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Abstract—Semantic communication, as a promising technol-
ogy, has emerged to break through the Shannon limit, which
is envisioned as the key enabler and fundamental paradigm for
future 6G networks and applications, e.g., smart healthcare. In
this paper, we focus on UAV image-sensing-driven task-oriented
semantic communications scenarios. The majority of existing
work has focused on designing advanced algorithms for high-
performance semantic communication. However, the challenges,
such as energy-hungry and efficiency-limited image retrieval
manner, and semantic encoding without considering user person-
ality, have not been explored yet. These challenges have hindered
the widespread adoption of semantic communication. To address
the above challenges, at the semantic level, we first design an
energy-efficient task-oriented semantic communication frame-
work with a triple-based scene graph for image information.
We then design a new personalized semantic encoder based on
user interests to meet the requirements of personalized saliency.
Moreover, at the communication level, we study the effects
of dynamic wireless fading channel on semantic transmission
mathematically and thus design an optimal multi-user resource
allocation scheme by using game theory. Numerical results
based on real-world datasets clearly indicate that the proposed
framework and schemes significantly enhance the personalization
and anti-interference performance of semantic communication,
and are also efficient to improve the communication quality of
semantic communication services.

Index Terms—Semantic communication, personalized saliency,
resource allocation, unmanned aerial vehicle.

I. INTRODUCTION

A. Background and Motivations

The fast-growing 6G communication technology is enabling

the transition from serving people and things to supporting

the “Internet of Everything” [1]–[3]. Specifically, 6G com-

munication technology serves intelligent production and life

through intelligent interconnection and collaborative symbiosis

of human-machine-object, and actively promotes the construc-

tion of an inclusive and intelligent human society [4]–[6]. In

the 6G era, however, the traditional point-to-point information
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transmission communication system, that relies on the re-

source optimization of physical-layer dimension and the stable

transmission protocol at the network layer, cannot meet the

increasing requirements of complex, diverse, and intelligent

information transmission needs, e.g., supporting virtual reality,

holographic projection and Metaverse applications [7], [8].

Therefore, it is essential to design a new communication

paradigm for efficient information transmission thus meeting

the demands of future communication.

Fortunately, semantic communication [9], as a new ar-

chitecture that can integrate user needs and information se-

mantic features into the communication process, is expected

to become a new communication paradigm for the Internet

of Everything in the future [10]–[12]. Different from the

traditional communication architectures, the semantic commu-

nication system aims to fundamentally solve the problems of

cross-system, cross-protocol, cross-network, and cross-human-

machine information transmission redundancy in traditional

information-transmission based communication protocols. The

ultimate goal of the semantic communication system is to

efficiently transmit content-aware and semantic-related infor-

mation in a task-oriented manner, and make the grand vision

of “Internet of Everything” come true. In this context, to

better serve the two core technical standards of semantics

and validity in 6G networks, the Task-Oriented Semantic

Communication Systems (TOSC) was designed with two parts:

semantic reconstruction and goal execution [13]

For semantic reconstruction, a semantic feature extractor is

applied to extract the semantic features behind the data to be

transmitted and reconstruct the semantic information at the

receiver. For example, Zhu et al. in [14] proposed an adaptive

transformer to encode the semantic information and decode it

at the receiver. For task-oriented applications, semantic com-

munication aims to extract semantic information related to the

decision goal of the receiver. Prior work generally focuses on

image recognition scenarios and develops image classification-

oriented semantic communication for improving recognition

accuracy rather than image semantic reconstruction [15], [16].

Since Unmanned Aerial Vehicle (UAV) sensing has been

widely applied in various industries with 6G, in this paper,

we focus on investigating UAV sensing-driven task-oriented

semantic communication systems.

Particularly, UAV-sensing-driven task-oriented semantic

communication aims to provide users with cross-regional intel-

ligent services with the help of UAV’s image retrieval, image

recognition, image transmission, and image coding features.

http://arxiv.org/abs/2209.12274v1


2

UAV-sensing-driven Task-oriented Semantic Communication

(UTSC) generally serves a multi-demand, complex cross-

modal intelligent task with multiple users. The UTSC is

particularly suitable for emerging intelligent scenarios in daily

life [6], [9] and industry [17] (e.g., smart agriculture [18]). The

service mode of UTSC is realized by collecting task demands

from users and using UAV sensing equipment to collect image

data, and returning demand feedback to users through cloud

servers in the form of semantic information. For example, in

smart agriculture, different farmers (i.e., users) require UAVs

to accomplish different tasks (e.g., monitoring and shooting).

In this case, it is challenging for UAVs to accomplish the

task goals of all users simultaneously. Furthermore, due to

resource limitations and power supply problems, UAVs cannot

hover in the air for a long time to complete the personalized

user demands in turn. Therefore, there exists following unique

challenges when designing USTC systems:

• Energy-hungry and efficiency-limited image retrieval:

Traditional communication manners generally send all

the captured images to the users, while many of the

images are not interesting/needed by the users. Therefore,

such inefficient communication manners may cause large

waste of communication resources of UAVs and consume

unnecessary UAV energy. A straightforward solution is to

use keyword subscriptions, namely, UAVs push images

of interest to users by extracting scene graphs of sensing

images that match the subscription words provided by

users. However, this solution cannot execute well in the

traditional communication manners under the scenarios

of limited UAV energy or poor wireless channel. It is

because that image packet drop and re-transmission bring

large delay. Thus the inefficiency of wireless transmission

makes it difficult to realize real-time push according to

keyword subscriptions. To this end, it is urgently neces-

sary to design an efficient and energy-efficient semantic-

based real-time subscription method to improve subscrip-

tion accuracy and wireless resource utilization.

• Semantic encoding without personality: Existing work

ignores the personalized needs of semantic communica-

tion for encoding retrieval results and does not set user

preferences for the importance of semantically encoded

values. In the face of large-scale semantic communica-

tion, due to the limited bandwidth resources between

UAVs and users, semantic coding is prone to signal fading

during transmission, resulting in the drop of important

coding values (i.e., important information for users).

Therefore, we need to design a personalized semantic

coding value weight setting scheme, and design differ-

ent resource allocation schemes for users with different

interests to ensure that important information about user

preferences can be efficiently conveyed.

• Without insights between wireless fading channel and

semantic communication: The semantic triplet drop

probability is defined as the probability that the number

of error bits in the triplet exceeds the error correction

capability. However, existing works rarely consider the

drop of encoded information caused by the physical

environment during information transmission. A com-

mon approach is to use neural networks to model the

wireless channel, which cannot help the system design

with mathematical analysis [19]. The problems about the

multi-path effect, shadow effect, and co-channel inter-

ference for wireless transmission environment affect the

communication quality and increase the semantic triplets

drop problem during transmission. Thereby, it is essential

to study the joint optimization problem of the wireless

fading channel and semantic triplet drop probability, and

also design a resource optimization scheme.

B. Solutions and Contributions

To address the above challenges, in this paper, we pro-

pose an energy-efficient task-oriented semantic communica-

tion framework for 6G-enabled UAV image sensing scenar-

ios. More specifically, in this framework, image information

is modeled as a triple-based scene graph to provide users

with images that meet their preference requirements in an

efficient retrieval manner. On this basis, we further execute the

triplets by weight-encoding and use a personalized attention-

based mechanism to implement differential weight encoding

of triplets for important information according to user pref-

erences. Moreover, for the UAV power allocation issues, we

further consider the dynamic wireless fading effects on the

semantic information transmission, and thus mathematically

analyze the triplet drop probability. Based on the theoretical

analysis results, we formulate a game theory model and design

a multi-user resource allocation scheme to achieve efficient

resource utilization and maximize the resource utility of UAVs.

