
Northumbria Research Link

Citation: Wang, Hanling, Li, Qing, Sun, Heyang, Chen, Zuozhou, Hao, Yingqian, Peng,
Junkun, Yuan, Zhenhui, Fu, Junsheng and Jiang, Yong (2023) VaBUS: Edge-Cloud Real-Time
Video Analytics via Background Understanding and Subtraction. IEEE Journal on Selected
Areas in Communications, 41 (1). pp. 90-106. ISSN 0733-8716

Published by: IEEE

URL: http://doi.org/10.1109/jsac.2022.3221995
<http://doi.org/10.1109/jsac.2022.3221995>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/50969/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 1

VaBUS: Edge-Cloud Real-time Video Analytics via
Background Understanding and Subtraction

Hanling Wang, Qing Li, Member, IEEE, Heyang Sun, Zuozhou Chen, Yingqian Hao, Junkun Peng, Zhenhui
Yuan, Junsheng Fu and Yong Jiang, Member, IEEE

Abstract—Edge-cloud collaborative video analytics is trans-
forming the way data is being handled, processed, and trans-
mitted from the ever-growing number of surveillance cameras
around the world. To avoid wasting limited bandwidth on
unrelated content transmission, existing video analytics solu-
tions usually perform temporal or spatial filtering to realize
aggressive compression of irrelevant pixels. However, most of
them work in a context-agnostic way while being oblivious to
the circumstances where the video content is happening and
the context-dependent characteristics under the hood. In this
work, we propose VaBUS, a real-time video analytics system that
leverages the rich contextual information of surveillance cameras
to reduce bandwidth consumption for semantics compression.
As a task-oriented communication system, VaBUS dynamically
maintains the background image of the video on the edge with
minimal system overhead and sends only highly confident Region
of Interests (RoIs) to the cloud through adaptive weighting and
encoding. With a lightweight experience-driven learning module,
VaBUS is able to achieve high offline inference accuracy even
when network congestion occurs. Experimental results show that
VaBUS reduces bandwidth consumption by 25.0%-76.9% while
achieving 90.7% accuracy for both the object detection and
human keypoint detection tasks.

Index Terms—edge-cloud collaborative computing, semantic
compression, video analytics, task-oriented communication sys-
tem

I. INTRODUCTION

THE recent advances of deep learning techniques boost
the performance of many computer vision applications,

such as object detection, semantic segmentation and keypoint
detection. These advances facilitate the commercialization of
video analytics applications including traffic control [1], video
surveillance [2], and safety anomaly detection [3]. In order to
make video analytics technologies ready to use, three main
challenges need to be addressed, i.e., latency, bandwidth and
accuracy. First, analytics applications require very low latency,

Manuscript received April 1, 2022. (Corresponding author: Qing Li.)
Hanling Wang, Junkun Peng and Yong Jiang are with the Shenzhen

International Graduate School, Tsinghua University, Shenzhen, Guang-
dong 518055, China, and also with Peng Cheng Laboratory, Shen-
zhen, Guangdong 518055, China (e-mail: hl-wang21@mails.tsinghua.edu.cn,
pjk20@mails.tsinghua.edu.cn, jiangy@sz.tsinghua.edu.cn).

Qing Li and Zuozhou Chen are with Peng Cheng Laboratory, Shenzhen,
Guangdong 518055, China (e-mail: liq@pcl.ac.cn, chenzzh@pcl.ac.cn).

Heyang Sun is with the School of Software, Southeast University, Nanjing,
Jiangsu 211189, China (e-mail: 213182539@seu.edu.cn).

Yingqian Hao is with the School of Software, Jilin University, Changchun,
Jilin 130012, China (e-mail: haoyq5519@mails.jlu.edu.cn).

Zhenhui Yuan is with the Department of Computer and Information Science,
Northumbria University, UK (email: zhenhui.yuan@northumbria.ac.uk).

Junsheng Fu is with Zenseact, Gothenburg 41756, Sweden (email: jun-
sheng.fu@zenseact.com).

as typically the output is used to immediately notify humans
or an actuator control system. Second, high-definition (HD)
videos require large bandwidth for transmission. Streaming
the entire video from cameras to cloud might be infeasible,
especially when available bandwidth is limited. Finally, deep
learning models for video analytics need massive computing
resources that are usually limited on cameras.

To address these problems, the typical real-time video an-
alytics pipelines adopt an edge-cloud collaborative approach,
i.e., a camera only sends partial video content to the cloud
server, which runs deep learning models and returns the
inference results [4]–[8]. For these solutions, one of the key
factors to consider is the nontrivial bandwidth consumption.
According to [9], Singapore aims to have more than 200,000
police cameras by at least 2030. And the number of all cameras
in the world is estimated to be somewhere between 10 and
100 billion in 2030 [10]. Considering a bitrate of 2 Mbps for
a typical HD video feed compressed by the H.264 codec [11],
200,000 cameras would need a bandwidth of 400 Gbps, which
would impose heavy pressure on the network infrastructure.
Unlike traditional human-centric video streaming techniques
that improve user-perceived Quality of Experience (QoE),
inference-targeted video streaming techniques (i.e., machine-
centric) allow discarding more irrelevant information for sig-
nificant bandwidth saving.

By exploiting the redundancy in video frames, extensive
works have been proposed to perform spatial and temporal
filtering [4]–[7], [12]–[15]. Temporal filtering solutions aim to
remove a video frame that is duplicated or does not contain any
interesting objects. For example, FilterForward [6] introduced
microclassifiers on edge devices to detect relevant events and
only frames with matching events would be transmitted to
cloud servers. In contrast, spatial filtering solutions allocate
more bits for pixels in the RoIs during encoding and trans-
mitting. For example, DDS [5] constantly sent a low-quality
stream and resent high-quality partial images based on feed-
back from the server. In the existing literature, most works [5]–
[8] adopt context-agnostic approaches (i.e., treating incoming
frames as independent images instead of a continuous flow of
frames from one camera) during streaming, while only a few of
them has explored the contextual information of video feeds,
e.g., EAAR [4] used the candidate RoIs from the last frame
to determine encoding quality of the next frame. However,
more contextual information remains under-explored, e.g., the
background of the scene, unequal probability of observing
objects across different regions of the frame, and the size of
objects occurring at the same location.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 2

In this work, we explore the contextual information of video
data from surveillance cameras. Since surveillance cameras
generate video frames with static background, certain charac-
teristics tend to persist over time, such as regions that may ob-
serve objects and the size of occurred objects at the same loca-
tion. By exploiting these context-dependent characteristics, we
design VaBUS, a new real-time Video analytics system based
on Background Understanding and Subtraction. Specifically,
VaBuS first reconstructs the background from camera video
feeds in the cloud and transfers the background image to the
edge with minimum overhead, then the edge sends the cloud
with only useful foreground pixels that may contain interesting
objects for inference. As a result, VaBUS has the potential to
significantly reduce the bandwidth consumption between the
edge and cloud, while achieving high inference accuracy in
the task-oriented communications scenario. Ideally, RoIs in a
video frame only contain objects to be detected, and the bits
for remaining regions will not be pushed into the network,
i.e., the RoIs are optimally compressed in the semantic aspect.
To the best of our knowledge, the context characteristics of
static background for surveillance cameras has not yet been
systematically exploited by prior works in the real-time video
analytics scenario.

However, the edge-cloud collaborative approach of back-
ground understanding and subtraction is not a trivial task in
the real scenario. There are three challenges to tackle before
the practical deployment.

• First, on the edge, we need a lightweight approach
to reconstruct the meaningless-for-inference background
image from the dynamic video of cameras, such that we
can subtract the redundant background before transferring
the video to the cloud. Due to the limited computing
resources at the edge, it is difficult to perform background
image reconstruction or foreground/background segmen-
tation at the speed of 24FPS. According to [16], back-
ground reconsutruction for a RGB image of 1080×1920
resolution on a Nvidia Jetson TX2 device requires a time
of 79ms on average when using CPU, which is far from
being real-time. Besides, the background image could
change with variable illumination conditions or different
camera viewports, which triggers irregular updates. In
VaBUS, we deploy a background reconstructor module
in the cloud to constantly learn the background of video
feeds and send updates to the edge. Since background
reconstruction is performed in the cloud, there’s no
additional computation overhead on the edge except the
bandwidth consumed for transferring the background
image from the cloud to the edge. To minimize the band-
width consumption and latency overhead of transferring
the background image, VaBUS distinguishes non-object
background from the temporary background with objects,
and adopts a dynamic overlay mechanism to dynami-
cally generate overlaid background on the edge for RoI
generation. Besides, deploying background reconstruction
model in the cloud with abundant computing resources
enables the usage of more advanced models, e.g., deep
learning-based models, to achieve more accurate back-

ground reconstruction.
• Second, we need a robust approach on the edge to

compute accurate RoIs, i.e., the foreground pixels that
contain interesting objects. Simple pixel-wise difference
between the incoming frames and the background image
contains considerable detection noise. Misdetection of
RoIs (i.e., too few pixels sent) would cause omission
of interested objects while false alarms (i.e., too many
pixels sent) might add redundant bits to RoIs, causing
extra bandwidth waste. Based on pixel-wise difference
results, VaBUS leverages an adaptive weighting module
to assign greater weights to regions that are more likely
to appear interesting objects. Specifically, it automatically
learns from previous detection results and input frames to
calculate the weights. To further reduce bandwidth con-
sumption, VaBUS takes the object size into consideration
and dynamically adjusts the encoding parameters with an
adaptive RoI encoding module.

