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Zhenyi Lin, Yi Gong, and Kaibin Huang

Abstract

Distributed optimization concerns the optimization of a common function in a distributed network,

which finds a wide range of applications ranging from machine learning to vehicle platooning. Its

key operation is to aggregate all local state information (LSI) at devices to update their states. The

required extensive message exchange and many iterations cause a communication bottleneck when the

LSI is high dimensional or at high mobility. To overcome the bottleneck, we propose in this work the

framework of distributed over-the-air computing (AirComp) to realize a one-step aggregation for dis-

tributed optimization by exploiting simultaneous multicast beamforming of all devices and the property

of analog waveform superposition of a multi-access channel. Equivalently, the technique superimposes

multiple instances of conventional AirComp processes, giving rise to the challenge of jointly designing

multicast beamforming at devices to rein in errors due to interference and channel distortion. We consider

two design criteria. The first one is to minimize the sum AirComp error (i.e., sum mean-squared error

(MSE)) with respect to the desired average-functional values. An efficient solution approach is proposed

by transforming the non-convex beamforming problem into an equivalent concave-convex fractional

program and solving it by nesting convex programming into a bisection search. The second criterion,

called zero-forcing (ZF) multicast beamforming, is to force the received over-the-air aggregated signals

at devices to be equal to the desired functional values. In this case, the optimal beamforming admits

closed form. Both the MMSE and ZF beamforming exhibit a centroid structure resulting from averaging

columns of conventional MMSE/ZF precoding. Last, the convergence of a classic distributed optimization

algorithm is analyzed. The distributed AirComp is found to accelerate convergence by dramatically

reducing communication latency. Another key finding is that the ZF beamforming outperforms the

MMSE design as the latter is shown to cause bias in subgradient estimation.
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I. INTRODUCTION

Distributed optimization concerns the optimization of a common function in a distributed

network comprising a cluster of edge devices connected by device-to-device (D2D) links [1].

The broad field covers two popular areas: distributed machine learning aiming at leveraging

local data and computer resources at edge devices to train a global artificial-intelligence (AI)

model [2], and distributed consensus finding a wide range of applications in, for example,

swarms of drones or robots and vehicle platooning [3]. A fundamental operation in distributed

optimization, which is usually implemented using an iterative gradient-descent algorithm, is to

aggregate all local state information (LSI) and use the result to update the states of all devices in

each round. The required extensive message exchange and many rounds cause a communication

bottleneck when the LSI is high dimensional (e.g., distributed learning) or at high mobility (e.g.,

drones). To overcome the bottleneck, we propose in this work the framework of distributed

over-the-air computing (AirComp) to realize a one-step aggregation for distributed optimization

by exploiting simultaneous multicast beamforming by all devices and the property of analog

waveform superposition of a multi-access channel. To develop the framework, beamforming

designs to rein in channel distortion are presented and the convergence of distributed optimization

adopting distributed AirComp is studied.

Recent years have witnessed fast-growing interests in distributed machine learning as driven

by the distillation of enormous mobile data into artificial intelligence (AI) to power next-

generation applications ranging from industrial automation to smart cities and extended reality.

Relevant research mainly focuses on the efficient deployment of federated learning, arguably

the most popular distributed learning framework, at the network edge, giving rise to the fast

growing area of federated edge learning (FEEL) [4]. FEEL gains popularity for its capabilities

of leveraging local data while helping to preserve their privacy and distributed computation

resources. Typically implemented in networks with a star topology, the FEEL algorithm iterates

between 1) aggregation at an edge server over local models, which are updated by edge de-

vices using local data and uploaded over wireless channels, to update a global model, and 2)

broadcast of the model to all devices for updating, until the global model converges. The main

challenge confronting efficient FEEL is the communication bottleneck caused by uploading high-

dimensional local modes (or stochastic-gradients) from potentially many devices over a multi-

access channel. The required large number of rounds/iterations (e.g., tens to hundreds of rounds)
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exacerbates the issue. Attempts to overcome the bottleneck have led to the proposal of different

techniques including radio resource management [5], [6], model quantization [7], [8], and device

scheduling [9], [10]. One particular class of techniques of our interest, known as over-the-air

FEEL, features the application of AirComp to realize over-the-air model aggregation in FEEL

[11]–[14]. The principle underpinning AirComp (as well as over-the-air FEEL) is to exploit

the waveform superposition property such that the signal received at the server approximates

a desired aggregation function of linear analog modulated data (e.g., local models/gradients)

simultaneously transmitted by devices [12], [15].

Most recently, researchers have studied distributed FEEL targeting a cluster of devices without

coordination by a sever and connected by D2D links [16]–[18]. The original techniques for

server-assisted FEEL can be adopted by arranging the devices to take turn or use orthogonal

channels to play the role of edge server [17], [19]. As the resultant sequential aggregation is

time consuming, attempts on realizing parallel operations have been made by selecting multiple

weakly coupled clusters of devices to perform simultaneous intra-cluster aggregation [16], [18].

Such approaches are ineffective for a single cluster of devices with tightly coupled links such as

a drone swarm or a vehicle platoon, and still require multiple time slots to complete aggregation

over all devices. Fundamentally, the drawback of the existing approaches is rooted in attempting

to orthogonalize multiple aggregation processes in distributed optimization. On the contrary, we

advocate fusing them into a single multi-aggregation process to enable a one-step distributed

aggregation over all devices. Thereby, the resultant design, termed distributed AirComp, supports

fast distributed FEEL and distributed optimization at large.

Consider the aggregation operation of distributed optimization among K devices. The goal

of designing distributed AirComp is to realize one-step updating of the states of all devices via

over-the-air aggregation over their LSI. To this end, all devices simultaneously multicast LSI to

their peers and at the same time receive aggregated LSI via full-duplex communication [20].

We propose provisioning devices with transmit antenna arrays to enable multicast beamforming

for reining in the sum AirComp error. On the other hand, the use of receive arrays can support

aggregation beamforming as studied in [15]. To simplify our design, we assume single receive

antenna at devices. The extension of the current design to include aggregation beamforming is

straightforward but make the design tedious without new insight. Usually targeting a single-

cell system, traditional multicast beamforming at the base station aims to efficiently deliver

information to multiple receivers under their quality-of-service requirements. Mathematically,
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the beamforming design can be formulated as an optimization problem with the objective of

minimizing the required transmission resources at the base station (e.g., power and array size)

under the constraints of receive signal-to-noise ratios (SNRs) [21], [22]. Another popular “max-

min” formulation targets maximizing the lowest rate or receive SNR among the receivers under

a transmission power constraint [23], [24]. Consider the context of distributed AirComp. Define

the AirComp error as the deviation of an aggregated signal from the desired average-functional

value due to channel fading and noise. Then the multicast beamforming from the perspective

of an individual device aims to minimize the sum AirComp error over other devices under a

transmission power constraint. Solving such a problem is no more difficult than the mentioned

traditional ones. However, the new challenge arises from K simultaneous over-the-air aggregation

processes coupling multicast beamforming at K devices. This necessitates the joint beamforming

design that should account for all D2D-channel states in the system. To be precise, the multicast

radiation patterns of K devices should be jointly optimized under individual power constraints

such that their over-the-air superposition leads to the minimization of sum AirComp error.