The key contributions are summarized as follows:

• Unlike traditional UAV-sensing communications that re-

quire all images to be transmitted, we propose an energy-

efficient semantic communication-based framework that

enables UAV only to transfer the selected interested

images of the users, which is achieved by matching the

user’s query text with the semantic information of all

images.

• We design a novel personalized semantic encoder with

the help of the user’s subjective interest. After obtaining

the semantic information, i.e., triples, from the image,

the triplets of more interest to the user are given higher

weights, thus ensuring the correct reception.

• We analyze the performance of semantic triplets trans-

mission mathematically. We derive the exact expression

for the semantic triplet drop probability by considering

the generalized fading channel model. From the derived

expressions, we obtain insights into the wireless channel

environment on the impact of semantic communication.

• Considering the resource limitation of UAVs and the

requirements to send semantic information to multiple

users, we propose a multi-user resource allocation scheme

based on game theory, whose utility function of the

retrieval task is used as the optimization objective for

better resource utilization.

The remainder of this paper is organized as follows. We first

summarize the related work about Semantic Communication
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TABLE I
SUMMARY OF MAIN SYMBOLS.

Symbol Explanation

mf The fading parameter for the kth user in Fisher-
Snedecor F fading model.

ms The shadowing parameter for the kth user in
Fisher-Snedecor F fading model.

z̄ The average value of F random variables (RVs),
i.e., z, for the kth user in Fisher-Snedecor F fading
model.

a
T Transpose of vector a.

Γ(·) Gamma function [20, eq. (8.310.1)].

Γ(·, ·) Upper incomplete Gamma function [20, eq.
(8.350.2)].

B(·, ·) Beta function [20, eq. (8.384.1)].

F (·, ·; ·; ·) Gauss hypergeometric function [20, eq. (9.111)],
which is also known as 2F1 (·, ·; ·; ·).

G
m,n
p,q (·) Meijer’s G-function [20, eq. (9.301)].

H ··

··
(· |· ) Multivariate Fox’s H-function [21, eq. (A-1)].

G ·,·:·,·:·,·
·,·:·,·:·,·(·) Bivariate Meijer’s G-function [22, eq. (1)].

NT The number of antennas in the UAV

x The input image.

K The number of users.

k The identity of user.

qk The personal query text of user k.

T The Triplet Detection (TD) function.

P The Personalized Saliency Prediction (PSP) func-
tion.

C The crop function, used to crop a sub-image from
x according to the box coordinates.

τ The set of (subject-relation-object) triplets.

τk
recv The triplets received by user k.

Hsub,Hobj The attention heatmaps of subject and object enti-
ties.

Bsub, Bobj The box coordinates of subject and object entities.

pk The personalized triplet priority of user k.

Sk The personalized saliency heatmap of user k.

α The coefficient for fusing attention heatmap and
saliency heatmap.

F k
sub, F

k
obj The fused attention heatmaps of subject and object

entities of user k.

F̃ k
sub, F̃

k
obj The sub-heatmaps of subject and object entities of

user k, cropped from F k
sub, F

k
obj.

s The match score between the triplets received and
the personal query.

in Sec. II. We then introduce our system model in Sec. III.

Then, we present the proposed semantic triplets transmission

method from the communication level in Sec. IV. Next, we

elaborate on the proposed semantic communication framework

in Sec. V. Subsequently, we conduct a series of case studies

and analyze the simulation results in Sec. VI. Finally, we con-

clude this paper in Sec. VII. We summarize the mathematical

symbols and explanations in Table I.

II. RELATED WORK

A. Semantic Communication

Semantic communication is a new communication

paradigm, and it can transmit more information when the

external environment is the same [23]. The sender sends the

semantic information extracted from the original information

(such as images, text, and video) to the receiver in a semantic

communication system and the receiver recovers the original

information from the semantic information. By transmitting

the semantic information, the semantic communication system

can eliminate the unnecessary information from the original

information to reduce communication overhead. The research

on semantic communication is roughly divided into four

parts: how to optimize semantic encoding, how to complete

the goal-orient communications, how to protect semantic

information privacy, and how to analyze the systems’

performance.

Semantic Encoding Optimization: Semantic encoding is

crucial for the semantic communication system because it

determines the efficiency and effectiveness of information

transmission. Xie et al. [19] proposed a DeepSC framework

that is based on a Transformer for text transmission tasks,

DeepSC can extract the semantic information from the orig-

inal text under the interference of noise. Xie et al. [17]

further considered the more realistic situation that designing

a lightweight deep learning semantic communication system

makes the model easier to deploy on IoT devices. The above

work only focused on text-based semantic communication.

Besides, images-based semantic communication has been pro-

posed. Bourtsoulatze [24] proposed a semantic communication

system that utilizes joint source and channel coding techniques

to reduce communication overhead for image transmission

tasks. Although the above work [17], [19], [24] proposed the

semantic communication system to reduce the communication

overhead, they only considered the transmission on single-

domain, such as text-to-text or image-to-image. It is unrealistic

in the real world. Therefore, we consider the transmission

of multi-domain and multimodal in this paper. We design

the framework in which the sender extracts the triplets with

semantic information from the original images, and then the

sender sends the triplets to the receiver. It can further reduce

the communication overhead and be more practical.

Task-oriented Communications: The task-oriented com-

munication is also important for the semantic communication

system because it transmits different semantic information

according to different needs. That is to say, task-oriented

communication systems do not need to transmit data directly

under corresponding circumstances. To this end, Farshbafan

et al. [25] proposed a task-oriented semantic communication

framework, which can transmit different semantic information

in the different goals of the system. However, reference

[25] only considered a single sender and receiver at the

same time. Xie at el. [13] proposed a task-oriented multi-

user semantic communication system, the framework utilized

different encoders and decoders to solve the multi-task and

multi-user problems. Although the above work [13], [25]

proposed the task-oriented communication system to complete
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the corresponding goal, they ignored the individual differences

in different users, i.e., other receivers will have different needs

in the real world. Therefore, we consider the personalized

saliency in our framework to adapt to different users’ goals.

Secure Semantic Encoding: Since semantic information

can reflect the real data distribution of users to a certain extent

and is also vulnerable to privacy leakage in communication, we

need to protect the semantic information transmitted by users.

For example, Chen et al. [26] proposed a federated learn-

ing framework in semantic communication systems, which

can protect the privacy of the system. Yang et al. [27]

proposed a federated learning-based semantic communication

framework to cope with the computing and communication

overhead under protecting the privacy of the system. The

above work illustrates that federated learning can be applied to

wireless communication systems to protect the devices’ data

privacy. Therefore, Tong et al. [28] designed a wav2vec-based

autoencoder federated semantic communication framework,

and it can significantly reduce transmission error and heavy

communication overhead. Due to the low efficiency of the

current semantic communication system, we focus on how to

extract semantic information effectively and effectively adapt

to different goals.

Semantic Communications Performance Analysis: In a

wireless semantic communication system, the transmission

performance of the system is negatively affected by multipath

fading, that is, interference between different signals. There-

fore, it is crucial to accurately model fading channels to better

understand the performance impact of fading channels on

semantic communication systems. Previous work focused on

the performance analysis of wireless communication systems.