• Third, we need to design a bandwidth-aware mecha-
nism to dynamically balance the accuracy and delay
of inference tasks under variable network conditions.
An offline estimation strategy is needed to deal with
unexpected network interruptions, which estimates the
inference results on the edge when it fails to receive
results from the cloud within the required time frame.
Unlike previous works that use either optical flow [15]
or motion vector-based [4] estimation methods, VaBUS
adopts a lightweight experience-driven learning approach
(i.e., mapping estimator) to learn from previous detection
results and produce estimations. Specifically, it learns the
shifting and scaling mapping matrix per pixel location
based on box-to-box mapping according to the object
tracking results in the cloud. When the edge fails to
receive timely detection results from the cloud, the edge
would be able to estimate the detection results of the
current frame based on the learned mapping functions.

To validate the feasibility of VaBUS, we implement a
prototype1 based on Python and C++. With the prototype,
we conduct comprehensive experiments on four real-world
datasets. Results show that VaBUS 1) reduces bandwidth con-
sumption by 25.0%-76.9% while achieving 90.7% accuracy,
2) incurs only 477.5ms latency and 10% CPU usage overhead
compared to a baseline approach, and 3) achieves 68% offline
estimation accuracy which outperforms both the optical flow
and motion vector-based methods.

The contributions of this paper can be summarized as
follows:

• Proposing a new system that leverages rich contextual
information of video feeds from surveillance cameras for
real-time edge-cloud video analytics.

• Developing a background reconstructor that effectively
learns the background in the cloud, and a background
overlay mechanism to dynamically generate background
on the edge.

• Designing an adaptive weighting module which assigns
different weights across the frame to generate accurate

1The prototype will be made public after the paper is accepted.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 3

RoIs, and an adaptive RoI encoding strategy that takes
object size into consideration during encoding to further
save bandwidth.

• Proposing mapping estimator, a new mapping-based of-
fline estimation method that automatically learns mapping
functions from previous detection results to produce ac-
curate estimations even when network congestion occurs.

The rest of the paper is organized as follows. Related work
is presented in Section 2, followed by the system overview
and design details of VaBUS in Section 3. Section 4 shows
the experimental results. Section 5 discusses the limitation and
future work of VaBUS and Section 6 concludes the paper.

II. RELATED WORK

A. Real-time video analytics system

A series of techniques have been proposed to use real-time
video analytics within the edge-cloud continuum. Previous
works have explored DNN-specific optimization techniques
including model distillation [17], splitting [18], sharing [19]
and cascading [20], adaptively tuning a set of control knobs
to constantly meet accuracy and latency requirements [21]–
[23], optimized information pruning techniques [4]–[7], etc.
VaBUS focuses on a single aspect of the design space, i.e., in-
formation pruning. Existing works typically discard irrelevant
information from the temporal perspective by frame filtering
or from the spatial perspective by assigning uneven encoding
quality across the frame. VaBUS shares the same concept
of performing uneven-quality encoding, while in a more
aggressive approach by leveraging the contextual information,
i.e., completely removing background pixels that are unrelated
to the task. As a consequence, VaBUS is able to save more
bandwidth while achieving the same accuracy.

B. Background subtraction and foreground/background seg-
mentation

Background subtraction has been extensively studied in the
last decade [24]. The goal of background subtraction is to
detect moving objects in the scenes when the camera is static,
i.e., segmentation of foreground and background. Previous
works can be divided into two categories: traditional methods
and deep learning-based methods. Popular techniques used in
traditional methods include parametric method such as GMM
[25], non-parametric method such as kernel density estimation
[26], traditional machine learning method [27] and hybrid
methods with multi-modal data [28] and model fusion [29],
etc. Deep learning-based methods can be classified into super-
vised and unsupervised methods. Supervised methods typically
adopt 2D- or 3D- CNN and ConvLSTM models [30]–[33],
and concentrate on scene-specific or scene-agnostic scenarios.
Unsupervised models based on GANs and Autoencoders, have
also emerged as new approaches in recent years [34], [35].
Instead of directly performing the foreground and background
segmentation, VaBUS adopts a two-phase strategy to utilize
the computing resources on both the edge and cloud, i.e.,
learns a rough estimate of the true background image on the
cloud and then tries to produce accurate foreground detection
on the edge.

C. Computer Vision applications

A large number of deep learning models have been proposed
for various vision applications, including image classification
[36], instance segmentation [37], object detection [38], face
recognition [39], image captioning [40], etc. Recent works
show that it is inefficient to perform inference for every video
frame. Alternatively, augmentation of inference results should
be applied via the usage of tracking or temporal prediction
models [15]. For real-time video analytics, several techniques
have been proposed to meet the latency requirement via
local tracking on the edge devices. Glimpse [15] used the
optical flow method to estimate the detection results of next
frame based on previous frame. EAAR [4] adopted a more
lightweight method by leveraging motion vector information
from the codec. Elf [41] proposed a LSTM-based model
to predict possible object locations in each frame. Unlike
traditional (such as optical flow and motion vector-based)
methods that can only estimate subtle location changes with
fixed object size, VaBUS is able to deal with more drastic
objection location and size change by leveraging context-
dependent information, i.e., previous inference results.

III. VABUS

In this section, we start with the design principles of VaBUS
and how it operates at a high level. Then, we present the details
of each component in VaBUS.

A. Design Principles and Overview

1) Principles of Designing VaBUS: Our objective is to
design a real-time edge-cloud video analytics system that saves
as much bandwidth as possible while achieving high inference
accuracy and low latency. To achieve this goal, we leverage the
contextual information of video feeds and take the following
principles into consideration.

• Accuracy. Provide 90% accuracy. The goal of video
analytics systems is to perform deep learning inference.
In VaBUS, we only send partial video frames to mini-
mize data transmission, which tends to cause a drop in
accuracy.

• Latency. Achieve a latency of one second. Latency is
a key component for real-time systems which require
timely feedback.

• Bandwidth. Reduce bandwidth consumption. When ac-
curacy and latency meet the requirements, VaBUS tries
to save as much bandwidth as possible.

• Handling Network Variance. Provide alternatives in
poor network conditions. When network variance sud-
denly increases, e.g., due to network congestion, the
system shall have an alternative solution to provide im-
mediate yet less accurate estimation results for the task,
so as to avoid blocking the system.

2) VaBUS Overview: Figure 1 illustrates the VaBUS ar-
chitecture and indicates its life cycle. The edge constantly
generates RoIs by subtracting the background from incoming
frames through a difference detector (referred to as diff de-
tector). An extra adaptive weighting module is used to boost

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 4

Edge

Module

Adaptive
Weighting

Diff
Detector

Adaptive
RoI EncBg Overlay

Data

Mapping
Estimator

Camera

Encoder

DecoderBg Recon-
structor

Frame
Recovering

Frames Raw RoIs RoIs

Video

RoIsFramesBg

OT Results

Infer. Results

VideoOverlaid Bg

Cloud

Feedback

MOT
Model

Infer.
Model

Infer. Results

Fig. 1. System Overview of VaBUS.

the accuracy of raw RoIs. Considering that static objects can
also be part of the background, we use a background overlay
(referred to as bg overlay) module to dynamically add these
objects to the non-object background and remove them from
the overlaid background when the objects are no longer static.
Once ready, the RoIs will be encoded into a video using
an adaptive RoI encoding (referred to as adaptive RoI Enc)
module, which takes the object size into consideration when
assigning uneven encoding quality across the frame. After
receiving the video, the cloud will first decode the RoIs from it
then recover original frames with a frame recovering module.
Once the frames are ready, the inference model (referred to as
infer. model) will be run to generate results. These inference
results (referred to as infer. results) are the output of user-
specified task and will also be used to update the adaptive
weighting, adaptive RoI Enc and mapping estimator module.
At the same time, the background reconstructor (referred to
as bg reconstructor) will continuously learn to reconstruct
the background and send the latest one to the edge when
necessary. Besides, an extra object tracking model (referred
to as MOT model) is also running in the cloud to detect the
motion of each individual object. The tracking results will be
used to update the bg overlay and mapping estimator module
on the edge. In general, the edge device constantly generates
RoIs, while the cloud is responsible for inference and video
context analysis to synchronize various modules. In the rest
of this section, we discuss the details of each module and
focus on how they are designed to meet the aforementioned
principles.