AirComp requires the aggregated signal arriving at a device to be scaled by a factor, called

alignment level, to balance approaching a desired functional value and noise amplification [25].

The said problem is further complicated by the need of optimization over the alignment level.

In contrast, transmit beamforming for single-aggregation AirComp is simple as its main purpose

is to overcome the fading of an associated single-user channel, and hence is irrelevant to the

current problem [15], [26].

In this work, besides proposing the principle of distributed AirComp as described earlier, we

design distributed multicast beamforming to materialize the principle and further apply the design

to distributed optimization. The key contributions and findings are summarized as follows.

• MMSE beamforming for distributed AirComp: Consider the design criterion of minimiz-

ing the sum AirComp error defined as the sum mean-squared error (MSE) over all de-

vices with respect to the desired average-functional values. We propose an efficient ap-

proach for optimally solving the mentioned problem of distributed multicast beamform-

ing. Without compromising the optimality, the optimal alignment factor conditioned on

beamforming is derived in a closed form and substituted into the original problem. Even

though the resultant problem is still non-convex, it can be transformed into an equivalent

concave-convex fractional program. The transformation admits an efficient solution method

that nests solving a convex problem into a bisection search. The results reveal that the
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optimal multicast beamforming at a device is steered along the centroid of the column

vectors of a traditional MMSE precoder for the associated D2D multiuser channel to the

peers, thereby balancing their AirComp errors; at least one device transmits with full power

while some devices transmit with partial power.

• Zero-forcing (ZF) beamforming for distributed AirComp: Consider the design criterion of

forcing all receive signal power to approach a uniform level for the purpose of aggregation

without attempting to avoid potential noise amplification as in the MMSE case. To mini-

mize the resultant sum AirComp error, the ZF multicast beamformers conditioned on the

alignment factor can be reduced into a single-device design with the solution derived in a

closed form. It is observed to have a similar centroid form as the MMSE counterpart but is

based on a traditional ZF precoder. Given the beamformers, the alignment factor is obtained

as the minimum of a derived expression over devices, which represents an attempt to cope

with the weakest set of D2D links limiting the performance of distributed AirComp.

• Convergence of distributed optimization: The preceding distributed AirComp framework is

applied to implement distributed optimization over D2D links, which is based on the widely-

used distributed dual averaging algorithm. The convergence analysis shows that AirComp

errors induce bias terms in the gap between the minimized loss function and its ground

truth. The key finding is that the MMSE and ZF designs for distributed multicast beam-

forming lead to biased and unbiased estimations of ground-truth stochastic subgradients at

devices, respectively. Consequently, at a low-to-medium receive SNR, the former results in a

converged test accuracy substantially lower than that in the ideal (noise-free) case while the

loss of the ZF counterpart is negligible. This is opposite to the fact that ZF is sub-optimal

in terms of minimizing the sum MMSE AirComp error. For both designs, the said loss is

shown to diminish as the transmit SNR grows by being inversely proportional to its square

root.

The remainder of this paper is organized as follows. An overview of distributed AirComp is

given in Section II. The MMSE and ZF designs of distributed multicast beamforming are pres-

ened in Sections III and IV, respectively. The application of distributed AirComp to distributed

optimization is studied in Section V. Experimental results are presented in Section VI, followed

by concluding remarks in Section VII.
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Fig. 1. Distributed AirComp system featuring distributed multicast beamforming and full-duplex communication.

II. OVERVIEW OF DISTRIBUTED AIRCOMP

A. System Model

As illustrated in Fig. 1, the considered distributed system comprises K edge devices without

coordination by a server. Each device is equipped with Nt transmit antennas and one single

receive antenna to support multicast beamforming and full-duplex communication. The number

of transmit antennas is assumed sufficiently large, i.e., (Nt > K−1), to provide enough degrees-

of-freedom (DoF) for each device to support simultaneous aggregations at (K − 1) peers. For

full-duplex communication, it is assumed that a transmitter is perfectly decoupled from a receiver

at the same device via passive and/or active self-inference cancellation [27] as illustrated in Fig. 1.

As the process of distributed optimization spans multiple rounds, time is divided into rounds

with a fixed duration denoted as Tcmm; each round is further divided into D symbol slots.

Channels are assumed to be static in each round and varying over rounds. For simplicity,
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each link is assumed frequency non-selective with the bandwidth represented by B, giving the

symbol duration Ts = 1
B

. Global channel state information (CSI) is available at each device

via estimation exploiting channel reciprocity or efficient feedback [15]. The required training

overhead is assumed negligible compared with high-dimensional LSI exchange. In each round,

each device, say device k, transmits a symbol vector, denoted as sk, that comprises D symbols

and spans the round duration of Tcmm = DTs.

B. Distributed AirComp Design

An iterative algorithm for distributed optimization (see Appendix A) comprises multiple

communication rounds. In each round, all devices broadcast their LSI simultaneously using

linear analog modulation and multicast beamforming, and at the same time receive the over-

the-air aggregated signals from other devices. All devices are assumed to be synchronized via

a common clock. Consider an arbitrary round, for each device, say device k, let pk ∈ CNt×1

denote the multicast beamformer under the power constraint, ‖pk‖2 6 P0, with P0 representing

the maximum power. Then the over-the-air aggregated signal vector received by the device,

denoted as yk, is given as

yk =
K∑

`=1,` 6=k

hH`kp`s` + w̃k, (1)

where s` denotes the symbol row vector transmitted by device `, h`k ∈ CNt×1 is the channel

vector for the link from device ` to k, and w̃k ∼ CN (0, σ2I) is channel noise. Upon receiving

the aggregated signal, it is scaled as shown below to yield the desired aggregation form:

rk =
yk

(K − 1)
√
η
, (2)

where η is the alignment factor that helps to reduce the AirComp error.

Consider round n and device k. The transmitted symbol vector is a linear analog modulated

local state variable (D × 1 vector), zk(n) (see Appendix A). Normalization of the variable is

necessary for meeting the transmission power constraint and avoiding a nonzero DC level, which

unnecessarily increases the power. For distributed optimization with a general objective function,

typically the statistics of the elements of zk(n) are different and also vary over rounds (see e.g.,

[28]). Define the round-dependent mean and variance of local state variables, which are assumed

uniform for all devices, as M(n) = E
[

1
D

∑
d z

(d)
k (n)

]
and V 2(n) = Var

[
1
D

∑
d z

(d)
k (n)

]
. These

parameters can be estimated offline and stored at devices [28]. Let q(·) denote the normalization
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function such as sk(n) = q(zk(n)) = zk(n)−M(n)
V (n)

for all k. Consequently, Var
[

1
D

∑
d s

(d)
k (n)

]
= 1

and E[ 1
D

∑
d s

(d)
k (n)] = 0 with s

(d)
k (n) being the dth element of sk(n). Note that E[sk(n)] 6= 0

due to the non-uniform distributions of the elements in sk(n). Then the received signal is de-

normalized as

rk = q−1
(

yk
(K − 1)

√
η

)
=

V

(K − 1)
√
η

K∑
`=1,` 6=k

hH`kp`s` +M + wk, (3)

where the channel noise wk ∼ CN
(
0, V 2σ2

(K−1)2ηI
)

.