For example, Yoo et al. [29] proposed the F distribution

as fading model to analyze the performance of the semantic

communication systems. Based on this, reference [30] further

explored a comprehensive performance analysis of the F
composite fading channels in conventional wireless communi-

cation systems. Due to the rise of semantic communications,

some researchers currently turned attention to studying the

impact of fading channels on the performance of wireless

semantic communication systems. Xie et al. [31] and Weng

et al. [32] explored the performance of their framework over

Rayleigh and Rician channels in semantic communication

systems. However, reference [31], [32] only explored the

communication performance in Rayleigh and Rician fading

channels that are the traditional multipath fading models. Due

to the Fisher-Snedecor F fading channel is a commonly used

fading channel model in wireless communication systems, and

it can cover the situation of classical fading channel analysis

through changing parameters. Therefore, in this paper, we

analyze the performance of our model by considering Fisher-

Snedecor F channel model in wireless semantic communica-

tion and obtain insights into the wireless channel environment

on the impact of semantic communication.

B. Personalized Saliency

Personalized saliency means that different observers have

different regions of interest in the same image. In recent

years, personalized saliency has received a lot of attention in

the computer vision community. Xu et al. [33] proposed a

CNN-based and personal information framework to predict a

personalized saliency map. However, personalized information

and images always change in the real world. Dodge et al.

[34] proposed a framework that combines the global scene

information from all categories and the extracted local infor-

mation to predict the saliency map. However, many categories

are unknowable. Mahdi et al. [35] utilized three CNN-based

models to obtain the bottom-up and top-down deep features

to predict a personalized saliency map. However, due to the

storage capacity and the computing resources, it may be diffi-

cult to utilize this framework for extracting complex features

when the number of users increases. Berkovsky et al. [36]

proposed a framework for predicting personalized saliency

based on eye tracking data and the framework needs to capture

physiological responses, such as brain signals. However, there

exist massive users in semantic communication systems and

it is difficult to capture signals between multiple users, so the

framework is difficult to adapt to multi-user situations. Moroto

et al. [37] proposed the framework to extract personalized

saliency maps (PSMs) through Gaussian process regression.

However, considering the limitation of storage capacity, the

receivers, i.e., UAVs, are difficult to store the PSMs for all

users. Therefore, we convert PSMs into triples to further

reduce memory overhead in this paper. The above work may

be unsuitable for semantic communication systems, especially

for UAV scenarios. Therefore, we consider the situation of

a multi-user semantic communication system and propose

personalized saliency-based semantic communication.

In summary, we propose a personalized saliency-based task-

oriented semantic communication system to cope with the

above problems in this paper. Firstly, we predict the saliency

heatmap of the user through the customized information and

the image captured by the UAV. Meanwhile, UAV executes

triplet detection [38] to generate an attention heatmap from

the image captured by the UAV. Secondly, UAV executes the

attention fusion step to obtain the fused attention for each user

and obtains the personalized triplet from the fused attention.

The above steps complete the purpose of personalized saliency.

Thirdly, UAV allocates multi-user power through triplet prior-

ity estimation and transmits the triplets by power allocated.

Finally, the user obtains the match score between the received

triplets and personal query and decides whether to download

the image based on the matching score. The last steps complete

the purpose of goal-orient semantic communication.

III. SYSTEM MODEL

In this section, we first describe our proposed task-oriented

SemCom system and then describe the metrics used to evaluate

the effectiveness of the proposed design.

A. Task-oriented SemCom Design

When users hire a UAV for image acquisition, in many

cases, not all the images taken by the UAV are what the user

needs. Therefore, a retrieval task needs to be performed on

all the images, i.e., the users input the text of the scene they
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Fig. 1. An illustration of the proposed task-oriented SemCom system model.

want and get the corresponding images. However, considering

that the energy of the UAV is limited and that one UAV may

need to serve multiple users, performing all the users’ retrieval

tasks in the UAV will affect the quality of images and the

UAV’s endurance. Moreover, sending all the images to users

and retrieving images on the user side also involve unnecessary

energy consumption, i.e., users need to download some images

that are not of interest.

The development of semantic communication has given us

a solution to solve the above problems. As shown in Fig. 1,

instead of transmitting all the images back to users after the

photography task, the UAV transmits the semantic features

(text format) of the images to users. The transmission of

semantic features of images in text format requires few channel

resources and is convenient for users to store. The users

determine a query text according to their interests, match the

images in the received semantic features, and then download

the original image from the UAV. In the rest of this paper,

we focus on the extraction and transmission of semantic

information.

B. Optimization Problems Analysis

The UAV extracts the triplets that represent the corre-

sponding image information from the captured images. If

ni triplets can be extracted from the ith image, we have

τi = {τi,1, . . . , τi,ni
}, where τi denotes the set of triplets

from the ith image. In Phase 1, the UAV transmits the triplets

to the users. Note that users are not necessarily located close

to each other, and the different interests of users will make

them have different query texts. Therefore, we consider the

TDMA scheme in Phase 1. In each time slot, i.e., T1, the

UAV uses all the antennas to serve one user and designs the

beamforming vector accordingly. Let us consider an energy-

constrained scenario, which means that
∑

j∈K

PjT1 < WA, (1)

where K is the users selected in this round, Pj is the transmit

power for the jth user and WA is the total energy. Thus, we

need to solve two optimization problems:

• P1-power allocation among users: One user per time

slot is served. Because the total energy of the UAV is

limited, we need to determine how many resources each

user can occupy, in the form of transmit power.

• P2-power allocation among one user’s triplets: After

determining the available power for each user, we also

need to determine the power that should be allocated to

each triplet.

Let sk denote the match score between the triplets received

and the personal query of the kth user,

sk =
Nin,k

Nrec
, (2)

which represents the proportion of the number of interested

images of the kth user obtained by matching, i.e., Nin,k, to

the total number of images captured by UAV, i.e., Nrec.

Let s̃k denote the optimal match score,

s̃k =
Ntruth,k

Nrec
, (3)

which represents the proportion of the number of interested

images of the kth user in truth (without considering the impact

of triplets drop that may be caused by wireless transmission),

i.e., Ntruth, to Nrec. Then, we can use sk
s̃k

to represent the

effectiveness of semantic communication.

If P1 can be solved, we derive the power resources available

to each user. Then, P2 for each user can be solved with the help

of the personalized weights for the triplets. The solution for P2

is discussed in Section V. Now we focus on P1. We consider

the power allocation problem among users as cooperative

bargaining. Thus, with the help of NBS, we need to maximize
K
∏

k=1

sk
s̃k

. Because s̃k represents the ground-of-truth which is

only decided by the query text, the optimization problem can

be transformed into

max
Pk(k=1,...,K)

K
∏

k=1

sk. (4)

For a given query text of the kth user, the sk is mainly

affected by the number of received triplets. Due to the ran-

dom nature of the wireless communication environment, the

transmitted triplets may not be decoded correctly because of

excessive error codes. Therefore, the higher transmit power

should be allocated to the more important triplets, i.e., the

triplets that are of more interest to the user, to guarantee error-

free transmission.

C. SINR Analysis

We consider a set of K = 1, . . . ,K user, where each user

has their own preference. One UAV performs the photography

task and needs to transmit the semantic features of the image

to K users. To obtain considerable array gains and improve

the channel quality, we consider the UAV is equipped with

NT antennas. The UAV is hovering above the ground K
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users. The horizontal coordinate of the kth ground device is

assumed to be uk = (xk, yk, 0), k = (1, . . . ,K), while the

UAV is hovering at a fixed altitude zu with the coordinate

uu = (xu, yu, zu). Thus, the distance between the kth user

and the UAV can be expressed as Duk =

√

‖uk − uu‖
2
. Let

αk denote the path loss exponents of the UAV-kth user link.