B. Background Understanding and Learning

After receiving RoIs from the edge, the frame recovering
module is firstly used to recover the original frames on the
cloud. The bg reconstructor continually learns the background
from recovered frames in the cloud and selectively updates the
background at the edge. By recognizing static objects with
a fast multiple-objects tracking model (referred to as MOT
Model), non-object background are overlaid with static objects
to create new temporary background which further reduces

Infer
Original
Frame

RoI

Overlaid

Inferred Detection
Results

Overlaid Bg

Non-static obj. Static obj. (prev.) Feedback

D
iff

 D
et

ec
t

Overlay Info

Camera

Cloud

Bg Mask

Bg

Selected Bg

Edge

Update

Transfer SUM

AND

Analytics

St
re

am

Update

Recovered
Frame

Combine
RoI

Static obj (cur.)

NOT

Track

Bg Model MOT Model Infer. Model

Mask

Fig. 2. Background reconstruction and dynamic overlay.

the size of generated RoIs on the edge. The whole pipeline is
illustrated in Figure 2.

1) Frame Recovering and Background Updating: The
background reconstructor aims to learn a static non-object
scene image by removing foreground objects from video
frames, where a background estimation model (referred to
as bg model) lies in the core. Given a sequence of frames
X = X1, · · · , XN of a scene showing moving objects (e.g.,
cars and pedestrians), the goal of a background estimation
model is to recover a clean image of the background of this
scene, without any moving objects. Here the pixels of moving
objects are referred to as foreground, and the remaining as
background.

In VaBUS, we use the classic model proposed by [42] and
implemented in OpenCV [43] as the backbone background
estimation model. Note that although we only use a simple
model in our implementation, more complicated and advanced
background estimation model, e.g., deep learning-based mod-
els, can be used since it is deployed in the cloud with almost no
resource limit. The procedures of reconstructing and updating
the background are shown in Algorithm 1.

The recovering and reconstruction phase takes RoI I and
bounding box D for a single frame as inputs. Since the RoI
only contains a part of the original frame, reconstructing
the background from RoI might cause wrong background
estimation. Instead, we feed into bg model the frame recovered
using both background image B and RoI I . The regions (Mbg)
with detected objects (Mdet) and also being set to black in
RoI (Mblack) are replaced with corresponding pixels in exist-
ing background for reconstruction (Line 14). The remaining
regions in RoI are kept unchanged (Mfg). The rationale behind
this is twofold: removing detected objects before reconstruc-
tion avoids reconstructing the objects as background, while
filling erased pixels in RoI with existing background explicitly
inhibit the re-estimation of these regions. To avoid server-side
computing resource waste, we only reconstruct the background
when the ratio of detected to valid pixel number (i.e., non-
black regions in RoI) is lower than a specific threshold λdet
(Line 10). In the updating phase, a renewed background
image is considered for updating only when the last sent
background is substantially different with the current one, i.e.,
over threshold λchg. And it would be sent to the edge only
when at least λgap batches have elapsed since the last update

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 5

Algorithm 1 Frame Recovering and Background Updating
1: Inputs: RoI I and bounding boxes D for a single frame,

image width W and height H , λroi: background pixel
threshold, λdet: detect ratio threshold to update Bg model,
λchg: threshold to determine whether the background is
substantially changed, λgap: minimum updating interval

2: Outputs: Background estimation model M, background
image B

3: Step 1: Recovering and Reconstruction Phase
4: Initialize background image B, estimation model M

5: M i,j
det ←

{
1, if pixel in D

0, otherwise

6: M i,j
black ←

{
1, if

∑3
c=1 Ii,j,c < λroi

0, otherwise
7: Mbg ←Mdet OR Mblack
8: ndet ← number of detected pixels in D
9: nroi ← number of non-zero pixels in I

10: if ndet/nroi < λdet then
11: Mfg ← NOT Mbg
12: Ifg ← I AND Mfg; Ibg ← B AND Mbg
13: Irec ← SUM(Ifg, Ibg)
14: M← update with Irec
15: B ← get new background image from M
16: end if
17: Step 2: Updating Phase
18: d ← 1

H×W

∑
∥B −Blast∥ (Blast: last sent background

image to the edge)
19: if d > λchg and B haven’t been updated for λgap rounds

then
20: update B on the edge
21: end if

(Line 18-21), which avoids sending updates to the edge too
frequently and further reduces the communication overhead of
background transmission.

2) Dynamic Overlay on Non-object Background: The bg
reconstructor proposed in Section III-B1 aims to reconstruct
non-object part of the video feeds, e.g., roads, trees, etc. How-
ever, detected objects could also be part of the background,
e.g., cars in parking lots, standstill humans on roads. In order
to save the bandwidth of transferring static detected objects
in the RoI, we design a dynamic overlay mechanism to add
these objects onto the background for RoI generation at the
edge. It takes the bounding boxes of static objects tracked on
the cloud and the original frames as inputs, then dynamically
generates new background images by overlaying these static
objects.

The key of identifying static objects is to track each
individual object over multiple frames and check whether
their corresponding locations have changed or not. We use a
multiple-objects tracking (MOT) algorithm [44] in the cloud to
track detected objects. For each object, if the location remains
the same across a certain number of frames (e.g., a batch), the
object is considered as static. The ID and bounding boxes of
static objects are then sent to the edge for further processing.

After receiving the information of static objects, the edge

will add these objects to the background by modifying pixels
at corresponding locations. At the same time, the detection
results of these objects are cached for later use. Since these
static objects could be temporary, we need to remove them
from the background when they are no longer static (i.e., start
to moving). This can be achieved by examining the RoIs at the
edge. If the generated RoIs overlap with regions of an overlaid
object, it means the object has moved. Then the background
is reset to be the non-object one (i.e., before overlaying) and
the cached detection results are also cleared. Otherwise, the
object is still static and its detection results could be used as
part of inference results. In addition, when the edge receives
new background image from the cloud, the overlay information
will also be cleared (i.e., to the state of not containing static
objects).

Dynamically overlaying objects on non-object background
acts as an efficient way to generate background while reducing
the communication overhead of background transmission be-
tween the edge and cloud. The edge only needs to know which
object is static in order to add them to the background, and
the overhead of transmitting these information is negligible.
Overlaid objects are automatically removed once they move
by checking the RoIs at the edge. Note that the MOT model
in the cloud operates on the object level, we only implement
background overlay for the object detection task. However, the
idea of overlaying the background with static objects can be
generalized to other tasks. For example, we can use a multiple
keypoints tracking model to overlay objects for the human
keypoint detection task.

C. Adaptive RoI Generation

After receiving background image B from the cloud, each
input frame is compared against B for RoI generation. How-
ever, generating accurate RoIs is difficult due to inevitable
background reconstruction noise. In this paper, we propose a
lightweight adaptive weighting module that learns from past
inference results to generate accurate RoIs. To further reduce
the bandwidth consumption of transferring RoIs, we take the
object size in RoIs into consideration and adopt adaptive RoI
encoding.

1) Difference Detector: RoI generation is essential for
bandwidth saving. It adopts the idea of only transferring highly
confident regions in a frame while setting remaining regions to
black to reduce encoded video size, hence saving bandwidth
consumption. Similar approaches have been proposed in [5],
which used server feedback to determine high quality RoIs in
the second run. In VaBUS, we leverage the characteristic of
fixed background to remove pixels unrelated to the task in one
run.

Given a background image B and video frame I , the mask
of RoI can be computed as

M i,j
roi =

{
1, if d(I,B)i,j > λroi

0, otherwise
(1)

where d(I,B) = |conv2d(I)− conv2d(B))|, conv2d denotes
the convolution operation and λroi is the distance threshold to
determine whether a pixel is the same as in background or

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 6

Camera

Count Matrix Std Matrix

Generate

Frame Frame + 1 Frame + 2 Frame + 3

Frame Mask

Weight matrix

Weighted mask RoI

Diff
Detector

Multiply

Learning

AND

Fig. 3. Adaptive weighting learning process.

not. The convolution operation creates a smooth version of B
and I to remove noise and also decreases the computation cost
of later procedures on the edge device. We further perform a
morphological operation (i.e., dilation) on Mroi, to ensure the
object of interest is fully visible in the RoI. With Mroi, we can
take RoIs from frames I using Mroi, while setting remaining
pixels to be black.

