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Abstract—Semantic signal processing and communications are
poised to play a central part in developing the next generation of
sensor devices and networks. A crucial component of a semantic
system is the extraction of semantic signals from the raw input
signals, which has become increasingly tractable with the recent
advances in machine learning (ML) and artificial intelligence (AI)
techniques. The accurate extraction of semantic signals using
the aforementioned ML and AI methods, and the detection of
semantic innovation for scheduling transmission and/or storage
events are critical tasks for reliable semantic signal processing
and communications. In this work, we propose a reliable semantic
information extraction framework based on our previous work
on semantic signal representations in a hierarchical graph-based
structure. The proposed framework includes a time integration
method to increase fidelity of ML outputs in a class-aware
manner, a graph-edit-distance based metric to detect innovation
events at the graph-level and filter out sporadic errors, and a
Hidden Markov Model (HMM) to produce smooth and reliable
graph signals. The proposed methods within the framework are
demonstrated individually and collectively through simulations
and case studies based on real-world computer vision examples.

Index Terms—Semantic signal processing, semantic communi-
cations, semantic graph signals, goal-oriented signal processing,
goal-oriented communications.

I. INTRODUCTION

RECENT advances in machine learning techniques are
resulting in a paradigm shift in signal processing, where

semantically-rich information about any underlying signal is
becoming increasingly available. Extraction of semantic infor-
mation from videos [1], sounds [2], [3], financial time-series
data [4], and many more signal modalities enables processing,
storage, and communication at a semantic level. As a result,
the next generation of signal processing and communication
systems are expected to include semantically-aware agents that
can optimize the processing and transmission of information
over the inherent semantic meaning [5]–[8].

In [9], we introduced a goal-oriented signal processing
framework, where any input signal can be mapped to an
application-specific graph-based semantic language, in con-
junction with internal or external goals that are also based
on the same language. Compared to the natural-language-
based applications of the semantic processing techniques, the
application-specific nature of the proposed semantic language
in [9] reduces the computational requirements of the agents
at the site of the sensors, and provides inherent privacy and
secrecy by mapping raw data into graph-signals.

In the goal-oriented semantic signal processing frame-
work [9] a semantic extractor, which is typically a machine
learning algorithm, transforms the input signal into graph

signals with a hierarchical structure that also include embed-
ded numerical attributes. Regardless of the adopted semantic
signal processing framework, this transformation process in
any semantics-enabled system will produce noisy semantic
signals due to the signal-to-noise-ratio (SNR) of the input
signal (at the technical level), insufficient training, model
imperfections, and knowledge-base limitations. For an object
classifier implemented on a video signal, the low input SNR
can be due to the distance of the objects or due to the improper
lighting conditions, whereas model errors can be due to lack
of training or simply the limitations of the model itself (i.e.,
number of layers, structure of the neural network, number of
neurons, etc.). The knowledge-base for the framework in [9]
can be defined as the range of outcomes of the pre-defined
language structure and the logical likelihoods of certain out-
comes (see Section III for details), where a limited definition
can lead to missed detections or wrong classifications. Note
that the semantic noise discussed here is not the semantic
channel noise [10], nor is it an adversarial agent distorting the
input of the algorithm [11] but rather a source noise introduced
when the semantic signal is first generated. An advantage in
handling the source noise is that we can have access to the
statistical characteristics of the semantic extractor, as well as
logical characteristics of the semantic information, and exploit
these to improve the fidelity of the results.

Goal-oriented filtering of the semantic information helps
focus the remaining signal processing on those graph signals
that are of interest. For both storage and transmission purposes,
it is important to detect innovation events on the extracted
semantic signals [9]. The proposed semantic signals in [9] have
a hierarchical structure with graphs and numerical attributes;
therefore, innovation events can happen at different levels of
the semantic signal. An example of an innovation event at
the graph signal level can mean a graph pattern of interest
(that is predefined by the internally or externally defined goals)
has emerged (or receded) in the semantic description of the
raw signal. Once a graph pattern of interest is identified and
is being tracked, the numerical attributes such as position
and subfeature vectors can be tracked across time to detect
innovation events at the attribute level (again, based on the
interests defined by the goals). To give a more practical
example, consider a computer vision application that is used to
provide security for a pedestrian-only street. In this scenario,
the external goals can be the detection of objects in the classes
of vehicles and suitcases. Therefore, innovations at the graph
level can be identified as events where these classes of interest
come into our out of the semantic graph description of the
scene. Additionally, once these classes are identified, their
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accurate positions, as well as some of their features (a large
suitcase is more attention-worthy than a small one, etc.) can
be tracked across time to be stored or transmitted once they
exceed a certain threshold.

Quantification of the innovation events enables efficient and
accurate tracking of the semantic signals, filtering out sporadic
erroneous detections, and scheduling the storage or transmis-
sion events, depending on the application. Coupled with the
inherent compression provided by a semantic language [9],
[12], a scheduler based on semantic innovations can reduce
the overall transmission traffic dramatically.

In this paper, with the objective of improving the fidelity
and quantifying the innovation of semantic information, we
propose and demonstrate a semantic extraction framework
that can be implemented on graph signals with embedded
numerical attributes. Specifically, we introduce an integration
technique to improve semantic fidelity in a class-aware man-
ner, a modified graph edit distance (GED) metric and a Hidden
Markov Model (HMM) to quantify, track, and smooth the
semantic signals at the graph level, and a subspace tracking
algorithm to quantify and track the semantic information at
the numerical attribute level. The proposed framework can
be implemented in the next generation of communication
networks and sensor devices to enable semantic signal pro-
cessing and semantic communications. The individual methods
can be used either separately or collectively for filtering
erroneous detections, fusion of multiple sensors/data-streams,
and transmission scheduling for semantic communication ap-
plications. The methods presented in this paper are rigorously
explained and demonstrated using simulations and computer
vision examples on acquired video signals.

The rest of this paper is organized as follows. Section II
provides a short literature review on the semantic signal
processing, and semantic graph signal extraction. Section III
briefly re-introduces the semantic signal processing framework
of [9]. Section IV presents the proposed semantic extraction
framework and its main building blocks. The details of each
block in the proposed framework are given in Sections V–
VIII. Section IX demonstrates the performance of the proposed
methods via simulations and real-world computer vision case
studies. A short discussion on the rate of innovation of
semantic signals and the corresponding data throughput is
given in Section X. Concluding remarks and future research
directions are given in Section XI.

II. RELATED WORKS

The initial work on semantic information is almost as old
as Shannon’s seminal work [13], with Weaver introducing the
semantic communication paradigm [14], then Bar-Hillel and
Carnap proposing a Semantic Information Theory (SIT) built
on a semantic language based on propositional logic. In the
last decade, the quantum leap in the abundance of semantically
rich data enabled a resurgence of research on semantic signal
processing and communications. To give a clear overview of
the state-of-the-art on this emerging but highly active field,
we review the literature in the following two subsections,
namely on extraction of semantic information and on semantic
communications.

A. Extraction of Semantic Information

Semantic information exists in many signal modalities such
as a textual description of an image, a knowledge graph
derived from a paragraph, and even in correlation functions
of random processes. We refer to semantic transformation or
semantic extraction as the mapping from an input modality to
a target semantic modality where the target semantic modality
can be anything ranging from vectors, texts, and graphs.
Most popular semantic transformation techniques (especially
in computer vision applications) include object detection [15]–
[20], semantic segmentation [21]–[33], and captioning [34]–
[47].

A powerful form of semantic transformation is to convert
signals into graphs that represent a scene and encode the
relationships presented in the signal. Scene graphs are pro-
posed in [48] describe image features and object relationships
in an explicit and structured way for image retrieval. Some
recent papers [49]–[51] also consider joint optimization of
object detection and relationship recognition parts. Specifi-
cally, Factorizable-Net is proposed in [52] where a Region
Proposal Network (RPN) is used to extract object proposals
and proposed objects are paired to obtain a fully-connected
initial coarse graph. In [53], Graph-RCNN is introduced.
Graph-RCNN uses relation-proposal-network (RePN) to prune
the connections in the initial graph and an Attentional Graph
Convolutional Network [54] refines the features on the graph.
On the other hand, VCTree model [55] constructs a dynamic
tree from a scoring matrix where visual context is encoded into
the tree structure. Furthermore, some recent works [49], [50]
use recurrent architectures for graph inference. Particularly,
in [50] a feature refining module consisting of edge and
node Gated Recurrent Units (GRU), and in [56], stacked bi-
directional Long Short-Term Memory models (bi-LSTMs) are
used.