We denote the channel vector from the UAV to the kth
user as hk ∈ C1×K . By adopting the linear beamforming,

the data symbol tk intended for user k is multiplied with the

beamformer wk ∈ CK×1. NIk paths of interferes are assumed

to be present at the kth user, where I means the abbreviation

of interference, which is used to distinguish symbols. Each of

the jth user interfering signals has an average transmit power

PIk. tI,k,j is the jth interfering symbol. Accordingly, because

TDMA is used, the received signal at the kth user is given

by1

rk =
√

PkD
−αk

uk hkwkxk + PIk

NIk
∑

j=1

√

hI,k,jtI,k,j + nk, (5)

where nk ∈ CN
(

0, σ2
)

is the noise, Pk is the transmit power

for the kth user. The SINR at the kth user can be expressed

as

γk =
PkD

−αk

uk ‖hkwk‖
2

σ2 + PIk

NIk
∑

j=1

h2
I,k,j

. (6)

With the help of maximum ratio transmission [39], the optimal

beamforming vector can be expressed as wk =
hk

T
1

‖hk‖
. Thus,

we have ‖hkwk‖
2 =

NT
∑

j=1

h2
k,j .

D. Channel Model

The small scale fading of UAV-kth user link is modeled

as the Fisher-Snedecor F fading distribution. The Fisher-

Snedecor F composite fading model assumes that small-scale

variations follow the Nakagami-m distribution and shadow-

ing follows the inverse Nakagami-m distribution. Channel

measurements at 5.8 GHz have demonstrated that the Fisher-

Snedecor F fading model fits experimental results better than

the KG fading model both in line-of-sight and non-LOS

scenarios [29].

Thus, ‖hkwk‖
2

follows the distribution of sum of NT

Fisher-Snedecor F RVs [40]. However, the PDF and CDF of

‖hkwk‖
2

is in terms of Multivariate Fox’s H-function [21,

eq. (A-1)], which is hard to provide insights. Considering

that the Fisher-Snedecor F RV is defined as the ratio of two

Gamma RVs and the sum of Gamma RVs still follows the

Gamma distribution, we can use the single Fisher-Snedecor

F distribution to approximate the distribution of the sum of

Fisher-Snedecor F RVs [40].

Let Z , ‖hkwk‖
2 ∼ F (mfk,msk, z̄k), the PDF and CDF

of Z are given as [41, eq. (6)] and [41, eq. (12)], respectively.

1Note that the large scale fading of the interference signal is considered in
the mean value of hI,k,j .

We consider the interference signals follow the Rayleigh

distribution, i.e., hI,k,j ∼ Rayleigh (ηk). Let Y ,
NIk
∑

j=1

h2
I,k,j .

Because the sum of NIk i.i.d. Rayleigh-fading signals have a

Nakagami-m distributed signal amplitude with m = NIk, the

PDF and CDF expressions of ‖hk‖2 can be written as [42].

fY (y) =
yNIk−1

ηNIk

k Γ(NIk)
exp

(

−
y

ηk

)

, (7)

and

FY (y) =
Γ
(

NIk,
y
ηk

)

Γ(NIk)
, (8)

where ηk = E
[

h2
k

]

, and E [·] denotes expectation. We then

derive the PDF and CDF of the SINR, γk =
PkD

αk
uk

Z

σ2+PIkY
.

Theorem 1. The PDF and CDF of the SINR, γk =
PkD

αk
uk

Z

σ2+PIkY
, can be derived as (9) and (10), respectively,

shown at the bottom of the next page, where Λk ,
PkD

−αk
uk

(msk−1)z̄k
mfk

, Θ1 = (1−NIk : {−1,−1, 0}), and Θ2 =

(1−mfk −msk : {0,−1,−1}).
Proof: Please refer to Appendix A.

E. Approximation Analysis

Although the previously derived PDF and CDF are obtained

in closed-form, it is hard to bring valuable insights if we

derive performance expressions with the help of (9) and (10).

Therefore, in the following, we derive the accurate approxi-

mate CDF by presenting an approximate solution to a complex

mathematical integral equation. Moreover, we analyze the

approximate CDF in the high-SNDR regime and verify our

derived results by numerical analysis.

1) Accurate Approximation: Let us consider the integration

as follows:

IA =

∫ ∞

a

xb(x− a)c exp

(

x− a

d

)

F (α, β, ε; ρx) dx. (11)

Note that IA has not been studied in any mathematical integral

theory book or website such as [20], [43]. It is difficult, if not

impossible, to obtain the closed solution of IA. Here we derive

the accurate approximate solution of IA in the Lemma 1.

Lemma 1. An accurate approximation of IA when ρ is small

can be expressed as

IA = exp
(a

d

)Γ(ε) db+c+1

Γ(α) Γ(β)
G1,3

3,2

(

dρ

∣

∣

∣

∣

1−β,−b− c, 1−α
1−ε

)

.

(12)

Proof: Please refer to Appendix B.

With the help of Lemma 1, we can re-derive the CDF of

γk as

Theorem 2. An accurate CDF of γk can be obtained as

Fγk
(γ) =

1

Γ(NIk) Γ(msk) Γ(mfk)
exp

(

σ2

PIkηk

)

×G1,3
3,2

(

γPIkηk
Λk

∣

∣

∣

∣

1−msk, 1−NIk, 1
mfk, 0

)

. (13)
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2) High-SNDR approximation: In the following, we ana-

lyze asymptotic CDF in the high-SNDR regime.

Theorem 3. The CDF of γk can be approximated in the high

transmit power regime as

Fγk
(γ) =

Γ(mfk +msk) Γ(NIk +mfk)

Γ(NIk) Γ(msk) Γ(mfk + 1)

× exp

(

σ2

PIkηk

)(

γPIkηk
Λk

)mfk

. (14)

3) Verification and Insights: We use the OP to verify the

derived CDF expression, (10), and two approximate expres-

sions, (12) and (14). The outage probability (OP) is defined

as the probability that the SINR falls below a given outage

threshold, i.e., OPk = P(γk < γth) = Fγk
(γth). As shown

in Fig. 2, we study the OP versus the transmit power, with

Duk = 1.5 m, αk = 2, msk = 5, mfk = 2.6, z̄k = −1 dB,

σ2 = 1 W, ηk = 0.4, PIk = 5 W, NIk = 3, and different

values of mfk. We can observe that the accurate approximate

expression (12) matches almost exactly with the closed-form

analytic expression (10). In the high-SINR regime, e.g., when

Pk is larger than 25 dBW, the values obtained from the high-

SINR approximate expression (14) are close to that obtained

from analytic expression. Furthermore, from (14), we can

observe that the multi-path fading parameter mfk, instead of

the shadowing parameter msk, determines the slope of the OP

with decreasing transmit power. In Fig. 2, it is shown that the

larger the mfk is, the more rapidly the OP decreases with the

increase of transmit power.

IV. COMMUNICATION LEVEL: TRIPLET DROP

PROBABILITY

We encode the semantic information of the image into

triplets. Due to the instability of wireless transmission, the

receiver cannot guarantee the perfect receiving of the semantic

triplets transmitted by the UAV. Therefore, we analyze the

impact of the wireless environment on the semantic triplets

transmission. Suppose a triplet is encoded with bit length DT ,

and that the use of bit error correction codes allows for at

most DE error bits.

A. Bit Error Probability

Under a variety of modulation formats, the BEP, Ek, can

be expressed as [44, eq. (13)]

Ek =

∫ ∞

0

Γ(λ2, λ1γ)

2Γ(λ2)
fγk

(γ) dγ, (15)

where Γ(λ2, λ1γ)/2Γ(λ2)is the conditional bit error proba-

bility, λ1 and λ2 are modulation-specific parameters which

have different values under different modulation and detection

schemes [44].