2) Adaptive Weighting: Since the reconstructed background
image contains noise and the pixel value for background region
is unlikely to be identical across frames, simply generating
RoIs using pixel-wise image difference as in Equation 1 would
produce a number of false-alarmed regions. Therefore, we
propose an adaptive weighting module to boost the accuracy
of RoIs. Specifically, we add a weight to d(I,B) as

d(I,B) = w(I) ∗ |conv2d(I)− conv2d(B))| (2)

where the calculation of w(I) is described below.
Firstly, we maintain a Count matrix C of h×w (initialized

as zero matrix, h and w is the height and width of the image
after the conv2d operation) to record the number of rounds
since the last detected object occurring at each pixel location.
A lower value in C means that the specific pixel location
observes objects more recently. For each image, the values
of C locating in detected regions are decreased by λ1, and
remaining values are increased by λ2. In our implementation,
we choose λ1 > λ2 to enable the value of regions which
recently observed objects to increase more gradually. Under
this setting, once a region (x1, y1, x2, y2) ((x1, y1) denotes
the coordinate of upper-left corner and (x2, y2) denotes the
coordinate of lower-right corner) observes a detected object
(i.e., C[y1 : y2, x1 : x2] -= λ1), it will take more than one
round (i.e., batches of frames) to increase the values in C[y1 :
y2, x1 : x2] to zero. The count matrix C is used to calculate
the weight w through a mapping function f that we will cover
shortly.

For each incoming frame I , we also maintain a Std matrix
S, which calculates the standard deviation of pixel values at
each location in a sliding window manner. When generating
weights w(I) from the count matrix C, pixels in C where
Si,j is larger than threshold λstd and Ci,j > 0 will be
reset to zero. The reason to do so is that high variance of
pixel values (i.e., Si,j > λstd) may indicate the occurrence

RoI Param.

Frames

Batch 0

Generate

High quality Low quality

Vehicle

Vehicle

Detect

Update

Detect

Update

Update Update

Batch 1 Batch 2
Size Matrix

Camera

Detection
ResultsInfer. Model

Fig. 4. Learning adaptive RoI encoding parameters.

of new objects. This ensures pixels being suppressed (i.e.,
Ci,j > 0) can be reactivated when large value fluctuation
occurs, thus avoiding miss-detection of objects that occurs in
these suppressed pixels.

Finally, the weight matrix for a given image I is calculated
as w(I) = f(C) where f(x) = [1 − x/λ1]

λ2
0 is a linear

mapping function which is clipped in the range [0, λ2]. λ1 is a
positive number, controlling the suppressing speed of regions
where no objects are observed. λ2 (also a positive number)
determines the maximum highlighting ratio. The weight matrix
w monotonously decreases with the increase of C, enabling
regions with no objects occurred and pixel value unchanged to
be suppressed, while regions that continually observe objects
to be highlighted. The process is illustrated in Figure 3.

3) Adaptive RoI encoding: Encoding with unbalanced qual-
ity level across the frame has been shown as an effective
approach of reducing bandwidth consumption in prior works
[4], [5]. Through assigning higher encoding quality to regions
that require more details (e.g., regions with small objects) and
lower quality to remaining regions, the inference accuracy can
be improved while the bandwidth consumption is reduced.
In VaBUS, background subtraction and overlay work as the
first step to assign unbalanced encoding quality, i.e., setting
background pixels to black which can then be optimally
compressed. To further reduce the size of encoded videos, we
take the object size in frames into consideration and propose
adaptive RoI encoding, as shown in Figure 4.

The key of adaptive RoI encoding is to assign higher
encoding quality to regions with small objects and lower
quality to regions with large objects. When the object is
large in size, deep learning models could produce accurate
inference results despite of low encoding quality. However,
when the object is small, deep learning models are susceptible
to quality levels and might fail to detect the objects when
encoding quality drops. For each frame in the cloud, we keep
a size matrix Z to log the size of detected object per pixel
location. For example, given an object with bounding box
(x1, y1, x2, y2), Z is updated with Z[y1:y2,x1:x2] = (1 − α) ∗
Z[y1:y2,x1:x2] + α ∗ (x2 − x1) ∗ (y2 − y1) where α is the
updating ratio. When generating RoI encoding parameters, we

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 7

Frame 0 Frame Frame + 1
Obj #n

Obj #n
Obj #m

Obj #m

shift shift Scaling Ratio

MOT Results

Local
Mapping Cache

Bbox Estimation

Disconnect

…

Fig. 5. Offline experience-driven learning.

first classify values in Z to either large or small size using a
threshold λsize. Regions whose values are smaller than λsize are
enclosed in rectangles to be set with higher encoding quality
while the remaining with lower quality. The RoI encoding
parameters are periodically sent to the edge device, to encode
incoming frames.

D. Offline Estimation
The mapping estimator module works as an alternative

approach to generate estimated inference results when the
edge fails to receive response from the cloud server within a
given time frame. Unlike traditional approaches that estimate
inference results based on motion vectors or optical flow [4],
[15], we propose a new lightweight experience-driven method
to learn from previous inference results. First, the cloud runs
a MOT model (same as in §III-B2) to track each object and
sends the tracking information to the edge. Then the edge
device learns a mapping from the last bounding box to the
current one for each individual object. When the cloud fails
to deliver inference results on time, the edge would produce
estimated results based on local mapping cache. The pipeline
is illustrated in Figure 5.

1) Mapping Function Update: The details of updating
local mapping cache based on detection results are shown in
Algorithm 2. We use matrix Sx, Sy to record the shift on
x- and y-axis direction respectively and E to record scaling
ratio per pixel location. For each individual object, the shifts
on x- and y-axis direction are calculated as the corresponding
difference of center point from two adjacent frames (line 6 -
9). Scaling ratio is defined as the ratio of current bounding
box size to the previous one, multiplied by an expanding ratio
β to slightly enlarge the region (line 10). For smooth changing
of parameters, we update each parameter with the rate of α.

2) Bounding Box Estimation: Given an initial bounding box
B0 for frame I , the mapping estimator module tries to predict
the inference results of n consecutive frames using the local
mapping cache Sx, Sy , and E, as shown in Algorithm 3. For
each bounding box (x1, y1, x2, y2), we first take the average of
Sx, Sy , and E from the same region as the shifting and scaling
ratio (line 5 - 6). To avoid error accumulation, we compensate
the shifting and expanding ratio in each round (line 7 - 8).
Finally, the bounding boxes of the previous frame are shifted
and scaled to generate new bounding boxes for the current
frame (line 9 - 13).

Our mapping estimator is based on the premise that objects
at the same location follow the same moving pattern, i.e., the

Algorithm 2 Mapping Function Update

1: Inputs: tracked bounding box Dj
i (i.e., jth object in ith

frame), updating rate α (e.g., 0.8), expanding ratio β (e.g.,
1.05)

2: Outputs: local mapping cache Sx, Sy and E
3: Initialize mapping matrix Sx, Sy and E as zero matrix
4: for bounding box (x1, y1, x2, y2) in Dj

i do
5: (x′

1, y
′
1, x

′
2, y

′
2)← Dj

i−1

6: m′
x ← (x′

1 + x′
2)/2; m′

y ← (y′1 + y′2)/2
7: mx ← (x1 + x2)/2; my ← (y1 + y2)/2
8: Sx[y1 : y2, x1 : x2] ← (1 − α) ∗ Sx[y1 : y2, x1 : x2] +

α ∗ (mx −m′
x)

9: Sy[y1 : y2, x1 : x2] ← (1 − α) ∗ Sy[y1 : y2, x1 : x2] +
α ∗ (my −m′

y)
10: r ← (x2 − x1)/(x

′
2 − x′

1) ∗ (y2 − y1)/(y
′
2 − y′1) ∗ β

11: E[y1 : y2, x1 : x2]← (1−α)∗E[y1 : y2, x1 : x2]+α∗r
12: end for

direction and speed of objects at the same pixel location is
similar in adjacent frames. This pattern is commonly observed,
e.g., cars on the same lane have similar trajectory. In addition
to predicting shifts on the x- and y-axis direction as in
traditional methods, the mapping estimator is also able to
predict scaling ratio, resulting in more accurate estimation.

Algorithm 3 Bounding Box Estimation
1: Inputs: initial bounding box D0, prediction step n, map-

ping cache Sx, Sy and E, shrinking rate β1 (e.g., 0.99)
and expanding rate β2 (e.g., 1.01)

2: Outputs: estimated bounding box D1, D2, · · · , Dn

3: for ith round in 1, 2, · · · , n do
4: for (x1, y1, x2, y2) of jth object in Bj

i−1 do
5: sx ← Sx[y1 : y2, x1 : x2]; sy ← Sy[y1 : y2, x1 : x2]
6: e← Ex[y1 : y2, x1 : x2]
7: sx ← βi

1 ∗ sx; sy ← βi
1 ∗ sy

8: e←
{

max(1, βi
1 ∗ e), if e > 1

min(1, βi
2 ∗ e), otherwise

9: x̂1 ← x1 + sx − (e− 1) ∗ (x2 − x1)/2
10: x̂2 ← x2 + sx + (e− 1) ∗ (x2 − x1)/2
11: ŷ1 ← y1 + sy − (e− 1) ∗ (y2 − y1)/2
12: ŷ2 ← y2 + sy + (e− 1) ∗ (y2 − y1)/2
13: Bj

i ← (x̂1, x̂2, ŷ1, ŷ2)
14: end for
15: end for

IV. EXPERIMENTAL RESULTS

A. Implementation

Experimental Setup: In the hardware setup, we use a Dell
Precision 7920 Workstation Desktop Tower with a GeForce
RTX 3090 GPU as the cloud server, and an Nvidia Jetson
Xavier NX connected with a CSI camera as the edge device.
The cloud server and edge device are connected with a TP-
LINK TL-SG1008D router through a 1Gbps Ethernet cable.
The operating system of cloud server and edge device are
Ubuntu 20.04 and Ubuntu 18.04 respectively.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 8

TABLE I
SUMMARY OF DATASETS.