C. Distributed Optimization and Performance Metric

In distributed optimization, there exist local objective functions associated with individual de-

vices. The function for device k is denoted as fk : RD → R. Following the common assumptions,

each function is assumed to be convex and hence sub-differentiable, but not necessarily smooth.

The global objective, denoted as f , is related to local objectives by f(x) = 1
K

∑K
k=1 fk(x) for

a common state of devices. Then the goal of distributed optimization is to find the optimal

common state x?, which represents a consensus among devices, that minimizes the objective.

Mathematically,

x? = arg min
x∈X

f(x) = arg min
x∈X

1

K

K∑
k=1

fk(x), (4)

where the state space X is a closed, D-dimensional convex set.

A classic algorithm, distributed dual averaging, for solving (4) is discussed in Appendix A.

In this algorithm, the local state of each device, say device `, contains a primal variable and a

dual variable, which are denoted as x`(n) ∈ RD and z`(n) ∈ RD for round n, respectively. Each

round, say round n, of the algorithm comprises a three-step procedure simultaneously executed

at each device, say device `: (1) calculate a stochastic subgradient g̃`(n) of its local loss function

at x`(n); (2) aggregate the dual variables of all other devices and apply the result together with

g̃`(n) to update the local dual variable as z`(n + 1); (3) project z`(n + 1) onto the feasible

set X to obtain the updated primal variable x`(n+ 1) [29]. Only Step (2) requires information

exchange among devices. We focus on its one-step implementation using distributed AirComp

in the preceding subsection. To this end, (27) for Step (2) at device ` is modified as

z`(n+ 1) = (1− β)z`(n) + βr`(n) + g̃`(n) (5)
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where the received signal r`(n) is given in (3) and β is a constant weight (see Appendix A).

Note that the ideal received signal, namely the ground truth, is 1
K−1

K∑
k 6=`

zk(n). Then the sum

AirComp error is suitably defined as the sum mean-square-error (MSE) between the received

signal and its ground-truth:

MSE = E

 K∑
`=1

D∑
d=1

(
r
(d)
` −

1

K − 1

K∑
k 6=`

z
(d)
k

)H (
r
(d)
` −

1

K − 1

K∑
k 6=`

z
(d)
k

)
=

V 2D

(K−1)2
E

 K∑
`=1

(
K∑
k 6=`

hHk`pk√
η
s
(d)
k −

K∑
k 6=`

s
(d)
k +w

(d)
k

)H ( K∑
k 6=`

hHk`pk√
η
s
(d)
k −

K∑
k 6=`

s
(d)
k +w

(d)
k

)
=

V 2D

(K − 1)2

K∑
`=1

[
K∑
k 6=`

∥∥∥∥hHk`pk√
η
− 1

∥∥∥∥2 +
σ2

η

]

=
V 2D

(K − 1)2

K∑
k=1

K∑
6̀=k

∥∥∥∥hHk`pk√
η
− 1

∥∥∥∥2 +
KDV 2σ2

(K − 1)2
1

η
,

(6)

where the expectation is taken over the distribution of the transmitted symbol and the received

noise w(d)
k and the round index (n) is omitted here for brevity.

III. MMSE DESIGN OF DISTRIBUTED MULTICAST BEAMFORMING

In this section, distributed multicast beamforming for distributed AirComp as well as the

alignment factor are jointly optimized under the criterion of minimum sum AirComp error. The

result is called minimum MSE (MMSE) multicast beamforming. An efficient solution approach

is developed based on fractional programming.

A. Optimal Distributed Multicast Beamforming

Consider an arbitrary round with its index omitted for ease of notation. With the sum AirComp

error in (6), the mentioned optimization problem is formulated as follows

min
{pk},η

MSE(p1, · · · ,pk, η)

s.t. ‖pk‖2 6 P0, ∀k,

η ≥ 0.

(P1)

Due to the coupling of {pk} and η, Problem (P1) is non-convex and hence directly solving it is

difficult. To overcome the difficulty, an alternative approach is presented as follows.
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First, given {pk}, Problem (P1) is reduced to the following conditional problem:

min
η≥0

V 2D

(K − 1)2

K∑
k=1

K∑
`6=k

∥∥∥∥hHk`pk√
η
− 1

∥∥∥∥2 +
KDV 2σ2

(K − 1)2
1

η
. (7)

The objective in (7) is found to be convex and then the optimal η?mmse is obtained as

η?mmse =

(
2Kσ2 + 2

∑K
`=1

∑K
k 6=` p

H
k hk`h

H
k`pk∑K

`=1

∑K
k 6=`(h

H
k`pk + pHk hk`)

)2

. (8)

Next, we proceed to optimize {pk}. Substituting η?mmse in (8) into Problem (P1) gives

min
{pk}

K

K − 1
− 1

(K − 1)2
·

(∑K
`=1

∑K
k 6=`(h

H
k`pk + pHk hk`)

)2
4(Kσ2 +

∑K
`=1

∑K
k 6=` h

H
k`pkp

H
k hk`)

s.t. ‖pk‖2 6 P0, ∀k.

(P1.1)

Problem (P1.1) remains non-convex. Nevertheless, the result in the following lemma can trans-

form this problem into a tractable equivalent form.

Lemma 1. Given
∑K

`=1

∑K
k 6=`(h

H
k`pk+pHk hk`) > 0, Problem (P1.1) is equivalent to the following

concave-convex fractional program:

max
{pk}

(∑K
`=1

∑K
k 6=`(h

H
k`pk + pHk hk`)

)
2
√

(Kσ2 +
∑K

`=1

∑K
k 6=` h

H
k`pkp

H
k hk`)

s.t. ‖pk‖2 6 P0 ∀k,
K∑
`=1

K∑
k 6=`

(hHk`pk + pHk hk`) > 0.

(P1.2)

Proof. See Appendix B.

It can be straightforwardly proved by a simple variable substitution. When
∑K

`=1

∑K
k 6=`(h

H
k`pk+

pHk hk`) < 0, the optimal solution of (P1.1) can be written as p̃?k = −p?k, where p?k is the optimal

solution of (P1.2). Since p̃?k and p?k correspond to the same optimal value of the objective of

(P1.1), considering the case in Lemma 1 where
∑K

`=1

∑K
k 6=`(h

H
k`pk+pHk hk`) > 0 is sufficient for

the purpose of solving Problem (P1.1). This allows a property of factional program to be applied.