Theorem 4. The BEP of the kth user can be derived as

Ek =
Γ−1 (msk) Γ

−1 (mfk)

2Γ(λ2) Γ(NIk)
exp

(

σ2

PI,kηk

)

×G1,4
4,2

(

PI,kηk
λ1Λk

∣

∣

∣

∣

1−msk, 1−NIk, 1, 1− λ2

mfk, 0

)

. (16)

Proof: Please refer to appendix D.

B. Triplet Drop Probability

We consider that the BEP of kth user is Ek. The TDP Pk

can be expressed as

Pk =

DT
∑

j=DE+1

Ek
j(1− Ek)

DT−j
, (17)

which can be calculated with the help of (15).

V. SEMANTIC LEVEL: PERSONALIZED SALIENCY FUSED

SEMANTIC COMMUNICATION FRAMEWORK

In applications such as real-time sensing of UAV aerial

photography, the autonomous patrol UAV cruises along the

specified trajectory and transmits aerial pictures back to

users (e.g., monitoring centers and photographers). In such

a wireless communication environment with fading channels,

transmitting all aerial images to all users is expensive, which

is impractical in reality and limits the application of UAV

aerial photography subscription. In this work, we propose

that users have the right to specify which type of pictures

they prefer, then the UAV only needs to transmit a small

number of specific images to each user. For example, user A

only needs to download pictures of “man wearing a jacket”,

and user B prefers pictures of “bus on the street.” These

texts are called personal queries, based on which the user

fγk
(γ) =

Λk
msk
(

σ2
)NIk+mfkγmfk−1

(PIkηk)
NIk(Λk + γσ2)

mfk+mskΓ(NIk)Γ(msk) Γ(mfk)

×G1,0:2,0:1,1
0,0:0,2:1,2

(

NIk

−

∣

∣

∣

∣

−
msk −NIk, 0

∣

∣

∣

∣

1−mfk −msk

0, 1−msk

∣

∣

∣

∣

σ2

PIkηk
,
−Λk

Λk + γσ2

)

(9)

Fγk
(γ)=

Λk
−mfk

(

σ2
)NIk+mfkγmfk

(PIkηk)
NIkΓ(NIk)Γ(msk) Γ(mfk)

×H0,2:0,2;0,1;1,1
2,0:2.0;2,0;2,1





PIkηkσ
−2

−1
σ−2Λkγ

−1

∣

∣

∣

∣

∣

∣

Θ1,Θ2

−

[

(1−msk +NIk, 1) (1, 1)
−

] [

(1, 1) (msk, 1)
−

] [

(1, 1) (1 +mfk, 1)
(msk, 1)

]



 (10)
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Fig. 2. The outage probability versus the transmit power, with different multi-
path fading parameter mfk .

decides whether to download an image from the UAV. Does

the problem come from how do personal users know they

need a given picture without downloading the original picture?

This paper addresses this problem by proposing a Person-

alized Saliency Fused Semantic Communication framework

(PERSF-SEMCOM), which leverages a Triplet Detector to

infer a fixed-size set of (subject-relation-object) triplets for

each picture, and transmits these tiny-size triplets to users

for triplet matching, in which only the matching images need

to be downloaded. Besides, to prevent the triplets concerned

by personalized users from being lost in the harsh wireless

competitive environment, we quantify the priority of triplets

and propose a transmission power allocation strategy, under

which triplets with higher priority have more transmission

power and therefore have a lower probability of being dropped.

A. OA-SemCom: A Fully Objective Approach

As shown in Figure 3, the architecture mainly con-

tains Triplet Detection (TD), Personalized Saliency Prediction

(PSP), Attention Fusion (AF), Triplet Priority Estimation

(TPE), and Power Allocation (PA) on the UAV, and a Triplet

Search (TS) module on the user terminal. Whenever the UAV

captures a picture x, TD T (x) infers a fixed-size set of

(subject-relation-object) triplets, i.e., the semantic information,

τ , from x, and respectively the attention heatmaps Hsub, Hobj

and box coordinates Bsub, Bobj of their subject and object

entities. Specifically, the pretrained RelTR [38] model is used

as the kernel of the TD module, which builds an encoder-

decoder architecture like Transformer [45], where the encoder

infers the visual feature context that is then used by the

decoder for triplet inference. However, the TD module can also

be implemented using any other pretrained scene graph gen-

eration technique. For example, two-stage approaches employ

Fast/Faster R-CNN [46][47] to extract object features, and then

apply scene graph generation [48][49] for graph inference. The

alternative is one-stage approaches such as FCSGG [50] and

the RelTR we use, which predict objects and their relations

concurrently, in an end-to-end fashion, and are thus more

lightweight and faster. Regardless of which technique is used

to implement TD, the general formula T (x) for TD obeys

Hsub, Hobj, Bsub, Bobj, τ ← T (x), (18)

where Hsub, Hobj are objective attention heatmaps of subjects

and objects, Bsub, Bobj are bounding boxes of subjects and

objects, respectively, and τ is the prediction set of (subject-

relation-object) triplets.

After this step, a naive idea would be to transmit the triplet

set τ to all users to match their personal queries qk(∀k ∈
[1,K]). This naive approach (named Naive-SemCom) faces

the problem of key triplets being dropped due to intense

competition among multiple users for scarce wireless channel

resources. For example, the user k has the personal query

qk = man wearing jacket , but unfortunately, the packet of

the key triplet man wearing jacket is dropped in the wireless

channel, then the current image will fail to match the personal

query. The reason is that the wireless channel treats packets of

all triplets as equally important, making the key triplets drop

with equal probability as other triplets.

To this end, we propose prioritizing triplets for each user

and allocating more transmission power to triplets with higher

priority to ensure that key triplets are successfully delivered

to the user terminal. To achieve this, one challenge should be

addressed, that is, how to prioritize triplets and identify the

key triplets for personalized users? As a benchmark, we can

use the product of maximum values of the subject and object

attention heatmaps Hsub, Hobj to obtain the triplet priority

p in an objective view, namely, p = max(C(Hsub, Bsub)) ⊗
max(C(Hobj, Bobj)), where C(Hsub, Bsub) is a cropping func-

tion that crops the attention sub-image from Hsub according

to the box coordinates Bsub. Note that the cropping function C
and max in this section are channel-wise operations, and “⊗”

is an element-wise multiplier. We refer to this benchmarking

approach as Objective Attention-Based Semantic Communi-

cation (OA-SemCom), which, as the name suggests, only

considers the objective global attention of the image itself,

and its triplet priority is common to all users. However,

users have personalized saliency, and their triplets should be

prioritized differently than others, as are key triplets, but OA-

SemCom fails to capture the personalization in subjective

saliency among different users.

B. PERSF-SEMCOM: Achieve Personalization Through Fused

Saliency

To address the above issues, we develop a PERSF-

SEMCOM framework that integrates objective visual atten-

tion from RelTR and subjective visual attention from a per-

sonalized saliency prediction module, namely PSP, to as-

sist the UAV in personalized priority estimation for each

user. In our implementation, the PSP module P(x, k) lever-

ages a pretrained fully convolutional encoder-decoder network

structure[51] to predict personal saliency heatmap Sk for user

k,

Sk ← P(x, k). (19)
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Fig. 3. An overview of the Personalized Saliency Fused Semantic Communication Framework (PERSF-SEMCOM).

These heatmaps show the things that different users are most

interested in when looking at the same image: the users’

subjective saliency distribution. For example, some users may

only follow persons, while others also follow cars.

