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Abstract

Multiple access (MA) design is investigated to facilitate the coexistence of the emerging semantic

transmission and the conventional bit-based transmission in future networks. The semantic rate is adopted

for measuring the performance of the semantic transmission. However, a key challenge is that there is

no closed-form expression for a key parameter, namely the semantic similarity, which characterizes the

sentence similarity between an original sentence and the corresponding recovered sentence. To overcome

this challenge, we propose a data regression method, where the semantic similarity is approximated by a

generalized logistic function. Using the obtained tractable function, we propose a heterogeneous semantic

and bit communication framework, where an access point simultaneously sends the semantic and bit

streams to one semantics-interested user (S-user) and one bit-interested user (B-user). To realize this

heterogeneous semantic and bit transmission in multi-user networks, three MA schemes are proposed,

namely orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), and semi-NOMA.

More specifically, the bit stream in semi-NOMA is split into two streams, one is transmitted with the

semantic stream over the shared frequency sub-band and the other is transmitted over the separate

orthogonal frequency sub-band. To study the fundamental performance limits of the three proposed

MA schemes, the semantic-versus-bit (SvB) rate region and the power region are defined. An optimal

resource allocation procedure is then derived for characterizing the boundary of the SvB rate region and

the power region achieved by each MA scheme. The structures of the derived solutions demonstrate that

semi-NOMA is superior to both NOMA and OMA given its highly flexible transmission policy. Our

numerical results: 1) confirm that the proposed semi-NOMA is the optimal MA scheme as compared to

OMA and NOMA even under the symmetric channel case, and 2) reveal that the superiority of semi-

NOMA is more prominent when the channel condition of the S-user is better than that of the B-user.
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I. INTRODUCTION

Guided by Shannon’s masterpiece published in 1948 [2], wireless communication systems have

been developed rapidly from the first generation (1G) to the current fifth generation (5G) over the

past few decades. Many efficient transmission technologies (e.g., massive multiple-input multiple-

output (MIMO), millimeter wave communication, and advanced channel coding and modulation

methods) have been proposed to approach the fundamental performance limits. Despite these

achievements, the demand for capacity in wireless networks is expected to continue to grow ex-

plosively without limitations and for diverse and stringent scenarios, e.g., evolving from “human-

to-human” communications to “human-to-machine (H2M)” and “machine-to-machine (M2M)”

communications [3–5]. Facing these new challenges, researchers have begun to investigate the

next-generation wireless network, namely the sixth-generation (6G). According to traditional

reasoning, one way of achieving greater capacity is to increase the available bandwidth and

number of antennas [6, 7]. This, however, brings with it other challenges, such as extremely high

energy consumption, hardware cost, and algorithmic complexity. To overcome these limitations,

new technologies are needed for 6G.

Recently, semantic communications have drawn significant attention from both industry and

academia [8–11]. In contrast to conventional bit-based communication systems, the main idea

of semantic communications is to transmit the semantic meaning contained in the source data.

By doing so, the source data can be dramatically compressed and the required communication

resources can be significantly reduced [8, 10]. More importantly, semantic communications mesh

well with envisioned H2M and M2M communications, where the main purpose is intelligent

task execution, i.e., focusing on the semantic meaning instead of message distortion. It is worth

mentioning that the concept of semantic communications is not a completely new idea. In Weaver

and Shannon’s book published in 1949 [12], three levels of communication problems were

identified, namely a technical level, a semantic level, and an effectiveness level. Conventional

bit-based communications have well solved the technical-level problem, i.e., How accurately

can the symbols of communication be transmitted? As a further advance, semantic communica-

tions respond to the semantic-level and effectiveness-level problems, i.e., How precisely do the
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transmitted symbols convey the desired meaning? and How effectively does the received meaning

affect conduct in the desired way? However, given the previous technical limitations, semantic

communications have not been systematically investigated. Fortunately, recent advancements of

artificial intelligence and its effective applications in semantic information processing pave the

way to develop semantic communications for future wireless networks.

A. State-of-the-art

In the past few decades, growing research efforts have been devoted to addressing the semantic-

level and effectiveness-level communication problems defined in [12]. In contrast to the Shannon

classical information theory employing the statistical probabilities of messages, the authors of

[13] proposed the semantic information theory by employing the logical probabilities of the

content of messages. Based on this, the authors of [14] proposed a generic model for semantic

communications, where the semantic noise and semantic channel capacity are defined for measur-

ing semantic information. The authors of [15] proposed a semantic communication framework,

where the optimal transmission policy for minimizing the end-to-end average semantic error was

derived using the Bayesian game. Apart from the theoretical study of semantic communications,

researchers started to explore the implementation of semantic communications for delivering text,

image, and video by employing powerful deep learning (DL) tools. For example, motivated by the

success of employing DL in natural language processing (NLP), the authors of [16] developed a

DL-based joint source and channel coding (JSCC) approach for text transmission in the semantic

domain. Moreover, the authors of [17] further proposed a deep JSCC scheme for wireless image

transmission, which does not employ explicit codes like conventional schemes and achieves

superior performance in the low signal-to-noise ratio (SNR) and the limited channel bandwidth

regimes. The authors of [18] extended the deep JSCC into multi-channel image transmission and

proposed a bandwidth-agile scheme for achieving high transmission performance. The authors of

[19] developed a DL-based joint semantic-channel coding method for text transmission, known

as DeepSC, which is shown to outperform the deep JSCC proposed in [16]. Furthermore, the

DeepSC framework was extended by the authors of [20] for speech transmission. Recently, based

on the DeepSC text transmission [19], the authors of [21] proposed a new performance metric

termed semantic rate, and studied the resource allocation problem in a semantic-aware multi-user

communication network.
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B. Motivations and Contributions

With the rapid breakthrough of the emerging semantic communications and the steady de-

velopment of the currently employed bit-based communications, future networks are expected

to simultaneously support both the semantic and bit transmissions to provide ubiquitous, cus-

tomized, and intelligent connectivity among different types of devices (e.g., human, machine,

and their interactions). However, since the available radio resources are limited, one of the most

fundamental problems is how to design an efficient multiple access (MA) scheme to facilitate the

heterogeneous semantic and bit transmission for multi-user communications. Conventionally, MA

schemes can be generally classified into orthogonal multiple access (OMA) and non-orthogonal

multiple access (NOMA) [22]. It is well known that NOMA is capacity-achieving while OMA is

suboptimal in the conventional bit-based transmission [23]. Nevertheless, an interesting question

arises, when considering semantic communications, does this conclusion still hold or do we need

to develop new tailored MA schemes?

Driven by the above question, in this paper, we investigate the MA design for incorporating

semantic communications into wireless networks. A heterogeneous semantic and bit communi-

cation framework is proposed, where an access point (AP) simultaneously sends the semantic

and bit streams to one semantics-interested user (S-user) and one bit-interested user (B-user).

To realize this challenging heterogeneous transmission under the given radio resources, on the

one hand, the conventional OMA and NOMA schemes are proposed, where the two different

streams are delivered via the orthogonal frequency sub-band and the fully shared frequency band,

respectively. On the other hand, a novel MA scheme, namely semi-NOMA, is proposed, where

part of the bit stream is delivered with the semantic stream via the shared frequency sub-band

and the other part is delivered via the separate orthogonal frequency sub-band. Based on the

three proposed MA schemes, two fundamental performance limits, namely the semantic-versus-

bit (SvB) rate region and the power region, are characterized and compared to provide answers

to the raised question. It suggests that NOMA does not necessarily always outperform OMA,

while semi-NOMA is the optimal MA scheme in the new heterogeneous transmission.

The main contributions of this paper can be summarized as follows:

• We exploit the semantic rate for characterizing the performance of the semantic transmission,

which depends on the allocated frequency bandwidth and the achieved semantic similarity.

However, the semantic rate is intractable due to the lack of a closed-form expression for
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the semantic similarity. To solve this problem, we propose to employ the data regression

method and approximate the semantic similarity by a generalized logistic function with

respect to the received SNR.