Name Task Length (s) # frames # videos # objs
YouTube OD 7,157 201,768 7 2,264,926
VIRAT OD 2,414 71,097 8 778,822

MuPoTs-3D KD 89 2,669 4 8,370
Human3.6M KD 743 22,291 5 23,163

In the software setup, we implement the cloud part as an
HTTP server which receives encoded videos from the edge
device and returns inference results. On Jetson, we use the
Multimedia [45] API for real-time video encoding where the
setROIParams function [46] is used to set different RoI regions
and QP delta value as in [4]. Besides, GStreamer [47] API is
used for real-time video frame capture. In the cloud, we decode
the video to frames using the VideoCapture function [48] in
OpenCV. In order to improve the efficiency of the system, the
various modules of VaBUS is running in pipelines and multi-
threads. For deep learning inference in the cloud, the models
are accelerated by TensorRT with FP16 precision. VaBUS is
implemented in Python and the video encoder on Jetson is
implemented in C++.

Tasks: To demonstrate the effectiveness of VaBUS, we
evaluate the system with two different tasks: object detection
(referred to as OD) and human keypoint detection (referred to
as KD). For object detection, we use Yolov3 [49] to detect two
kinds of objects (i.e., persons and vehicles) and measure the
accuracy by F1-score. Note that F1-score is a classification
metric so we need to specify an IoU (i.e., Intersection over
Union) threshold over which the bounding box detection is
assumed as correct otherwise wrong before calculating the F1-
score. For human keypoint detection, we use OpenPifPaf [50]
and also measure the accuracy with F1-score. Similar to IoU
in the object detection case, we use OKS (i.e., Object Keypoint
Similarity) to determine whether the detected keypoint for a
human is correct or not. Unless stated otherwise, we use the
threshold of 0.5 for both IoU and OKS in our experiments.

Datasets: To evaluate VaBUS with various video illumi-
nation, resolution, object intensity, size, speed, etc, we use
datasets from four public sources representing a number of
real-world scenarios. (1) We obtain highway traffic videos
from top results on YouTube [51] by searching the keyword
’highway traffic videos’. Videos not captured by surveillance
cameras, e.g., dashcam videos, are removed manually. (2)
We select a subset of videos from the VIRAT Video Dataset
[52], which is a video surveillance dataset containing videos
spanning across diverse resolution, background clutter, scenes
and human activity/event categories. (3) We choose a subset
of videos from the MuPoTs-3D Dataset [53], [54], which is a
large scale dataset showing real images of sophisticated multi-
person interactions and occlusions. (4) We choose a few videos
from the Human3.6M Dataset [55], [56], which captures the
poses of professional actors in various of scenarios, including
discussing, eating, exercising, greeting, etc. The YouTube and
VIRAT datasets are evaluated with object detection task, while
the other two are with human keypoint detection task. Unless
stated otherwise, we only use the first 10 minutes of the videos
for the purpose of performance evaluation. A summary of

datasets can be found in table I.

B. Overall Performance

VaBUS is able to achieve high accuracy while considerably
reducing the transmission size of video data. For reproducible
experiments, we evaluate the overall performance of VaBUS
on four datasets by extracting raw frames as camera input.
Specifically, the frames are resized to 720×406 and fed into
the edge device with the batch size of 15 and the frame rate
of 15FPS. To measure the detection accuracy, we calculate
the F1-score between the inference results of VaBUS and the
ground truth results of extracted frames (which are resized
to the same resolution) from videos. The reason to choose a
frame rate of 15FPS is to ensure enough computing resources
are available for other modules. The input frame rate is a
parameter that can be adjusted according to the actual task
to perform and more experiments about it can be found in
Figure 10. Since the frames are processed in batches in favor of
video encoding, the latency is calculated as the time difference
between a batch of frames is ready and the detection results
are postprocessed on the edge device.

Table II shows the overall performance of VaBUS with two
tasks on the four datasets. Compression ratio (i.e., Compress.)
is calculated as the ratio of the reduced transmission data size
in VaBUS over the baseline, which represents the extent of
these original frames are compressed to. In the object detection
case, it can be observed that VaBUS achieves an F1-score of
88.9% and 92.6% while reducing the transmission data size
by 57.5% and 26.8% on the VIRAT and YouTube dataset
respectively. In the human keypoint detection case, the F1-
score is similar (86.8% and 94.6%) but the compression ratio
of Human3.6M is much higher (76.9%). The precision is much
higher than recall in the OD task, while they are more balanced
in the KD task. The reason might be that the KD task is
more complicated than the OD task. For OD, an object is less
likely to be miss-detected once it is shown in the RoIs while a
keypoint could be easily missed due to inaccurate location. The
latency of OD and KD tasks on four datasets is around 1100ms
(1149.5ms on average), which meets our latency requirement
in §III-A. The results show that VaBUS is able to effectively
reduce bandwidth consumption and maintain high accuracy
and low latency at the same time.

Figure 6 shows the detailed composition of bandwidth
consumption and latency of VaBUS. In Figure 6a, RoI rep-
resents encoded video size sent from Jetson to the cloud
server after background subtraction and adaptive RoI encod-
ing. Background is the total size of transferred background
images. Raw shows the size of baseline approach where
the frames are encoded without any processing. It is shown
that Background occupies only a negligible amount of trans-
ferred size compared to RoI, which means the background
reconstruction module causes few overhead on bandwidth.
The bandwidth consumption of KD task (i.e., MuPoTs-3D
and Human3.6M) is higher than OD task (i.e., VIRAT and
YouTube). The reason is that human keypoint detection re-
quires higher encoding quality in order to correctly detect the
keypoints, while lower quality can be used to find bounding

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 9

TABLE II
OVERALL PERFORMANCE OF VABUS ON FOUR DATASETS.

Task Dataset F1-score Precision Recall Compress. Latency

OD VIRAT 88.9% 94.7% 85.2% 57.5% 1084 ms
YouTube 92.6% 95.7% 91.6% 26.8% 1160 ms

KD MuPoTs-3D 86.8% 86.5% 88.8% 25.0% 1154 ms
Human3.6M 94.6% 94.4% 96.1% 76.9% 1200 ms

TABLE III
PERFORMANCE OF VABUS ON TWO DATASETS FOR THE OBJECT DETECTION TASK.

Dataset Approaches F1-score Compress. Latency CPU GPU

VIRAT

Baseline 94.8% 0% 635 ms 23.2% 2.1%
Baseline + BS 88.4% 52.4% 1048 ms 31.6% 0.0%

Baseline + BS + AW 88.1% 58.1% 1062 ms 31.7% 0.0%
Baseline + BS + AW + RoIE 88.9% 57.5% 1084 ms 31.3% 0.0%

YouTube

Baseline 95.1% 0% 654 ms 25.1% 3.1%
Baseline + BS 92.7% 17.0% 1362 ms 44.4% 2.1%

Baseline + BS + AW 93.6% 16.9% 1268 ms 42.5% 0.0%
Baseline + BS + AW + RoIE 92.6% 26.8% 1160 ms 36.3% 0.0%

VIRAT
Youtube

MuPoTs-3D
Human3.6M0.0

0.5

1.0

1.5

Ba
nd

. C
on

su
m

. (
M

bp
s)

RoI
Background

Raw

(a) Bandwidth consumption.

get_roi
send_roi

decode infer
postproc.0

100

200

300

400

500

Ti
m

e
(m

s)

VIRAT
Youtube

MuPoTs-3D
Human3.6M

(b) Latency composition.

Fig. 6. Bandwidth consumption and latency composition of VaBUS.

boxes in object detection. In Figure 6b, we show the latency
experienced by each component of VaBUS. get roi measures
the preprocessing time for generating RoIs from input frames.
send roi is the total time of encoding RoIs to videos and
streaming time from the edge device to cloud server. decode
measures the time for decoding videos to frames in the cloud
server, and infer measures the inference time of deep learning
models. postproc. (short for postprocessing) mainly includes
the time of background overlay (§III-B2). Note that since
background overlay is only implemented for the OD task
in our experiments, the postprocess time is zero for the KD
task. It can be observed that the latency is mainly caused by
get roi (340ms on average), send roi (328ms on average) and
infer (341ms on average). In our experiments, video encoding
is already hardware-accelerated, but RoI generation is not
optimized. Besides, deep learning model inference can be
further accelerated using distributed or parallel computation
techniques. Considering that the latency of RoI generation
and deep learning inference latency account for 30.3% and
30.4% of the total latency respectively, an optimization room
of 60.7% latency (681ms in total) can be explored. We leave
the further optimization of VaBUS for future work.