The encoder uses VGG16 [52] without pooling layers as

the backbone, followed by an ASPP module to capture multi-

scale visual information, and then the decoder restores the

original image resolution by stacking convolution and up-

sampling layers. Since how to achieve personalization in PSP

is not the focus of this study, for simplicity, we use a plain

but effective method to achieve personalization, which is to

train user saliency models separately on different user datasets

to obtain personalized behaviors. Please note that similar

to the TD module, the PSP module is also a replaceable

plugin that can be replaced with other pretrained personalized

saliency models, depending on the researcher’s preference. For

instance, treat each user’s prediction task separately and use

a multi-task model to train a personalized saliency model for

each user [33], or train a meta-learning model that can quickly

adapt to new personalized tasks [53].

Then in Figure 3, we take a person k as an example

to illustrate how to fuse objective attention and subjective

saliency. In the AF module, the attention heatmaps Hsub, Hobj

and the saliency heatmap Sk are first normalized, and then

fused by weighted sum, where α ∈ [0, 1] is the fusion

coefficient, “⊕” is the broadcast add operator, and norm is

a global normalizer,

F k
sub = α · norm(Sk)⊕ (1− α) · norm(Hsub), (20)

F k
obj = α · norm(Sk)⊕ (1− α) · norm(Hobj). (21)

In order to accurately locate the attention heatmaps of the sub-

ject and object entities, the fused attention heatmaps F k
sub, F

k
obj

should be cropped according to the box coordinates Bsub, Bobj

to obtain the sub-heatmaps F̃ k
sub, F̃

k
obj of the subject and object

entities. These sub-heatmaps are then fed into the TPE module

for priority estimation, where their maxima are multiplied and

used as the triplet priorities pk,

F̃ k
sub = C(F k

sub, Bsub), (22)

F̃ k
obj = C(F

k
obj, Bobj), (23)

pk = max(F̃ k
sub)⊗max(F̃ k

obj). (24)

Finally, the PA module allocates transmission power for

triplets according to personalized priorities pk. The key triplets

with higher priority will be allocated more transmission power,

which makes them less likely to be dropped while traversing

the wireless channel.

On the receiver side (i.e., the user terminal k), the TS

module uses the received triplets τkrecv to match the personal

query qk and calculate a match score s. Here, we recommend

two types of TS modules: Accurate Mode (TS-AM) and Fuzzy

Mode (TS-FM). TS-AM aims to find the same received triplet

as the personal query, and it returns a match score of 1

if found and 0 otherwise. TS-AM is preferred if the user’s

personal query is forced to meet the (subject-relation-object)

format. However, if the personal query is free text, TS-FM

could be better because it can return a match score at the

semantic level (e.g., HEM[54]). Once a matching score s is

obtained, the user can decide whether to download the current

image x. In our implementation, we use TS-AM by default

because semantic sentence matching is not the focus of this

work, and only images with matching scores s = 1 will be

downloaded. We summarize the pseudo code of the proposed

PERSF-SEMCOM in Algorithm 1.
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Algorithm 1 PERSF-SEMCOM (Main)

Input: Captured image x on UAV, user identity k.

Output: Match score s, downloaded image x on user k.

1: procedure UAV-SEND(x, k)

2: TD detects triplets τ and their attention heatmaps

Hsub, Hobj and box coordinates Bsub, Bobj:

Hsub, Hobj, Bsub, Bobj, τ ← T (x);

3: PSP predicts the personalized saliency heatmap Sk for

user k: Sk ← P(x, k);
4: AF fuses the objective attention Hsub, Hobj and the

subjective saliency Sk by Eqs. (20)-(21);

5: TPE calculates the priority pk of triplets τ using the

fused attention heatmaps F k
sub, F

k
obj by Eqs. (22)-(24);

6: PA allocates transmission power to triplets τ according

to their priority pk using RCGA[55];

7: UAV sends triplets τ to user k’s terminal;

8: procedure USER-RECEIVE(τkrecv)

9: TS calculates the match score s between received

triplets τkrecv and personal query qk via TS-AM/FM;

10: if s is greater than a user-specified threshold then User

k downloads current image x;
return Match score s and downloaded image x;

VI. NUMERICAL RESULTS

A. Environment Setup

The experimental platform is built on a generic Ubuntu

18.04 system with Intel(R) Xeon(R) E5-2678 CPU and 4

Geforce RTX 2080 TI GPUs. The RelTR model is adopted

as the core of the TD module, which has been pretrained on

the Visual Genome (VG) dataset [56], and has a top-50 recall

rate of 25.2 on the scene graph detection metric, with the

corresponding mean value being 8.52. The VG dataset contains

108k images with 150 objects and 50 relationship categories.

For the PSP module, we use the saliency prediction model

in literature [51] pretrained on 3 visual attention datasets,

respectively, including SALICON [57], MIT1003 [58] and

DUT-OMRON [59], to simulate the visual saliency discrep-

ancy of 3 users3. The reason this works is that researchers

collect these datasets from different perspectives, which can

be regarded as real-world experiences and environments of

different persons, thus presenting independent personalities.

The validation dataset used in our experiments is real-world

video frames downloaded from YouTube4. We framed this

video at an interval of 5 frames and obtained a dataset of 59

images, which we named “STREET”. In Figure 4, we visualize

a portion of the STREET dataset. Each user’s personal queries

and their experience datasets are summarized in Table III.

If not otherwise specified, the parameters of the small-scale

fading model and the system parameters such as power and

transmission distance are shown in Table II following common

parameter settings in the literature [60], [61].

2The pretrained model is available at: https://github.com/yrcong/RelTR
3The pretrained model is available at:

https://github.com/alexanderkroner/saliency
4The video is available at: https://www.youtube.com/watch?v=RPZ3xWy70IE

Fig. 4. A partial overview of our STREET dataset.

TABLE II
CHANNEL CONFIGURATION PARAMETERS FOR 3 USERS.

User ID 1 2 3

Fading parameter mf 2 2 5

Shadowing parameter ms 2 4 2

Signal amplitude decrease z̄ (dB) -3

Distance Duk (m) 10

Number of antennas NT 3

Paths of interferes NI,k 2

Interference power PI,k,j (W) 2

ηk (dB) -3

Noise nk (W) 1

τ1 1

τ2 0.5

Path loss exponent αk 2

Two benchmark approaches are used for performance com-

parison, that is, Naive-SemCom and OA-SemCom. Naive-

SemCom aims to allocate transmit power when transmitting

to each user equally, and the triplets of each user are also al-

located with equal power. In other words, Naive-SemCom has

no awareness of the importance of semantic triples. Instead,

OA-SemCom quantifies the priority of triplets and uses these

priorities to schedule transmit power for each user and triplet.

However, OA-SemCom only considers the objective attention

obtained by TD but ignores the user’s subjective attention and

personality. To address this issue, our PERSF-SEMCOM is

proposed, and PSP, AF modules are introduced to fuse the

objective and subjective attention. We set the fusion coefficient

α = 0.2 and the transmit power P = 3000 by default and

calculated the average of each user’s match score on all images

as the user’s score. Each experiment was repeated 5 times, and

the average results are shown.

B. Results and Analysis

Effectiveness of PERSF-SEMCOM over α and P . We

first show the effectiveness of the proposed PERSF-SEMCOM.

To find the optimal hyperparameters, we increase the fusion

coefficient α from 0 to 1 and the total transmits power P
from 1kW to 3kW. The utility value (i.e., the product of

https://github.com/yrcong/RelTR
https://github.com/alexanderkroner/saliency
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TABLE III
USERS’ IDENTITIES, EXPERIENCE DATASETS AND PERSONAL QUERIES.