To this end, define the upper contour set of a function f : Rn → R at c = f(x0) for some

x0 ∈ Rn as the set {x ∈ X : f(x) > c}. One useful property of the concave-convex fractional
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program in Lemma 1 is its strict quasi-concavity [30]. Specifically, the upper contour sets of the

objective of Problem (P1.2), are convex. By introducing an auxiliary variable α(α > 0), which

corresponds to the aligned fraction, Problem (P1.2) can be written as the convex problem of

maximization over α as follows:

max
α,{pk},

α

s.t. ‖pk‖2 6 P0, ∀k,

α 6

(∑K
`=1

∑K
k 6=`(h

H
k`pk + pHk hk`)

)
2
√

(Kσ2 +
∑K

`=1

∑K
k 6=` h

H
k`pkp

H
k hk`)

.

(P1.3)

To solve the above problem requires consideration of a related problem of transmission power

minimization described as follows. Define the maximum power as pmax = maxk ‖pk‖22. Then

given α, the mentioned problem is given as

min
{pk},pmax

pmax

s.t. 2α

√√√√(Kσ2 +
K∑
`=1

K∑
k 6=`

hHk`pkp
H
k hk`) 6

(
K∑
`=1

K∑
k 6=`

(hHk`pk + pHk hk`)

)
,

‖pk‖22 6 pmax, ∀k.

(P1.4)

The solution of Problem (P1.4) is denoted as a function of α, p?(α). Note that given the desired

aligned fraction α, Problem (P1.4) is feasible if and only if the solution for Problem (P1.4)

satisfies p?(α) 6 P0. Two useful lemmas for relating Problems (P1.3) and (P1.4) are given as

follows, which are proved in Appendices C and D, respectively.

Lemma 2. The minimum transmission power p?(α) over devices is a monotonously increasing

function of α.

It follows from the result in Lemma 2 that the solution for Problem (P1.3) is the maximum

alignment level, denoted as α?, such that the corresponding minimum transmission power p?(α?)

is no larger than P0. This suggests a solution method of Problem (P1.3) by a search for α? over

the range of 0 < p?(α) 6 P0. This requires solving Problem (P1.4) so as to compute the function

p?(α). To this end, the following result is useful.

Lemma 3. Given α, Problem (P1.4) is convex.
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Algorithm 1 Optimal Algorithm for MMSE Distributed Multicast Beamforming
1: Inputs: K, σ, {hk`}.

2: Initialization:

Select αu so that α = αu makes p?(αu) defined in (P1.4) larger than P0.

Select αl so that α = αl makes p?(αl) < P0.

3: while |αu − αl| > ε do

4: Let αm = (αu + αl)/2 and substitute α = αm into (P1.4).

5: Solve (P1.4) by CVX toolbox to obtain p?(αm) and {p?k}.

6: if p?(αm) > P0 then

7: αu = αm.

8: else

9: αl = αm.

10: end if

11: end while

12: return {p?k}.

The convexity of Problem (P1.4) allows it to be solved efficiently using rich existing techniques

for convex programming, for example, the primal-dual method.

In summary, Problem (P1.3) for optimal transmit beamforming can be solved efficient by

nesting a one-dimensional search over α and the solution of the convex Problem (P1.4). The

detailed algorithm is presented in Algorithm 1.

B. Centroid Beamforming

To shed light on the structure of the optimal MMSE design of distributed multicast beam-

former, we consider a special case when the number of antennas Nt = K−1. Let Hk ∈ CNt×(K−1)

be the matrix with its `-th column being hHk` with ` 6= k. In the current case, Hk is an invertible

full-rank matrix. The convexity of Problem (P1.4) allows its KKT conditions to be a sufficient

and necessary condition for its optimal solution. Based on the KKT conditions, Lemmas 4 and

5 are obtained as follows with proofs in Appendix E.

Lemma 4. At least one device performs full-power transmission, i.e. ∃k, ‖pk‖2 = P0.
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Lemma 5 (Centroid Beamforming). Define [H]` as the `-th column of matrix H. When Nt =

K − 1, the beamforming directions of devices with partial-power transmission are given as

p?k
‖p?k‖

=

K∑̀
6=k

[(
HH
k

)−1]
`∥∥∥∥∥ K∑̀

6=k

[
(HH

k )
−1
]
`

∥∥∥∥∥
, (9)

and those with full-power transmission are given as

p?k
‖p?k‖

=

K∑̀
6=k

[(
HkH

H
k + µkI

)−1
Hk

]
`∥∥∥∥∥ K∑̀

6=k

[
(HkHH

k + µkI)
−1

Hk

]
`

∥∥∥∥∥
, (10)

where µk is the regularization term that diminishes as the SNR increases.

The result in (9) shows that the direction of the optimal beamforming of a device with

partial-power transmission points to the centroid of the column vectors of a ZF or a regularized

channel-inversion precoder. Such a design overcomes fading of multiuser channels to facilitate

simultaneous signal alignments at other devices while balancing their AirComp errors.

IV. ZERO-FORCING DESIGN OF DISTRIBUTED MULTICAST BEAMFORMING

In this section, we consider the ZF design criterion of forcing the received signals to approach

the desired ground-truth values without consideration of channel noise. Under this criterion, a

low-complexity design of distributed multicast beamforming is presented as follows. Conditioned

on the alignment factor η, the ZF criterion allows the joint beamforming design to be decoupled

into the following individual beamforming problems formulated for device k as

p?k = arg min
pk

∥∥HH
k pk −

√
η1(K−1)

∥∥2 , ∀k, (P2)

where the objective function is termed as misalignment error. Note that in this case, since

Nt > K−1, there is sufficient DoF to align the channels, i.e., HH
k pk =

√
η1(K−1), ∀k is always

satisfied. Therefore
∥∥HH

k pk −
√
η1(K−1)

∥∥2 = 0 always has non-trivial solutions. Then following

lemma gives a solution with the smallest norm.



14

Proposition 1. When Nt > K − 1, given the alignment factor η, the misalignment error of

device k is minimized by following ZF multicast beamforming:

pk =
√
ηHk

(
HH
k Hk

)−1
1(K−1), ∀k, (11)

where η is chosen to meet the power constraint.

Proof. See Appendix F.

The beamformer in (11) can be written in a centroid form similarly as its MMSE counterpart,

i.e., pk =
√
η
K∑̀
6=k

[
Hk

(
HH
k Hk

)−1]
`
. Specifically, this multicast beamforming is given by the

centroid of the column vectors of a traditional ZF precoder for the associated D2D multiuser

channel to the peers. However, it should be noted that compared with MMSE beamforming, this

ZF scheme can potentially amplify the noise and is therefore vulnerable to deep fading.

