −

√
αkβδ

δ + 1
H2Φhk

)
,

(39)
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and

MSEk =

[((
N
αkβ

δ + 1
+ γk

)
IM

)−1
+
τp

σ2
IM

]−1
. (40)

After some straightforward simplifications, we can arrive at (8) and (9). Besides, since the

channel qk is a Gaussian vector, we can obtain that the channel estimate q̂k and the estimation

error ek are independent from each other, due to the orthogonality principle of the MMSE

estimator [36].

APPENDIX C

To derive the lower bound in (16), we need to calculate the term E{[(Q̂HQ̂)−1]kk}, where Q̂

is given in (10). We begin by proving that channel Q̂ is Gaussian distributed.

Lemma 5 [37] A random matrix X is complex Gaussian distributed as X ∼ CN (E,Σ⊗Ψ), if

vec
(
XH
)
∼ CN

(
vec
(
EH
)
,Σ⊗Ψ

)
. If X1 ∼ CN (E1,Σ1⊗Ψ1) and X2 ∼ CN (E2,Σ2⊗Ψ2)

are independent distributed, then X1 + X2 ∼ CN (E1 + E2,Σ1 ⊗Ψ1 + Σ2 ⊗Ψ2).

For notional brevity, we divide the estimated channel Q̂ into three independent parts Q̂ =

Q̂RIS + Q̂BS + Q̂noise, where

Q̂H
RIS =

√
βδ

δ + 1
HH

1 ΦHH
H

2 +

√
β

δ + 1
ΥHH

1 ΦHH̃H
2 ,

Q̂H
BS = ΥΩ1/2D̃H ,

Q̂H
noise =

1
√
τp

ΥSHNH .

(41)

Recall that H̃2, D̃, and N are composed of i.i.d. Gaussian random variables. By observing

(41), we can find that each column of matrices Q̂H
RIS , Q̂H

BS and Q̂H
noise can be written as a

linear transformation of mutually independent standard Gaussian random vectors. Therefore,

the columns of Q̂H
RIS , Q̂H

BS , and Q̂H
noise are independent Gaussian vectors. As a result, after

vectorization, the vectors vec(Q̂H
RIS), vec(Q̂

H
BS), and vec(Q̂H

noise) are still Gaussian distributed.

Next, we derive their mean vector and covariance matrices. First, consider the term vec(Q̂H
RIS).

Obviously, we have E{vec(Q̂H
RIS)} = vec(

√
βδ
δ+1

HH
1 ΦHH

H

2 ). The covariance matrix is given by

Cov
{
vec
(
Q̂H
RIS

)}
=E
{
vec
(√

β
δ+1

ΥHH
1 ΦHH̃H

2 IM

)
vec
(√

β
δ+1

ΥHH
1 ΦHH̃H

2 IM

)H}
(c)
=
(
IM ⊗

√
β
δ+1

ΥHH
1 ΦH

)
E
{
vec
(
H̃H

2

)
vec
(
H̃H

2

)H}(
IM ⊗

√
β
δ+1

ΦH1Υ
)

=
(
IM ⊗

√
β
δ+1

ΥHH
1 ΦH

)(
IM ⊗

√
β
δ+1

ΦH1Υ
)

(d)
= IM ⊗ β

δ+1
ΥHH

1 H1Υ,

(42)
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where (c) utilizes vec(ABC) =
(
CT ⊗A

)
vec(B) and (A⊗B)H = AH ⊗BH . (d) exploits

(A ⊗ C)(B ⊗D) = (AB) ⊗ (CD) and ΦHΦ = IN . According to (42) and Lemma 5, the

distribution of Q̂RIS is given by

Q̂RIS ∼ CN

(√
βδ

δ + 1
H2ΦH1, IM ⊗

β

δ + 1
ΥHH

1 H1Υ

)
. (43)

Similarly, we can obtain the distribution of Q̂BS and Q̂noise as

Q̂BS ∼ CN
(
0, IM ⊗ΩΥ2

)
, (44)