Scene graphs can also be extracted from video signals.
In [57], each frame in the video is converted into a scene
graph as an intermediate semantic representation. Then, using
frame and cross-frame level relationships of intermediate scene
graphs, a story of the video is generated. Joint parsing of
cross-view videos is introduced in [58] where scene-centric
and view-centric graphs are hierarchically generated. For more
details, we refer the readers to survey papers [59], [60].

B. Semantic Communications

Many outlook papers on next-generation communication
networks envisioned that some form of semantic commu-
nications will pave the way for next generation wireless
communications [6], [10], [61]–[66]. Recently more practical
approaches for viable semantic communications are presented
in the literature. In [12], a deep learning enabled semantic
communication architecture called DeepSC is proposed for
text transmission. Unlike traditional approaches where the
objective is to minimize bit errors, this work focused on mini-
mizing semantic errors while maximizing the system capacity
with a mutual information estimation model for semantic
channel coding. In [67], the authors extend their previous
work to affordable internet-of-things (IoT) applications where
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a lite and distributed version of [12] called the L-DeepSC is
proposed. In [68], the authors propose a semantic communi-
cations framework where natural language texts are modeled
as knowledge graphs that are transmitted and converted back
into text at the destination. The conversion into and from
knowledge graphs offer an intuitive and explainable semantic
extraction compared to [12], [67].

Transmission of speech data for semantic communications
is considered in [69]. The authors proposed a deep learning
enabled system called DeepSC-S which extracts essential
semantic information from speech audio signals by using
squeeze-and-excitation (SE) networks [70] and applies atten-
tion based weighting to emphasize the essential information
where source and channel encoder/decoder is jointly designed
to mitigate channel distortion. The proposed architecture is
shown to outperform traditional approaches in almost any SNR
regime.

In [71], a semantic communication architecture (SC-AIT)
is introduced where both effectiveness, semantic and technical
level of communication is inter-connected via a neural network
supported module. The proposed architecture is realized on
a real-world test-bed for image classification task to detect
surface defections. The authors showed that the proposed
architecture outperforms traditional approaches in any SNR
regime while having lower latency and higher compression
ratio.

Real-time semantic communications is first studied in [72]
where the authors developed a prototype for wireless im-
age transmission based on the field-programmable gate array
(FPGA), Vision Transformer (ViT) [73] and a denoising auto-
encoder. The implemented prototype has been shown to be
superior to traditional 256-quadrant amplitude modulation
(256-QAM) in the low-SNR regime on a measure of structural
similarity index (SSIM). In [74] constellation constrained
version of DeepJSCC [75] (DeepJSCC-Q) is proposed for
wireless image reconstruction. DeepJSCC-Q utilizes a differ-
entiable soft quantization layer to map latent semantic vectors
to transmitted symbols such that each quantization level cor-
responds to a learnable constellation point. It is illustrated that
DeepJSCC-Q achieves comparable performances with respect
to its unconstrained counterpart and outperforms the traditional
methods which rely on separate source and channel coding
scheme.

Deep learning aided end-to-end JSCC for wireless video
transmission scheme (DeepWive) is introduced in [76] where
the proposed architecture performs video compression, chan-
nel coding and modulation with a single neural network,
resulting in direct mapping from video signals to channel
symbols whereas the trained semantic decoder predicts the
residuals without distortion feedback.

In [77], effectiveness of semantic communications is studied
within a joint learning and communication framework. The
authors adopted multi-agent reinforcement learning (MARL)
approach to develop a systematic structure for collaborative
agents participating in treasure hunts. The problem is for-
mulated as a multi-agent partially observed Markov decision
process (MA-POMDP). Agents are intended to learn policies
to effectively exchange messages over a shared noisy wireless

channel for improved coordination and collaboration while
taking long-term rewarding actions. As a result, the proposed
joint learning and communication framework achieves higher
performance than treating action-taking and communication
aspects of MARL separately.

In the following section, a brief introduction to our work
on semantic information and signal processing [9] will be
presented.

III. PRIMER ON THE GOAL-ORIENTED SEMANTIC SIGNAL
PROCESSING FRAMEWORK

Recently a goal-oriented semantic signal processing frame-
work has been proposed to extract and process semantic
information generated at sensor nodes [9]. In this framework,
the semantic information is organized using a flexible graph-
based language in a structured and hierarchical way. The
highly organized and hierarchical approach to construct the
semantic language shifts the processing load to the initial
semantic information extraction, which in turn leads to ease
of processing, filtering, and reduce the overall storage within
a device or transfer of information between devices within a
network.

The proposed structure is made up of bipartite graphs that
include the identified signal components, and predicates that
show the state or relationship of the detected components.
Each node in the graphs may also include layers of numerical
attributes with different levels of complexity. Although the
aforementioned structure of the proposed language is fixed,
the particular definitions of the components, predicates, and
attributes are application-specific. Therefore, the structures
are only as complex as the specific requirements of the
implementation at the sensor/agent level and the specific
situation at the sensor site. In comparison to the natural-
language-based semantic signal processing applications [78],
the proposed structure for the semantic information offers a
much more efficient and unambiguous representation while
inherently providing privacy and secrecy through relatively
abstract graph signals. Moreover, the additional computational
cost of introducing graph signal processing algorithms is
balanced by the inherent low-order graph signals generated
by the proposed framework as they are generated within an
application-specific and limited dictionary.

The proposed structure of the goal-oriented semantic sig-
nal processing framework at a sensor node is shown in
Fig. 1. Briefly, a raw input signal generated by the sensor
is preprocessed (e.g., through up/downsampling or Fourier
transform) before semantic extraction, where the sensor output
is mapped to the target semantic output. Semantic filtering
and post-processing blocks are implemented in a goal-oriented
manner to reduce the range of semantic outputs to the specific
goals and perform additional processing (e.g., source coding),
respectively. Finally, the resulting goal-filtered and compressed
semantic output is either transmitted or stored. The most
critical component in the entire diagram shown in Fig. 1
is the semantic extraction block, since accurate and reliable
mapping of the raw signals into the semantic language affects
the performance of the remaining blocks that follow in the
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semantic signal processing chain. Before we present the meth-
ods and algorithms to improve the accuracy and reliability of
the semantic extractor, we first review the semantic language
structure of [9].

As detailed in [9], the semantic description of a signal
starts with the definition of component and predicate classes
of interest as

C = {c1, c2, . . . , cNc
}, (1)

P = {p0, p1, p2, . . . , pNp−1}, (2)

where Nc and Np are the numbers of component and predicate
classes in the graph language, respectively. The semantic
multi-graph description generated by the detected instances
of C and P is defined as

Dt = {Dt,1, Dt,2, . . . , Dt,N}, (3)

where each Dt,i is an atomic bipartite graph that includes a
connected set of detected component and predicate instances,
as illustrated in Fig. 2. Note that the instance graph includes
multiple instances of the same component or predicates; hence,
each node in Fig. 2 is identified with a two-tuple, i.e., the
component or predicate, and a unique ID number.

Each component and predicate in an atomic graph Dt,i has
a corresponding attribute set denoted by

Θt,i(nj , k) = {θ(1)t,i (nj , k),θ
(2)
t,i (nj , k), . . . ,θ

(Lnj
)

t,i (nj , k)},
(4)

where (nj , k) is the corresponding component or predicate
node in the graph. Note that for each type of node nj , we
define Lnj -levels of attributes. This enables an organized way
of storing different attributes, preferably in increasing order of
complexity for ease of goal-based filtering. We note that in the
computer vision case study given in [9], there are three levels
of attributes: the scalar position and velocity in the lowest-
level attribute set θ(1)t,i , subfeature vectors in θ(2)t,i , and the
full bounding-box images of the detected components in θ(3)t,i .
Nonetheless, the definition given in (4) is purposefully general,
and can be modified depending on the specific application.