• We propose a heterogeneous semantic and bit transmission framework, where an AP simul-

taneously sends the semantic and bit streams to one S-user and one B-user. To facilitate

this heterogeneous transmission, we propose three MA schemes, namely OMA, NOMA,

and semi-NOMA. To study the fundamental performance limits of the three proposed MA

schemes, we define 1) the SvB rate region, which consists of all the achievable semantic

and bit rate-pairs, and 2) the power region, which determines the minimum transmit power

to achieve the target semantic and bit rates.

• We first characterize the boundary of the SvB rate region achieved by the three proposed

MA schemes via solving a series of resource allocation problems. We derive the optimal

resource allocation policy for the three proposed MA schemes. In particular, the optimal

power allocation among the two split bit streams in semi-NOMA follows the “water-filling”

structure. By analyzing the structures of the derived solutions, it is revealed that the NOMA

SvB rate region generally does not contain the OMA SvB rate region and both of them are

contained in the semi-NOMA SvB rate region. Then, we characterize the power region of the

three proposed MA schemes by optimally solving the resultant transmit power minimization

problem.

• Our numerical results 1) validate our analysis and show that the proposed semi-NOMA is

the optimal MA scheme in terms of both the SvB rate region and the power region. 2)

Demonstrate that even if the channel gains of the S- and B-users are the same (i.e., the

symmetric channel case), OMA is still strictly suboptimal as compared to semi-NOMA. 3)

Reveal that pairing an S-user with a stronger channel gain with a B-user with a weaker

channel gain together is preferable for employing semi-NOMA.

C. Organization and Notation

The rest of this paper is organized as follows: Section II introduces the new performance

metric, namely the semantic rate, where the intractable semantic similarity component is well

approximated by a generalized logistic function. Section III presents the system model, proposes

three MA schemes to realize the heterogeneous semantic and bit transmission, and defines the

SvB rate region and the power region. The SvB rate region and the power region of the three
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proposed MA schemes are characterized in Section IV and Section V, respectively. Section VI

provides numerical examples and corresponding discussions. Finally, Section VII concludes the

paper.

Notation: Scalars, vectors, and matrices are denoted by lower-case, bold-face lower-case, and

bold-face upper-case letters, respectively. CN×1 denotes the space of N × 1 complex-valued

vectors. aH denotes the conjugate transpose of vector a.

II. SEMANTIC RATE AND APPROXIMATION

In this section, we first present a brief introduction on the new performance metric for semantic

communications, namely the semantic rate [21], which is based on the DeepSC [19], a state-

of-the-art semantic text transmission tool. Then, we propose to employ the generalized logistic

function to approximate the key parameter, termed the semantic similarity, in the semantic rate

to facilitate our theoretical investigation of the heterogeneous semantic and bit transmission in

this work.

A. Semantic Rate

Semantic 

Encoder

Channel 

Encoder

...

...

...

Original 

Text s x

Channel Channel 

Decoder

Semantic 

Decoder

...

...

...

s

Recovered

Texty

Semantic Transmitter Semantic Receiver 

Fig. 1: Illustration of the point-to-point DeepSC framework [19] for text transmission.

Let us take the typical point-to-point DeepSC text transmission framework [19] as an example,

which is illustrated in Fig. 1. Let s = [w1, w2, . . . , wL] denote an original sentence to be sent

at the transmitter, where wl denotes the lth word in the sentence and L denotes the average

number of words per sentence. In contrast to conventional bit-based transceivers, the DeepSC

transmitter (receiver) consists of two main components, namely semantic encoder (decoder)

and channel encoder (decoder), which are empowered by well designed neural networks. The

neural networks at the DeepSC transmitter are responsible for extracting semantic features and

mapping them into semantic symbols to be transmitted, x ∈ C1×KL, where K ∈ Z+ denotes the

average number of mapped semantic symbols for each word in s. Considering the single-antenna

DeepSC transmitter and receiver, the received signal at the DeepSC receiver can be expressed as
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y = hx + n, where h ∈ C
1×1 and n ∈ C

1×KL denote the complex wireless channel coefficient

and the received noise symbol, respectively. The channel decoder and semantic decoder at the

DeepSC receiver recover the original sentence, which is denoted by ŝ. In [19], the performance

of the DeepSC text transmission is evaluated by the semantic similarity between the original

sentence, s, and the corresponding recovered sentence, ŝ, which is given by

η (s, ŝ) =
B (s)B(̂s)T

‖B (s)‖ ‖B(̂s)‖ , (1)

where B (·) denotes the bidirectional encoder representations from transformers, a well-known

model proposed in [24] for semantic information extraction in NLP. The above semantic sim-

ilarity, η (s, ŝ), ranges from 0 to 1 to indicate the similarity between s and ŝ from a semantic

perspective, where a higher value of η (s, ŝ) means a higher similarity. According to [19], η (s, ŝ)

mainly depends on the employed average number of semantic symbols per word, K, (i.e., the

employed semantic encoding/decoding scheme) and the SNR of the received signal, γ. As a

result, we can express the semantic similarity as a function of K and γ, i.e., η (s, ŝ) = ε (K, γ).

Based on the semantic similarity, a new performance metric, namely the semantic rate, was

proposed in [21] for measuring the semantic information transmission rate achieved by the

DeepSC [19]. Let I (semantic units (suts)) denote the average amount of semantic information

contained in the sentence, s. Therefore, the semantic information per semantic symbol is given

by I
KL

(suts/symbol). Recall the fact that the symbol rate is equal to the transmission bandwidth,

which is denoted by W . Hence, the corresponding effective semantic rate (suts/s) is given by [21]

S =
WI

KL
ε (K, γ) . (2)

According to [21], the value of ε (K, γ) under different K and γ can be obtained by running

the DeepSC tool [19]. Part of the obtained results are shown in Fig. 2 (blue dots), where

K = 3, 4, 5, 8, 10, 20 symbols/word and γ = [−10 : 1 : 20] dB.

B. Semantic Rate Approximation

Although semantic rate serves as an important performance metric for semantic communica-

tions, it is still non-trivial to theoretically investigate the corresponding semantic communication

design since there is a lack of an explicit form for the semantic similarity, ε (K, γ). To overcome

this obstacle, in this work, we employ the data regression method to approximate the semantic

similarity with respect to γ for each K. By closely observing the presented results in Fig. 2
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Fig. 2: Generalized logistic regression for approximating the semantic similarity, ε (K, γ).

(blue dots), two insights can be summarized as follows. For any given K,

(i) ε (K, γ) is monotonically non-decreasing with the increase of γ, and εmin ≤ ε (K, γ) ≤ εmax,

where εmin, εmax ∈ [0, 1].

(ii) With increasing γ, the corresponding derivative, d
dγ
ε (K, γ), will in general first increase to

a maximum value and then decrease.

The above insights suggest that ε (K, γ) should follow an ‘S’ shape with respect to γ and

ranges from εmin to εmax. This motivates us to employ the generalized logistic function to

approximate ε (K, γ), which is given by

ε (K, γ) ≈ ε̃K (γ) , AK,1 +
AK,2 − AK,1

1 + e−(CK,1γ+CK,2)
. (3)

For any given K, AK,1 > 0 and AK,2 > 0 denote the lower (left) asymptote and the upper

(right) asymptote, respectively, CK,1 > 0 denotes the logistic growth rate, and CK,2 controls the

logistic mid-point. In this work, these parameters are determined by employing the minimum

mean square error criterion for fitting the generalized logistic function to the data in Fig. 2 (blue

dots). As it can be observed from Fig. 2, for any given K, the constructed generalized logistic

function (red lines) can achieve an accurate approximation1. More importantly, the approximated

semantic similarity using the generalized logistic function in (3) has a tractable form, which can

help to reveal fundamental design insights for semantic communications. For example, it can

be observed from Fig. 2 that increasing γ in the small γ regime has a significant effect on the

1As assumed in [19, 21], 1 ≤ K ≤ 20. For the clarity of Fig. 2, we only present few values of K. It is worth noting that the

proposed logistic regression is applicable for all values of K.
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improvement of the semantic similarity and the enhancement vanishes in the high γ regime, i.e.,

following the ‘S’ shape. Moreover, it can also be observed that for a given γ, increasing K in

the small K regime can achieve a more pronounced enhancement on the semantic similarity

than that in the large K regime.