Q̂noise ∼ CN
(

0, IM ⊗
σ2

τp
Υ2

)
. (45)

Then, using Lemma 5 and the property that A⊗B +A⊗C = A⊗ (B +C), the estimated

channel Q̂ is Gaussian distributed as follows

Q̂ ∼ CN

(√
βδ

δ + 1
H2ΦH1, IM ⊗

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

))
. (46)

Lemma 6 [38, Definition 5.1] Let W = XHX, with n×m matrix X ∼ CN (E, In⊗Ψ). Then,

W follows a complex non-central Wishart distribution with n degrees of freedom, covariance

matrix Ψ, and non-centrality parameter Σ = Ψ−1EHE, denoted by W ∼ CWm(n,Ψ,Σ).

Besides, its mean is E(W) = nΨ + ΨΣ [35, 10.3]. In particular, if X ∼ CN (0, In ⊗Ψ) has

zero mean, W is complex central Wishart distributed, denoted by W ∼ CWm(n,Ψ), where

E(W) = nΨ and E(W−1) = 1
n−mΨ−1, n > m [39].

Since Q̂ is Gaussian distributed, from Lemma 6, the product Q̂HQ̂ follows a complex non-

central Wishart distribution as

Q̂HQ̂ ∼ CWK (M,ΨRIS,ΣRIS) , (47)

where ΨRIS = β
δ+1

ΥHH
1 H1Υ + ΩΥ2 + σ2

τp
Υ2 and ΣRIS = (ΨRIS)

−1 βδ
δ+1

HH
1 ΦHH

H

2 H2ΦH1.

It has been proved that the non-central Wishart distribution can be closely approximated by a

central Wishart distribution [40]. Therefore, as in [4], [41], [42], we approximate the non-central

Wishart distribution (47) by a central one with the same first order moment. With Lemma 6 and

(6), the mean of (47) is given by

E
{

Q̂HQ̂
}
=M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
+

βδ

δ + 1
HH

1 ΦHH
H

2 H2ΦH1

=M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
+M

βδ

δ + 1
HH

1 ΦHaNaHNΦH1.

(48)
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Then, the central Wishart distribution with the same mean is given by

Q̂HQ̂ ∼ CWK

(
M,

β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2 +

βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)
. (49)

Aided by the property of complex central Wishart distribution in Lemma 6, we obtain

E
{(

Q̂HQ̂
)−1}

=

(
β
δ+1

ΥHH
1 H1Υ + ΩΥ2 + σ2

τp
Υ2 + βδ

δ+1
HH

1 ΦHaNaHNΦH1

)−1
M −K

. (50)

The proof is completed by substituting (50) into (16).

APPENDIX D

Recall that Λ = β
δ+1

ΥHH
1 H1Υ + ΩΥ2 + σ2

τp
Υ2. It is readily found that Λ = ΛH . Note

that we assume the existence of direct links, therefore we have Ω � 0. Meanwhile, we have
β
δ+1

ΥHH
1 H1Υ � 0, ΩΥ2 � 0, and σ2

τp
Υ2 � 0. Therefore, we obtain that Λ � 0, Λ−1 � 0, and

(Λ−1)
H
= Λ−1. Then, applying the Woodbury’s identity and using the fact that Λ−1 is positive

definite and Hermitian, we have[(
Λ +

βδ

δ + 1
HH

1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−

βδ
δ+1

[
Λ−1HH

1 ΦHaNaHNΦH1Λ
−1]

kk

1 + βδ
δ+1

aHNΦH1Λ−1HH
1 ΦHaN

=
[
Λ−1

]
kk
−

βδ
δ+1

∣∣∣[Λ−1HH
1 ΦHaN

]
(k,1)

∣∣∣2
1 + βδ

δ+1
(aHNΦH1)Λ−1 (aHNΦH1)

H
≤
[
Λ−1

]
kk
. (51)

Substituting (51) into (17), we can obtain the lower bound in (20).

