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Abstract

Video conferencing has become a popular mode of meeting even if it consumes considerable

communication resources. Conventional video compression causes resolution reduction under limited

bandwidth. Semantic video conferencing maintains high resolution by transmitting some keypoints to

represent motions because the background is almost static, and the speakers do not change often.

However, the study on the impact of the transmission errors on keypoints is limited. In this paper,

we initially establish a basal semantic video conferencing (SVC) network, which dramatically reduces

transmission resources while only losing detailed expressions. The transmission errors in SVC only lead

to a changed expression, whereas those in the conventional methods destroy pixels directly. However, the

conventional error detector, such as the cyclic redundancy check, cannot reflect the degree of expression

changes. To overcome this issue, we develop an incremental redundancy hybrid automatic repeat-

request (IR-HARQ) framework for the varying channels (SVC-HARQ) incorporating a novel semantic

error detector. The SVC-HARQ has flexibility in bit consumption and achieves good performance. In

addition, SVC-CSI is designed for channel state information (CSI) feedback to allocate the keypoint

transmission and enhance the performance dramatically. Simulation shows that the proposed wireless

semantic communication system can significantly improve the transmission efficiency.
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I. INTRODUCTION

In semantic communications [1], the shared and local knowledge, extracted from the set of

transmission contents, helps compress transmission information and correct the transmission

errors according to semantic correlation. However, the design of a practical semantic transceiver

is difficult, especially the extraction of semantic knowledge using traditional methods due to lack

of appropriate mathematical models. Deep learning (DL) makes the implementation of semantic

communication possible as evidenced by many related works [2]–[4].

DL can potentially address many challenging issues [5]–[9] in communication systems, such

as nonlinear interference, insufficient pilots, channel estimation, channel coding, channel state

information (CSI) feedback, and autoencoder-based communication systems. These studies focus

on the technical level and exploit DL to extract the features of channel environments and

outperform the traditional design. In semantic communications, DL is used to extract the semantic

information from contents, and shared and local knowledge in the semantic level is implicitly

contained in the trained parameters. DL-based semantic communication systems are usually

designed using joint source and channel coding methods and trained for a specific transmission

content, including image [10]–[13], video [14], speech [15], and text [16]–[18]. Furthermore, for

some specific tasks, such as object recognition [13] and scene classification [19] tasks, semantic

communications can significantly reduce the transmission overhead.

Video conferencing becomes an essential part of our work at present, especially during

the pandemic of COVID-19. A high-resolution video transmission requires a huge amount

of transmission resources. Therefore, it is very challenging, especially for conferencing over

mobile phones. Driving a video with a few keypoints [20] is widely applied in face-swapping.

The keypoints of the frames from a driving video are extracted to represent the motion of facial

expressions, and a generator is exploited to enable a source image to move similarly to the driving

video. In [21], the facial driving video is considered the transmitted video, and the receiver can

restore the driving video from the transmitted keypoints and the photo of the speaker. However,

the existing studies only relate to the source coding module, and the impact of the errors from

the physical channel transmission is unclear. In addition, a semantic-based video conferencing

transmission should protect key information facing physical transmission errors and the received

videos should be acceptable under varying channels.



A basal network for the semantic-based video conferencing called SVC is established into

a three-level framework. First, we investigate the entire transmission process and analyze the

difference between the semantic and conventional errors. Then, we add acknowledgement (ACK)

feedback to the SVC; it is a widely used technique in the conventional wireless communications

to ensure a successful semantic transmission. An incremental redundancy hybrid automatic

repeat request (IR-HARQ) framework for the SVC, called SVC-HARQ, is proposed to guarantee

the quality of the received frames when facing wicked channels. Then, the transmitter learns

to allocate information with different importance according to signal-to-noise ratios (SNR) at

different subchannels with the help of CSI, which is called SVC-CSI. The major contributions

of this work are summarized as follows:

1) Establishing SVC framework. The state-of-art technology to restore the image from several

keypoints has achieved a huge compression ratio. Thus, we exploit the technology to cope

with the channel distortion. Different from the huge compression ratio (only few number of

keypoints) that causes the transmitted image to lose the detailed expressions, the simulation

results show that transmission errors in physical channel transmission may change the locations

of the keypoints and lead to inaccurate expressions. Nevertheless, these errors may be visually

acceptable through semantic processing. On the contrary, the errors usually destroy the pixels

directly for the conventional methods.

2) Combining with HARQ scheme. To guarantee the feasibility of the SVC under varying

channels, the IR-HARQ feedback framework for the SVC, called SVC-HARQ, is developed.

Compared with the conventional bit error detection using cyclic redundancy check, a semantic

error detector is used to decide whether the received frame requires an incremental transmission.

The semantic error detector exploits the fluency of the video to check of the received frame.

The simulation results demonstrate that the inaccurate keypoints usually reduce the fluency. The

proposed SVC-HARQ can adapt different bit error rates (BER) and require to transmit fewer

bits than the competing methods.

3) Exploiting CSI. The CSI is exploited so that optimal transmitted information with different

importance can be allocated automatically on different subchannels, which is called SVC-CSI.

The SVC-CSI learns to allocate more information at the subchannels with high SNRs than those

with low SNRs. An extra incremental transmission is trained without employing CSI because the



performance of the SVC-CSI becomes worse when the testing channel environment is different

from the training environment; thus, it shall be robust to varying channels and is called SVC-

CSI-HARQ.