III. SYSTEM MODEL

AP

Semantic 

stream

Bit stream

B-user

S-user

Fig. 3: Illustration of the proposed heterogeneous semantic and bit communication framework.

As shown in Fig. 3, we propose a heterogeneous semantic and bit communication framework,

where a single-antenna AP simultaneously transmits the semantic and bit streams to two single-

antenna users. We refer to the user who is interested in the semantic stream as the S-user and the

user who is interested in the bit stream as the B-user. In practice, the S-user can be intelligent

robots in smart factories/hospitals, who are only interested in the meaning of text sent from

the AP for task execution, and the B-user can be conventional human users. Let xs denote the

normalized semantic symbol after the semantics-based encoder and xb denote the normalized

information symbol after the conventional bit-based encoder. Therefore, the transmitted signal

at the AP is given by

x =
√
psxs +

√
pbxb, (4)

where ps ≥ 0 and pb ≥ 0 denote the allocated transmit powers for the semantic and bit streams,

respectively. Let W and P denote the total transmission frequency bandwidth and the maximum

transmit power available at the AP. Given the limited radio resources, one fundamental issue

is how to design an efficient MA scheme to facilitate this heterogeneous semantic and bit

transmission. In the following, we will first propose two conventional MA schemes, namely

OMA and NOMA, which are distinguished by whether the two streams are delivered via different

orthogonal frequency sub-bands or the fully shared frequency band. Then, we will further propose



10

a novel MA scheme, namely semi-NOMA, where the bit stream is split into two streams, one is

delivered with the semantic stream via the shared frequency sub-band and the other is delivered

via the separate orthogonal frequency sub-band. To study the fundamental performance limit of

the heterogeneous communications, we assume that the channel state information (CSI) for all

the users’ channels can be perfectly obtained.

A. OMA

OMA
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Bit 
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Channel 
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Source 
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Demodulator

Source 

Encoder

Channel 
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Modulator
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b b b bh p x n

B-user

s sp x

b bp x

s s sss sshh p x ns s ss s

b bbb bhhhh p x nb bb bbbbb

Fig. 4: OMA based heterogeneous semantic and bit transmission, where the two streams are transmitted via two

orthogonal frequency sub-bands.

In OMA, the AP simultaneously transmits the two streams to the S- and B-users via two

orthogonal frequency bands, as illustrated in Fig. 4. Let Ws ≥ 0 and Wb ≥ 0 denote the

allocated orthogonal frequency bandwidth for the semantic and bit streams, respectively, where

Ws +Wb = W . Let hs ∈ C1×1 denote the channel coefficient from the AP to the S-user. As a

result, the received SNR of the semantic signal at the S-user over Ws is given by

γO =
ps|hs|2
WsN0

, (5)

where N0 is the received noise power spectral density. By employing the approximated semantic

similarity metric proposed in (3), the semantic rate achieved at the S-user in OMA can be

expressed as follows:

SO =
WsI

KL
ε̃K
(
γO
)
. (6)

Without loss of generality, in this paper, we define that SO = WsI
KL

ε̃K

(
ps|hs|

2

WsN0

)
, 0 when

Ws = 0.

Let hb ∈ C1×1 denote the channel coefficient from the AP to the B-user. The achievable
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communication rate of the bit signal follows the Shannon classical information theory, which is

given by

RO = Wblog2

(
1 +

pb|hb|2
WbN0

)
. (7)

It can be observed that the advantage of OMA is that the two streams are transmitted in an

interference-free manner, which is easy to implement in practice. However, the disadvantage of

OMA is that the spectrum efficiency would be limited.

Given the available radio resources (i.e., W and P ) and the employed semantic encod-

ing/decoding scheme, K, a fundamental performance trade-off between the semantic rate and

the bit rate arises by employing the resource allocation among the two streams. To characterize

this trade-off, we define the following SvB rate region:

RO
SvB (W,P,K, ε) ,

⋃

W∈F1,P∈F2

{
(S,R) : S ≤ SO, ε̃K

(
γO
)
≥ ε, R ≤ RO

}
, (8)

where W , {Ws,Wb} and P , {ps, pb} denote any feasible bandwidth and power allocation

among the semantic and bit streams, respectively. The feasible set of W and P are, respectively,

given by F1 , {(Ws,Wb) : Ws +Wb = W,Ws ≥ 0,Wb ≥ 0} and F2 , {(ps, pb) : ps + pb ≤ P,

ps ≥ 0, pb ≥ 0}. Here, RO
SvB (W,P,K, ε) consists of all the semantic and bit rate-pairs that can

be achieved by OMA under the given W , P , K, and ε. It is worth noting that compared to the

bit rate, R, the performance of semantic transmission depends on both the semantic rate, S and

the achieved semantic similarity, ε̃K . This is because if the allocated bandwidth for the semantic

stream, Ws, is sufficiently large, the resultant semantic rate can be large even if the achieved

semantic similarity is quite low. Therefore, only considering the semantic rate may not guarantee

the achieved semantic transmission performance. Hence, the achieved semantic similarity has to

be also considered.

Next, we define the power region for OMA as follows:

PO
min

(
S, ε, R

)
=
⋂{

P ∈ R
+ :
(
S,R

)
∈ RO

SvB (W,P,K, ε)
}
, (9)

which determines the minimum required transmit power, PO
min, above which the target semantic

rate, S, semantic similarity, ε, and bit rate, R, can be achieved by OMA under the given W and

K.
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Fig. 5: NOMA based heterogeneous semantic and bit transmission, where the two streams are transmitted via the

fully shared frequency band.

B. NOMA

In the conventional bit-based transmission, NOMA allows users to be served by sharing the

same frequency band [22]. In particular, the transmitter sends the superimposed signal to users.

Users having a better channel condition (i.e., higher channel gain) will employ successive inter-

ference cancellation (SIC) to first decode the signals of users having a worse channel condition

(i.e., lower channel gain) and then subtract it from the received superimposed signal before

decoding its own signal. However, in order to employ NOMA to facilitate the heterogeneous

semantic and bit transmission, the decoding order of the two users cannot be determined by

the users’ channel conditions. The reasons can be explained as follows. On the one hand, the

transmitter and receiver for semantic transmission have to be jointly trained in advance [19],

hence, it is impossible for the B-user to successfully decode the received semantic stream. On

the other hand, even if the B-user was able to decode the semantic stream, it is also impossible

to recover the semantic symbols for carrying out SIC as it is done in the conventional bit-based

transmission. In contrast, employing the conventional bit-based encoding and decoding methods,

the bit stream can be decoded and recovered at both the S-user2 and B-user. Therefore, to

facilitate the heterogeneous semantic and bit transmission with NOMA, we assume that a fixed

bit-to-semantics decoding order is assumed, i.e., only the S-user is able to remove the B-user’s

signal via SIC but the B-user cannot.

Motivated by this observation, as shown in Fig. 5, the AP transmits the superimposed semantic

and bit signal over the fully shared frequency band, W , in NOMA. At the S-user, the bit signal

2This requires the S-user to have the conventional bit-based decoder/encoder for carrying out SIC as shown in Fig. 5, which

is trivial to realize.
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is firstly decoded from the received superimposed signal and the corresponding decoding rate is

given by

RN
b→s = W log2

(
1 +

pb|hs|2

ps|hs|2 +WN0

)
. (10)

To achieve the maximum performance gain of NOMA, perfect SIC is assumed in this paper.

Therefore, after subtracting the bit signal from the received superimposed signal, the S-user will

then decode its desired semantic signal and the achieved semantic rate is given by

SN =
WI

KL
ε̃K
(
γN
)
, (11)

where γN = ps|hs|
2

WN0
.

At the B-user, the bit signal will be directly decoded from the received superimposed signal

by treating the semantic signal as interference. Then, the corresponding achievable bit rate is

given by

RN
b→b = W log2

(
1 +

pb|hb|2

ps|hb|2 +WN0

)
. (12)

Since the bit stream is decoded at both the S- and B-users, the effective communication rate of

the bit stream is determined as follows [22]:

RN = min
{
RN

b→s, R
N
b→b

}
, W log2


1 +

pb

∣∣∣h̃b

∣∣∣
2

ps

∣∣∣h̃b

∣∣∣
2

+WN0


 , (13)

where

∣∣∣h̃b

∣∣∣
2

, min
(
|hs|2, |hb|2

)
represents the effective channel gain for the bit transmission.