C. Ablation Study

To understand each component’s impact on VaBUS, we
perform ablation study by examining each functioning part.
We measure the accuracy (i.e., F1-score) of object detec-

tion task in four approaches: 1) the baseline solution (Base-
line), 2) enabling background subtraction (BS) which includes
background reconstruction and overlay, 3) enabling adaptive
weighting (AW) and 4) enabling adaptive RoI encoding (RoIE).
The baseline approach follows the straightforward pipeline
of encoding, decoding and inferring all frames without any
processing. Other experimental settings remain the same as
§IV-B.

Table III shows the results of ablation study on VIRAT and
YouTube datasets. It can be observed that enabling background
subtraction (BS) substantially decreases the compression ratio
(52.4% and 17.0%) while the accuracy only has a slight drop
(6.4% and 2.4%). The AW module has different effects on
different datasets (compared with Baseline+BS). On VIRAT
dataset, the F1-score maintains about the same (88.4% and
88.1%) while the compression ratio is further increased (from
52.4% to 58.1%). On YouTube dataset, the compression ratio
is rarely affected (17.0% and 16.9%) but F1-score is boosted
from 92.7% to 93.6%. This is due to that the characteristics
of the two datasets are different. YouTube has a larger object
intensity so compression ratio is less affected, but the F1-score
is increased since generated RoIs become more accurate. After
adding the RoIE module, the compression ratio is increased
for YouTube dataset from 16.9% to 26.8% while maintaining
about the same for the VIRAT dataset (58.2% and 57.5%). The
reason might be that the compression ratio of VIRAT is already
very high (i.e., compressed by more than half compared to
Baseline) and it’s difficult for RoIE to find target low quality
regions in order to further save bandwidth. The average latency
for baseline approach is 644.5ms and adding the modules (i.e.,
BS, AW and RoIE) in VaBUS increases it to 1122ms, with a
rise of 477.5ms on average. Besides, our proposed modules
(i.e., Baseline+BS+AW+RoIE) require 8.1% and 11.2% more
CPU resource (9.6% on average) than the baseline approach.
Since our methods don’t rely on GPU, the utilization of GPU
resource is always low.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 10

0.00 0.25 0.50 0.75 1.00
F1-score

0.00

0.25

0.50

0.75

1.00

C
D
F better

(1)
(2)

(3)
(4)

(5)
(6)

(a) F1-score distribution

(1) (2) (3) (4) (5) (6)
Approach

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

)

20

42
57 58

68

93

48 54 48 49 44
53

F1-socre
CPU

0

50

100

150

200

La
te

nc
y

(m
s)

5

171

Latency

(b) Accuracy, CPU and latency

Fig. 7. Performance of mapping estimator (ME) module. 1-Worst, 2-ME,
3-MvOT, 4-OF, 5-MvOT+ME, 6-Best.

0 25 50 75 100
Compression Ratio (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

better

VIRAT
Youtube

MuPoTs-3D
Human3.6M

(a)

0 25 50 75
Compression Ratio (%)

80

90

F1
-s

co
re

 (%
)

be
tte

r

VIRAT
Youtube

MuPoTs-3D
Human3.6M

(b)

Fig. 8. Distribution of per-video bandwidth consumption and F1-score for
four datasets.

D. Offline Estimation Performance

The Mapping Estimator (ME) module of VaBUS is designed
to estimate inference results of current batch of frames based
on last batch. Figure 7 shows the performance of ME module.
In Figure 7a, we compare the F1-score and estimation latency
of six approaches on a sample dataset to estimate 20 batches
of frames (i.e., 300 testing frames in total). The Worst curve is
the lower bound of accuracy when there’s no inference result
(the F1-score is greater than zero since some frames contain
no object to detect). The Best curve refers to the upper bound
of accuracy which uses the detection results as estimation. The
ME curve represents our proposed mapping estimator module
in VaBUS. The MvOT curve reflects results of the motion
vector-based object tracking method in [4]. In the optical
flow-based (referred to as OF) approach, we use the dense
optical flow algorithm proposed by Gunnar Farneback [57] to
calculate the optical flow for all points in the frame. Since the
motion vectors can be obtained in the video encoding phase
with almost no computation overhead, we further boost the
performance of ME based on estimation results of MvOT (i.e.,
MvOT+ME). From Figure 7a, it can be observed that there
are no statistically significant differences between MvOT and
OF. ME, though achieving lower accuracy (42%) than MvOT
(57%) and OF (58%) when solely used, can be used to boost
the accuracy a lot when combined with MvOT (i.e., 68% in
the MvOT+ME case). In Figure 7b, it is shown the latency of
ME is only 5ms per image on average while OF is as large
as 171ms. Besides, ME can be faster when fewer objects need
to be estimated, while OF requires computation of the whole
image even though there is only one object to estimate.

203*360
406*720

812*1440
1080*1920

Resolution

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) F1-score
CPU usage

(a) Accuracy and CPU usage.

203*360
406*720

812*1440
1080*1920

Resolution

0

10

20

30

40

To
ta

l S
iz

e
(M

B)

Total size

−5

0

5

10

La
te

nc
y

(s
)

Latency

(b) Total size and latency.

Fig. 9. System performance under various input resolution.

15 20 25 30
FPS (Batch_size = 15)

50

100

150

200

To
ta

l T
im

e
(s

)

101.6
79.0

61.5 60.6

Total

60

80

100

120

140

No
rm

. T
im

e
(%

)

101.6 105.3 102.6

121.2

Norm.

(a)

15 20 25 30
Batch Size (FPS = 30)

55
61
67
73
79
85

To
ta

l T
im

e
(s

)

60.6 59.0

67.4 68.5

Total

100

120

140

No
rm

. T
im

e
(%

)

121.2 118.0

134.8 136.9

Norm.

(b)

Fig. 10. Time consumption under various batch size and frame rate. (Norm.
: Normalized)

E. Sensitivity to Application Settings

Impact of video genres. Figure 8 shows per-video bandwidth
consumption and F1-score of fours datasets on the object
detection and human keypoint detection task. In Figure 8a,
it can bee seen that different dataset has different distribution
of compression ratio. VaBUS saves the most bandwidth on
Human3.6M while shows the least on YouTube. From Figure
8b, it can be observed that although the F1-score achieves
around 90%, the compression ratio shows a large variability
between videos (from -6.8% to 83.8%, -6.8% means the
transmission data size is increased by 6.8%). The reason is that
the compression ratio of VaBUS mainly depends on the area
of background filtered by the diff detector module (§III-C1).
For videos that show changes only in a small part of the
whole frames, VaBUS is able to save as large as 83.8%
bandwidth. But for videos with moving objects distributed
across the whole frame, VaBUS has few gains and may even
cost slightly more bandwidth than the baseline approach due
to the transmission of background image.
Impact of resolution. Frame resolution is a key factor to
consider when streaming videos. Figure 9 shows the impact
of resolution on accuracy (i.e., F1-score), CPU usage, total
transmission size (i.e., total size) and latency respectively for
the object detection task. From Figure 9a, it can be observed
that increasing the resolution from 203×360 to 812×1440 im-
proves the accuracy by 53% while a little drop (3.1%) occurs
when the resolution further rises to 1080×1920. The reason
might be that the system is too busy with computationally
intensive tasks such that it fails to get timely feedback (e.g.,
the update of background image) from the cloud server (Fig
9b). Besides, the input size of our object detection model
is set to be 416×416. Resolution larger than this size has
no benefit during inference. The increase of resolution also
significantly raises the transmission data size. From 203×360
to 1080×1920, the total transmission size is increased by 5.36
times (Fig 9b). When resolution is 203×360 or 406×720,
the system runs in real time with a latency of only around

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 11

0

100

200

300
Si

ze
 (K

B)
Video 1 Video 2

VaBUS (RoI) VaBUS (Bg) Baseline

0 20 40 60 80 100 120
Time (s)

0

100

Ac
cu

ra
cy

 (%
) Accuracy

1.0
1.5

La
te

nc
y

(s
)Latency

Fig. 11. Effects of background change to VaBUS.