By substituting (11) in Proposition 1, the problem of alignment-error minimization over the

alignment factor η is

min
{η}

KDV 2σ2

(K − 1)2η
,

s.t. η1H(K−1)
(
HH
k Hk

)−1
1(K−1) 6 P0, ∀k.

(P2.1)

Since the objective of Problem (P2.1) is a monotonically decreasing function of η, the optimal

η?ZF is directly given as

η?ZF = min
k

P0

1H(K−1) (HH
k Hk)

−1
1(K−1)

. (12)

By constructing a Rayleigh quotient as following, we have

η?ZF = min
k

P01
H
(K−1)1(K−1)

(K − 1)1H(K−1) (HH
k Hk)

−1
1(K−1)

> min
k

P0

(K − 1)λmax

(
(HH

k Hk)
−1
)

(a)
= min

k

P0

(K − 1)λ−1min (HH
k Hk)

,

(13)

where (a) is due to that HH
k Hk is a hermitian matrix and λmin(.), λmax(.) correspond to the

minimum and maximum eigenvalue of given matrix separately. Using this upper bound on η?ZF

leads to an upper bound on the sum AirComp error in the current case:

MSEZF 6
KDV 2σ2

(K − 1)P0 mink λmin (HH
k Hk)

. (14)
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Note that the minimum eigenvalue λmin
(
HH
k Hk

)
is a monotonically increasing function of Nt

[26]. This demonstrates the diversity gain of increasing the transmit array size for reducing the

sum AirComp error. Next, comparing the sum AirComp errors of the MMSE and ZF designs,

it is worth mentioning that MSEmmse 6 MSEZF.

V. APPLICATION TO DISTRIBUTED OPTIMIZATION

In this section, we consider the application of distributed AirComp designed in the preceding

sections to provide an efficient air interface for implementing the distributed-optimization algo-

rithm in Appendix A in a D2D network. The effects of AirComp error on its convergence are

charaterized mathematically. For tractable analysis, several assumptions commonly made in the

literature (see e.g., [31]) are also adopted in this work.

Assumption 1 (Continuity). Each local objective function is L-Lipschitz continuous:

|fk(x)− fk(y)| ≤ L‖x− y‖ for x,y ∈ X (15)

where L is a constant.

Assumption 2 (Local Gradient Estimation). The stochastic subgradient g̃k(n) at the k-th device

is an unbiased estimate of the ground-truth local subgradient, gk(n) ∈ ∂fk (xk(n)), with bounded

second moment:

E[g̃k(n)] = gk(n) and E
[
||g̃k(n)||2

]
≤ Ω2, (16)

where Ω is a given constant.

A. Effects of AirComp Error

In this subsection, we investigate the effects of AirComp error on the subgradient estimation

and state updating, which are the key operations of distributed optimization. The variables in

the subsequent analysis follow those defined in Appendix A.

First, consider round n, the receive signal vector at device k in (3) can be rewritten as

rk(n) =
1

K − 1

K∑
`=1,` 6=k

z`(n) + ∆k(n), (17)
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where the random variable ∆k(n) defined below represents the distortion caused by wireless

propagation:

∆k(n) =
V (n)

K − 1

K∑
`=1,`6=k

(
hHk`(n)pk(n)√

η(n)
− 1

)
s`(n) + wk(n). (18)

Note that the summation of ‖∆k(n)‖2 over devices gives the sum AirComp error in (6). Then

based on (5) and (30), the state variable at device i is updated as

zk(n+ 1) =
K∑
`=1

Wk`z`(n) + ĝk(n), (19)

where ĝk(n) represents the channel distorted version of the stochastic subgradient, ĝk(n), namely

ĝk(n) = g̃k(n) + β∆k(n).

Next, the effects of AirComp error are reflected by the deviation of the noisy subgradient,

ĝk(n), from its ground truth. Consider ZF beamforming designed in Section IV. From its

definition, the channel distortion in (18), ∆k(n), reduces to channel noise: ∆k(n) = wk(n).

It follows from this fact and Assumption 1 that the noisy subgradient ĝk(n) yields an unbiased

estimate of the ground truth:

E [ĝk(n)] = E [g̃k(n) + β∆k(n)] = gk(n). (20)

Consider MMSE beamforming designed in Section III. It follows from (18) and its definition,

the corresponding noisy subgradient, however, is a biased estimate of the ground truth:

E [ĝk(n)] = E [g̃k(n) + β∆k(n)] = gk(n) +
βV (n)

K − 1

K∑
`=1,`6=k

(
hHk`(n)pk(n)√

η(n)
− 1

)
E [s`(n)] ,

(21)

where E [s`(n)] 6= 0 as discussed in Section II. Even though the MMSE beamforming achieves

lower AirComp error as defined in (6) than the ZF counterpart, the former’s biased subgradient

estimation leads to worse convergence performance as elaborated in the next subsection.

Last, a result useful for convergence analysis is obtained by bounding the deviation of the state

variable (i.e., dual variable), zk(n), from its average z(n) = 1
K

∑
k zk(n), termed dual-variable

deviation. Note that it also serves as a measure of the deviation of individual noisy subgradients.

Mathematically, the deviation is defined as E ‖z(n)− zk(n)‖∗ with ‖ · ‖∗ = sup‖u=1‖〈., u〉

denoting the dual norm. To bound the dual-variable deviation, based on Assumption 2, the
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second moment of the noisy sub-gradient, ĝk(n), can be bounded as:

E
[
‖ĝk(n)‖2

]
= E

[
‖g̃k(n)‖2 + β2‖∆k‖2

]
6 Ω2 +

β2MSE(n)

K
, (22)

where the AirComp error MSE(n) defined in (6) applies to both the cases of ZF and MMSE

beamforming. Using the bound, the desired result is obtained as follows.

Lemma 6. For distributed optimization using distributed AirComp (with either MMSE or ZF

beamforming), the expected dual-variable deviation can be bounded as:

E ‖z(n)− zk(n)‖∗ 6
2ξ

β(1− λ2)
log(N

√
K) + 3ξ, (23)

where ξ =
√

Ω2 + β2 maxn MSE(n)
K

and λ2 is the second largest eigenvalue of the edge-weight

matrix P.

Proof. See Appendix G.

One can observe from the above result that dual-variable deviation grows with the numbers

of rounds and users following O(log(N
√
K)). Nevertheless, it is shown in the next section

that with a properly chosen step size, the noisy primal variables, {x̂k(N)}, can asymptotically

approach the optimal point as the number of rounds, N , increases.

B. Convergence Analysis

The convergence of the distributed-optimization algorithm (see Appendix A) as implemented

using distributed AirComp is analyzed as follows. To begin with, given N rounds, the conver-

gence is evaluated using the metric of expected suboptimality gap, E [f (x̂k(N))− f (x?)], where

x̂k(N) and x? represent the noisy state at device k and the optimal point, respectively.