Compared to OMA, NOMA may achieve a higher spectrum efficiency by transmitting the two

streams via the fully shared frequency band and the semantic stream can also be delivered in an

interference-free manner with the aid of SIC. However, using SIC causes the S-user to have a

higher hardware complexity, as illustrated in Fig. 5.

Accordingly, the SvB rate region achieved by NOMA is defined as follows:

RN
SvB (W,P,K, ε) ,

⋃

P∈F2

{
(S,R) : S ≤ SN, ε̃K

(
γN
)
≥ ε, R ≤ RN

}
. (14)

The corresponding power region of NOMA to achieve the target semantic and bit rates is given

by

PN
min

(
S, ε, R

)
=
⋂{

P ∈ R
+ :
(
S,R

)
∈ RN

SvB (W,P,K, ε)
}
. (15)
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Fig. 6: Semi-NOMA based heterogeneous semantic and bit transmission, where the original bit stream is split into

two streams. One bit stream and the semantic stream are transmitted via the shared frequency sub-band, and the

other bit stream is transmitted via the orthogonal frequency sub-band.

C. Semi-NOMA

In this subsection, we propose a novel MA scheme, namely semi-NOMA, to achieve the

heterogeneous semantic and bit transmission in a more flexible manner as compared to OMA and

NOMA. As shown in Fig. 6, the total frequency band is divided into two orthogonal frequency

sub-bands. One is termed the semantic-bit shared frequency sub-band and the other is termed

the bit-only orthogonal frequency sub-band. Accordingly, the original bit stream at the AP is

split into two bit streams by allocating different powers. As illustrated in Fig. 6, one bit stream

is paired with the semantic stream following the NOMA principle, which are superimposed and

transmitted to the two users over the shared frequency band. The other bit stream is transmitted

to the B-user in an interference-free manner via the orthogonal frequency sub-band. Therefore,

the transmission of the original bit stream is facilitated via the transmission of the two split bit

streams over the two sub-bands. Let Wm ≥ 0 and Wb ≥ 0 denote the bandwidth of the shared

and orthogonal frequency sub-band, where Wm +Wb = W . The transmitted signal at the AP is

rewritten as follows:

x =
√
psxs +

√
pb,mxb,m +

√
pb,oxb,o, (16)

where xb,m and xb,o denote the bit symbol in the shared and orthogonal frequency sub-bands,

respectively, pb,m ≤ 0 and pb,o ≤ 0 represent the allocated transmit powers for the two bit

streams, and ps + pb,m + pb,o ≤ P .

For the semantic and bit transmission over the shared frequency sub-band, it can be regarded
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like the previously-described NOMA scheme with a reduced bandwidth, Wm. Therefore, the

decoding rate of the bit signal at the S-user over Wm is given by

RS−N
b,m→s = Wmlog2

(
1 +

pb,m|hs|2

ps|hs|2 +WmN0

)
. (17)

After carrying out SIC, the achieved semantic rate at the S-user over Wm is given by

SS−N =
WmI

KL
ε̃K
(
γS−N

)
, (18)

where γS−N = ps|hs|
2

WmN0
. Similarly, we define that SS−N (Wm = 0) , 0.

The achievable communication rate of the bit signal at the B-user over Wm is given by

RS−N
b,m→b = Wmlog2

(
1 +

pb,m|hb|2

ps|hb|2 +WmN0

)
. (19)

Similarly, due to the employment of SIC, the effective communication rate of the bit signal over

Wm is given by [25]

RS−N
b,m = min

{
RS−N

b,m→s, R
S−N
b,m→b

}
, Wmlog2


1 +

pb,m

∣∣∣h̃b

∣∣∣
2

ps

∣∣∣h̃b

∣∣∣
2

+WmN0


 . (20)

For the other bit signal transmitted over Wb, the corresponding achievable communication rate

can be expressed as

RS−N
b,o = Wblog2

(
1 +

pb,o|hb|2
WbN0

)
. (21)

Therefore, the overall bit rate achieved by semi-NOMA is given by

RS−N = RS−N
b,m +RS−N

b,o . (22)

It can be observed that the proposed semi-NOMA scheme not only unifies both OMA and

NOMA as special cases but also provides more flexible transmission options. To demonstrate

it, if we set Wb = 0, the proposed semi-NOMA scheme reduces to NOMA. If we set pb,m = 0,

the proposed semi-NOMA scheme becomes OMA. Other transmission strategies can also be

achieved by semi-NOMA with different resource allocation schemes. Therefore, the advantage

of semi-NOMA is that it provides a high degree of flexibility for the heterogeneous semantic

and bit transmission. However, as it can be observed from Fig. 6, the proposed semi-NOMA

entails a relatively high hardware complexity at both the transmitter and receiver.

Similarly, the achieved SvB rate region of semi-NOMA is defined as follows:
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RS−N
SvB (W,P,K, ε) ,

⋃

WS−N∈F3,PS−N∈F4

{
(S,R) : S ≤ SS−N, ε̃K

(
γS−N

)
≥ ε, R ≤ RS−N

}
, (23)

where WS−N , {Wm,Wb} and PS−N , {ps, pb,m, pb,o} specify the bandwidth and power allo-

cation in semi-NOMA, respectively, and F3 , {(Wm,Wb) : Wm +Wb = W,Wm ≥ 0,Wb ≥ 0}
and F4 , {(ps, pb) : ps + pb,m + pb,o ≤ P, ps ≥ 0, pb,m ≥ 0, pb,o ≥ 0} denote the corresponding

feasible set.

Similarly, the power region achieved by semi-NOMA is given by

P S−N
min

(
S, ε, R

)
=
⋂{

P ∈ R
+ :
(
S,R

)
∈ RS−N

SvB (W,P,K, ε)
}
. (24)

Fig. 7 illustrates the resource allocation features and variables of the three proposed MA

schemes to realize the heterogeneous semantic and bit transmission.
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Fig. 7: Illustration of the resource allocation features and variables in the three proposed MA schemes for the

heterogeneous semantic and bit transmission.

IV. SVB RATE REGION CHARACTERIZATION

For each proposed MA scheme, the optimal performance trade-off between the semantic and

bit rate is characterized by the boundary of the corresponding SvB rate region. In this section, we

will characterize all the boundary points in the SvB rate region for each proposed MA scheme.

A. SvB Rate Region Characterization for OMA

For OMA, it is evident that there are two boundary points for indicating the extreme per-

formance limits of semantic and bit transmission in RO
SvB (W,P,K, ε), which are denoted by

(Smax, 0) and (0, Rmax). We have

Smax =
WI

KL
ε̃K

(
P |hs|2
WN0

)
, (25)

Rmax = W log2

(
1 +

P |hb|2
WN0

)
. (26)
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Here, Smax is achieved by allocating all radio resources for realizing the semantic transmission,

i.e., Ws = W and ps = P , and the resultant bit rate is zero. It is worth mentioning that for

the SvB rate region characterization in this paper, we focus on the case of ε ≤ ε̃K

(
P |hs|

2

WN0

)

to ensure that the boundary point (Smax, 0) is achievable in RO
SvB (W,P,K, ε). The proposed

boundary characterization method is also applicable to the case of ε > ε̃K

(
P |hs|

2

WN0

)
. In this case,

we can only allocate part of the frequency bandwidth (denoted by W p
s < W ) and all the transmit

power to the semantic stream such that ε̃K

(
P |hs|

2

W
p
s N0

)
= ε to achieve the extreme boundary point(

S̃max =
W

p
s I

KL
ε, 0
)

. Since the corresponding SvB rate region will be reduced (i.e., S̃max < Smax)

due to the insufficient transmit power, we term the case of ε > ε̃K

(
P |hs|

2

WN0

)
as “power-limited”.