The rest of this paper is organized as follows. Section II introduces the system model and the

related methods, including conventional IR-HARQ and adaptive modulation. Then, we describe

the proposed networks in Section III. In Section IV, we demonstrate the superiority of the pro-

posed networks in terms of semantic metrics and the required bits. Finally, Section V concludes

this paper.

II. SYSTEM MODEL AND RELATED WORKS

In this section, we first describe the existing frameworks on semantic networks and then intro-

duce some important techniques in wireless communications that can potentially help semantic

transmission. Finally, we discuss the challenges when applying the semantic transmission over

the wireless communication systems.

A. Semantic Frameworks

To transmit source information, such as a picture p, the semantic transmitter first extracts its

meaning. The semantic extractor plays a similar role to the source encoder in the conventional

communication systems and is denoted as S(p;WS), where WS is the parameter set for semantic

extraction. Then, the channel encoder, C(·), can be designed separately or jointly with the

semantic extractor and the encoded symbols are generated for channel transmission. The whole

encoder process can be expressed as

s = C(S(p;WS);WC), (1)

where WC denotes the parameter set for semantic channel encoder. The transmitted picture can

be recovered at the receiver by

p̂ = S−1(C−1(ŝ;WC−1);WS−1), (2)

where S−1(·) and C−1(·) represent the semantic source decoder and channel decoder, respec-

tively. As indicated in [1], the semantic processing and transmission in the semantic communi-

cations are remarkably different from the conventional ones. Meanwhile, the local and shared



knowledge in the semantic systems plays a major role. Semantic knowledge can be exploited

implicitly or explicitly, as summarized in the following:

1) Implicit Semantic Knowledge. In these designs [14]–[17], the local and shared knowledge

is implicitly contained in the trainable parameters and the transceivers are usually trained in an

end-to-end manner. The impact of physical channels is also learned implicitly. These methods

automatically extract semantic features and cope with the distortion and interference in the

physical channels. However, the trained parameters are difficult to adjust under changing transmit

sources or physical environments.

2) Explicit Semantic Knowledge. In some specific tasks, the semantic knowledge is shared

explicitly. For example, the semantic network in [22] shares the most important features in the

image so that the received image can be classified better than the conventional methods. In [21],

the photo of the speaker is shared because the appearance of the speaker has no much change

during a speech. The explicit shared knowledge can be adjusted according to the change in the

source information, such as replacing the photo for the next speaker.

Apart from the semantic knowledge, the existing methods have not considered adjusting the

settings under different channel environments. Therefore, the semantic methods cannot adapt to

the physical channel variation.

B. Link settings in the conventional methods

In this section, we introduce two key techniques in wireless communications to cope with

changing environments, which can be exploited in semantic system design. In modern commu-

nication systems with HARQ, the corrupted packets are retransmitted. IR-HARQ can balance

the requirements of transmission resources and accuracy and is a popular option. To establish

an IR-HARQ system, we need to have a channel encoder and an error detector. If the semantic

symbols, k, are protected by a conventional channel encoder, C(·), then the coded symbol can

be expressed as

s = C(k). (3)

In [23], the coded symbol vector can be divided into s1 and s2 with s = [s1, s2] , where s1

corresponds to coded semantic symbols with high coding rate, and s2 represent the incremental

symbols. The high code rate symbols, s1, are transmitted first. Denote ŝ1 as the received symbols

corresponding to s1. The recovered semantic symbols can be expressed as,

k̂ = C−1
1 (ŝ1). (4)



The conventional CRC error detector is widely used for HARQ systems and extra parity bits

are coded from p and transmitted at the very beginning. With extra parity bits at the receiver,

bCRC, ACK information can be generated by

ACK = DetCRC(k̂,bCRC), (5)

where DetCRC(·) denotes the error detection process. The feedback signal ACK = 1 when no

error is found; otherwise, ACK = 0.

The incremental symbols, s2, need to be transmitted to decrease the code rate if some errors

are founded (ACK = 0). The received coded symbols are combined together and decoded again,

yielding

k̂ = C−1([ŝ1, ŝ2]). (6)

If the decoded result still has errors, then the retransmission starts, and the above process is

repeated. This IR-HARQ method can deal with the varying channels in different time slots.

In addition, diversity on channel conditions at different frequencies of the same time slot can

be exploited. If orthogonal frequency division multiplexing (OFDM) is used, then the overall

channel bandwidth can be divided into L parallel flat fading subchannels with different SNRs

[24]. For OFDM systems, the subchannel gains are different, whereas the noise powers at different

subchannels are the same. Then, the overall SNR can be expressed as

SNR =

∑L
l=1 ||hl · sl||2∑L

l=1 σ
2

, (7)

where hl and sl are the frequency response and transmit symbols at the l-th subchannel, respec-

tively. The σ2 is the noise power at the receiver. Once σ and [h1, · · · , hL] are available at the

transmitter, the modulation of the sl can be adaptive to cope with the changing gains of the

subchannels.

Although the combination of the semantic networks and conventional link adaptive methods

is naturally considered, the novel mechanism on semantic transmission brings challenges on

the design in the technical level. As a deep and inexplicable network, the performance of the

semantic-based transceiver must be guaranteed under varying physical environments.