one second, while the latency surges when the resolution is
higher (Fig 9b). Similarly, the CPU usage is saturated when
resolution is higher than or equal to 812×1440. This means
increasing the resolution does not necessarily improve the
system performance. It needs to be adjusted in accordance
with available computing resources on the edge device and
the actual application scenarios.
Impact of batch size and frame rate. Batch size and frame
rate are two key parameters controlling the latency of VaBUS.
The first one determines how fast the system consumes the
incoming data and the second one controls the data input
rate. Figure 10 shows the time consumed for streaming 1,500
frames under various of batch size and frame rate. Total
Time measures the throughput of the system by time elapsed
for processing (including encoding, streaming and inference,
etc) all the frames, while Norm. Time (short for Normalized
Time) is the ratio of Total Time to purely streaming time with
corresponding frame rate (i.e., closer to 100% means lower
latency). In Figure 10a, it can be observed that elevating
frame rate from 15FPS to 30FPS increases the throughput
of the system and shortens the total running time (i.e., Total
Time). Besides, the system is working in real time when
frame rate is less or equal to 25FPS while significant latency
is observed when frame rate reaches 30FPS (i.e., 121.2%
normalized time). When frame rate is fixed to be 30FPS
(Figure 10b), simply increasing batch size does not improve
the performance. On the contrary, the total time increases when
batch size is lifted to be more than 20. And the latency is also
increased (i.e., 134.8% and 136.8% normalized time). To this
end, the batch size and frame rate shall be carefully chosen
according to the application scenario to consistently meet the
latency requirement.
Impact of background change. VaBUS is able to auto-
matically reconstruct the background image in the cloud
and send updates to the edge when necessary. In order to
investigate the effects of video background changes to VaBUS,
we manually merge two one-minute clip from two different
videos to simulate the sudden change of video background.
The results are shown in Figure 11. It can be observed that
the transmission data size (i.e., Size) of baseline approach and
VaBUS is the same in the first four seconds, since there are
no background learned to be subtracted on the edge. When

VaBUS DDS EAAR0

250

500

750

1000

Ba
nd

. C
on

su
m

. (
Kb

ps
)

DDS (Low) DDS (High)

(a) Bandwidth consumption

VaBUS DDS EAAR0

25

50

75

100

Ac
cu

ra
cy

 (%
)

(b) Accuracy

Fig. 12. Comparison with other approaches.

City

Crossroad

Crossroad2
Motorway

Traffic
Traffic2

Traffic3
0

20

40

60

C
PU

 U
sa

ge
 (%

)

Baseline VaBUS

Fig. 13. CPU resources consumption of VaBUS.

the background is successfully sent to the edge on the fifth
second, the RoI size is substantially reduced and keeps lower
than the baseline approach hereafter. When the background
changes (i.e., from Video 1 to Video 2 on the 60th second),
the transmission data size surges again, and then two new
background images are reconstructed and sent to the edge. For
every certain periods of time (10 seconds in this case, shown
as the vertical lines), the RoI encoding parameters are updated
to the edge for adaptive RoI encoding (§III-C3). This is the
reason why the transmission data size of VaBUS for initial
frames from Video 2 is lower than the baseline approach.
Over the time frame of 2 minutes, VaBUS transferred only five
background images from the cloud to the edge and the sent RoI
size is consistently lower than the bsaeline approach. Besides,
changing the background does not impact the accuracy as
shown in the lower part of Figure 11. This can be explained
by that when the background is changed, the edge would fail
to subtract it from the input frames and streams the original
frames to the cloud for inference. The accuracy continuously
keeps high (94.4% on average) and latency stays between 1
second to 1.5 second, showing the superior performance of
VaBUS.

F. Comparison with Other Approaches

Unlike other approaches that work for general video
datasets, VaBUS focuses on videos from surveillance cam-
eras and leverages the techniques of background subtraction
and adaptive RoI encoding to significantly reduce bandwidth
consumption. We compare the bandwidth consumption and
accuracy of VaBUS with two other information pruning ap-
proaches, i.e., DDS [5] and EAAR [4]. Note that VaBUS lies
in the design space of information pruning and is independent
with video analytics systems focusing on other aspects, e.g.,
bandwidth adaption or inference acceleration. For DDS, we
use QP 23 for high quality feeds and QP 33 for low quality

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 12

Jetson
Xavier NX

CSI
Camera

(a) Our experimental platform (b) RoI

(c) Reconstructed Bg (d) Detected Frame

Fig. 14. Real-world deployment and qualitative results of VaBUS.

feeds. For EAAR, we only use the dynamic RoI encoding
module (other modules like parallel streaming and inference
are independent with VaBUS) and enlarge the RoIs from
last detection result by one macroblock (as in the original
paper). From Figure 12, it is shown the accuracy of the three
approaches is similar but VaBUS consumes 31.1% and 41.7%
less bandwidth compared with DDS and EAAR respectively.
The reason is that the bandwidth needed for transferring the
full background content in DDS and EAAR are saved in
VaBUS.

G. Resource Consumption

To investigate the system resource usage of VaBUS, we
show the distribution of CPU usage of 7 videos from the
YouTube dataset in Figure 13. It is shown that the CPU usage
mostly stays in the range of 10%-60% for both the baseline ap-
proach and VaBUS. Unlike other video analytics systems e.g.,
DDS [5] and EAAR [4] that use minimal system resources, we
trade a small amount of computing resources for substantial
bandwidth saving. From Figure 13, it can be observed that
the overhead of VaBUS is 10%-20% compared to the baseline
approach, while the exact value changes along with different
videos. The system resource usage of baseline approach as
well as the modules of VaBUS can be further optimized to
run more efficiently and we leave the optimization for future
work.

H. Real-world Deployment

To show the effectiveness under real-world application sce-
narios, we test VaBUS’s performance under practical settings.
The edge device, i.e., Jetson Xavier NX, is connected with a
CSI camera to capture video frames in resolution of 406×720
and 15FPS. The cloud server is deployed behind a remote
VPS located in another city. The bandwidth between Jetson
and cloud server is 10 Mbps, measured by iperf [58]. Figure
14a shows the actual deployment of our experimental hardware
platform. Figure 14b represents the RoI sent from Jetson after
background subtraction, where we can see a large number
of pixels are erased and filled with black. The reconstructed
background image is shown in Figure 14c, which is a clean

street image. In the cloud server, we combine the RoI and
background image to recover the original frame and perform
inference, as shown in Figure 14d. It can be seen that the
vehicles are correctly detected. The latency is 1170ms and
CPU usage is 35.2%, which is consistent with our previous
experiments (e.g., Table III and Figure 9). The results show
VaBUS is able to effectively perform deep learning inference
tasks with insignificant resource overhead under real-world
settings.

V. LIMITATION AND FUTURE WORK

Surveillance camera: The amount of bandwidth saved by
VaBUS relies on the assumption that the video comes from a
surveillance camera. Unlike other video analytics system, e.g.,
DDS and EAAR, which is applicable for all videos, VaBUS
focuses on a specific set of it. Although surveillance videos
with fixed background account for a considerable proportion
of existing video streams, VaBUS degrades to RoI encoded
streams without background subtraction when running on
videos captured by moving cameras, e.g., dashcams or drones.
And slightly more bandwidth might be consumed due to the
transmission of background image.
Tradeoff of bandwidth saving: Although VaBUS is able to
save a large amount of bandwidth with acceptable latency
of around one second, there is a tradeoff between bandwidth
consumption and latency. Generating RoIs on the edge device
as well as processing frames in batches inevitably increase the
latency. The overhead VaBUS imposes on the system may be
overwhelming for low-end edge devices with fewer available
computing resources.
Future work: VaBUS is designed to improve a single aspect
of the video analytics pipeline, i.e., saving bandwidth by
transporting only changed foreground regions of the frames.
Therefore, it can be combined with other independent sys-
tems to further improve the performance, e.g., integrating
AWStream [22] to dynamically adjust streaming settings and
adapt to available bandwidth. Besides, more optimization can
be applied on the edge device to utilize the limited resources
more efficiently, e.g., moving image-related operations from
CPU to the unoccupied GPU.

VI. CONCLUSION

Semantic compression has become essential in the deploy-
ment of real-time video analytics applications, and this work
shows that huge bandwidth savings can be realized by sending
only foreground of the video frames from the edge to the
cloud. We have demonstrated a concrete design of VaBUS to
leverage the rich contextual information of video feeds: learn
the background information in the cloud, generate accurate
RoI regions on the edge and utilize context-dependent charac-
teristics for lightweight experience-drive learning. We imple-
ment the task-oriented communication system with commodity
hardware, and demonstrate that 25.0%-76.9% bandwidth con-
sumption can be saved with less than 10% accuracy degraded
and about one second latency. We believe the development of
such system will not only benefit edge-cloud real-time video
analytics, but also facilitate a wide range of video-related
applications.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 13

ACKNOWLEDGMENTS

This work is supported by National Natural Science Founda-
tion of China under grant No. 61972189, Guangdong Province
Key Area R&D Program under grant No. 2018B010113001,
and the Shenzhen Key Lab of Software Defined Networking
under grant No. ZDSYS20140509172959989.

REFERENCES

[1] J. Barthélemy, N. Verstaevel, H. Forehead, and P. Perez, “Edge-
computing video analytics for real-time traffic monitoring in a smart
city,” Sensors, vol. 19, no. 9, pp. 1–23, 2019.

[2] I. Olatunji and C. H. Cheng, Video Analytics for Visual Surveillance and
Applications: An Overview and Survey, Jul. 2019, pp. 475–515.

[3] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for
public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp.
1675–1696, 2019.

[4] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, Los Cabos, Mexico,
Aug. 2019.