The case of ε ≤ ε̃K

(
P |hs|

2

WN0

)
which we focus on is termed as “power-sufficient”. Similarly,

Rmax is achieved by allocating all radio resources to the bit transmission, i.e., Wb = W and

pb = P , and the resultant semantic rate is zero3. As a result, the remaining boundary points

in RO
SvB (W,P,K, ε) that have to be characterized are over the intervals: 0 ≤ S ≤ Smax and

0 ≤ R ≤ Rmax. Then, we consider the following optimization problem:

max
{Wi,pi,i∈{s,b}}

Wblog2

(
1 +

pb|hb|2
WbN0

)
(27a)

s.t.
WsI

KL
ε̃K

(
ps|hs|2
WsN0

)
≥ S, (27b)

ε̃K

(
ps|hs|2
WsN0

)
≥ ε, (27c)

Ws +Wb = W,Ws ≥ 0,Wb ≥ 0, (27d)

ps + pb ≤ P, ps ≥ 0, pb ≥ 0. (27e)

where S represents the target semantic rate. By optimally solving problem (27) with 0 ≤ S ≤
Smax, the complete boundary of RO

SvB (W,P,K, ε) can be characterized. It can be verified that

at the optimal solution for any given 0 ≤ S ≤ Smax, it must hold that ps + pb = P . Therefore,

problem (27) can be rewritten as follows:

max
Ws,ps

(W −Ws) log2

(
1 +

(P − ps) |hb|2
(W −Ws)N0

)
(28a)

3It is worth noting that in this extreme case, we can think that the semantic similarity constraint can still be satisfied. This

is because we can have lim
Ws→0,ps→0

ε̃K

(
ps|hs|

2

WsN0

)
= ε, while lim

Ws→0,ps→0

WsI

KL
ε̃K

(
ps|hs|

2

WsN0

)
= 0. Therefore, (0, Rmax) can be

regarded as one achievable boundary point in RO
SvB (W,P,K, ε).
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s.t. ε̃K

(
ps|hs|2
WsN0

)
≥ SKL

WsI
, (28b)

ε̃K

(
ps|hs|2
WsN0

)
≥ ε, (28c)

0 ≤ Ws ≤ W, 0 ≤ ps ≤ P. (28d)

To solve problem (28), we have the following lemma.

Lemma 1. For the given 0 ≤ S ≤ Smax, the optimal bandwidth allocation for the semantic trans-

mission, W ∗
s , must satisfy W ∗

s ∈
[
W low,W up

]
, where W low , SKL

I
and W up , min

(
SKL
εI

,W
)

.

Proof. Note that 0 ≤ ε̃K ≤ 1, SKL
WsI

≤ 1 is necessary to guarantee the feasibility of problem (28),

which leads to W ∗
s ≥ SKL

I
, W low. Next, we determine the upper bound on W ∗

s using the fact

that at the optimal solution to problem (28), the value of the right-hand-side of (28b) must be no

less than ε. This can be proved by contradiction. Suppose that the optimal solution (W ∗
s , p

∗
s) to

problem (28) is achieved on the condition that SKL
W ∗

s I
< ε. Then, we can always construct a new

feasible solution
(
Ŵ ∗

s , p̂
∗
s

)
, which achieves a higher objective value. To facilitate the design,

we first construct
(
Ŵ ∗

s , p̂
∗
s

)
such that SKL

Ŵ ∗
s I

= ε and
p̂∗s

Ŵ ∗
s

= p∗s
W ∗

s
. As the semantic similarity ε̃K

depends on the received SNR,
(
Ŵ ∗

s , p̂
∗
s

)
is also feasible to problem (28) to satisfy the constraint

(28c), i.e., ε̃K

(
p̂∗s |hb|

2

Ŵ ∗
s N0

)
≥ ε. Since

(
Ŵ ∗

s , p̂
∗
s

)
≺ (W ∗

s , p
∗
s), the current objective value must

be larger than that achieved by (W ∗
s , p

∗
s). This suggests that the assumed (W ∗

s , p
∗
s) satisfying

SKL
W ∗

s I
< ε cannot be the optimal solution to (28). Therefore, we have SKL

W ∗
s I

≥ ε, which yields

W ∗
s ≤ SKL

εI
. W ∗

s is also upper-bounded by the maximum frequency bandwidth, W . Therefore,

W ∗
s ≤ min

(
SKL
εI

,W
)
, W up. The proof of Lemma 1 is thus completed.

The proof of Lemma 1 shows that the constraint (28c) is superfluous and only (28b) needs

to be considered when solving problem (28). It also implies that when the required semantic

rate S is low, a smaller bandwidth should be allocated to the semantic stream for maximizing

the bit rate. However, once Ws is reduced such that SKL
WsI

> ε, it is generally unknown whether

further reducing Ws is beneficial for improving R or not. This is because in this case, although

reducing Ws allows more bandwidth to be allocated to the bit transmission, more transmit power,

ps, may be required in the semantic transmission to achieve S. Therefore, the objective value of

problem (28) is generally not monotonic with respect to Ws. To optimally solve problem (28),

by employing the approximated function proposed in (3), (28b) can be rewritten as follows:
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ps ≥
WsN0

|hs|2
10

−CK,2−ln







AK,2−AK,1

SKL
WsI

−AK,1

−1







10CK,1 , pK
(
S,Ws

)
. (29)

Note that for any given Ws ∈
[
W low,W up

]
, if pK

(
S,Ws

)
> P , problem (28) is infeasible

and we define the corresponding objective value as zero for simplicity. Therefore, for any given

0 ≤ S ≤ Smax, the optimal objective value of problem (28) can be obtained as follows:

R∗ = argmax
Ws∈[W low,Wup]

(W −Ws) log2


1 +

[
P − pK

(
S,Ws

)]
|hb|2

(W −Ws)N0


 , (30)

where pK
(
S,Ws

)
, min

(
pK
(
S,Ws

)
, P
)
. For any given 0 ≤ S ≤ Smax, we only need to apply

a one-dimensional search over Ws ∈
[
W low,W up

]
to obtain the corresponding optimal bit rate

to problem (28). As a result, all the boundary points in RO
SvB (W,P,K, ε) can be characterized.

B. SvB Rate Region Characterization for NOMA

In this subsection, we will characterize the NOMA SvB rate region. By allocating all transmit

power to the semantic transmission, (Smax, 0) is also one boundary point4 to achieve the extreme

semantic performance limit in RN
SvB (W,P,K, ε). However, in contrast to OMA, where the

allocated frequency bandwidth can be adjusted, the semantic and bit streams in NOMA always

share the full frequency band. Due to the constraint on the semantic similarity, the semantic rate

in RN
SvB (W,P,K, ε) is lower-bounded by

SN
min =

WI

KL
ε. (31)

Let pK (ε,W ) , WN0

|hs|
2 10

−CK,2−ln

(

AK,2−AK,1
ε−AK,1

−1

)

10CK,1 denote the minimum transmit power required to

satisfy ε̃K

(
ps|hs|

2

WN0

)
≥ ε in NOMA. In this case, by allocating the remaining transmit power to

the bit transmission, the maximum bit rate in RN
SvB (W,P,K, ε) is given by

RN
max = W log2


1 +

(P − pK (ε,W ))
∣∣∣h̃b

∣∣∣
2

pK (ε,W )
∣∣∣h̃b

∣∣∣
2

+WN0


 . (32)

Therefore,
(
SN
min, R

N
max

)
is another extreme boundary point in RN

SvB (W,P,K, ε). Since only the

transmit power can be adjusted in NOMA, all the boundary points between
(
SN
min, R

N
max

)
and

(Smax, 0) of RN
SvB (W,P,K, ε) can be characterized by sweeping ps from pK (ε,W ) to P . For

each ps, the corresponding boundary point is calculated using (11) and (13), where pb = P −ps.

4In the power-limited case, RN
SvB (W,P,K, ε) = ∅.
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Remark 1. It can be observed that the NOMA SvB rate region, RN
SvB (W,P,K, ε), does not nec-

essarily contain the OMA SvB rate region, RO
SvB (W,P,K, ε). This is different from conventional

bit-based communication, where NOMA is capacity-achieving and OMA is strictly suboptimal

(except for the extreme points and the symmetric channel case) [23]. This result answers the first

part of the question raised in the introduction regarding the performance comparison between

NOMA and OMA in the new heterogeneous semantic and bit transmission.