Recent advances in machine learning and artificial intelli-
gence have enabled the extraction of semantic information in
the proposed graph structure of (1)–(4). In practice, machine
learning and artificial intelligence based semantic extractors do
not have perfect accuracy or sensitivity; hence, the extracted
semantic information does not have perfect correspondence
with the objective reality. Moreover, the evolution of the gen-
erated semantic output must be tracked accurately to filter out
any erroneous detection and identify the points of innovation
so that the transmission (or storage) events can be scheduled
efficiently. An advantage of using learning-based algorithms
is that statistical properties of the algorithms (e.g., confusion
matrices) can be modeled through extensive training statistics,
which can be used to improve the fidelity of the semantic
output by exploiting the natural temporal continuity of the
objects in the sensed area. Additionally, logical probabilities
of the possible semantic output patterns can be exploited to
improve reliability in a Bayesian sense, as well. For example,
in a computer vision security application involving a car dealer

showroom for a certain brand, identifying cars with other
brands are much less likely logically, and thus, semantically.
Therefore, the semantic extractor can take this into account
during the temporal evolution of its semantic output to de-
termine whether any new detections are the result of a true
innovation or a sporadic erroneous event.

In the next section, with the objective of addressing the
problems stated above, we introduce a semantic extraction
framework that is based on the semantic structure detailed in
this section. We note that the proposed methods are not limited
to the structure described here, and they can also be used
for different graph-based signals with embedded scalar/vector
attributes.

IV. THE PROPOSED SEMANTIC EXTRACTION FRAMEWORK

In the semantic signal processing framework of [9] sum-
marized in Section III and illustrated in Fig. 1, the semantic
extractor is assumed to be generating reliable and smooth
semantic output signals. On the other hand, the extracted
semantic information includes semantic noise that is intro-
duced by input noise, algorithm limitations, etc. In this section,
we propose several methods that can be used individually or
collectively to exploit prior information about the semantic
extractor and environmental characteristics to improve the
fidelity of the extracted semantic information. Moreover, the
proposed techniques enable asynchronous updates of the se-
mantic signal across time, where the updates can be designed
to occur only when there is a significant semantic innovation
in the signal.

The proposed conceptual block diagram for a semantic
extractor is given in Fig. 3. Note that the Raw Semantic
Extraction block typically involves a learning-based algorithm
such as a scene-graph generator for image/video signals [53],
segmented and classified objects in LIDAR images [79], sound
event detection (SED) for acoustic signals [3], etc. The follow-
ing blocks in Fig. 3 exploit the known characteristics of the
raw extractor, such as its confusion matrix; and the statistics
of the environment, such as the occurrence probabilities of
the possible output signals. Throughout this paper, we assume
either these parameters are known a priori or estimated through
measurements.

The proposed Semantic Fidelity Control block takes the
raw output of the initial extraction and uses time integration
techniques to improve the detection characteristics according
to internally set or externally requested reliability parameters.
The proposed fidelity control method is explained in Sec-
tion V.

Note that after this point in the semantic extraction frame-
work shown in Fig. 3, tracking and smoothing blocks work
in parallel processing banks, with each instance working on
an atomic graph as defined in (3). This parallel approach
is the result of intentional separation of the inter-connected
atomic graphs, and reduces the computational complexity of
the following blocks. Also note that a list of goals denoted
as Gt is an input of the semantic extraction framework. Either
internally or externally defined, the goals can be used to filter
the total semantic description of the signal into a goal-oriented
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Preprocessing Semantic
Extraction

Semantic 

Filtering

Semantic

Post-Processing

Storage

Transmission

Fig. 1: The proposed goal-oriented semantic signal processing framework [9]. Raw signal input is denoted as xt, whereas the
external goals are denoted with Gt.

Fig. 2: An example of an atomic bipartite graph structure
(Dt,i) with signal components and predicates at the instance
level. The two-tuple representation denotes the component or
predicate class, and the unique instance identifier.

... ...
... ...

Raw Semantic
Extraction

Semantic Fidelity

Control

Attribute

Tracking

Graph Signal

Tracking

Graph Signal
Smoothing

Semantic Extractor

... ...

Fig. 3: Proposed block diagram for a typical graph-based
semantic extractor.

subset, which can also greatly reduce the processing load of
the following blocks. Since the goal-filtering can be performed
anywhere along the processing chain, it is left as a general
input in Fig. 3.

In a typical application of semantic signal processing or
communications, the innovation in the semantic signals will
not only come from the graph structure, but also from the
low-level numerical attributes embedded in the graphs (see
(4) in Section III). The Attribute Tracking is an application-
specific block, where these low-level numerical attributes can
be tracked across time to detect innovations in the semantic
signals of interest. For vector attributes (e.g., subfeature vec-
tors or state vectors), we propose and demonstrate a subspace
tracking algorithm in Section VI.

The Graph Signal Smoothing block is proposed as an
optional pre-filtering step to smooth out sporadic erroneous

detections and reduce the throughput for the following blocks.
Hence, this step needs to have a relatively low computational
cost compared to the final filtering/tracking block. Therefore,
a simple GED algorithm with a modified cost definition is
proposed for this block and explained in Section VIII.

The final block in Fig. 3, the Graph Signal Tracking,
uses the pre-filtered graph signal and attribute updates in
conjunction with the estimated environmental probabilities to
produce a reliable, accurate semantic description of the input
signal. For this block, we propose an HMM over the graph
signals in Section VII and use state estimation algorithms to
optimize the output signal. As a result, the output of this block
is a reliable, accurate, and slowly-varying signal (compared to
the raw input) that can indicate significant innovations in the
graph-signal or its underlying attributes.

Starting with the next section, we present each sub-block
and the potential methods and algorithms that can be incorpo-
rated within, in detail. Note that the proposed algorithms and
techniques presented in the following sections can be used
collectively, as shown in Fig. 3, or individually depending on
the computational capabilities and requirements of the signal
processing hardware.

V. SEMANTIC FIDELITY CONTROL WITH TIME
INTEGRATION

Time integration of signals for improved detection and
estimation performance are well documented in the signal
processing literature [80]–[82]. These techniques can also be
employed in the semantic signal processing framework in
the initial preprocessing block, shown in Fig. 1, in front of
the semantic extractor. With the introduction of a semantic
language and a semantic extractor, a semantically-aware way
of improving the detection and estimation performance can
be achieved by employing time integration techniques at the
output of the semantic extractor.

The raw semantic extractor shown in Fig. 3 typically
includes a machine learning algorithm that detects the signal
components and their inter-relationships. After the training
and testing of these algorithms, we assume that we have
access to the confusion matrix that provides statistics on the
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characteristics of the trained algorithm [83]. The confusion
matrix of a raw extractor is in the following form:

CM(τ) =


n1,1 n1,2 · · · n1,K
n2,1 n2,2 · · · n2,K

...
...

. . .
...

nK,1 nK,2 · · · nK,K

 , (5)

where τ is the score threshold used for detection, ni,j corre-
sponds to the number of times a pattern j is detected given
an actual pattern of i, with K being the total number of
output patterns. The output patterns in this definition can be
simple components/predicates or more complex graph outputs
as shown in Fig. 2, i.e., the range of possible semantic outputs
that the extractor can generate. Note that, the total number of
possible components and predicates (Nc and Np) are limited,
since they are defined for a specific application with specific
goals. Moreover, in a given time instant, the connected atomic
semantic graph outputs will have even fewer components
and predicates (ηc and ηp, respectively), which will reduce
the computational complexity of processing the graphs even
further.

The confusion matrix can be used to infer other statistical
metrics about the output patterns. Let Ni ≥

∑
j ni,j be the

total number of samples where the pattern i exists, and N =∑
Ni be the total number of samples. With (5) and Ni, other

pertinent confusion metrics for each pattern can be written as

True Positive Rate: TPRi =
ni,i
Ni

, (6)

False Positive Rate: FPRi =

∑
j 6=i

nj,i

N −Ni
, (7)

False Negative Rate: FNRi =
Ni − ni,i

Ni
, (8)

True Negative Rate: TNRi =

∑
j 6=i

∑
k 6=i

nj,k

N −Ni
. (9)

Note that (6)–(9) also depend on the detection threshold τ .
By changing τ , different detection characteristics for a given
pattern can be obtained to generate the Receiver Operating
Characteristic (ROC) curve. The ROC for the semantic extrac-
tor can also be constructed for different environmental factors
such as time of day, weather, season, etc., depending on the
application and the desired accuracy.