Theorem 1 (Convergence with Distributed AirComp). Given the optimal point x?, assume that

the proximal function satisfying (26) in Appendix A is bounded by some constant R as ψ (x?) ≤

R2. Let the step size α(n) be chosen as α(n) = R
√
1−λ2

4ξ
√
n

. Then the expected suboptimality gap

can be bounded for the ZF multicast beamforming as

E [f (x̂k(N))− f (x?)] 6
20R log(N

√
K)

β
√
N
√

1− λ2

(
Ω2 +

β2 maxn MSE(n)

K

) 1
2

, (24)
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and for the MMSE design as

E [f (x̂k(N))−f (x?)] 6
20R log(N

√
K)

β
√
N
√

1−λ2

(
Ω2+

β2 maxn MSE(n)

K

) 1
2

+
‖x?‖
N

N∑
n=1

√
MSE(n)

K
,

(25)

where λ2 is the second largest eigenvalue of the edge-weight matrix P.

Proof. See Appendix H.

In the above results, those terms comprising the AirComp error, MSE(n), reflect the ef-

fects of distributed AirComp. For a sanity check, substituting MSE(n) = 0 into the results

in Theorem 1 yields the existing result for the ideal case of noiseless channels [29]. Next,

comparing with (24), the last term at the right-hand size of (25) reveals slower convergence

due to the MMSE beamforming as opposed to the ZF counterpart due to the former’s bias in

subgradient estimation as shown in the preceding subsection. More critically, the said term

does not vanish as the number of rounds, N , grows, but instead converges to a constant,

‖x?‖ · E[
√

MSE(n)/K]. As a result, in terms of expected suboptimality gap, ZF beamforming

can significantly outperform the MMSE counterpart in the regime of low-to-meidum SNRs. Last,

the AirComp-error term, introduced by β2 maxn MSE(n)
K

, scales with the number of rounds, N , and

devices, K, following O(log(N
√
K)/
√
N). However, it decays with the increasing transmit SNR

following O(1/
√

SNR). This leads to a narrowing performance gap between the ZF and MMSE

beamforming as the SNR grows.

VI. SIMULATION RESULTS

A distributed system with a varying number of devices, K, is simulated. In the system, all

channel gains are modelled as i.i.d. Rician fading with the power ratio between the direct and

scatter paths being 0.6 and unit total power. Transmit SNR is defined as SNR = P0/σ
2 and is set

equal for all devices. The bandwidth is B = 1 MHz. Other case-dependent simulation settings

are specified in the sequel. For distributed optimization, we consider the specific scenario of

distributed FEEL that trains a classifier model for handwritten-digit recognition using the well-

known MNIST dataset. This dataset contains 60, 000 labeled training data samples in total. To

distribute these samples in a non i.i.d. manner, they are first sorted by their digit label, then

divided into 20 shards of size 3, 000, with 2 shards allocated to each of the 10 devices. The

classifier model is implemented using a 6-layer convolutional neural network (CNN) that consists
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Fig. 2. Per-round communication latency with transmit SNR = 20 dB.

of two 5 × 5 convolution layers with ReLU activation, each followed by a 2 × 2 max pooling

layer, a fully-connected layer with 512 units and ReLU activation, and a final softmax output

layer. The total number of parameters is 21, 840. The test accuracy is defined as the lowest

test accuracy among all devices. In this scenario, the LSI of each device is a locally computed

stochastic gradient for model updating.

Two benchmarking schemes are described below

• Digital communication: Each coefficient of a transmitted state variable is quantized into

Q = 16 bits, which are transmitted reliably at a capacity-achieving rate. In each round,

devices take turn to broadcast their LSI to peers based on time-division multiple access

(TDMA). ZF precoding is applied.

• Single-aggregation AirComp: In each round, the K AirComp processes in the system are

orthogonalized or equivalently completed sequentially using TDMA, giving the name of the

scheme. Consequently, the per-round latency is K-time higher than that of the proposed

distributed AirComp although the AirComp error is smaller as demonstrated in the sequel.

The traditional beamforming design for a multiple-input-single-output channel is applied

together with effective channel inversion for receive-signal alignment, which is a special

case of the AirComp design in [15].
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A. Performance of Distributed AirComp

In Fig. 2, the per-round communication latency for LSI exchange between K devices is

compared between the proposed distributed AirComp and benchmarking schemes for a varying

number of devices, K. The transmit SNR is 20 dB. To support the number of devices as many

as 50, each device is provisioned with a large-scale array with Nt = 100. One can observe

that the feature of simultaneous multicasting enables the proposed distributed AirComp to keep

the latency constant instead of increasing with the number of devices as for the benchmarking

schemes. Distributed AirComp is observed to achieve much lower latency than the latter with

the gap increasing rapidly as K grows. When there are many devices (e.g., 50), the latency

reduction of distributed AirComp is more than two-order of magnitude with respect to (w.r.t.)

digital communication and about 50-time w.r.t. single-aggregation AriComp.

Next, the curves of AirComp error versus transmit SNR, number of transmit antennas Nt, and

number of devices K are plotted in Fig. 3(a), 3(b), and 3(c), respectively. By default, the number

of devices K = 5. All simulation results demonstrate decreasing AirComp error as any of the

three parameters increases. Relatively small array sizes, Nt = 4 and Nt = 18, are considered in

Fig. 3(a) and and 3(c), respectively, to investigate the limitations of distributed AirComp. One

can observe from Fig. 3(a) that distributed AirComp, which strives to support K AirComp

processes simultaneously despite a small array size, incurs about 10-time larger AirComp error

than single-aggregation AirComp. Furthermore, as shown in Fig. 3(c), the former sees that

the AirComp error saturates as K increases, indicating the cancellation of the opposite effects

of aggregation gain in error suppression and severer receive-signal misalignment. The above

disadvantage of distributed AirComp as a price for dramatic latency reduction is alleviated when

the array size increases as shown in Fig. 3(b). For instance, for Nt = 40, the error ratio between

distributed AirComp and single-aggregation counterpart reduces to below 4 times. In addition, it

can be observed that for distributed AirComp, MMSE multicast beamforming outperforms the

ZF design in the regimes of low-to-medium SNRs or array size or as the number of devices

grows.