III. TRANSCEIVER DESIGN FOR SEMANTIC VIDEO CONFERENCING

In this section, we introduce novel architectures for semantic video conferencing, which exploit

conventional strategies in wireless communications. We start with a basic network as a semantic



source encoder. Then, a novel error detector is proposed to generate an ACK feedback. The

basic network is expanded into the HARQ mode to cope with varying channels at different time

slots. Finally, the CSI for each subchannel is fed back to the semantic transmitter for adaptive

modulation.

A. Basic Semantic Network for Video Conferencing

Restoring a specific face in an image from few keypoints has been studied in [20], [21]. In

these methods, the keypoints contain the changing information of facial expression and manner.

Other information, such as appearance features, does not change during a speech and can be

shared to the receiver in advance. Besides, as presented in [21], the keypoints can be compressed

and encoded to improve the transmission efficiency. The above methods dramatically reduce the

requirement of transmit resource. However, the existing methods only focus on the framework

of source coding and ignore the impact of varying wireless channels.

A complete semantic video conferencing framework is shown in Fig. 1, where the simple

dense layers are introduced as a channel coding module. Fig. 1(a) shows a semantic video

conferencing framework, called SVC. The whole framework consists of three levels similar to

[1], including effectiveness, semantic, and technical levels. The effectiveness level delivers the

motion and expression of the speaker. The conventional goal is to minimize the difference of

the transmitted and recovered frames. At the semantic level, the photo of the speaker is shared

in advance given that the speaker has no remarkable change during the speech. Usually, the

first frame of the video is shared to the receiver for convenience, whereas a photo with distinct

face is beneficial to generate a good image at the receiver. The keypoint detector extracts the

movement of the face in the current frame, and these keypoints are transmitted at the technical

level. Based on the received keypoints and the shared photo, the semantic part of the receiver

reconstructs the frame. The networks in the technical level are trained to cope with the distortion

and interference from the physical channels. From above description, the SVC has three subnets,

including a keypoint detector and a generator in the semantic level, and an encoder-decoder in

the technical level as shown in Fig. 1(b).

The keypoint detector extracts n coordinates of the keypoints, ki ∈ R2×n, from the i-th frame,

pi ∈ R256×256×3, yielding

ki = KD(pi;WKD), (8)

where WKD denotes the set of trainable parameters of the keypoint detector. Specially, the first

frame, p0, with its keypoints k0, is shared to the receiver. The keypoint detector consists of
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Fig. 1. (a) Three-level framework of the semantic video conferencing. (b) Architecture of the
keypoint detector and the generator in semantic level, and encoder-decoder in the technical level.

convolution neural networks (CNNs) similar to [25]. The inputted image matrix with sizes (256,

256, 3) is first downsampled to (64, 64, 3) by anti-alias interpolation to reduce complexity of

the keypoint detector. Then, the image is processed by an hourglass network [26] with three

blocks. Each block has a 3 × 3 convolution operation with a Relu activation function, a batch

normalization, and a 2× 2 average pooling. The network has 1024 maximum channels and 32



output channels. After the hourglass network, a 7× 7 convolution converts the output of CNN

blocks from (64, 64, 32) into (64, 64, n), thereby dividing the image into n 64× 64 grids. The

softmax activation is applied to choose grid point with the largest output value. The selected n

grid points are normalized to [−1, 1].
The encoder-decoder consists of dense and quantization/dequantization layers. For the encoder,

the n keypoints of the i-th frame, ki (expressed in n coordinates), are considered as 2n real

numbers and processed by three dense layers, fen(·), with 512, 256, and m neurons, where m

is the number of the transmit symbols. The first two layers use Relu activation function, and

the last one uses Sigmoid activation function. Then, a two-bit quantization Q(·) is applied to

generate 2m transmitted bits, bi. The whole process is expressed as

bi = Q(fen(ki;Wen)), (9)

where Wen is the set of trainable parameters in the dense layers.

The dequantizer, Q−1(·), at the receiver in the technical level is the inverse process of Q(·)
to recover the m real numbers from the received bits, b̂i. The three dense layers, fde(·;Wde),

have 512, 256, 2n neurons, where the first two layers use Relu activation function and the last

one uses Tanh to restore n keypoints, k̂i. This process can be expressed as

k̂i = fde(Q
−1(b̂i);Wde), (10)

where Wde is the set of trainable parameters in the dense layers. The derivative of the quantization

layer is replaced by that of the expectation in the backward pass because the gradient is truncated

by the quantization [27].

The generator reconstructs the current frame from the shared image, p0, with its keypoints,

k0, and the received keypoints of the i-th frame, k̂i. This process is denoted as G(·;WG), where

WG denotes the set of trainable parameters. Therefore, the i-th frame can be recovered by

p̂i = G(p0,k0, k̂i;WG), (11)

where the architecture of the generator is similar to that in [20] but without the Jacobian matrix.