To control the fidelity of the extractor output with a
semantically-aware approach, we propose temporal integra-
tion of the output scores of a classifier that identifies the
signal components to improve the ROC. Assuming underlying
Gaussian processes, the output score distribution (Si) for each
pattern under binary hypothesis testing (H0: the pattern does
not exist and H1: the pattern exists) can be modeled as

P (Oi) ∼

{
N (µi,0, σ

2
i,0), under H0

N (µi,1, σ
2
i,1), under H1

(10)

where µ and σ are the mean and standard deviation for the
score distributions in each case. Assuming a jointly Gaussian

distribution, the time-average of Ti consecutive samples yields

P (OTi
i ) = P

(
1

Ti

Ti∑
n=1

Oi(tn)

)
∼

{
N (µi,0, σ̂

2
i,0), under H0

N (µi,1, σ̂
2
i,1), under H1

(11)
where Oi(tn) is the output score at time tn. As expected, the
mean values do not change and the standard deviations are
bounded as

σi/Ti ≤ σ̂i ≤ σi, (12)

for both hypotheses. The lower and upper bound for the
standard deviations are achieved when the consecutive samples
are independent or perfectly correlated, respectively. To illus-
trate the correlation between consecutive samples, consider
the semantic extraction of a video signal. If the scene is
perfectly stationary, i.e., the same still images are recorded
across consecutive time instants, the score distributions will be
identical, rendering the time integration ineffective. However,
even small changes in the video image can lead to different
score output realizations of the same underlying distribution,
hence improving the detection performance.

Since the standard deviations for the distributions under both
hypotheses are reduced, it is straightforward to show that the
ROC metrics given in (6)–(9) can be improved as

TPRi,Ti ≥ TPRi, (13)
FPRi,Ti ≤ FPRi, (14)
FNRi,Ti ≤ FNRi, (15)
TNRi,Ti ≥ TNRi, (16)

with subscript Ti denoting the time-integrated metrics. Again,
the equalities in (13)–(16) hold only when the consecutive
samples are perfectly correlated. Also, note that the assump-
tion of Gaussianity is not essential, i.e., similar expressions
can be written for other distribution models as well.

To illustrate the effects of integrating the output scores
across time, we have built a test dataset based on the images
from the Cars Dataset given in [84], where we placed scaled
versions of the car images randomly onto a stationary parking
lot background image, as shown in Fig. 4. A total of 897
cars randomly selected from the Cars Dataset were placed
randomly onto the background shown in Fig. 4 at different size
scales, each for a total of 100 realizations. Then, the YOLOv4
algorithm [20] is used to generate the output scores for each
case, resulting in the output scores and the ROC curves shown
in Fig. 5. As illustrated in Fig. 5, the output scores and the cor-
responding detection performance deteriorate monotonically
with the decreasing size of the object. Using the output scores
generated by YOLOv4, we integrate different realizations of
the same car objects for various integration window lengths.
The resulting improvement in the ROC curves for scales 5%
and 15% are illustrated in Figs. 6 and 7, respectively, which
clearly show the expected monotonic increase in the detection
performance as the integration window length increases.

Integration across time also means a delay in producing the
desired detections. Hence, depending on the desired FPR and
maximum allowable time-on-target, the raw score output can
be integrated to achieve the maximum possible TPR. With
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Fig. 4: An example car image placed onto a stationary parking
lot background. The scale number annotation corresponds to
the ratio of the size of the car compared to the full image.

a semantically-aware approach, these parameters can be inde-
pendently defined or estimated for different types of targets
(e.g., time-on-target can be a function of the coherence time
and the maximum delay) and environmental factors as well.
This idea will be illustrated via case studies in Section IX.

VI. SUBSPACE TRACKING OF VECTOR ATTRIBUTES

The overall goal of the semantic extractor framework shown
in Fig. 3 is to provide reliable and smooth semantic signals
while also identifying time indices of significant innovation
for scheduling transmission or storage events. The potential
fidelity improvement provided by the time integration method
only works over short time periods where the semantic infor-
mation content within the signal does not change (analogous
to coherence time in wireless channels) significantly. The
following blocks in Fig. 3, starting with the attribute tracking
aim to smooth the semantic signal and identify points of
significant innovation over extended periods of time.

In the raw semantic extraction block shown in Fig. 3, the
semantic data are organized to include goal-filtered compo-
nents and their corresponding attributes. In a typical computer
vision problem, these attributes can be position, speed for
scalar attributes, sub-feature vectors for vector attributes, or
even the encoded video signal itself. Tracking these attributes
enables identification of strong changes at the attribute level,
which in turn can be used to update the transmitted or stored
attributes, even when the overarching semantic graph structure
stays the same. On the other hand, if the semantic graph signal
is erroneously updated (or kept the same), attribute tracking
may be used to reconcile consecutive attributes to detect and
correct these errors.

We now present a subspace tracking algorithm that can be
used for vector attributes. To illustrate the algorithm more
clearly, we use the real-world semantic extraction of video-
streams presented in [9] where we define signal components
as detected objects in the stream. As illustrated in Fig. 8, the
proposed semantic extractor in [9] utilizes YOLOv4-CSP [20]
model to detect occurring objects in each input frame Fn. For
temporal extension, we adopt tracking by detection paradigm

and utilize DeepSORT [85] to track individual objects in the
video stream which utilizes Kalman filter to recursively predict
future positions of detected objects. Furthermore, DeepSORT
inherits another small convolutional neural network model
trained on re-identification task to extract visual feature vectors
of each detected object to be used for association of existing
tracks and recent detections. We refer readers to [85]–[88] for
details about tracking by detection paradigm. We denote these
feature vectors with ri ∈ R128, where ||ri||2 = 1, and utilize
them as second-level vector attributes of component nodes in
our semantic graph output (see [9] for details). We would like
to point out that the feature vector ri for a particular detected
component is a 128-dimensional vector and carries most of
the attribute-level innovation in the semantic signal processing
framework. In Fig. 8, the object-level goal Gobject restricts
the components and the predicates that must be detected.
The corresponding multi-graph instance representation Dn =
{D1, . . . , DMn} composed of Mn disconnected subgraphs and
a corresponding attribute set An = {A1, . . . , AMn} extracted
from the video signal. The multi-graph class representation Sn
is constructed in the Graph Abstraction block, and the com-
plete semantic description Yn = (Sn, Dn, An) is generated.
Finally, if there are external goals Gn, the semantic description
is filtered to obtain the goal-filtered semantic description.

To process and track attribute vectors efficiently, we use
dimensionality reduction techniques such as Robust PCA and
subspace tracking [89]. To track the evolution of the subspace
of feature vectors with respect to time, we use Fast Principal
Component Pursuit (PCP) via alternating minimization [90].

Defining a feature matrix D, with its rows being the
subfeature vectors across time, and decomposing the matrix
into a compressed basis matrix L and residual matrix S, the
PCP problem is formulated as

arg min
L,S

‖L‖∗ + λ‖S‖1 subject to D = L+ S (17)

where ‖L‖∗ is the nuclear norm of matrix L and ‖S‖1 is the
l1-norm of matrix S. A variant of (17) can be constructed as

arg min
L,S

1

2
‖L+S−D‖F +λ‖S‖1 subject to rank(L) = t.

(18)
Finally, we can solve the problem via alternating minimization,
namely,

Lk+1 = arg min
L
‖L+ Sk −D‖F subject to rank(L) = t

(19)
Sk+1 = arg min

S
‖Lk+1 + S −D‖F + λ‖S‖1. (20)

The only computationally demanding step is (19), and it
can be solved by computing a partial SVD of D − Sk with
t components. The solution to (20) is element-wise shrink-
age, i.e., sign(D−Lk+1) (|D − Lk+1| − λ)

+, where (x)+ =
max{0, x}. Note that t in (19) can be chosen by a heuristic
procedure. We increment t and estimate the contribution of
the new singular vector. Comparing the contribution with a
threshold, the algorithm stops at a particular t. In numerical
simulations, we observed that t is usually small (does not
exceed 3 in our setting).
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(a) Output scores at Scale: 10% (b) Output scores at Scale: 20% (c) Average ROC curves

Fig. 5: Output scores and the ROC curves generated by YOLOv4 [20]. Note that the correct class detection for the car class
is highlighted in (a) and (b).

Fig. 6: ROC curves for 5% scaled car images at different
integration lengths.

Fig. 7: ROC curves for 15% scaled car images at different
integration lengths.

To utilize PCP to track the evolution of the feature vectors
in a practical application, one can solve the alternating min-
imization problem given in (19) and (20) periodically on a
moving window. The size of this window (buffer) depends on
the application and the rate of change in the semantic content.