Identity Dataset Personal Queries

User 1 SALICON woman has hair

User 2 MIT1003 sign on building

User 3 DUT-OMRON woman wearing shirt

Fig. 5. The value curves of utility function over different fusion coefficient
α and transmit power P .

all user scores) curves are shown in Figure 5. Please note

that OA-SemCom corresponds to our PERSF-SEMCOM with

α = 1.0. Benefiting from the introduction of subjective atten-

tion, PERSF-SEMCOM outperforms Naive-SemCom in most

cases, for example, when α ∈ [0, 0.6] and P ∈ [1kW, 3kW].
The curves of PERSF-SEMCOM first increase to the optimal

and then rapidly degrade. The optimal utility value usually

occurs when α is between 0.1 and 0.2; that is, the objective

attention should contribute 10%-20% to the fused attention,

while the subjective attention contributes 80%-90%. After

this, the PERSF-SEMCOM performance gradually deteriorated

with the withdrawal of subjective attention, especially when

α = 1.0, PERSF-SEMCOM degenerates to OA-SemCom,

which performs even worse than Naive-SemCom. The above

results show that the introduction of appropriate subjective

attention can significantly enhance semantic communication’s

personalization and anti-interference ability and demonstrates

the effectiveness of the proposed PERSF-SEMCOM. In subse-

quent experiments, we use the recommended α = 0.2 as the

default setting.

The effects of transmit power P . To explore the optimality

gap over different transmit powers P , we increase P from 1kW

to 3kW and illustrate the gap between PERSF-SEMCOM and

the theoretical optimal in Figure 6. The top dashed lines

represent the theoretical upper bounds of each user’s score.

They use infinite transmit power, so no triplet packets get

dropped. Users have different upper bounds because of their

personality divergence. As expected, the optimality gap of

PERSF-SEMCOM becomes smaller as the transmit power P
increases because higher transmit power effectively reduces

the probability of packet loss. Compared with Naive-SemCom,

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6
[Power: ] User 1
[Power: ] User 2
[Power: ] User 3
[PerSF-SemCom] User 1
[PerSF-SemCom] User 2
[PerSF-SemCom] User 3

1 1.5 2 2.5 3
0

0.1
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[OA-SemCom] User 1
[OA-SemCom] User 2
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[Naive-SemCom] User 3

(a)

(b)

Fig. 6. The score curves for each user over different total transmit power P .

when P = 3kW, PERSF-SEMCOM reduces the optimality gap

by 54%, 57%, 37% on the three users, respectively, which

shows a significant improvement in the accuracy of the UAV

aerial imagery subscription service. However, OA-SemCom,

which only considers objective attention, widens the optimality

gap by 26%, 57%, and 86%. These results prove the necessity

to incorporate personal attention.

The effects of power allocation. Intuitively, users with

poor channel conditions should be allocated more transmission

power. In this experiment, the channel condition ranking of

users 1-3 is user 1 < user 3 < user 2. We use the Real-Coded

Genetic Algorithm (RCGA)[55] to solve the NBS problem and

allocate power among users, and then proportionally distribute

power among triplets according to priority. RCGA uses the

population size of 50, the mutation probability of 0.001,

and the maximum iteration of 20. Given the transmit power

P = 3kW and 3 users, we traverse all possible settings of

full power allocation (i.e., the sum of the proportions of the

power allocated to each user is 1) and visualize their utility

function surface in Figure 7. RCGA found the best power

allocation per user to be (40.6%, 18.4%, 40.0%), with the

score (0.46, 0.12, 0.33) per user and the utility value 0.0175,

which outperforms Naive-SemCom with the power allocation

(33.3%, 33.3%, 33.3%), the scores (0.36, 0.09, 0.29) and the

utility value 0.0091. The resulting power allocation strategy

also supports our intuitive idea that more power should be

allocated to users with poor channel conditions rather than
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Fig. 7. The utility function surface under different power allocations.

Fig. 8. Utility function values under different multi-path fading parameter
mfk and shadow fading parameter msk .

simply evenly allocated.

The effects of small-scale channel conditions msk,mfk.

Given the transmission power of user k is 1kW, we investigate

the effect of different values of multi-path fading parameter

mfk and shading parameter msk on the utility function values.

As shown in Fig. 8, when the values of both mfk and msk are

large, which means the multipath effect is weak and there is

less shading, the value of the utility function is large. A more

interesting insight is that an increase in mfk leads to a faster

increase in the utility function value compared to the same

increase in msk. This suggests that, at the wireless channel

level, the goal-oriented semantic communication system that

we studied in this paper is more affected by the BER increase

due to the multi-path effect, instead of shadowing.

The effects of large-scale channel conditions Du,k, PIk.

Given the transmission power of user k is 1kW, we investigate

the effect of transmission distance and interference power on

the value of the utility function. In Fig. 9, we can observe that,

when the interference power is small, i.e., PIk < 1 W, the

increase in the transmission distance does not result in a sig-

Fig. 9. Utility function values under different transmission distance Duk and
interference power PIk .

Fig. 10. Comparison of total transferred bytes of images.

nificant decrease in the value of the utility function. However,

in the high interference regime, e.g., when PIk > 10 W, every

5 m increase in transmission distance results in an about 58%
decrease in the value of the utility function. Therefore, when

there is substantial interference in the environment, we need to

reduce the transmission distance by adjusting the trajectory of

the UAV to ensure the quality of the semantic communication

services.

The effects of reducing communication overhead. Con-

sidering a vanilla approach that the UAV sends a total of 59

images to 3 subscribers, each image is 1.27MB in size and

the total bytes transferred is 224.8MB. As an improvement,

PERSF-SEMCOM selectively sends fewer images (64 in total)

to specified subscribers, before that 873 triplets were sent with

a negligible additional communication cost of 10.24KB. Then,

the UAV only needs to send 81.29MB in size, which reduces

the communication cost by 64% and thus saves the power

consumption during transmission.

VII. CONCLUSIONS

In this paper, we have focused on the semantic commu-

nication personalization and resource allocation optimization

issues for personalized saliency-based task-oriented semantic

communication in UAV image sensing scenarios. We have first
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presented an energy-efficient task-oriented semantic commu-

nication framework with an efficient image retrieval manner

based on a triple-based scene graph. To ensure personalized

semantic communication, we have designed a personalized

attention-based mechanism to realize differential weight en-

coding of triplets for important information according to user

preferences. Furthermore, we have analyzed mathematically

the effects of wireless fading channels on semantic commu-

nication and proposed a game-based model for a multi-user

resource allocation scheme to achieve efficient utilization of

UAV resources. We evaluate performance of the proposed

framework and schemes on real-world datasets. The numer-

ical results have confirmed that the proposed framework and

schemes can realize personalized semantic communication and

significantly enhance the UAV resource utilization.

APPENDIX A

PROOF OF LEMMA 1

A. Proof of PDF

Let X , σ2 + PIkY and U , PkD
−αk

uk Z . Thus, we have

γk = U
X

. The PDF of γk can be expressed as

fγk
(γ) =

∫ ∞

0

xfU (γx) fX (x) dx. (A-1)

Substituting (7) and [41, eq. (6)] into (A-1), we have

fγk
(γ)=

mfk
mfk(msk1)

msk z̄msk

k γmfk1

(PIkηk)
NIkΓ(K) (PkD

αk

uk )
mfkB(mfk,msk)

I1,

(A-2)

where

I1 =

∫ ∞

σ2

xmfk
(

xσ2
)NIk1 exp

(

xσ2

PIkηk

)

(

mfkγx

PkD
αk
uk

+ (msk1) z̄k

)mfk+msk
dx. (A-3)

With the help of [20, eq. (9.301)] and [43, eq.