B. Performance of Distributed Optimization

Consider FEEL, a typical scenario of distributed optimization, where the number of devices

K = 10 and each is equipped with Nt = 18 antennas. The distributed FEEL algorithm is

implemented using either distributed AirComp or one of the benchmarking schemes. Define the



21

20 25 30 35 40 45 50

Transmit SNR per device (dB)

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

A
irC

om
p 

er
ro

r
Distributed AirComp (MMSE)
Distributed AirComp (ZF)
Single-aggregation AirComp

(a)

5 10 15 20 25 30 35 40

Number of antennas

10 -3

10 -2

10 -1

A
irC

om
p 

er
ro

r

Distributed AirComp (MMSE)
Distributed AirComp (ZF)
Single-aggregation AirComp

(b)

3 4 5 6 7 8 9 10

Number of devices

10 -4

10 -3

A
irC

om
p 

er
ro

r

Distributed AirComp (MMSE)
Distributed AirComp (ZF)
Single-aggregation AirComp

(c)

Fig. 3. Comparison of AirComp error between distributed AirComp with MMSE and ZF beamforming and single-aggregation
AirComp for (a) varying transmit SNR, (b) a varying number of transmit antennas Nt, and (c) a varying number of devices K.
The default value of K = 5 is used.

communication latency given a number of rounds as the accumulated latency from the start of

the task to the current round. The test accuracy of the considered schemes are compared in Fig. 4

as a function of communication latency. First, by comparing sub-figures in the same row, the

dramatic convergence-speed acceleration achieved by distributed AirComp is aligned with the

latency comparison in Fig. 2. Second, in terms of converged test accuracy, distributed AirComp

with ZF multicast beamforming performs similarly as the benchmarking schemes. Third, in the

context of distributed AirComp, MMSE beamforming design is observed from the left-most

subfigure of Fig. 4(a) to suffer significant accuracy loss (i.e., 15%) w.r.t. the ZF counterpart

due to the bias in subgradient estimation as discussed in Section V. The loss is significant in
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Fig. 4. Test-accuracy comparison between (from left to right) distributed AirComp, single-aggregation AirComp, and digital
communication for varying communication latency for (a) a medium SNR (SNR = 10 dB) or (b) a high SNR (SNR = 20 dB).

the regime of low-to-medium SNRs but varnishes at high SNRs as observed from the left-most

subfigure of Fig. 4(b).

VII. CONCLUDING REMARKS

To overcome the communication bottleneck in the deployment of distributed optimization in

a distributed network, we have proposed the framework of distributed AirComp that realizes a

one-step distributed aggregation of the local states of all devices. The framework features the

seamless integration of simultaneous multicast beamforming of all devices and their full-duplex

communication, which makes it possible to support multiple concurrent over-the-air aggregation

processes at devices. This has led to dramatic communication-latency reduction when there are

many devices and thus provides a promising solution to data intensive applications such as

distributed machine learning and high-mobility applications, such as drone swarm or vehicle

platooning.

This work points to a number of directions warranting follow-up investigations. It is interesting

to extend the current single-stream transmission to distributed AirComp with spatial multiplex-



23

ing, which can further shorten communication latency. On the other hand, the performance of

distributed AirComp can be enhanced by distributed resource allocation such as adaptive power

control and broadband transmission. Last, particularization of the current design to the area of

distributed machine learning provides abundance of cross-disciplinary research opportunities, for

example, distributed reinforcement learning with distributed AirComp.

APPENDIX

A. Distributed Optimization Algorithm

Consider distributed optimization in a distributed network described by an undirected graph

denoted as G = (V,E), where V represents the set of K nodes (e.g., edge devices) and E

represents the set of edges. Each edge, say the one connecting the kth and `th node, is assigned

a non-negative weight denoted as Pk`. Then the graph structure can be specified by the K ×K

weight matrix P with (k, `)th element being Pk`. In particular, two nodes k 6= ` are connected

(i.e., (k, `) ∈ E) if and only if Pk` > 0 or otherwise Pk` = 0. The matrix P is constrained to be

doubly stochastic, namely that
∑K

`=1 Pk` =
∑K

k=1 Pk` = 1.

Given the distributed network, the problem of distributed optimization in (4) can be solved

using the classic iterative algorithm of distributed dual averaging described as follows [29], [31].

To begin with, let each device, say device k, maintain a two-variable state, (zk(n),xk(n)), each

being a D×1 row vector with real elements and xk(n) ∈ X , which is the support of the objective

function. Moreover, a key component of the algorithm is a proximal function ψ : RD → R that

is assumed to be 1-strongly convex with respect to some norm ‖ · ‖:

ψ(y) ≥ ψ(x) + 〈∇ψ(x),y − x〉+
1

2
‖x− y‖2 ∀ x,y ∈ X . (26)

One example of such a function is ψ(x) = 1
2
‖x‖2. For device k, the state variable xk(n) ∈ X

represents the local estimate of the optimal solution for (4) at iteration n. Recall that g̃k(n)

represents the stochastic subgradient of the local loss function as computed at device k using local

data. Then given non-increasing step size {α(n)}, all devices perform simultaneous updating of

their states [31]: for all k and the n iteration,

zk(n+ 1) = (1− β)zk(n) + β
∑
`∈N(k)

Pk`z`(n) + g̃k(n), (27)

xk(n+ 1) = Πψ
X (zk(n+ 1), α(n)) , (28)
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where the constant β ∈ (0, 1), N(k) represents the neighbourhood of node k on the graph G,

and Πψ
X the projection function defined as

Πψ
X (zk(n+ 1), α(n)) := argmin

x∈X

{
〈zk(n+ 1),x〉+

1

α(n)
ψ(x)

}
(29)

with ψ(.) being the proximal function that satisfies (26). For ease of notation, define the weight

matrix W = (1− β)I + βP with the (k, `)th element denoted as Wk`. Then (27) is rewritten as

zk(n+ 1) =
K∑
`=1

Wk`z`(n) + g̃k(n), . (30)

Note that the updating in (30) is for node k to compute a consensus based on the states of the

peers. On the other hand, the projection function in (29) yields xk(n + 1) that minimizes an

averaged first-order approximation of the objective function. It is assumed that ψ(x) > 0 ∀ x ∈ X

and ψ(0) = 0 without loss of generality.

The above updating procedure is iterated until a consensus on the minimum of the objective

is reached, as the changes of the states of all devices fall below a given threshold. Specifically,

given a threshold ε, the convergence criterion can be specified using the expected suboptimality

gap [29]:

max
k

E [f (x̂k(N))−f (x?)] 6 ε, (31)

where ε is a given constant and the expectation in (31) taken over all sources of randomness.

B. Proof of Lemma 1

First, given
∑K

`=1

∑K
k 6=`(h

H
k`pk + pHk hk`) > 0, it is direct to see that the objective function of

P1.2 is positive. Denote xk` = Re(hHk`pk), yk` = Im(hHk`pk) as the real and imaginary parts of

hHk`pk, respectively. Then the numerator and denominator of objective function of Problem (P1.2)

can be written as A(x) = 2
∑K

`=1

∑K
k 6=` xk` and B(x,y) = 2

√
Kσ2 +

∑K
`=1

∑K
k 6=`(x

2
k` + y2k`)

respectively. Notice that the eigenvalues of the Hessian matrix of function B(x,y) : e1 =

2Kσ2

(Kσ2+
∑K

k 6=`(x
2
k`+y

2
k`))

3/2 , e2 = e3 = · · ·= e2K(K−1) = 2

(Kσ2+
∑K

k 6=`(x
2
k`+y

2
k`))

1/2 are all positive numbers,

hence the B(x,y) is a convex function. Then, since A(x) is a linear function, one can obtain

that the the Problem (P1.2) is a concave-convex fractional program, with its objective function

proved to be strictly quasi-concave and pseudo-concave [30]. Therefore, the objective function



25

of Problem (P1.2) is a positive unimodal function and Problem (P1.2) has an unique optimal

solution, and the proof is completed.