Object Detection
and Classification Object Tracking Graph Generation

Graph Abstraction

Goal-Based
Filtering

Fig. 8: Semantic extraction for real-time video signals as
presented in [9].

Then, a simple heuristic approach can be taken to detect in-
novations by checking the l1-norm of the sparse component S
after convergence and compare it with a predefined threshold.

To illustrate the inherent redundancy for consecutive frames,
we show the still images from a 10s video that includes a car
passing from a shaded region to a sunny region in Fig. 9.
The correlations of consecutive attribute vectors are given
in Fig. 10a. Note that in the scenario given in Fig. 9, the
semantic components and predicates stay the same (i.e., the
same objects and relationships are present throughout the clip),
while the attributes of the car component (car-3) change due
to the image brightness, contrast, etc. As shown in Fig. 10a, an
innovation at the attribute level can be identified around frame-
106, when the lighting changes for the car-3 component in the
overall semantic graph signal. In Fig. 10b, the attribute level
innovation has been illustrated by analyzing the l1-norm of
the sparse component of the feature matrix D. As the norm is
maximum at frame 106, we identify the innovation and locate
the precise time instance quantitatively.

VII. GRAPH SIGNAL TRACKING USING A HIDDEN
MARKOV MODEL

After the semantic fidelity control and attribute tracking
blocks, we now have a more reliable signal in which we
can detect significant innovations at the attribute level. To
provide a smooth output while also identifying significant
innovations at the graph level, we introduce a stochastic
model for the temporal evolution of the graph signals. More
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Fig. 9: A car is passing from a shaded region to a sunny region. The middle and right sub-figures demonstrate the innovation
event at the attribute level, while the semantic components stay the same.
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(a) Correlation of subfeature vectors across consecutive frames. The
innovation at the attribute level is illustrated by a black dashdotted
line.
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(b) Frames vs. l1-norm of the sparse component S. Note that the
attribute level innovation is visible around the frame-106 since the
l1-norm of the sparse component achieves its maximum.

Fig. 10: Attribute level innovation analysis for the car example
given in Fig. 9

specifically, a Markov Chain can be built by defining distinct
component-predicate connections in the graph representation
in Section III as its distinct states. However, these states are
not directly observable, as there may be erroneous detections
due to semantic or technical noise. Therefore, we augment
the Markov chain with an HMM, where the observed output
sequence is generated by the semantic extractor as a function
of the actual states of the underlying Markov chain.

The HMM assumption of the graph representation enables
estimation of the underlying state sequence through the output
sequence generated by the previous blocks. This stochas-
tic model also enables quantifying the semantic information
through the entropy rate of the Markov chain, and it can
be used to compress the semantic signals. Throughout this
section, we rigorously define the HMM and explain how

the underlying state sequence can be extracted from the
observations.

A. Markov Chains and the Hidden Markov Model

As shown in Fig. 2, a graph signal can have various
connections among component and predicate nodes. Each
possible graph configuration can be defined as distinct states
of the graph. Since the number of component and predicate
nodes in the graph is finite (and very small in the proposed
language structure of [9] with goal filtering), the number of
possible graph states is limited. The state-space of the graph
can be defined as S = {S0, S1, ..., SN−1}. With the Markovity
assumption, the state transition probability of the graph can be
expressed as PSj ,Si for making a transition from Sj to Si in
a single frame

PSj ,Si
=P (Qt+1 = Si|Qt = Sj , Qt−1 = SQt−1

, . . .

, Q0 = SQ0
) = P (Qt+1 = Si|Qt = Sj), (21)

where Qt represents the state variable at time instance t.
The temporal evolution of the graph can be characterized

entirely through its state transition matrix (A) and the initial
probability distribution (p). A is defined such that its (j, i)’th
entry is equal to PSj ,Si , which is the probability of moving
to state Sj from state Si in a single step. The i’th element of
(p), denoted by pi, which is the probability of being in state
Si in the beginning.

The HMM of the graph consists of two sequences: state se-
quence (Q) and observation sequence (O). The state sequence
(Q) consists of actual states, and the output sequence (O) is the
observed state sequence. Elements of both sequences are from
the state set S. At each time instance, the observed state can
be the actual state, or it can be replaced with another element
from the state set, leading to an incorrect observation.

In an HMM, the graph evolves as a Markov Chain according
to its state transition matrix (A) and initial state distribution
(p). As the graph moves between different states (Qt) over
time, the observed state (Ot) changes accordingly. Ot is a
random variable which is a function of the actual state (Qt) at
time t. Probability of observing Sj when the underlying state
is Si at time t is denoted by PSi,Oj

, i.e.,

PSi,Oj
= P (Ot = Si|Qt = Sj). (22)
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Fig. 11: Hidden Markov Model: Qt is the actual state and Ot

represents the observed state at time t. Ot depends solely on
Qt.

The HMM corresponding to the underlying semantic in-
formation can be represented completely through the state
transition matrix (A), initial probability distribution (p) and the
observation matrix (B). The (i, j)’th element of (B) is equal
to PSi,Oj , which is the probability of observing Sj when the
actual state is Si.

As previously mentioned, a major motivation behind the
stochastic model is to solve the smoothing problem by es-
timating the true nature of the observed process through the
noisy output of the semantic extractor. To solve the smoothing
problem, we are interested in estimation of the underlying state
sequence (Q) from the observed state sequence (O) when the
model is completely known. This is a well-known problem in
HMM framework [91]; however, the definition of optimality
for the solution varies. There are two common approaches: The
first one is to find the most likely state sequence producing
the observed state sequence (O), for which the state sequence
(Q) can be estimated using the Viterbi Algorithm [92]. The
second approach is to find the state sequence consisting of
the most likely states at each step, maximizing the number
of correctly estimated states on average. The solution to
the second formulation follows from the Forward-Backward
Algorithm [93].

The goal of the proposed framework is to find the most
likely state sequence producing the observed state sequence;
hence, we focus on the application of the Viterbi Algorithm.
Viterbi Algorithm is a Dynamic Programming based recur-
sive algorithm that finds the state sequence maximizing the
posterior probability given the output sequence and model
parameters (P (Q|O;A,B,p)).

Some definitions are required to describe the algorithm
fully. The underlying state sequence is represented as Q =
{Q0, Q1, ..., QT−1} where T is the sequence length. The
observed state sequence corresponding to (Q) is denoted
as O = {O0, O1, ..., OT−1}. The model parameters: state
transition matrix (A), observation matrix (B), and initial state
distribution (p) are represented compactly as λ. At each time
step t, Viterbi Algorithm considers every state i visited. Then,
the probability of observing {O0, O1, ..., Ot} and terminating
the path at state i {Qt = Si} is maximized over the previous
states {Q0, Q1, ..., Qt−1} [92], i.e.,

δt(i) = max
{Q0,Q1,...,Qt−1}

P (Q0, Q1, ..., Qt−1,

Qt = Si, O0, O1, ..., Ot|λ). (23)

The heart of the Viterbi Algorithm is the induction step

which is used to find δt+1(j) from δt(i) as

δt+1(j) = [max
Si

δt(i)ai,j ]bj,Ot+1 , (24)

where δt(i) denotes the probability of most likely state se-
quence {Q0, Q1, ..., Qt−1} ending at Qt = Si given the
observation sequence {O0, O1, ..., Ot−1} for the first t steps.
To find the most likely state sequence, each state for each
time instance must keep a pointer ψt(j) to the previous state
maximizing (24). The most likely state sequence is found by
backtracking the pointer of the state maximizing δT−1(i). The
complete procedure is summarized in Algorithm 1.

Algorithm 1 Viterbi Algorithm

Input: A,B,p,O . Model parameters and output sequence
Output: Q . Most likely state sequence
Initialization
for i = 0 upto N-1 do

δ0(i) = pibi,O0

ψ0(i) = −1
end for
Induction
for t = 1 up to T-1 do

for j = 0 up to N-1 do
δt(j) = maxi[δt−1(i)ai,j ]bi,Ot

ψt(j) = arg maxi[δt−1(i)ai,j ]
end for

end for
Termination
P ∗ = maxi[δT−1(i)] . Probability of most likely state
sequence
Q∗T−1 = arg maxi[δT−1(i)]
Backtracking
for t = T-2 down to 0 do

Q∗t = ψt+1(q∗t+1) . Backtrack the most likely path
end for
return Q∗ . Return the most likely state sequence

The Viterbi Algorithm finds the most likely state sequence
from the observations in O(N2T ) steps, where N denotes the
number of states and T is the sequence length. Hence, the
computation of the algorithm can become intractable for very
large number of states. However, in our proposed hierarchical
graph representation explained in Section III, we separate the
semantic graph description of the raw signal into connected
atomic graphs that are expected to have a very limited number
of states (components and predicates), especially considering
that the proposed semantic graph description already starts
with a limited component and predicate set for a specific
application. Another dramatic reduction over the complexity of
a practical implementation is introduced by the goal-oriented
nature of the proposed framework, i.e., only a subset of the
whole semantic description of a signal is of interest, and
is being processed, stored, or transmitted, as discussed in
Section IV.