C. SvB Rate Region Characterization for semi-NOMA

For semi-NOMA, (Smax, 0)
5 and (0, Rmax) are also two extreme boundary points in the

semi-NOMA SvB rate region, RS−N
SvB (W,P,K, ε). Similarly, the remaining boundary points of

RS−N
SvB (W,P,K, ε) can be characterized by solving the following optimization problem for all

0 ≤ S ≤ Smax:

max
Wm,Wb,ps,pb,m,pb,o

Wmlog2


1 +

pb,m

∣∣∣h̃b

∣∣∣
2

ps

∣∣∣h̃b

∣∣∣
2

+WmN0


+Wblog2

(
1 +

pb,o|hb|2
WbN0

)
(33a)

s.t.
WmI

KL
ε̃K

(
ps|hs|2
WmN0

)
≥ S, (33b)

ε̃K

(
ps|hs|2
WmN0

)
≥ ε, (33c)

Wm +Wb = W,Wm ≥ 0,Wb ≥ 0, (33d)

ps + pb,m + pb,o ≤ P, ps ≥ 0, pb,m ≥ 0, pb,o ≥ 0. (33e)

For any given bandwidth allocation, (Wm,Wb), and target semantic rate, S, by employing the

approximated function proposed in (3), constraints (33b) and (33c) can be, respectively, rewritten

as follows:

ps ≥
WmN0

|hs|2
10

−CK,2−ln







AK,2−AK,1

SKL
WmI

−AK,1

−1







10CK,1 , pK
(
S,Wm

)
, (34a)

ps ≥
WmN0

|hs|2
10

−CK,2−ln

(

AK,2−AK,1
ε−AK,1

−1

)

10CK,1 , pK (ε,Wm) , (34b)

which are equivalent to the following constraint:

ps ≥ max
(
pK
(
S,Wm

)
, pK (ε,Wm)

)
, pK

(
S, ε,Wm

)
. (35)

5In the power-limited case, this boundary point should be
(
S̃max, 0

)
.
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Note that if pK
(
S, ε,Wm

)
> P , problem (33) is infeasible for the given bandwidth allocation

and we define the corresponding objective value as zero for simplicity. The optimal solution

to problem (33) is achieved when the constraint (35) becomes an equality, otherwise, we can

always decrease ps to achieve a larger objective value. As a result, for any given Wm, problem

(33) is reduced to

max
pb,m,pb,o

Wmlog2


1 +

pb,m

∣∣∣h̃b

∣∣∣
2

pK
(
S, ε,Wm

)∣∣∣h̃b

∣∣∣
2

+WmN0


 + (W −Wm) log2

(
1 +

pb,o|hb|2
(W −Wm)N0

)

(36a)

s.t. pb,m + pb,o ≤ P̃ , pb,m ≥ 0, pb,o ≥ 0, (36b)

where P̃ , max
(
P − pK

(
S, ε,Wm

)
, 0
)
. In this case, the objective bit rate can be maximized

by the “water-filling” based power allocation [23] subject to the power constraint P̃ . The optimal

power allocations over the shared and orthogonal frequency sub-bands are given by

p∗b,m =

[
Wm

λ∗
− 1

hm

]P̃

0

, p∗b,o =

[
(W −Wm)

λ∗
− 1

hb

]P̃

0

, (37)

where [x]ba = max (min (x, b) , a), hm ,
|h̃b|2

pK(S,ε,Wm)|h̃b|2+WmN0

, hb ,
|hb|

2

(W−Wm)N0
, and λ∗ ,

W

P̃+ 1
hm

+ 1
hb

. Let R
(
p∗b,m, p

∗
b,o|Wm, S

)
denote the optimal objective value of problem (36) under

the given Wm and S. Therefore, for any given 0 ≤ S ≤ Smax, the optimal bit rate of problem

(33) can be obtained by employing a one-dimensional search over Wm ∈ [0,W ] and the optimal

water-filling power allocation (37) under each given Wm, i.e.,

R∗ = argmax
Wm∈[0,W ]

R
(
p∗b,m, p

∗
b,o|Wm, S

)
. (38)

As a result, all the boundary points between (Smax, 0) and (0, Rmax) in RS−N
SvB (W,P,K, ε) can

be completely characterized.

Remark 2. Recall the fact that both OMA and NOMA can be regarded as special cases of

semi-NOMA, the semi-NOMA SvB rate region will always contain those achieved by OMA and

NOMA, i.e., RS−N
SvB (W,P,K, ε) ⊇ RN

SvB (W,P,K, ε) and RS−N
SvB (W,P,K, ε) ⊇ RO

SvB (W,P,K, ε).

This result answers the second part of the question raised in the introduction, which underscores

the importance of developing a new MA scheme in the heterogeneous semantic and bit trans-

mission. The superiority of semi-NOMA over OMA and NOMA will be further demonstrated

by the numerical results provided in Section VI.
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V. POWER REGION CHARACTERIZATION

In this section, we continue to characterize the power region achieved by each proposed MA

scheme, which is defined in (9), (15), and (24).

A. Power Region Characterization for OMA

The characterization of the power region is equivalent to minimizing the transmit power,

subject to the constraints on the required semantic rate, S, semantic similarity, ε, and bit rate,

R. Then, we consider the following optimization problem for OMA:

min
0≤Ws≤W,ps≥0,pb≥0

ps + pb (39a)

s.t.
WsI

KL
ε̃K

(
ps|hs|2
WsN0

)
≥ S, (39b)

ε̃K

(
ps|hs|2
WsN0

)
≥ ε, (39c)

(W −Ws) log2

(
1 +

pb|hb|2
(W −Ws)N0

)
≥ R. (39d)

It can be also verified that the optimal bandwidth allocation to problem (39) satisfies W ∗
s ∈

[
W low,W up

]
. The proof is similar to Lemma 1, and we omit it for brevity. Therefore, for any

given Ws ∈
[
W low,W up

]
, the minimum transmit power to (39) is given by

PO
min

(
S, ε, R|Ws

)
=

(W −Ws)N0

|hb|2
(
2

R
(W−Ws) − 1

)
+ pK

(
S,Ws

)
, (40)

where pK
(
S,Ws

)
is defined in (29). Accordingly, by employing a one-dimensional search over

Ws ∈
[
W low,W up

]
, the optimal solution to problem (39) can be obtained as follows:

PO
min

(
S, ε, R

)
= argmin

Ws∈[W low,Wup]
PO
min

(
S, ε, R|Ws

)
. (41)

B. Power Region Characterization for NOMA

For NOMA, the resultant optimization problem for characterizing the power region can be

written as follows:

min
ps≥0,pb≥0

ps + pb (42a)

s.t.
WI

KL
ε̃K

(
ps|hs|2
WN0

)
≥ S, (42b)
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ε̃K

(
ps|hs|2
WN0

)
≥ ε, (42c)

W log2


1 +

pb

∣∣∣h̃b

∣∣∣
2

ps

∣∣∣h̃b

∣∣∣
2

+WN0


 ≥ R. (42d)

By employing the approximated function proposed in (3), constraints (42b) and (42c) can be

expressed as follows:

ps ≥ max
(
pK
(
S,W

)
, pK (ε,W )

)
, pK

(
S, ε,W

)
, (43)

where pK
(
S,W

)
and pK (ε,W ) are, respectively, obtained by replacing Wm with W in (34a)

and (34b). As a result, the optimal solution to problem (42) is given by

PN
min

(
S, ε, R

)
= pK

(
S, ε,W

)
+

pK
(
S, ε,W

) ∣∣∣h̃b

∣∣∣
2

+WN0

∣∣∣h̃b

∣∣∣
2

(
2

R
W − 1

)
. (44)

C. Power Region Characterization for semi-NOMA

For semi-NOMA, the corresponding optimization problem is given by

min
Wm,Wb,ps≥0,pb,m≥0,pb,o≥0

ps + pb,m + pb,o (45a)

s.t.
WmI

KL
ε̃K

(
ps|hs|2
WmN0

)
≥ S, (45b)

ε̃K

(
ps|hs|2
WmN0

)
≥ ε, (45c)

Wmlog2


1 +

pb,m

∣∣∣h̃b

∣∣∣
2

ps

∣∣∣h̃b

∣∣∣
2

+WmN0


+Wblog2

(
1 +

pb,o|hb|2
WbN0

)
≥ R, (45d)

Wm +Wb = W,Wm ≥ 0,Wb ≥ 0. (45e)

For any given bandwidth allocation, (Wm,Wb), the minimum required transmit power for the

semantic transmission is p∗s , pK
(
S, ε,Wm

)
, which is defined in (35). Then, problem (45) is

reduced to

min
pb,m≥0,pb,o≥0

pb,m + pb,o (46a)

s.t.Wmlog2


1+

pb,m

∣∣∣h̃b

∣∣∣
2

pK
(
S, ε,Wm

)∣∣∣h̃b

∣∣∣
2

+WmN0


+(W−Wm) log2

(
1+

pb,o|hb|2
(W−Wm)N0

)
≥R.