The loss function consists of perceptual loss [28] based on a pretrained CNN, called VGG-

19 [29], a patch-level discriminator loss [30], and an equivariance loss [20], denoted as LP(·),
LD(·), and LE(·), respectively. As a result, the overall loss function will be

L(pi, p̂i) = LP(pi, p̂i) + LD(pi, p̂i) + LE(pi, p̂i). (12)



Because the trainable parameters in the technical level are much fewer than other parts but still

important, we add a mean-squared-error (MSE) loss function to train the technical level, yielding

LMSE =
‖ki − k̂i‖2

2n
. (13)

The training processes are divided into three steps. At the beginning, the technical level is

ignored, and the parameters in the keypoint detector and the generator are trained by L(pi, p̂i),

yielding

(ŴKD,ŴG) = argmin
WKD,WG

L (pi, G(p0,k0, KD(pi;WKD);WG)) . (14)

Then, the parameters in the technical level are trained by LMSE to restore the ki under the impact

of the physical channel distortion,

(Ŵen,Ŵde) = argmin
Wen,Wde

LMSE

(
ki, fde(Q

−1(Q(fen(KD(pi;ŴKD);Wen)));Wde)
)
. (15)

Finally, all trainable parameters of the SVC are fine-tuned in the end-to-end manner as

(ŴKD,Ŵen,Ŵde,ŴG) = argmin
WKD,Wen,Wde,WG

L (pi, p̂i) . (16)

The proposed SVC is a combination of the video synthesis and theoretic three-level semantic

transmission in wireless communications. This basic framework is established and trained to

study the impact of replacing video transmission with semantic keypoint transmission. The

performance of the semantic transmission can be improved further by introducing the ACK

feedback in wireless networks, as shown in from the following section.

B. Semantic HARQ with ACK Feedback for Video Conferencing

HARQ can cope with time-varying channels in wireless communications. Retransmission and

transmitting incremental symbols are flexible under changing channels with the ACK feedback.

Thus, we develop a novel semantic video conferencing framework with HARQ, called SVC-

HARQ, to improve semantic transmission.

As shown in Fig. 2, the receiver feeds an ACK signal back to the transmitter after the first

transmission. The first transmission is the same as in Fig. 1 and the trained parameters can be

used directly. The first transmitted bit vector, b1,i, can be expressed as

b1,i = Q(fen(KD(pi;W1,KD);W1,en)), (17)
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Fig. 2. (a) Structure of SVC-HARQ with ACK feedback. (b) Two potential methods for semantic
error detection Det(·).

where W1,KD is the set of trainable parameters in the keypoint detector, and W1,en is the set of

trainable parameters in the encoder. Then, the recovered frame is

p̂1,i = G(p0,k0, fde(Q
−1(b̂1,i);W1,de);W1,G), (18)

where W1,G is the set of parameters in the generator of the first transmission, and b̂1,i represents

the received bit sequence at the first transmission. Then, the reconstructed frame, p̂1,i, is evaluated

by a semantic detector. If the detector finds that p̂1,i is unacceptable, then ACK=0 is fed back



to the transmitter, and an incremental transmission is triggered.

The incremental bit sequence is transmitted to correct the errors. Different from the first

transmission, the incremental transmission only concentrates on the fallible keypoints under

wicked channel conditions. Thus, the incremental transmission also needs to be trained and

has different trainable parameters, namely, W2,KD, W2,en, and W2,G, for the keypoint detector,

decoder, and generator, respectively. The incremental transmitted bit sequence is

b2,i = Q(fen(KD(pi;W2,KD);W2,en)), (19)

and the recovered frame is

p̂2,i = G(p0,k0, fde(Q
−1([b̂1,i, b̂2,i]);W2,de);W2,G), (20)

where [b̂1,i, b̂2,i] is the received symbol vector that includes symbols corresponding to the first

and incremental transmission.

The training process of the first transmission is the same as the SVC in Section III A. Then, all

trained parameters are used as the initial values when training the parameters at the incremental

transmission. Besides, the trained parameters, ˆW1,KD and Ŵ1,en, in the first transmission are

fixed, and the process can be written as

(Ŵ2,KD,Ŵ2,en,Ŵ2,de,Ŵ2,G)

= argmin
W2,KD,W2,en,W2,de,W2,G

L
(
pi, G(p0,k0, fde(Q

−1([b̂1,i, b̂2,i]);W2,de);W2,G)
)
,

(21)

where

b̂2,i = h(Q(fen(KD(pi;W2,KD);W2,en))), (22)

b̂1,i = h(Q(fen(KD(pi;Ŵ1,KD);Ŵ1,en))), (23)

and h(·) indicates that the transmitted bits are with random errors due to channel distortion.

The above description indicates that the semantic detector is the key module of the SVC-HARQ

because the detector directly decides whether the incremental transmission or retransmisstion is

required. The conventional error detector, CRC, in the HARQ system is unsuitable for the SVC-

HARQ because the difference between some subtle errors in the received frames are acceptable

for the conferee. We use an image quality assessment method [31] to evaluate whether or not

the received frame is acceptable. This quality assessment network can be obtained by transfer-

learning a VGG-19 based classifier as shown in the left of Fig. 2(b). The VGG-19 based quality



detector consists of VGG-19 and one dense layer with Sigmoid activation function to output

frame quality indicator. The received frame is labeled as 1 for acceptable quality and 0 for

unacceptable quality. The loss function is cross-entropy. With a trained detector, DetVGG(·), the

ACK feedback can be expressed as

ACK =

1, DetVGG(p̂1,i) > 0.5,

0, DetVGG(p̂1,i) ≤ 0.5.
(24)

In fact, the errors in the received keypoints dp not decrease the image quality directly, but

they change the facial expressions. The generator can reconstruct an acceptable face image even

if the keypoints have some errors because the general appearance is obtained from the shared

image. The error keypoints only change the current expression and lead the video to be not

fluent. To detect these changes, we propose a novel fluency detector on the right of Fig. 2(b).