Even further reductions in the complexity of an HMM
implementation is achievable with the use of approximate
algorithms such as the M-Algorithm, which is a greedy
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algorithm that considers only the most likely M states as
the predecessor during the induction step. M-Algorithm has a
complexity of O(MNT ) where M is strictly less than N [94].

Aside from the computational complexity, another important
aspect of successfully implementing an HMM-based algorithm
is the accurate estimation of the model parameters. In this
work, we assume that the parameters of HMM such as the
state transition probabilities are known a priori. For practical
applications, the model parameters can be initialized with
available logical prior information (some state descriptions can
be logically impossible etc.), then can be estimated from the
observations to provide an accurate model for HMM. The
Baum-Welch algorithm is a popular method for the model
estimation problem in the HMM implementations [95]. The
algorithm starts with an initial guess on the model parameters.
It finds the new parameters iteratively by maximizing the
observation likelihood for the estimated parameters at the
current step. This two-step procedure is repeated until the
model parameters converge.

Another potential shortcoming of the proposed HMM set-
ting is the restrictions on the waiting time distributions. A
Markov model enforces each state waiting time to follow a
geometric distribution. In many practical cases, the observed
semantic signal might contain states that cannot be modeled
accurately with a geometric distribution, leading to a discrep-
ancy between the underlying semantic signal and its Markov
model. To avoid such discrepancies, HMM can be replaced
with a Hidden Semi-Markov Model (HSMM). Unlike HMM,
a state in HSMM might have any distribution for its waiting
time, enabling the modeling of a broader range of semantic
signals in practice, albeit with a higher computational cost.
The observed graph sequence, which follows a HSMM, can
be smoothed with a slightly modified version of the Viterbi
Algorithm [96].

VIII. GRAPH SIGNAL SMOOTHING USING GED

In the proposed semantic extraction framework, the Graph
Signal Tracking block uses an HMM-based estimation al-
gorithm to smooth and track the semantic graph signals.
However, due to the computational complexity of the state se-
quence estimation procedure given in Algorithm 1, a relatively
simple algorithm to identify semantic innovation and smooth
erroneous detections is introduced in this section as part of
the Graph Signal Smoothing block in Fig. 1. The algorithm
and the smoothing block presented here can either be used as
a pre-filtering step before the Graph Signal Tracking block to
reduce the computational load on the HMM state estimation
algorithm, or it can be used as an alternative to the HMM for
a low complexity implementation.

To identify actual or erroneous changes in the graph signals
with relative simplicity, we use a graph distance metric for
consecutive graphs across time. GED [97], [98] is one such
popular metric. For two graphs g1 and g2, the GED is defined
as follows:

GED(g1, g2) = min
(e1,e2,...,ek)∈P(g1,g2)

k∑
i=1

c(ei), (25)

where P(g1, g2) is the set of all edit paths that transform
g1 into g2, ei’s are the elementary edit operations, and c(ei)
is the cost of performing the edit ei. Elementary edit opera-
tions include the insertion, deletion, and substitution of nodes
and edges. Note that with the semantic language defined in
Section III, we have a bipartite graph structure whose edges
are always strictly dependent on the predicates that connect
different components. Therefore, for the proposed language,
we need to define edit costs only for the nodes of the bipartite
graphs.

In most applications of the GED, the cost functions are
chosen to be constant scalars depending on the type of
operation [98], [99]. In this work, we define the edit costs to be
a function of the confusion metrics of the underlying semantic
extractor. More specifically, we exploit the known statistical
characteristics of the semantic extractor that generates the
graphs to obtain the GED as a statistical similarity between
two consecutive graphs. As such, we define the cost as

c(ei) = − log(P (ei)), (26)

where P (ei) is the probability of the edit ei occurring at the
output of the semantic extractor. Therefore, the GED becomes
an estimator for the probability of obtaining the new graph
g2, given the initial graph g1. Note that this probability can
be estimated using the confusion matrix and statistical metrics
given in (5)–(9). The relationships between elementary edits
and corresponding confusion metrics are given in Table I.
Note that, if the occurrence probabilities of certain graph
realizations are available, posterior probabilities can be used
as the distance metrics using Bayesian inference.

TABLE I: GED Cost Definitions

Elementary Edits Confusion Metric
Node Insertion - i FPRi

Node Deletion - i FNRi

Node Substitution i → j ni,j/Ni

Node Substitution j → i nj,i/Nj

If the confusion metrics for the composite edit paths be-
tween g1 and g2 are available, they can be used to estimate the
GED cost directly. However, if only elementary edit confusion
metrics are available, the GED given in (25) becomes a rough
estimate since this definition assumes that the individual edits
that make up an edit path are statistically independent, as
the log-probabilities add up to form the total GED. As the
numerical examples and the experimental results show, this
assumption is still accurate enough to track the semantic
information and identify points of significant innovation. In
Section IX, we present several case studies involving simu-
lations and experimental results that showcase the potential
GED as an elegant pre-filtering step to filter semantic noise
and provide indications of strong semantic innovation.

IX. CASE STUDIES

In this section, we present case studies for each of the
techniques through simulations and experimental results. For
showcasing the methods that rely on the semantic extrac-
tor’s confusion matrix without having to limit ourselves to
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Fig. 12: Confusion matrix from a randomly generated semantic
extractor with τ = 0.5. The additional tables at the right and
bottom side denote the accuracy rates of each row and column,
respectively.

a potentially limited training set, we have constructed a
simulation framework that can generate a semantic extractor
model with random characteristics. This extractor is then used
to produce noisy semantic signals, given a randomly generated
time evolution of a noiseless semantic signal as the ground
truth. For experimental demonstrations, we use the semantic
extractor given in [9], which is a YOLOv4-based algorithm
that generates noisy semantic signals from video signals.
The semantic extractor in [9] uses as its component list the
YOLOv4 class labels (see (1)). Then, three predicates (exists,
moving together, conjunct) are defined and detected among the
components to generate the full bipartite graph outputs. Each
component node in the semantic graph also has an embedded
attribute list with Lnj = 3 according to (4). The first level
attribute contains the bounding box position and velocities,
the second level attribute contains vector subfeatures of length
128, and the third level attribute includes the raw image of the
detected bounding box. More details on these definitions can
be found in [9].

Using the extractor described above, we generate noisy
semantic signals from several short clips that we recorded.
These noisy signals are then post-processed with the proposed
methods, and their performance is demonstrated.

A. Semantic Fidelity with Time Integration

Using the simulation framework described above, we gen-
erate a random semantic extractor that can detect five different
semantic patterns. The normalized output scores of this ran-
dom extractor are thresholded at different levels to generate the
confusion matrices and the ROC curves for its output patterns.
An example confusion matrix with the threshold set at τ = 0.5
is shown in Fig. 12. With the semantic extractor characterized
in Fig. 12, we generate a random time series of inputs of length
10, 000 as shown in Fig. 13 and the corresponding output
scores. Then, a moving integration window of lengths 1-to-

Fig. 13: Randomly generated time evolution for the semantic
ground truth. Yellow regions denote where the patterns exist.

Fig. 14: Improvements in the ROC curves of Class-3 using
time integration of the output scores at different window
lengths.

5 is implemented to observe the effects of time integration
on the detection performance. In Figs. 14 and 15, we present
the improvements in ROC curves for the detection of class-3
(C3). As seen in both graphs, time integration of the extractor
output greatly improves the detection performance in this
particular scenario. Note that the integration window lengths,
TPR, and FPR values presented here are to give a general
idea on how time integration affects the performance of the
extractor. In practice, these values depend on the input signal
acquisition characteristics and the time evolution of the actual
semantic content of the signals. On a case-by-case basis,
parameter surveys as shown in Fig. 15 can be performed
to decide on a time-on-target parameter to maximize the
detection performance in a class-aware fashion.