[5] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, Virtual Event, USA, Jul.
2020.

[6] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. Dulloor, “Scaling video analytics on constrained edge nodes,”
in Proceedings of Machine Learning and Systems, Palo Alto, USA, Mar.
2019.

[7] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
Virtual Event, USA, Jul. 2020.

[8] J. Yi, S. Choi, and Y. Lee, “Eagleeye: Wearable camera-based person
identification in crowded urban spaces,” in Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
London, United Kingdom, Apr. 2020.

[9] “Singapore to double police cameras to more than 200,000 over next
decade — reuters,” Accessed Mar. 31, 2022. [Online]. Avail-
able: https://www.reuters.com/world/asia-pacific/singapore-double-
police-cameras-more-than-200000-over-next-decade-2021-08-04/

[10] A. Mohan, K. Gauen, Y.-H. Lu, W. W. Li, and X. Chen, “Internet of
video things in 2030: A world with many cameras,” in 2017 IEEE
international symposium on circuits and systems (ISCAS), Baltimore,
USA, May. 2017.

[11] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (hevc) standard,” IEEE Transactions
on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[12] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering
mechanism to improve efficiency of large-scale video analytics,” IEEE
Transactions on Computers, vol. 69, no. 6, pp. 914–928, 2020.

[13] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC), Virtual Event, USA, Nov. 2020.

[14] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu, and
J. Gonzalez, “Rexcam: Resource-efficient, cross-camera video analytics
at enterprise scale,” ArXiv, vol. abs/1811.01268, 2018.

[15] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, Seoul, South Korea, Nov. 2015.

[16] “Vpi - vision programming interface: Background subtractor,” Accessed
Mar. 31, 2022. [Online]. Available: https://docs.nvidia.com/vpi/algo
background subtractor.html

[17] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh, “Real-
time video inference on edge devices via adaptive model streaming,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, Virtual Event, USA, Oct. 2021.

[18] R. Mehta and R. Shorey, “Deepsplit: Dynamic splitting of collabora-
tive edge-cloud convolutional neural networks,” in 2020 International
Conference on COMmunication Systems & NETworkS (COMSNETS),
Bengaluru, India, Jan. 2020.

[19] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-
stream: Dynamic stem-sharing for multi-tenant video processing,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), Boston,
USA, Jul. 2018.

[20] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing neural network queries over video at scale,” Proc. VLDB
Endow., vol. 10, no. 11, pp. 1586—-1597, 2017.

[21] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), Boston, USA, Mar. 2017.

[22] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, Budapest, Hungary, Aug. 2018.

[23] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, Budapest, Hungary, Aug. 2018.

[24] B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Background
subtraction in real applications: Challenges, current models and future
directions,” Computer Science Review, vol. 35, p. 100204, 2020.

[25] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., Cambridge, UK, Aug. 2004.

[26] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for
background subtraction,” in European conference on computer vision,
Berlin, Heidelberg, Apr. 2000.

[27] B. Han and L. S. Davis, “Density-based multifeature background sub-
traction with support vector machine,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 5, pp. 1017–1023, 2011.

[28] R. Trabelsi, I. Jabri, F. Smach, and A. Bouallegue, “Efficient and
fast multi-modal foreground-background segmentation using rgbd data,”
Pattern Recognition Letters, vol. 97, pp. 13–20, 2017.

[29] T. Akilan, Q. J. Wu, and Y. Yang, “Fusion-based foreground en-
hancement for background subtraction using multivariate multi-model
gaussian distribution,” Information Sciences, vol. 430, pp. 414–431,
2018.

[30] M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional neural net-
work for video sequence background subtraction,” Pattern Recognition,
vol. 76, pp. 635–649, 2018.

[31] M. Braham and M. Van Droogenbroeck, “Deep background subtraction
with scene-specific convolutional neural networks,” in 2016 interna-
tional conference on systems, signals and image processing (IWSSIP),
Bratislava, Slovakia, May. 2016.

[32] D. Sakkos, H. Liu, J. Han, and L. Shao, “End-to-end video background
subtraction with 3d convolutional neural networks,” Multimedia Tools
and Applications, vol. 77, no. 17, pp. 23 023–23 041, 2018.

[33] Y. Yang, T. Zhang, J. Hu, D. Xu, and G. Xie, “End-to-end background
subtraction via a multi-scale spatio-temporal model,” IEEE Access,
vol. 7, pp. 97 949–97 958, 2019.

[34] M. C. Bakkay, H. A. Rashwan, H. Salmane, L. Khoudour, D. Puig,
and Y. Ruichek, “Bscgan: Deep background subtraction with conditional
generative adversarial networks,” in 2018 25th IEEE International
Conference on Image Processing (ICIP), Athens, Greece, Oct. 2018.

[35] J. Gracewell and M. John, “Dynamic background modeling using deep
learning autoencoder network,” Multimedia Tools and Applications,
vol. 79, no. 7, pp. 4639–4659, 2020.

[36] A. A. M. Al-Saffar, H. Tao, and M. A. Talab, “Review of deep
convolution neural network in image classification,” in 2017 Inter-
national conference on radar, antenna, microwave, electronics, and
telecommunications (ICRAMET), Jakarta, Indonesia, Oct. 2017.

[37] W. Gu, S. Bai, and L. Kong, “A review on 2d instance segmentation
based on deep neural networks,” Image and Vision Computing, vol. 120,
p. 104401, 2022.

[38] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with
deep learning: A review,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[39] M. M. Kasar, D. Bhattacharyya, and T. Kim, “Face recognition using
neural network: A review,” International Journal of Security and Its
Applications, vol. 10, no. 3, pp. 81–100, 2016.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. X, NOVEMBER 2022 14

[40] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A compre-
hensive survey of deep learning for image captioning,” ACM Computing
Surveys (CsUR), vol. 51, no. 6, pp. 1–36, 2019.

[41] W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaudhuri,
and Y. Zhang, “Elf: accelerate high-resolution mobile deep vision with
content-aware parallel offloading,” in Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, New
Orleans, United States, Oct. 2021.

[42] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density esti-
mation per image pixel for the task of background subtraction,” Pattern
recognition letters, vol. 27, no. 7, pp. 773–780, 2006.

[43] “Opencv: cv::backgroundsubtractorknn class reference,” Accessed
Mar. 31, 2022. [Online]. Available: https://docs.opencv.org/4.x/db/d88/
classcv 1 1BackgroundSubtractorKNN.html

[44] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image
processing (ICIP), Phoenix, USA,, Sep. 2016.

[45] “Jetson linux api reference: Multimedia apis — nvidia docs,” Accessed
Mar. 31, 2022. [Online]. Available: https://docs.nvidia.com/jetson/l4t-
multimedia/mmapi group.html

[46] “Jetson linux api reference: Nvvideoencoder class ref-
erence — nvidia docs,” Accessed Mar. 31, 2022.
[Online]. Available: https://docs.nvidia.com/jetson/l4t-multimedia/
classNvVideoEncoder.html#a395ee26e60ea41b374774e2cc996ce55

[47] “Nvidia jetson linux developer guide : Multimedia — nvidia docs,”
Accessed Mar. 31, 2022. [Online]. Available: https://docs.nvidia.com/
jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%
20Development%20Guide/accelerated gstreamer.html

[48] “Opencv: cv::videocapture class reference,” Accessed Mar. 31,
2022. [Online]. Available: https://docs.opencv.org/3.4/d8/dfe/classcv
1 1VideoCapture.html

[49] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
ArXiv, vol. abs/1804.02767, 2018.

[50] S. Kreiss, L. Bertoni, and A. Alahi, “Openpifpaf: Composite fields
for semantic keypoint detection and spatio-temporal association,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–14, 2021.

[51] “highway traffic videos - youtube,” Accessed Mar. 31, 2022.
[Online]. Available: https://www.youtube.com/results?search query=
highway+traffic+videos

[52] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-scale
benchmark dataset for event recognition in surveillance video,” in CVPR
2011, Colorado, USA, June 2011.

[53] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar, G. Pons-
Moll, and C. Theobalt, “Single-shot multi-person 3d pose estimation
from monocular rgb,” in 2018 International Conference on 3D Vision
(3DV), Verona, Italy, Sep. 2018.

[54] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3d human pose estimation in the wild using
improved cnn supervision,” in 2017 international conference on 3D
vision (3DV), Qingdao, China, Oct 2017.

[55] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m:
Large scale datasets and predictive methods for 3d human sensing
in natural environments,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 7, pp. 1325–1339, 2013.

[56] C. Ionescu, F. Li, and C. Sminchisescu, “Latent structured models for
human pose estimation,” in 2011 International Conference on Computer
Vision, Barcelona, Spain, Nov. 2011.

[57] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis, Halmstad,
Sweden, Jun. 2003.

[58] “iperf - the tcp, udp and sctp network bandwidth measurement tool,”
Accessed Mar. 31, 2022. [Online]. Available: https://iperf.fr/