Thus, the detector needs to distinguish inappropriate expressions. We use a keypoint detector to

capture the keypoints after p̂1,i. Then, we calculate the distance between the keypoints of p̂1,i

and p̂1,i−1. A large distance means that the expression has a sudden change and the transmitted

keypoints have some errors. The whole detection process can be expressed as

DetKD(p̂1,i−1, p̂1,i) = fDet((KD(p̂1,i−1)−KD(p̂1,i))
2;WDet), (25)

where fDet(·) is a dense layer with one neuron output and Sigmoid activation function. This

detector is trained with cross-entropy as the loss function by the reconstructed frames collected

by the SVC under different channels. The average keypoint distance (AKD) calculated by a

pretrained facial landmark detector [32] is used for labeling, where the output of the detector is

labeled with 1 if its AKD is smaller than five and 0 otherwise. The loss function is cross-entropy.

After training, the fluency detector is also used similar to Eq. (24).

The proposed quality and fluency detectors are compared for HARQ systems under semantic-

based video conferencing. Overall, an extra incremental transmission process can make the

SVC more adaptive under changing channels if the semantic detector is effective. Moreover,

the retransmission is started if the incremental symbols cannot correct the errors to reach the

criterion of the detector.

C. Adaptive Encoding with CSI Feedback

The above SVD methods exploit no CSI further. However, the noise power of the subchannels

can be obtained by the receiver. For example, the frequency selective channels can be divided
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Fig. 3. (a) Structure of SVC with CSI feedback. (b) Two different modulation methods for
SVC-CSI.

into different subchannels with different SNRs. We assume that the CSI of all subchannels is

estimated by the receiver and shared to the transmitter. These channel conditions are exploited by

the encoder-decoder at the technical level, which helps to protect the most important keypoints.

The accurate CSI of each subchannel cannot be obtained in practice, and the feedback of the

entire CSI values also requires resources. Thus, the receiver sorts the subchannels by their channel

conditions and feeds this sequence back to the transmitter. This method simplifies the design of

encoder-decoder in the technical level and reduces the feedback cost.

Compared with the original SVC, that with CSI feedback (SVC-CSI) only needs to add a sort

module SN(·) as shown in Fig. 3(a).The output of the sort module is denoted as bCSI
i = SN(bi),



where its elements, representing subchannel gains, are in decreasing order. Then, bCSI
i is sent to

the receiver. At the receiver, received b̂CSI
i is restored by SN−1(·). Because the other parts are

the same as the SVC and the sort module of the SVC-CSI has no impact on the gradient, the

SVC-CSI has the same training strategy as the SVC.

The above methods encode the keypoints into bit sequence, which can be easily applied into

the conventional wireless communication systems, such as the OFDM system with quadrature

amplitude modulation (QAM). Furthermore, joint design with modulation module to encode the

keypoints into constellation points directly can further improve the performance. Thus, we also

investigate the benefit of CSI feedback on the encoding keypoints into constellation points. In the

left structure of Fig. 3(b), we directly replace the quantization in Fig. 3(a) with a dense layer and

Tanh activation function. Its output has m real symbols, which denote m/2 constellation points.

These points are also rearranged according to CSI feedback. This constellation method is called

full-resolution because the learned constellation points can appear anywhere in the constellation.

However, the full-resolution constellation is extremely complex for practical systems due to

the finite precision. Thus, the constellation points need to be limited. We combine two bits into

a real symbol similar to 16QAM. Meanwhile, each 2-bit vector is coded by the shared two

trainable parameters, α and β, yielding

si,j = αbi,2j−1 + βbi,2j, j = 1, · · · ,m, (26)

where the 2m bits in b are first modulated into the real symbols, si,j , which only have four

possible values, i. e., the constellation points only appear in 16 locations. The m-symbol vector

si is also divided into L subchannels and has been multiplied to different transmit powers,

ρ = [ρ1, · · · , ρL]. Then, si is rearranged to sCSI
i according to CSI feedback and sent to the

receiver. The training process of these two methods with constellation points is still the same

as that of SVC. Specially, this method is called quantized-resolution and only introduces L+ 2

parameters α, β, and ρ.

In general, some bits/symbols always transmit under better channel conditions than the oth-

ers with CSI feedback. Thus, the networks can learn to transmit important keypoints at the

subchannels with high SNRs.

IV. NUMERICAL RESULTS

In this section, we present the numerical results of different frameworks and discuss the pros

and cons of the semantic-based video conferencing. We also compare their bit consumption



(required number of bits) with competing ones.

A. Configurations of the simulation system

Training settings. The VoxCeleb dataset [33] has considerable face videos of speakers. These

videos are pre-processed into the size of 256 × 256, and the videos without a distinct face are

removed. Meanwhile, all the videos have only one speaker. After pre-processing, the training

dataset has 2000 videos and the testing dataset has 100 videos, which have a total of about 500

different speakers. All networks are trained with Adam optimizer [34], and their initial learning

rate is 0.0002.