Lemma 7 [4], [6], [23] When N → ∞, the product of the LoS components h
H

k hi is still

bounded, unless user i has the same AoA as user k.

We can respectively calculate the diagonal and non-diagonal elements of Λ as follows

[Λ](k,k) =

(
N
αkβ

δ + 1
+ γk +

σ2

τp

)
κ2k, (52)

[Λ](k,i) =
β

δ + 1

√
αkαiκkκih

H

k hi, ∀i 6= k. (53)

When N is small, due to the small product-distance path loss αkβ and
√
αiαkβ compared with

γk, (53) is much smaller compared with (52). Therefore, Λ can be approximated as a diagonal

matrix for small N . When N increases, based on Lemma 7, (52) grows much faster than (53).

Thus, (52) is still much larger than (53) and we can approximate that Λ is dominated by diagonal

elements. Finally, when N → ∞, (52) tends to infinity but (53) does not. Therefore, Λ tends



25

to a diagonal matrix for large N . Accordingly, for any N , we can approximate Λ as a diagonal

matrix diag{[Λ](1,1) , . . . , [Λ](K,K)} and then arrive the approximate lower bound in (21) by

using [Λ−1]kk ≈ ([Λ]kk)
−1 =

N
αkβ

δ+1
+γk+

σ2

τp(
N
αkβ

δ+1
+γk

)2 . Finally, by observing the order of magnitude of the

numerator and denominator of the SNR in (21), we can find that the numerator is on the order of

O (MN2), but the denominator is only on the order of O (N). Therefore, the rate is on the order

of O (log2 (MN)). Besides, it can be readily found that Rk (Φ) = Rk when δ = 0. Meanwhile,

for an optimal solution Φ∗∗ and a sub-optimal solution Φ∗, we have Rk (Φ
∗∗) > Rk (Φ

∗). Since

Rk is independent of Φ, we have Rk (Φ
∗∗)−Rk > Rk (Φ

∗)−Rk, which indicates that the gap

between Rk (Φ) and Rk will be enlarged if Φ is optimized. In other words, the proposed bound

Rk will be tight when we use unoptimized phase shifts.

APPENDIX E

Lemma 8 If X � 0, [X−1]kk ≥
1

[X]kk
. The equality holds only if X is diagonal.

Recall that we have Λ � 0 and HH
1 ΦHaNaHNΦH1 � 0. Using Lemma 8 and (1), we have[(

Λ + βδ
δ+1

HH
1 ΦHaNaHNΦH1

)−1]
kk
≥ 1

[Λ+ βδ
δ+1

HH
1 ΦHaNaHNΦH1]

kk

= 1

[Λ]kk+
αkβδ

δ+1 |aHNΦhk|2

≥ 1

[Λ]kk+
αkβδ

δ+1
N2

= 1(
N
αkβ

δ+1
+γk+

σ2

τp

)
κ2k+

αkβδ

δ+1
N2
,

(54)

where the last inequality using the property that aHNΦhk ≤ N from triangle inequality [23,

(189)], and the equality holds when θn = −∠
{[

aHN
]
n

[
hk
]
n

}
,∀n.

The proof is completed by substituting (54) into (17) with a few additional simplifications.

APPENDIX F

To begin with, we give a brief introduction to the optimization under the MM framework

[11], [31]. To maximize a function g(v) based on the MM algorithm, at a point vn, we need to

construct a lower bound g(v|vn) satisfying

g(vn) = g (vn | vn) , (55)

g (v) ≥ g (v | vn) , (56)

∇vg (v)|v=vn
= ∇vg (v | vn)

∣∣
v=vn

. (57)

Then, we are able to increase the value of the original function from g(vn) to g(vn+1) by finding

the point vn+1 which maximizes the lower bound g(v|vn). Therefore, the success of using the