B. Attribute Subspace Tracking

To illustrate the vector subspace tracking method developed
in Section VI, we use the same recorded video example
shown in Fig. 9. Running the PCP algorithm given in (17)–
(20) on the video clip, we obtain the subspace breakdown of
vector attributes shown in Fig. 16. As it is seen in the sparse
component plot, we have two innovations, i.e., when the car
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Fig. 15: Heatmap of TPR values for different time integration
windows and FPR values.

Fig. 16: PCP output of the car video

first appears in the scene and when it passes to the shaded
region (around frame 106). By plotting the l1-norm of the
sparse component, we can track the innovation versus time.

To design an attribute tracking algorithm that can work
in real-time, one can use fixed-sized buffers and run the
algorithm continuously. Again, we can track the l1-norm of
the sparse components to detect an attribute-level innovation
in the scene, as shown in Fig. 17. Moreover, Fig. 18 illustrates
the effect of buffer size on the innovation detection. As
expected, smaller buffer sizes result in highly concentrated,
spike-shaped innovations. Furthermore, the innovation at the
beginning diminishes as the buffer size gets smaller.

In certain scenarios where multiple instances of an object
are classified with unique identifiers (ID), the same instance
of the class can be detected; however, ID numbers can change
due to occlusions, buffer sizes, or missed detections. We
demonstrate that even in these cases, the proposed method is
able to reconcile the different identifications. In Fig 19, an
object detected with multiple IDs is shown throughout the
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Fig. 17: Innovation vs time for the car video

Fig. 18: Innovation vs time for various buffer sizes for the car
video

video. Using the PCP algorithm, we analyze the low rank
components of these seemingly separate IDs in Fig 20. To
reconcile these objects, we calculate the mean of low-rank
components over time and compare the Manhattan distance
between them, e.g., ‖L7 − L1‖1 vs. ‖L7 − L2‖1 to reconcile
the instance with ID 7. The resulting distance comparison is
given in Fig 21. As illustrated, IDs 7, 16, and 17 are correctly
reconciled with the instance ID 2.

  
 

  

Fig. 19: An object is assigned different IDs during the video
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C. Graph Edit Distance

To demonstrate the potential use of GED in a semantic
extractor, we again take a simple classifier, and its confusion
matrix given in Fig. 22. Note that such a simple classifier will
only generate isolated nodes based on its detected classes.
Therefore, the edit costs that need to be defined are the
node insertion, deletion, and substitution costs, as listed in
Table I. The substitution costs are defined as the probability of
confusion between any two classes; and are shown in Fig. 23.
Note that some entries show an infinite cost, i.e., meaning
some specific patterns were never confused during the training.
The insertion and deletion costs are calculated using (26) and
Table I, and are shown in Fig. 24. These cost definitions can
be used in (25) to compute GED metrics for any output this
particular semantic extractor can generate.

To further showcase the application of the GED in track-
ing and filtering of semantic information, we introduce an
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Fig. 22: Confusion matrix example for a classifier with five
outputs with τ = 0.9. The additional tables at the right and
bottom side denote the accuracy rates of each row and column,
respectively.
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Fig. 23: Node substitution costs for the confusion matrix given
in Fig. 22.

imperfect predicate detector that can identify three different
types of relationships among the components detected by the
classifier. The conditional confusion matrix and the corre-
sponding GED costs for the predicate detector are calculated
but not given here for brevity. Then, we simulate a temporal
scenario given in Fig. 25, where some of these five classes
and three predicates can be identified (sometimes erroneously).
The generated scenario is then processed with the example
classifier and predicate detector explained in this section. The
resulting graph signals gt at time t are compared to a baseline
graph gbase, which is updated to be the latest detected graph
with at least five consecutive detections. The expected and
measured GED metrics with this configuration are presented
in Fig. 26. As shown in Fig. 26a, each of the actual innovation
events in the graph signal is identified with a jump in the



15

1 2 3 4 5

Component #

Ins

Del 2.239

4.976

3.054

4.181

2.102

3.973

4.033

2.738

2.276

8.428

3

4

5

6

7

8

Fig. 24: Node insertion/deletion costs for the GED example.

Fig. 25: Simulated scenario for the classifier and predicate out-
puts for 50, 000 frames. The text annotations on the predicates
indicate which two classes the predicate connects.

GED metric, followed by an updated baseline (return to zero)
5 frames after. Measured GEDs around different innovation
time indices in Figs. 26b–26d show that sometimes there are
erroneous detections that give rise to a nonzero GED; however,
they can be easily filtered out by the straightforward algorithm
explained above.

We also perform a GED-based pre-filtering on a video signal
using the semantic extractor given in [9]. In this example, we
have a 650-frame-long video (with 30fps) from a parking lot,
where a car is maneuvering near several parked cars. This
specific video is selected as its semantic output includes many
false alarms, wrong categorizations, and missed detections. In
particular, we are interested in showcasing the GED method’s
ability to reconcile semantic confusions by exploiting the
prior knowledge about the statistical similarity of the confused
categories. A series of still images from the video example is
shown in Fig. 27, with the semantic output summarized in
Fig. 28.

As shown in Figs. 27 and 28, the maneuvering car (Car-
9) is classified correctly as first, but then misclassified as two
different boats as the video progresses. Focusing on this part of
the video, as shown in Fig. 28b, we now demonstrate the use of
GED in filtering out the semantic noise in this event. Firstly,
we generate similar semantic outputs from a set of videos
recorded by the same camera, in a similar time of the day to

TABLE II: Derived statistics for Boat and Car classes. Values
on the left are the probabilities and the ones on the right are
the corresponding GED costs.

Car (observed) Boat (observed)
Car (actual) 95% / 0.02 4.5% / 3.1
Prevalence 10% / 2.3 0.5% / 5.3

generate the confusion probabilities between the Car and Boat
classes, as well as their prevalence (estimated rate of occur-
rence) in this particular setup. Using these statistics, the GED
edit costs are calculated and shown in Table II. As shown in the
top row of Table II, the confusion rate among the Car and the
Boat classes is fairly small. However, taking into account the
estimated prevalence of these classes and using Bayes’ rule,
we can infer the posterior probability of a boat being confused
by a car as P (Car exists|Boat observed) = 90% and the
corresponding GED cost as − log(0.9) ≈ 0.11, which shows
the statistical likelihood of a confusion is in fact very high.
Using these cost definitions, the time evolution of the GED
between consecutive semantic outputs is illustrated in Fig. 29.
Note that by implementing a simple threshold, we can easily
identify significant innovations and filter out the events that
are not statistically significant. As shown in Fig. 29, by using
a statistical significance threshold of 80%, or a corresponding
GED cost limit of 0.2, we can reconcile the boat detections
with the original correct identification. The GED output and
the statistical significance limit are shown in Fig. 30.

As illustrated in Fig. 30, all misclassifications are correctly
filtered except the duplicate detections over the same object.
Since the GED method in its proposed form here only focuses
on the time evolution of its scalar value, duplicate detections
of the same object register as innovations. However, these are
easily filtered with the next step in our proposed semantic
extraction framework, with the attribute tracking module that
can identify these detections to be from the same object.

D. Hidden Markov Model

In this part, HMM is applied to the raw semantic extraction
of video signals to test its usefulness in practical scenarios. The
main question is whether the smoothing algorithm (employing
the Viterbi Algorithm) can correct the erroneously specified
states when the model parameters (A,B,p) are known. It is
assumed that the scene starts with an empty graph; that is,
there is not any component in the scene at the beginning. This
is due to the design of the algorithm, which requires multiple
consecutive detections of the same pattern to decide that it
exists.

To illustrate the method, two video signals that contain cars
and a person are used. For simplicity, a graph configuration
with two predicates is employed. The predicates express the
existence or absence of components in the graph language.
So, the generated graph moves to a different state when a
component enters or leaves the scene. The components leave
or enter the scene independently of the other ones; hence
if a scene contains N components, there are 2N possible
states in total. There are two classes of components, and the
components can be connected to two predicates (can be in
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(a) GED ground truth with updated baselines (b) Calculated GED around t = 5, 000

(c) Calculated GED around t = 15, 000 (d) Calculated GED around t = 40, 000

Fig. 26: GED example with updated baselines.

one of the two states). Assuming components of the same
class follow the same statistical distribution, state transition
matrices for car and person can be expressed as follows:

Acar =

[
P c
0,0 P c

0,1(1− P c
0,0)

P c
1,0(1− P c

1,1) P c
1,1

]
,

Aperson =

[
P p
0,0 P p

0,1(1− P p
0,0)

P p
1,0(1− P p

1,1) P p
1,1

]
.