Baseline. H264 is widely used as a commercial standard and usually occupies one-tenth

bandwidth of the original video. The constant rate factor of the H264 code can be adjusted to

generate different qualities and sizes of videos. Meanwhile, RS code is commonly applied in

storage and channel coding in the wicked environment, such as deep space communications. In

the following, RS(n, k) means to encode k information symbols into n symbols. The redundancy

(n − k) symbols can correct (n − k)/2 error symbols. In this study, IR-HARQ strategy [35]

encodes 64 information symbols into 255 symbols and transmit 127 symbols initially. The

remaining 128 symbols are transmitted as the incremental redundancy, whereas the CRC detects

errors after the first transmission.

Metrics. Three metrics are used to evaluate the results:

1) Average keypoint distance (AKD). We use a pretrained facial landmark detector [32]

to evaluate the errors in our transmission. This pretrained detector extracts keypoints from

the received and transmitted frame, and their average distance is computed. The AKD metric

represents the motion and the changing expression of the face.

2) Structural similarity index measure (SSIM). SSIM evaluates the structural similarity

among patches of the input images [36]. Therefore, SSIM, which is more robust than PSNR, is

widely used as the metric of images.

3) Perceptual loss (Ploss). Perceptual loss is commonly used as a regularization method when

training a network in the computer vision. Through calculating the sum of MSEs between the

estimated and the true image at the different layers of a pretrained network, such as VGG, the

similarity of the features represented by the perceptual loss. Here, we choose the perceptual loss

metric proposed in [37].



B. Performance of semantic coding

In TABLE I, the SVC only transmits 160 bits per frame and the conventional H264 coding

always has better SSIM performance than the SVC. However, the H264 requires more bits

per pixel. Then, the two methods are compared in the metrics of Ploss and AKD, where the

facial features are more important than the structural similarity. The SVC has a tremendous

superiority in the bit consumption. The required bits per pixel of the H264 are about six times

those of the SVC when their Ploss performances are similar and more than four times those

of the SVC when their AKD performances are similar. In general, these metrics only represent

different perspectives in the evaluation of semantic transmissions and the transmitted results

should also be acceptable to humans. In the following section, we analyze the semantic errors

through examples. The H264 with 0.0157 Bpp (bold in the table) is selected as the baseline and

called H264 for convenience. Thus, the Ploss performance of the H264 and the SVC is the same

without the impact of the channels. The AKD and SSIM metrics of the H264 are better than

those of the SVC.

TABLE I. The performance of the SVC and H264.

H264

Bpp 0.0127 0.0136 0.0157 0.0185 0.0221 0.0261 0.0316
SSIM ↑ 0.759 0.780 0.803 0.826 0.847 0.865 0.882
Ploss ↓ 0.227 0.201 0.187 0.159 0.136 0.116 0.094
AKD ↓ 3.23 2.85 2.50 2.27 2.08 2.01 1.89

SVC

Bpp 0.0024
SSIM↑ 0.671
Ploss↓ 0.186
AKD↓ 3.12

Although the H264 has the same Ploss performance as the SVC, the content loss is different,

as shown in the examples in Fig. 4. The H264 loses the pixel information in all the areas of this

frame; thus, the frame shows lower resolution than the original one. The lost information of the

SVC usually cannot be distinguished as an independent image. Only the detailed expressions in

the frame coded by SVC, such as the mouth in the circles, are different from the original because

the semantic information is ignored when coding. This phenomenon is demonstrated in three

metrics in Table I. Considered as a lower resolution image of the original frame, the structural

information of the H264 frame is still reserved and the locations of the detected keypoints

unchanged. Thus, the H264 has better SSIM and AKD metrics than the SVC. However, the



(a) (b) (c)

Fig. 4. Different content loss after the conventional H264 and the SVC coding. Their Ploss
performances are similar. (a) Original frame. (b) Frame coded by the H264. (Ploss=0.187) (c)
Frame coded by the SVC. (Ploss=0.186)

quality of the SVC frame seems higher than the H264 to the human if the detailed expressions

lead no ambiguities. Considering that the SVC only requires 1/6 of the bits of the H264, the

semantic transmission is a better option for video conferencing, especially some conferees are

using mobile phones in the crowd.
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Fig. 5. Performance of the SVC trained under different BERs. The competing method is encoded
by the H264 and the RS channel coding.

As shown in Fig. 5, the two methods have different sensitivities to the change of BER.

The conventional H264+RS can perfectly restore the transmitted information when the errors

are fewer than its correction capability. Thus, the performance of the H264+RS is unchanged



when BER= 0 ∼ 0.02 and decreases sharply when BER = 0.025 ∼ 0.027. The SVC methods

always have better performance in terms of the three metrics when BER > 0.027 because the

semantic transmission can still repair the semantic errors under high BER. However, the training

environment is important for the performance of the SVC. The SVC (BER= 0) is more suitable

for low BER, and its performance becomes worse than the SVC (BER= 0.05) when BER > 0.02.

That means the two SVC methods allocate different transmit resources for coping with errors

implicitly.

In general, the SVC can save transmit resources for a high resolution video conferencing

because it only transmits keypoints and has no need to compress pixel information such as H264.

Moreover, the SVC has a superiority under the extremely high BER. However, the training BER

affects the performance of the SVC, similar to selecting the code rate of channel coding. Thus,

the IR-HARQ frame of the SVC is proposed and tested in the following section.