MM algorithm highly relies on the properties of the constructed lower bound.
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In the following, we derive a tractable lower bound for fk(v) which satisfies the above three

conditions and can successfully produce a closed-form solution. We first rewrite fk(v) as

fk(v) = ln
(
1 + vHBv

vHCkv

)
= − ln

(
vHCkv

vHCkv+vHBv

)
= − ln

(
1− vHBv

vHCkv+vHBv

)
= − ln

(
1− vHBv

tk

)
, fk(v, tk),

(58)

where tk = vH(Ck + B)v > 0. Then, according to [31, (14)] and the composition rule [43,

(3.10)], fk(v, tk) is jointly convex in v and tk. Therefore, given a point (vn, tnk), we can obtain

a lower bound of fk(v, tk) by using its first-order Taylor expansion, which automatically meets

the three conditions needed for MM algorithms. Specifically, we have

fk(v, tk) ≥ fk (vn, t
n
k) +

∂fk(v)
∂vT

∣∣∣
v=vn

(v − vn) +
∂fk(v)
∂vH

∣∣∣
v∗=v∗n

(v∗ − v∗n) +
∂fk(v)
∂tk

∣∣∣
tk=t

n
k

(tk − tnk) ,

(59)

where ∂fk(v,tk)
∂vT

= vHB
tk−vHBv

, ∂fk(v,tk)
∂vH

= vTBT

tk−vHBv
, and ∂fk(v,tk)

∂tk
= − vHBv

(tk−vHBv)
1
tk

.

Substitute these three partial derivatives into (59) and use tk = vH(Ck + B)v and tnk =

vHn (Ck + B)vn. After some simplifications, we can obtain

fk(v) ≥ const1k+2Re
{
ωkv

H
n Bv

}
− ψkvH (Ck + B)v, (60)

where const1k = fk (vn)− vHn Bvn
vHn Ckvn

, and ωk and ψk were defined in (30). Next, according to the

inequality in [31, (26)] and the property that Ck + B � λmax (Ck + B) IN , we have

vH (Ck + B)v ≤ vHλmax (Ck + B) INv + 2Re
{
vH ((Ck + B)− λmax (Ck + B) IN)vn

}
+ vHn (λmax (Ck + B) IN − (Ck + B))vn. (61)

Substituting (61) into (60) and using the fact that vHλmax (Ck + B) INv = Nλmax (Ck + B),

we can arrive at (29).

APPENDIX G

Under the MM algorithm framework, given a point vn, we want to construct a quadratic form

lower bound f̃ (v | vn) of f̃ (v) as follows

f̃(v) ≥ f̃ (v | vn) = f̃ (vn) + 2Re
{
uH (v − vn)

}
+ (v − vn)

H M (v − vn) , (62)

where u and M are two parameters to be decided.
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Since condition f̃(vn) = f̃ (vn | vn) is already satisfied, we next construct parameters u and

M satisfying conditions (56) and (57). We first use condition (57) to design u. The differential

of the left hand side of (62) at point vn with arbitrary increment dv = v − vn is

df̃(v)
∣∣∣
v=vn

= − 1
µ

∑
k

d
{
exp
{
−µ
(
constk +2Re

{
(fnk )

H
v
})}}∣∣∣∣

v=vn∑
k
exp
{
−µ
(
constk+2Re

{
(fnk )

H
vn
})} =

∑
k

2Re
{
lnk (f

n
k )

H dv
}
, (63)

where lnk was defined in (35). Next, the differential of the right hand side of (62) at point vn is

df̃ (v | vn)
∣∣∣
v=vn

= 2Re
{
uHdv

}
. (64)

To satisfy condition (57), we need
∑

k 2Re
{
lnk (f

n
k )

H dv
}
= 2Re

{
uHdv

}
, resulting in

u =
∑
k

lnk f
n
k . (65)

Next, we aim to construct M using condition (56). Letting v = vn + % (ṽ − vn), % ∈ [0, 1],

and substituting it into (56), we need

f̃ (vn + % (ṽ − vn)) ≥ f̃ (vn) + 2%Re
{
uH (ṽ − vn)

}
+ %2 (ṽ − vn)

H M (ṽ − vn) (66)

to be satisfied for any % and any ṽ. Since we know that f̃ (v) and f̃ (v | vn) have the same value

and differential at point vn, (56) can now be transformed to the condition that the second-order

derivative of the left hand side of (66) is no smaller than that of the right hand side of (66) for

any % ∈ [0, 1] and any ṽ [33].