(46b)
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It can be found that the optimal solution to problem (46) also follows the “water-filling” power

allocation scheme [23]. We first ignore the non-negative constraint on pb,m and pb,o. Then, the

corresponding optimal “water-filling” power allocation solution is given by

p̃∗b,m = λ̃∗Wm − 1

h̃m

, p̃∗b,o = λ̃∗ (W −Wm)−
1

h̃b

, (47)

where h̃m ,
|h̃b|2

pK(S,ε,Wm)|h̃b|2+WmN0

, h̃b ,
|hb|

2

(W−Wm)N0
, and λ̃∗ , 2

R
W

(Wmh̃m)
Wm
W ((W−Wm)h̃b)

(W−Wm)
W

.

Therefore, the optimal solution to problem (46) can be expressed as

(
p∗b,m, p

∗
b,o

)
=





(
0, p̂∗b,o

)
, if p̃∗b,m ≤ 0,

(
p̂∗b,m, 0

)
, if p̃∗b,o ≤ 0,

(
p̃∗b,m, p̃

∗
b,o

)
, otherwise,

(48)

where p̂∗b,o , 1

h̃b

2
R

W−Wm and p̂∗b,m , 1

h̃m
2

R
Wm . As a result, by employing the one-dimensional

search over Wm ∈ [0,W ], the optimal solution to problem (45) can be obtained as follows:

P S−N
min

(
S, ε, R

)
= argmin

Wm∈[0,W ]

(
pK
(
S̄, ε̄,Wm

)
+ p∗b,m + p∗b,o

)
. (49)

Since OMA and NOMA can be regarded as special cases of semi-NOMA, we have P S−N
min

(
S, ε, R

)

≤ PO
min

(
S, ε, R

)
and P S−N

min

(
S, ε, R

)
≤ PN

min

(
S, ε, R

)
.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to evaluate the performance of the three

proposed MA schemes to facilitate the heterogeneous semantic and bit transmission. Let ds

and db denote the AP-S-user distance and the AP-B-user distance in meters, respectively. The

small-scale fading of the AP-S/B-user links are modelled as Rayleigh fading channels, which are

generated as independent circularly symmetric complex Gaussian random variables with zero

mean and unit variance. The distance-dependent path loss of the corresponding link is modelled

as ρ = ρ0(1/d)
β
, where ρ0 = −30 dB denotes the reference path loss at 1 meter, β = 4

denotes the path loss exponent, and d denotes the corresponding link distance in meters. The

total available frequency bandwidth is set to W = 1 MHz. The power spectral density of the

received white Gaussian noise is N0 = −140 dBm/Hz, i.e., an average noise power of −80 dBm

over the bandwidth of 1 MHz.

A. SvB Rate Region Comparison

In this subsection, we first investigate the SvB rate region achieved by the three proposed MA

schemes in the power-sufficient case.
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1) Impact of Users’ Channels Differences: In Fig. 8, we first study the impact of the channel

difference between the S- and B-users on the achieved SvB rate region for each proposed MA

scheme. In particular, we consider the following three cases: (1) Case 1: we consider the case

when the channel gain of the S-user is larger than that of the B-user, and set ds = 20 meter and

db = 30 meter; (2) Case 2 (symmetric channel): we consider a special case when the channel

gains of the S- and B-users are the same, and set ds = 30 meter and db = 30 meter; (3) Case

3: we consider the case when the channel gain of the S-user is smaller than that of the B-user,

and set ds = 40 meter and db = 30 meter. For other parameters, we set P = 30 dBm, ε = 0.8,

and K = 4 in each case. As it can be observed from Fig. 8, the SvB rate region achieved by

semi-NOMA always strictly contains those achieved by OMA and NOMA in each case. This is

consistent with Remark 2 since semi-NOMA not only specializes to OMA and NOMA but also

provides more flexible transmission options. This result validates the effectiveness of the proposed

semi-NOMA scheme to facilitate the heterogeneous semantic and bit transmission. It can also

be observed that, compared to OMA and semi-NOMA, where the bandwidth allocated to the

semantic stream can be adjusted, the SvB rate region achieved by NOMA is quite restricted. This

is because the frequency band is fully shared in NOMA, which always requires a considerable

transmit power to be allocated to the semantic stream to satisfy the minimum semantic similarity

constraint. Moreover, it can be found that in the high semantic rate regime, the performance of

semi-NOMA and NOMA is the same and outperforms OMA. This implies that to achieve a high

semantic rate, NOMA is still an effective MA scheme. Interestingly, it can be seen that OMA is

always strictly suboptimal even if in the symmetric channel case. This observation is different

from the conventional bit-based transmission, where OMA can achieve the same performance

as NOMA for the symmetric channel. This result underscores the importance of employing

a non-orthogonal-type MA scheme for the heterogeneous semantic and bit transmission. By

comparing the achieved SvB rate region in the three cases, it can be observed that, for a fixed

B-user’s channel gain, the SvB rate region is enlarged when the S-user’s channel gain increases.

In particular, the corresponding region enlargement in semi-NOMA is more pronounced than

that in OMA. This also confirms the effectiveness of the proposed semi-NOMA scheme and

reveals a useful guidance, namely, that it is preferable to pair an S-user having a higher channel

gain and a B-user having a lower channel gain together to achieve a higher performance when

employing semi-NOMA.
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Fig. 8: SvB rate region comparison of each proposed

MA scheme under three channel difference cases.
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Fig. 9: SvB rate region comparison of each proposed

MA scheme under different K .

2) Impact of K: In Fig. 9, we continue to study the impact of K on the achieved SvB rate

region, where P = 30 dBm, ε = 0.8, ds = 20 meter, and db = 30 meter. It can be observed

that when K increases, the maximum achieved semantic rate decreases. This is because a larger

K means that more semantic symbols have to be transmitted for delivering one word in the

sentence, which decreases the corresponding semantic rate, see (2). For NOMA, it can also be

observed that although a smaller K leads to a higher maximum semantic rate, the corresponding

achieved SvB rate region does not contain those regions achieved by larger K. The reason

behind this can be explained as follows. As it can be observed from Fig. 2, to achieve the same

semantic similarity, a larger K requires a lower SNR, i.e., less transmit power could be allocated

to the semantic stream in NOMA. As a result, to achieve the boundary point
(
SN
min, R

N
max

)
in

NOMA, a larger K can achieve a higher RN
max. For semi-NOMA, when K = 3, 4, 5, the SvB

rate region achieved by a smaller K also does not strictly contain that achieved by a larger K.

However, when K increases to 10, the corresponding achieved SvB rate region is contained in

that achieved by K = 4. This reveals that increasing K would be ineffective in performance

improvement for semi-NOMA. However, in contrast to semi-NOMA and NOMA, it can be

observed that for OMA, the SvB rate region achieved by smaller K strictly contains those

achieved by larger K. Moreover, it can also be observed that for each K, the semi-NOMA

SvB rate region always contains those achieved by OMA and NOMA. This also confirms the

effectiveness of the proposed semi-NOMA scheme.