(01.03.26.0004.01)], we can express the exp(·) function

in terms of the Mellin-Barnes integral form as

exp

(

−
x− σ2

PIkηk

)

= G1,0
0,1

(

x− σ2

PIkηk

∣

∣

∣

∣

0

)

=
1

2πi

∫

L1

Γ(−s1)

(

x− σ2

PIkηk

)s1

ds1. (A-4)

Substituting (A-4) into I1, we obtain that

I1 =
1

2πi

∫

L1

Γ(−s1)

(

1

PIkηk

)s1

×

∫ ∞

0

xs1+NIk−1
(

x+σ2
)mfkdxds1

(

mfkγx

PkD
−αk
uk

+
mfkγσ2

PkD
−αk
uk

+(msk−1) z̄k

)mfk+msk
. (A-5)

Let Λk ,
PkD

−αk
uk

(msk−1)z̄k
mfk

. With the help of [20, eq.

(3.197.1)], the integration part in I1 can be solved. Thus, we

can re-write I1 as

I1 =
1

2πi

(

PkD
−αk

uk

mfkγ

)mfk+msk ∫

L

Γ(−s1)

×

(

1

PIkηk

)s1(PkD
−αk

uk (msk − 1) z̄k
mfkγ

+ σ2

)−mfk−msk

×σ2s1+2NIk+2mfkB(s1+NIk,msk − s1 −NIk)

×F

(

mfk+msk, s1+NIk;msk; 1−
σ2

Λk

γ
+ σ2

)

ds1. (A-6)

Using [20, eq. (9.113)] and [20, eq. (8.384.1)], we can further

express I1 as

I1 =

(

1

2πi

)2(
PkD

−αk

uk

mfk (Λk + γσ2)

)mfk+msk
(

σ2
)NIk+mfk

Γ(mfk +msk)

×

∫

L1

∫

L2

Γ(msk−s1−NIk) Γ(−s1) Γ(mfk+msk+s2)

Γ(msk+s2) Γ−1 (−s2) Γ−1 (s1+NIk+s2)

×

(

σ2

PIkηk

)s1( −Λk

Λk + γσ2

)s2

ds2ds1. (A-7)

Therefore, substituting I1 into (A-2), using the definition of

Bivariate Meijer’s G-function [22, eq. (1)], we can derive (9)

to complete the proof.

B. Proof of CDF

According to the definition of CDF, we have

Fγk
(γ) =

∫ γ

0

fγk
(x) dx. (A-8)

Combining (9) with (A-8), we have

Fγk
(γ) =

mfk
mfk(msk − 1)

msk z̄msk

k

(PIkηk)
NIkΓ(NIk)

(

PkD
−αk

uk

)mfk
B(mfk,msk)

×

(

1

2πi

)2(
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uk

mfk
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(

σ2
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×

∫

L1

∫

L2
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Γ(msk + s2) Γ−1 (−s2) Γ−1 (s1 +NIk + s2)

× I2

(

σ2

PIkηk

)s1

(−Λk)
s2ds2ds1, (A-9)

where the I2 can be expressed as

I2=

∫ γ

0

xmfk−1

(Λk + xσ2)
mfk+msk+s2

dx. (A-10)

With the help of, we can solve I2 as

I2 =
γmfk

Λk
mfk+msk+s2mfk

× F

(

mfk +msk + s2,mfk; 1 +mfk;−
σ2

Λk

γ

)

. (A-11)

According to the integral expression of the hyper-geometric

function [20, eq. (9.113)], we can substitute I2 into (A-9) and

obtain (10), which completes the proof.
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APPENDIX B

PROOF OF LEMMA 1

Let t , xρ. We can re-write IA as

IA = ρ−b−c−1 exp
(a

d

)

×

∫ ∞

ρa

tb(t− ρa)c exp

(

−
t

ρd

)

F (α, β, ε;−t) dt. (B-1)

Because ρ is small, we can further express IA as

IA ≈ ρ−b−c−1 exp
(a

d

)

×

∫ ∞

0

tb+c exp

(

−
t

ρd

)

F (α, β, ε;−t) dt. (B-2)

With the help of [20, eq. (9.113)], we obtain

IA = ρ−b−c−1 exp
(a

d

) Γ(ε)

Γ(α) Γ(β)

1

2πi

×

∫

L1

Γ(s1 + α) Γ(s1 + β) Γ(−s1)

Γ(s1 + ε)
I3ds1, (B-3)

where

I3 =

∫ ∞

0

ts1+b+c exp

(

−
t

ρd

)

dt. (B-4)

By using [20, eq. (3.351.3)] and [20, eq. (8.339.1)], I3 can be

solved as

I3 = (dρ)b+c+s1+1Γ(1 + b+ c+ s1) . (B-5)

Substituting I3 into (B-3), we have

IA = exp
(a

d

) Γ(ε) db+c+1

Γ(α) Γ(β)

1

2πi

×

∫

L1

Γ(s1 + α) Γ(s1 + β) Γ(−s1)

Γ−1 (1 + b + c+ s1) Γ(s1 + ε)
(dρ)

s1ds1. (B-6)

According to the definition of Meijer’s G-function [20, eq.

(9.301)], we can re-write IA as (12) to complete the proof.

APPENDIX C

PROOF OF THEOREM 2

Using the definition of CDF, we have

Fγk
(γ) =

∫ ∞

0

FU (γx) fX (x) dx, (C-1)

where

FU (u) = Pr (U < u) = Pr

(

Z <
u

PkD
−αk

uk

)

= FZ

(

u

PkD
−αk

uk

)

. (C-2)

Thus, the CDF of γk can be expressed as

Fγk
(γ) =

1

mfkB(mfk,msk)

(

γ

Λk

)mfk 1

(PIkηk)
NIkΓ(NIk)

×

∫ ∞

σ2

xmfk
(

x− σ2
)NI,k−1

exp

(

−
x− σ2

PIkηk

)

× F

(

mfk,mfk +msk,mfk + 1;−
γx

Λk

)

dx. (C-3)

The integration part in (C-3) can be solved with the help of

Lemma 1. Then, after some algebraic manipulations, we have

Fγk
(γ) =

1

Γ(NIk) Γ(msk) Γ(mfk)
exp

(

σ2

PIkηk

)

×
1

2πi

∫

L

Γ(s2) Γ(s2 +msk) Γ(NIk + s2)

Γ(s2 + 1)Γ−1 (−s2 +mfk)

(

γPIkηk
Λk

)s2

ds2.

(C-4)

Using [20, eq. (9.301)], we can derive the CDF of γk as (10),

which completes the proof.

APPENDIX D

PROOF OF THEOREM 4

Using the definition of Gamma function [20, eq. (8.350)],

we can express Ek as

Ek =
λ1

λ2

2Γ(λ2)

∫ ∞

0

xλ2−1e−λ1xFγk
(x) dx. (D-1)

By substituting (C-4) into (D-1), we obtain

Ek =
λ1

λ2Γ−1 (msk) Γ
−1 (mfk)

2Γ(λ2) Γ(NIk)
exp

(

σ2

PI,kηk

)

1

2πi

×

∫

L

Γ(s2) Γ(s2 +msk) Γ(NIk + s2)

Γ(s2 + 1)Γ−1 (−s2 +mfk)

(

PI,kηk
Λk

)s2

I4ds2,

(D-2)

where

I4=

∫ ∞

0

xs2+λ2−1e−λ1xdx. (D-3)

Using [20, eq. (3.351.3)], we can solve I4 as

I4 = λ1
−s2−λ2Γ(s2 + λ2) . (D-4)

Combining I4 and (D-2), we derive Ek as (16) to complete

the proof.
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