The state transition matrix and observation kernel assumed
for these videos are as follows:

Acar =

[
0.75 0.25
0.20 0.80

]
Bcar =

[
0.75 0.25
0.40 0.60

]

Aperson =

[
0.70 0.30
0.20 0.80

]
Bperson =

[
0.70 0.30
0.40 0.60

]
.

The true, observed, and estimated state sequences for the
first video example are given in Fig. 31. The true state
sequence is defined manually and represents the state sequence
that would be observed if the semantic extractor did not

make any errors. The Viterbi Algorithm smooths out the
errors introduced by the raw semantic extractor in the first
video. As seen in Fig. 31, the semantic extractor erroneously
decides that Car-2 is not in the scene in some instances. The
Viterbi Algorithm corrects this mistake without introducing
any further errors. For the second video illustrated in Fig. 32,
the raw semantic extractor produces incorrect results for Car-
1, Car-2, and Person-9 in some time instances. The proposed
algorithm corrects these errors except for a short interval in
Car-2’s state sequence, where Car-2 is erroneously missing
from the detections.

Note that in the second video, Car-2, Car-7, Car-16, and
Car-17 are different instance identifications of the same un-
derlying object (Car-2). The proposed HMM and Viterbi algo-
rithm cannot reconcile these erroneous multiple identifications
by itself. To produce a smooth and reliable output while
reconciling among multiple identifications, we use the methods
presented in this paper sequentially, as shown in Fig. 3. The
Attribute Tracking example given in Section IX-B in Figs. 19–
21 specifically illustrates the reconciliation among the multiple
identifications of Car-2, Car-7, Car-16 and Car-17. Using the
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Fig. 27: Computer vision example with misdetected class outputs.
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(a) All detections from the semantic extractor.
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(b) Detections focused on the misdetection of Car-9 instance.

Fig. 28: Semantic extractor output with misdetected class outputs.

Fig. 29: GED across time for the events in Fig. 28.

reconciled output of the attribute tracking module as the input
of the graph signal tracking module, the output of the filtered
semantic output is shown in Fig. 33. As illustrated in Fig. 33,
the Viterbi algorithm is shown to correct the mistakes for each
component, producing a filtered state sequence that is identical
to the true sequence.

1 50 100 150 200 250 300 350 400 450 500 550 600 650

Frame Index

boat-11

boat-15

car-9

Fig. 30: Smoothed semantic evolution after GED filtering.

X. DISCUSSION ON THE SEMANTIC RATE OF INNOVATION

The proposed semantic extraction framework that has been
defined and demonstrated so far is shown to generate reliable
semantic graph signals with embedded numerical attributes.
The proposed framework and its building blocks also enable
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Fig. 31: State sequences for the first video. Semantic extractor labels Car-2 as absent when it is in the scene for some time
instances. Viterbi Algorithm is able to correct the errors in this particular example.
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Fig. 32: State sequences for the second video. Semantic extractor labels Car-1,Car-2 and Person-9 as absent incorrectly in
some time instances. Viterbi Algorithm is shown to corrects these mistakes except for a short blank interval for Car-2.

the identification of the innovation events either at the graph
level (using HMM and/or GED) or at the attribute level (using
subspace tracking). These events can be used to schedule
transmission and/or storage events, depending on the device
and the application of interest. Once the innovation events
can be detected given a semantic signal, underlying statistical
properties of innovations can be modeled and estimated. These
estimates on innovation statistics can, in turn, be used to
estimate the data throughput in a communications network.

Consider the semantic graph structure presented in Sec-
tion III, with atomic bipartite graphs denoted by Di that evolve
across time as shown in Fig. 2. Let the rate of innovation at
the graph level for Di be IDi , and the corresponding average
message length be dDi

. The rates of innovation and the average
message lengths at the attribute level can be similarly defined
as

IAi
= [I1Ai

, I2Ai
, . . . , ILAi

], (27)

dAi = [d1Ai
, d2Ai

, . . . , dLAi
], (28)

with L being the total number of attribute layers in (4). The
total rate of transmitted or stored information for N atomic
graphs without any goal-oriented filtering can be written as

R =

N∑
i=1

(
IDidDi +

L∑
l=1

IAidAi

)
. (29)

Note that the semantic structure (components, predicates, and
attributes) must be defined to optimize the rate of transmission
using (29). Intuitively, the higher abstraction provided by the
semantic structure should lead to lower rates of innovation for
the graph and individual attributes compared to the rate of
innovation of the raw input signal.

Building on (29), another significant advantage of the highly
organized and hierarchical semantic structure is the processing
of the graph signals in a goal-oriented manner. Given a
dynamic goal Gt (either internally or externally defined) that
defines interest over a subset of the extracted semantic infor-
mation, the rate of information can be significantly reduced.
If we denote the most general goal that is interested in every
output of the semantic extractor as G0, with Gt being a proper
subset of G0, application of the goal Gt at a class and attribute
level will lead to a reduced number of graphs N̂ < N with a
reduced number of attribute layers L̂ < L. The corresponding
goal-oriented transmission rate can be written as

=̂

N̂∑
i=1

IDi
dDi

+

L̂∑
l=1

IAi
dAi

 , (30)

with R̂ < R for Gt ⊂ G0.
Some of the most significant advantages of moving be-

yond technical communications toward goal-oriented semantic
communications are the reduction of the rates of innovation
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Fig. 33: State sequences for the second video with reconciliation of the components, combined state sequence of Car-2, 7, 16, 17
in 32 is represented as Car-2. Semantic extractor labels Car-1,Car-2 and Person-9 as absent incorrectly in some time instances,
Viterbi algorithm is shown to correct these mistakes. The model parameters are selected as PS0,S0

= 0.80, PS1,S1
= 0.85,

PS0,O0
= 0.70, PS1,O1

= 0.55 for the car class and PS0,S0
= 0.90, PS1,S1

= 0.90, PS0,O0
= 0.65, PS1,O1

= 0.55 for the
person class.

and the inherent compression of the underlying signals. The
modeling of the rates of innovation as well as the efficient
compression of the semantic signals under dynamic goals will
enable massive deployment for the next generation of sensor
networks.

XI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The next generation of signal processing and communica-
tion systems will employ intelligent agents that can gener-
ate semantic information from their local environment. This
work introduces a semantic extraction framework, where the
extracted graph-based imperfect semantic signals can be im-
proved for better fidelity, filtered for semantic source noise,
while enabling the identification of significant innovations in
the semantic signal. The aforementioned tasks are achieved by
exploiting known semantic characteristics of the environment
and statistical characteristics of the front-end semantic extrac-
tor. The proposed methods provide reliable semantic outputs
and enable efficient ways of identifying semantic innovation,
while filtering out unwanted semantic noise. Note that the
proposed metrics and methods can also be used to schedule
transmission and storage events in semantics-enabled sensor
devices.

As the semantic signal processing and the semantic extrac-
tion frameworks proposed in this work and in the literature
move closer to massive deployment in the next generation
of sensor networks, continued research on the practical im-
plications of the proposed methods is required. Specifically,
semantic extraction techniques for different signal modalities
should be developed and standardized for a shared semantic
structure/language for next-generation devices. Given stan-
dardized semantic extractors, semantically-aware time integra-
tion metrics should be modeled and estimated for application
specific scenarios. Model estimation is also critical for the
efficient implementation of the HMM-based modeling and
processing proposed in this work.

The Markov model and its extension (HMM) also enable
quantifying the semantic rate of innovation through the entropy

rate of the underlying Markov chain and the development of
efficient compression and transmission schemes of semantic
information. The modeling of the state sequences can further
be improved by replacing the Markov model with a semi-
Markov model, which can relieve the restriction of HMM
on waiting time distributions and increase the representational
power of the model.

We finally note that, depending on the type of sensor/device
and its computational capabilities, the proposed methods can
be used collectively or independently. As the signal processing
and communications paradigms move towards semantic signal
processing and transmission, we believe the proposed semantic
extraction framework will be an essential building block in
developing the next generation of sensor devices and networks.
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