Specifically, the second-order derivative of the right hand side of (66) is given by

∂

∂%2

{
f̃ (vn) + 2%Re

{
uH (ṽ − vn)

}
+ %2 (ṽ − vn)

H M (ṽ − vn)
}
= 2 (ṽ − vn)

H M (ṽ − vn) .

(67)

Then, we focus on the left hand side of (66). Its first-order derivative is
∂

∂%
f̃ (vn + % (ṽ − vn)) =

∑
k

2Re
{
unk(%) (f

n
k )

H (ṽ − vn)
}
, (68)

where unk(%) = exp{−µl̃k(%)}∑
k

exp{−µl̃k(%)}
, l̃k(%) = constk+2Re

{
(fnk )

H (vn + % (ṽ − vn))
}

, and ∂l̃k(%)
∂%

=

2Re
{
(fnk )

H (ṽ − vn)
}

. Then, we can compute the second-order derivative as follows

∂

%2
f̃ (vn + % (ṽ − vn)) =

∑
k

2Re

{
∂

∂%
{unk(%)} (fnk )

H (ṽ − vn)

}
, (69)

where

∂unk (%)

∂%
=−2µRe

{
unk(%) (f

n
k )

H (ṽ − vn)
}
+µunk(%)

(∑
k

2Re
{
unk(%) (f

n
k )

H (ṽ − vn)
})

. (70)
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Substituting (70) into (69), we obtain the second-order derivative as follows

∂
∂%2
f̃ (vn + % (ṽ − vn))

= −µ
∑

k u
n
k(%)

(
2Re

{
(fnk )

H (ṽ − vn)
})2

+ µ
(∑

k 2Re
{
unk(%) (f

n
k )

H (ṽ − vn)
})2

.
(71)

Define t = ṽ − vn. (71) can be rewritten as a quadratic form of t, as follows

∂

∂%2
f̃ (vn + % (ṽ − vn)) =

[
tH tT

]
W

 t

t∗

 , (72)

where

W=−µ
∑
k

unk(%)

 fnk

(fnk )
∗

 fnk

(fnk )
∗

H+ µ

 ∑k u
n
k(%)f

n
k∑

k u
n
k(%) (f

n
k )
∗

 ∑k u
n
k(%)f

n
k∑

k u
n
k(%) (f

n
k )
∗

H . (73)

Besides, we rewrite the second-order derivative in (67) as

2 (ṽ − vn)
H M (ṽ − vn) =

[
tH tT

] M 0

0 MT

 t

t∗

 . (74)

To satisfy condition (56), according to (73), we can choose that M � λmin(W)IN , where

λmin(W)
(e)

≥ −µ
∑
k

unk(%)λmax


 fnk

(fnk )
∗

 fnk

(fnk )
∗

H


(f)
= −µ

∑
k

unk(%)
(
(fnk )

H fnk + (fnk )
T (fnk )

∗
)
= −2µ

∑
k

unk(%) ‖fnk ‖
2

(g)

≥ −2µmax
k
‖fnk ‖

2 , (75)

according to the following properties: (e) [44] : For Hermitian matrix X and rank one Hermitian

matrix T, we have λmin(X + T) ≥ λmin(X) + λmin(T) = λmin(X). (f) : If X is rank one,

λmax (X) = Tr {X}. (g) : For non-negative vector [b1, b2, ..., bn] and [c1, c2, ..., cn], if ci ∈ (0, 1)

and
∑n

i=1 ci = 1, then
∑n

i=1 cibi ≤
∑n

i=1 cimax1≤i≤n bi = max1≤i≤n bi.

Based on (75), we can now construct M =
(
−2µmaxk ‖fnk ‖

2) IN . Substituting this M and u

in (65) into (62) completes the proof.
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