C. Performance of SVC-HARQ

Before discussing the performance of the SVC-HARQ, we first take a look at the difference

between the semantic and bit errors. As shown in Fig. 6, the bit errors in the H264+RS(64,

127) blurry the frame directly and even cause the speaker to become unrecognizable, where no

semantic errors are found in the same channel condition independently. In fact, these keypoints of

the received frame in the Fig. 6(a) are out of position. Apart from the loss of detailed expressions

in Fig. 5, the transmission errors lead to the change in the expressions. Thus, an effective error

detector should be proposed to guarantee the quality of the SVC-HARQ.

The errors in the SVC are difficult to find independently; thus, the VGG-based quality detector

always achieves higher accepted ratio than 96%. Therefore, the SVC can protect the visual

quality even under the wicked environment because the main appearance features are shared in

advance. Thus, the VGG-based quality detector is insufficiently effective as a semantic detector.

Apart from the quality of the received frame, the received video should be fluent. Meanwhile,

the performance of the current frame cannot be obtained because the true current frame is

unknown to the receiver in practice. Thus, the keypoints are detected again at the receiver by

the trained keypoint detector, and the average distances of the detected keypoints between the

adjacent frames, called detected AKD, are related to the video fluency. As shown in Fig. 7(b),

the detected AKDs of the most frames are lower than 0.05 when no bit error exists and increase

with BER. Compared with the 32-bit CRC code used in the conventional HARQ systems, the

fluency detector is helpful to guarantee the quality of the video without any extra parity code.



(a) (b)

(c) (d)

Fig. 6. Error examples of the conventional and semantic methods under BER=0.05. (a) Source
frame. (b) Transmit keypoints. (c) Received keypoints and restored frame. The AKD of the
semantic method is about 9. (d) Received frame with H264+RS(64, 127). The keypoints cannot
be detected to calculate AKD because the face is blurred.
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Fig. 7. (a) Accepted ratio of the received frames using VGG-based detector under different BERs.
(b) Detected AKD of the adjacent frames and their AKD performances under different BERs.
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Fig. 8. (a) Ploss performance of SVC-HARQ and the competing methods. (b) AKD performance
of SVC-HARQ and the competing methods. (c) Bit consumption of SVC-HARQ and the
competing methods.

Finally, the whole SVC-HARQ framework is tested as shown in Fig. 8. The competing method,

H264+RS-HARQ, first transmits 127 symbols per 64 information symbols. Then, the incremental

128 symbols are transmitted if the CRC detector finds errors. Compared with H264+RS(64, 127),

H264+RS-HARQ can correct more errors and maintain its best performance when BER is no

larger than 0.04. The required bits per frame of the H264+RS-HARQ increase from BER= 0.02,

where H264+RS(64, 127) cannot restore all the errors. When BER > 0.04, the capability of the



H264+RS-HARQ cannot correct the errors and its performance decreases sharply. The SVC-

HARQ first transmits 160 bits per frame. Then, 160 incremental bits are transmitted if the

proposed semantic detector finds errors. The SVC-HARQ can reach the best performance of

SVC+RS(64, 127) when no bit error exists and becomes close to the SVC+RS(64 ,255) when

BER > 0.04. The AKD performance of the SVC-HARQ is not smooth when BER is between

0.02 and 0.06 because the error detection of detected AKD is not a strict method. The required

bits per frame are the same as the H264+RS(64, 127) when no bit error exists and then increase

with the BER. Overall, the SVC-HARQ always requires 1/12 bits per frame of the H264+RS-

HARQ.

The absolute value changes of Ploss is small because the Ploss represents the whole content

and expression errors only occupy a small part in the image. For example, the Ploss of the

SVC-HARQ is about 0.18 when BER=0 and that is about 0.23 when BER =0.2. The AKD

only concentrates on the facial expression and its change is large. Specially, the tendencies of

Ploss and AKD metrics are similar. Therefore, inaccurate facial expression is the major factor

for lower Ploss due to higher BER.

From the above discussion, the SVC-HARQ shows its flexibility in the bit consumption with

the change in BER. Meanwhile, the SVC-HARQ can reach the best performance of the SVCs

trained under different BERs as an adaptive method. However, the semantic detector can only

protect the fluency of the video. A detector to find expression errors should be proposed for an

important conference.

D. Performance of SVC-CSI

We consider frequency-selective channels to test the effectiveness of the CSI feedback. All the

SVCs with CSI feedback are trained under the channels with exponential power delay profile

of three paths. Each path obeys complex Gaussian distribution. Because the channel model

is introduced when training, we also simulate untrained channels with five paths to test the

robustness of the SVC. The testing environment is called mismatched channel environments

because their statistical parameters, such as delay spread, are different from trained channels.

The number of the subchannels in the frequency domain is 16. The transmit bits are modulated

to 16-QAM.

As shown in Fig. 9(a), the SVC-CSI(BER=0.05) means the average BER of the training

channels is 0.05. The SVC-CSI (BER=0.05) has similar Ploss performance as SVC (BER=0.05)

when BER > 0.14, and has better performance than SVC (BER=0.05) when BER <0.14. It
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Fig. 9. (a) Ploss performance of the SVC-CSI methods. (b) Gray image of the trained weights to
visualize the effects of CSI feedback. The left image is trained without CSI information while
the right one is trained under CSI feedback.

reaches the performance of SVC (BER=0) when BER=0 because the SVC-CSI learns to protect

the information according to the qualities of the channels. However, the performance of the

SVC-CSI decreases more sharply under mismatched channel environments and thus SVC-CSI

(mismatch) performs worse than the SVC (BER=0.05) when BER > 0.04. Overall, the CSI

feedback enhances the performance when BER is low under the matched channel environments

but loses its robustness under the mismatched environments.