27

B. Power Region Comparison

In this subsection, we investigate the power region of each proposed MA scheme. We set

ds = 20 meter and db = 30 meter. All the following results were obtained by averaging over

5000 channel realizations.

1) Impact of S: In Fig. 10, we investigate the required minimum transmit power versus the

target semantic rate, S. We set K = 4, ε = 0.8, and R = 0.8 Mbits/s. As can be seen from

Fig. 10, the required transmit power of semi-NOMA and OMA increases as S increases. This

is expected since a higher S requires a larger bandwidth and/or a higher semantic similarity,

thus increasing the power consumption. However, for NOMA, the power consumption remains

unchanged as S increases. This is because the required semantic similarity constraint causes the

semantic rate to be achieved automatically in NOMA. As a result, the minimum transmit power

depends on the semantic similarity constraint, instead of the target semantic rate. Different from

the conventional bit-based communication, where NOMA can achieve no worse performance

than OMA, NOMA and OMA in the heterogeneous semantic and bit transmission are superior

in the high and low S regimes, respectively. This is because in the low S regime, the adjustment

of bandwidth allocation in OMA helps to reduce the required transmit power to achieve S, which

is not possible for NOMA. In the high S regime, as a large bandwidth should be allocated to

the semantic stream, the employment of orthogonal sub-bands in OMA leads to only limited

bandwidth available for the bit transmission, thus consuming a sufficiently high power to achieve

R. However, in this case, the spectrum sharing in NOMA helps to reduce the power consumption

to achieve R. As the proposed semi-NOMA scheme provides flexible resource allocation, it is

expected that it achieves the best performance among all schemes.

2) Impact of ε: In Fig. 11, we study the required minimum transmit power versus the target

semantic similarity, ε. We set K = 4, S = 0.15 I
L

Msuts/s, and R = 2 Mbits/s. As can be seen,

the required transmit power of all schemes increases as ε increases since a higher received SNR

needs to be achieved. It can also be observed that the required transmit power in OMA and

semi-NOMA is less sensitive to ε than that in NOMA. This is because in NOMA, the frequency

band is fully occupied by the semantic stream (i.e., a higher received noise power), and more

transmit power is required to achieve the target ε. This underscores the importance of bandwidth

allocation in the considered heterogeneous semantic and bit transmission.

3) Impact of K: In Fig. 12, we investigate the required minimum transmit power versus the

semantic encoding/decoding scheme, K. We set S = 0.12 I
L

Msuts/s, ε = 0.8, and R = 0.8
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for K = 4, ε = 0.8, and R = 0.8 Mbits/s.
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Fig. 11: Required minimum transmit power versus ε for

K = 4, S = 0.15 I
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Msuts/s, and R = 2 Mbits/s.

Mbits/s. It can be observed that as K increases, the required transmit power of all schemes in

general first decreases and then increases after a specific K. For the considered scenario, K = 5,

K = 6, and K = 4 are the optimal semantic encoding/decoding scheme for semi-NOMA,

NOMA, and OMA, respectively. The reasons behind this trend can be explained as follows. For

NOMA under the given S, ε, and R requirements, ε dominates the power consumption when

3 ≤ K ≤ 6 due to the employment of full frequency band for the semantic transmission. As it

can be seen from Fig. 2, a smaller K leads to a higher transmit power being allocated to the

semantic stream to achieve the same semantic similarity. This also increases the transmit power

required to achieve R due to the inter-stream interference in NOMA. Therefore, increasing K

will reduce the power consumption. However, when K increases to 7, S becomes dominated

in power consumption, thus leading to a higher transmit power to achieve a higher semantic

similarity compared to the case of K = 6. For OMA, it also follows that more transmit power

has to be allocated to achieve ε when K = 3 as compared to K = 46, see Fig. 2. However, when

K further increases, considerable bandwidth should be allocated to the semantic transmission

to achieve S. This, in turn, significantly reduces the bandwidth that can be allocated to the bit

transmission, which greatly increases the power consumption to achieve R. For semi-NOMA

with 3 ≤ K ≤ 5 also follows the principle that a smaller K requires more transmit power to

6This result is different from that presented in Fig. 9, where the SvB rate region achieved by smaller K always contains that

achieved by larger K. This is because for the SvB rate region presented in Fig. 9, we only focus on the power-sufficient case,

while both the power-sufficient and power-limited cases may occur in the power region characterization.
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Fig. 12: Required minimum transmit power versus K for S = 0.12 I

L
Msuts/s, ε = 0.8, and R = 0.8 Mbits/s.

achieve the same ε in the semantic transmission. Although K = 5 may require considerable

bandwidth to be allocated to the semantic stream, the partial spectrum sharing mechanism in

semi-NOMA helps to reduce the power consumption to achieve R. However, when K further

increases (i.e., K = 6 and 7), almost all the bandwidth should be allocated to the shared

frequency sub-band to achieve S. In this case, a small orthogonal bit-only frequency sub-band

is available and the bit transmission mainly relies on the shared frequency sub-band, which

increases the power consumption to achieve R. The above results also confirm the effectiveness

of the proposed semi-NOMA given its flexible resource allocation feature, which improves the

resource efficiency. It also opens up an interesting research direction for the optimization of the

semantic encoding/decoding scheme of semantic transmission since it can be observed that the

achieved performance is sensitive to K.

VII. CONCLUSIONS AND FUTURE WORK

The new heterogeneous semantic and bit transmission has been investigated in this paper

with a particular focus on the MA design. The semantic rate was adopted for measuring the

performance of the semantic transmission. To solve the problem of the lack of a closed-form

expression for the semantic similarity, the data regression method was proposed by approximating

it with a generalized logistic function. Based on this approximation, a heterogeneous semantic

and bit communication framework was proposed, where an AP simultaneously sends the semantic

and bit streams to the S- and B-users. To facilitate this heterogeneous transmission, three MA

schemes were presented and compared, namely OMA, NOMA, and semi-NOMA. The SvB rate



30

region and the power region achieved by the three proposed MA schemes were characterized.

In contrast to the conventional bit-based transmission, our results revealed that NOMA does

not necessarily outperform OMA, and semi-NOMA is promising given its flexible transmission

strategies. The presented numerical examples validated the analysis and showed the superiority

of semi-NOMA over other two MA schemes. They also revealed a useful guidance that it is

preferable to pair an S-user with a higher channel gain with a B-user with a lower channel

gain for maximizing the performance gain of semi-NOMA. Moreover, our results also showed

that the optimization of the semantic encoding/decoding scheme is important for improving the

semantic transmission performance.

This paper puts forward an interesting research direction of designing the heterogeneous

semantic and bit transmission towards next-generation wireless networks, and there are numerous

open research problems, some of which are briefly described to motivate future work.

• Heterogeneous transmission design with multiple S- and B-users: This paper considered a

fundamental model with one S-user and one B-user. In practice, there may exist multiple S-

and B-users that have to be served by the AP. In such a general case, one potential solution

is to first divide all users into several clusters, which consist of one S-user and one B-user.

The AP uses orthogonal frequency-division multiple access (OFDMA) to serve each cluster

by assigning orthogonal subcarriers, while the proposed semi-NOMA can be employed

within each cluster. How to jointly design the user pairing and resource allocation (between

each cluster as well as within each cluster) is an interesting but challenging problem, which

requires further research.

• Performance limit characterization of the heterogeneous transmission with multimodal data:

The semantic rate considered in this paper is used for characterizing the performance of text

semantic communications. When semantic communications transmit multimodal data (e.g.,

image, video, and speech), the corresponding fundamental performance limit characteriza-

tion problem in the heterogeneous transmission is another open problem. To address this

issue, a unified performance metric for evaluating the performance of multimodal semantic

communications may need to be developed, which merits further investigation.

• Opportunistic semantic and bit transmission design: This paper assumed that each user can

only use one specific transmission method, i.e., semantic or bit-based transmission. In the

current literature [19], semantic communications are shown to be superior to conventional

bit communications mainly in the low/moderate SNR regime. Given the randomness of
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users’ channel conditions, one promising approach is to develop opportunistic semantic and

bit transmission policy for fully reaping the benefits of both semantic and bit transmission.

This also constitutes an interesting and challenging new research problem.
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