In order to visualize the impact of the CSI feedback, we replace the three dense layers at the

transmitter in the technical level with one dense layer, whose input includes keypoints (20 real

numbers) and output includes 80 symbols (320 bits with 4-bit quantization). In Fig. 9(b), the

absolute values of trained multiplicative weights in this dense layer are shown as a gray picture,

and only the weights on the right picture are trained with CSI feedback. Thus, the 0 ∼ 10

symbols on the right picture are usually transmitted at better channels than those on the left one

due to CSI feedback. The absolute values in the circle of the right picture are larger than those

of the left picture. This finding means that the transmitter learns to place more information at

the better channel conditions. The SVC-CSI performs better than the SVC when BER is higher

because most information is transmitted at the first several channels with lower noise power.
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Fig. 10. Different constellations of the two SVC methods. (a) Constellation points of SVC-
CSI (full-resolution). (b) Constellation points of SVC-CSI (quantized-resolution). (c) Different
transmit powers allocated at different subchannels. The channel condition becomes worse with
the increase of the channel number.

The keypoints are also transmitted as symbols directly under Rayleigh fading channels in Fig.

10. The SVC-CSI (full-resolution) learns to transmit 160 real symbols. Due to CSI feedback with

16 subchannels, the first five symbols are always transmitted under the highest SNR and the last

five symbols are under the lowest SNR. The constellation points of SVC-CSI (full-resolution)

are spread around in Fig. 10(a). Meanwhile, this method learns to transmit more information

at better subchannels; thus, the transmit power decreases when the channel condition becomes

worse as shown in Fig. 10(c). The SVC-CSI (quantized-resolution) has the same modulation



method at all subchannels and its constellation points shown in Fig. 10(b) are similar to 16-

QAM. In order to cope with the noise, the transmit power of the SVC-CSI (quantized-resolution)

becomes larger as the channel condition becomes worse.
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Fig. 11. Performance of different constellation modes.

The Ploss performance of the SVC-CSI under fading channels is compared. The SVC-CSI

(16-QAM) is trained to transmit 320 bits and modulated to 80 16-QAM symbols. The three

methods in Fig. 11 have the same transmit resources. The SVC-CSI (full-resolution) always

has best performance, but its complexity is impractical. The SVC-CSI (quantized-resolution)

learns a different modulation method from 16-QAM. This method performs worse than 16-

QAM when SNR ≥ 8 dB but better than 16-QAM when SNR is low. Therefore, the trained

modulation of SVC-CSI (quantized-resolution) is suitable for wired environments but cannot

perfectly reconstruct the frame when SNR is high.

TABLE II. Ploss performance of SVC-CSI-HARQ under matched and mismatched channels.

BER 0 0.02 0.04 0.06 0.08 0.10
SVC-HARQ 0.186 0.199 0.204 0.205 0.203 0.207

SVC-CSI-HARQ(mismatch) 0.189 0.193 0.203 0.205 0.206 0.207
SVC-CSI-HARQ 0.189 0.190 0.190 0.191 0.196 0.206

The introduction of HARQ can improve the performance of the SVC-CSI under mismatched

channels, and this method is called SVC-CSI-HARQ. In this method, the second transmission



is trained without CSI feedback and thus robust to the varying environments. This strategy

can guarantee that the SVC-CSI-HARQ under mismatched environment is not worse than SVC-

HARQ. Meanwhile, SVC-CSI-HARQ performs better than SVC-HARQ under mismatched chan-

nels when 0.02 ≤ BER ≤ 0.1 because the mismatched power correlation at subchannels is

slight when subchannel gain is large. In addition, the SVC-CSI-HARQ shows its superiority

under the matched channels. Specially, the SVC-HARQ is slightly better than the methods with

CSI feedback when BER=0 because the CSI feedback is ineffective under noiseless channels.

In contrast, the CSI feedback may mislead the SVC to transmit less information at the last

subchannels

V. CONCLUSIONS

We have investigated semantic transmission framework for video conferencing. The knowledge

of the speaker’s photos can be shared explicitly because the faces play an essential role at a

conference. The three-level framework, called SVC, is established by utilizing only keypoint

transmission to represent the motion of the facial expressions. The compression by the SVC only

loses detailed expressions while the conventional methods reduce the resolution. Furthermore,

the transmission errors in the conventional methods destroy pixels directly while those in SVC

leads a changed expression.

We have also considered the impact of feedback in the SVC and designed an IR-HARQ frame-

work called SVC-HARQ with ACK feedback. The changed expression of the error keypoints

obtains nonsmooth adjacent frames. To detect semantic errors, we have developed a semantic

detector, including identity classifier and fluency detection. The SVC-HARQ is flexible and it

can combine the performance of the networks trained under different BERs and always reach a

good performance. The CSI feedback can also enhance the performance further. The transmitted

symbols or bits are sorted by SNRs at different subchannels, called SVC-CSI. The SVC-CSI

learns to allocate more information at the subchannels with higher gains and performs better

than the SVC without CSI feedback. However, the robustness of the SVC-CSI decreases because

the channel model is exploited when training. The combination of CSI and ACK feedback can

balance the performance, bit consumption, and robustness.
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