C. Proof of Lemma2

It is first to prove that for any α1 6 α2, p?k(α1) 6 p?k(α2) by contradiction. Assume there

exists α1 6 α2 such that p?k(α1) > p?k(α2). Since Problem P1.2 has been proved to be an strictly

quasi-concave function, then for α1 6 α2, the size of feasible region P1 for α = α1 is larger

than or equal to the size of P2 for α = α2, which means we can at least find a set of {pk}

in P1 that makes p?k(α1) = p?k(α2). This contradicts the previous assumption and thus for any

α1 6 α2, p?k(α1) 6 p?k(α2).

Moreover, for α = 0, we have pk = 0, ∀k, and thus p?k(α) = 0. Then, for any α > 0, there

must ∃ pk such that ‖pk‖2 > 0, which means p?k(α) > 0. To this end, p?k(α) cannot be a constant

function for all α. Then the proof is finished.

D. Proof of Lemma 3

First, the objective of Problem (P1.4) is linear and the second constraint is a convex set. Then

given any α, left-hand-side of the first constraint can be regarded as a 2-norm function and hence

convex. Then the right-hand-side of the first constraint is a linear function. Therefore, the proof

is completed.

E. Proof of Lemma 4 and Lemma 5

We first give the corresponding Lagrange function of Problem (P1.4) as below

L({pk} , pmax, λ, {vk}) = pmax+

λ

2α

√√√√(Kσ2 +
K∑
`=1

K∑
k 6=`

hHk`pkp
H
k hk`)−

(
K∑
`=1

K∑
k 6=`

(hHk`pk + pHk hk`)

)+
K∑
k=1

vk(p
H
k pk − pmax)

(32)
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where λ and {vk} are the Lagrangian multipliers. The KKT conditions are given by

∂L({pk} , pmax, λ, {vk})
∂pmax

= 1−
K∑
k=1

vk = 0,

∂L({pk} , pmax, λ, {vk})
∂pk

= λ


α

(
K∑̀
6=k

hk`h
H
k`

)
pk√

Kσ2 +
∑K

`=1

∑K
k 6=` ‖hHk`pk‖

2
−

K∑
`6=k

hk`

+ 2vkpk = 0,∀k,

λ

α
√√√√Kσ2 +

K∑
`=1

K∑
k 6=`

‖hHk`pk‖
2 −

(
K∑
`=1

K∑
k 6=`

(hHk`pk + pHk hk`)

) = 0,

vk(p
H
k pk − pmax) = 0, ∀k.

(33)

In (33), the first condition indicates ∃k, vk 6= 0. This reveals that for any α, at least one device

transmits with power p?(α). Then by Lemma 2, one can conclude that for the maximum aligned

fraction α, at least one device transmits with the maximum power P0.

Next, together with the second and the forth conditions, one can have λ 6= 0. By the second

condition, let a constant c0 = α√
Kσ2+

∑K
`=1

∑K
k 6=`‖hH

k`pk‖2
, we have

[
c0λ
(
HkH

H
k

)
+ 2vkI

]
pk = Hk1(K−1). (34)

By denoting µk = 2vk
c0λ

, then the desired results are obtained.

F. Proof of Proposition 1

The problem of finding the smallest norm solution for
∥∥HH

k pk −
√
η1(K−1)

∥∥2 = 0 is equivalent

to the following optimization problem:

min
pk

‖pk‖2

s.t. HH
k pk =

√
η1(K−1).

This problem is convex since both the objective and feasible region are convex. By reusing

Lagrange multiplier λ, the Lagrange function can be written as

L(pk, λ) = ‖pk‖2 + λ
(
HH
k pk −

√
η1(K−1)

)
. (35)
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The KKT conditions are given by
∂L(pk, λ)

∂pk
= 2pk + Hkλ

H = 0,(
HH
k pk −

√
η1(K−1)

)
= 0.

(36)

Take the first condition into the second one, one can get the expression of λ. Then take λ back

to the first condition, the desired result is obtained.

G. Proof of Lemma 6

From (19), the average state in round n is given as

z(n+ 1) =
1

K

K∑
k=1

zk(n+ 1) =
1

K

K∑
k=1

(
K∑
`=1

Wk`(n)z`(n) + ĝk(n)

)
,

= z(n) +
1

K

K∑
k=1

ĝk(n).

(37)

Define the matrix Φ(n, s) = Wn−s+1. Then, for the state update zk(n + 1) at device k, it is

expanded as follows

zk(n+ 1) =
K∑
`=1

[Φ(n, s)]k`z`(s) +
n∑

r=s+1

(
K∑
`=1

[Φ(n, r)]k`ĝ`(r − 1)

)
+ ĝk(n), (38)

where [Φ(n, s)]k` is the `-th entry of the k-th column of Φ(n, s). Since the initial state zk(0) = 0,

using (37) and (38) yields

z̄(n)−zk(n)=
n−1∑
s=1

K∑
=̀1

(
1

K
−[Φ(n−1, s)]k`

)
ĝ`(s−1)+

(
1

K

K∑
=̀1

(ĝ`(n−1)−ĝk(n−1))

)
. (39)

Based on (22), ξ2 = Ω2+ β2 maxn MSE(n)
K

denotes an upper bound on the second moment of ĝk(n).

Then by Jensen’s inequality, one has (E [‖ĝk(n)‖])2 6 E
[
‖ĝk(n)‖2

]
6 ξ2 for all k. Hence

E ‖z(n)− zk(n)‖∗ 6
n−1∑
s=1

ξ

∥∥∥∥[Φ(n− 1, s)]k −
1

K

∥∥∥∥
1

+ 2ξ. (40)

Following steps similar to [31], we separate the sum in (40) into two terms by a cutoff point n̂ =

n− logN
√
K

β log λ−1 , where λ2 = max {λ2(P),−λK(P)} is the second-largest magnitude of eigenvalues
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of P,

E ‖z(n)− zk(n)‖∗ 6
n̂∑
s=1

ξ

∥∥∥∥[Φ(n− 1, s)]k −
1

K

∥∥∥∥
1

+
n−1∑
s=n̂+1

ξ

∥∥∥∥[Φ(n− 1, s)]k −
1

K

∥∥∥∥
1

+2ξ. (41)

Then for s 6 n̂,we have ‖[Φ(n− 1, s)]k − 1/K‖1 6 1/K and for larger s, we relax this term via

a more loose bound ‖[Φ(n− 1, s)]k − 1/K‖1 6 2. Taking these two bounds into (41) together

with the fact log λ−12 > 1− λ2, one can obtain the desired result.

H. Proof of Theorem 1

The proof is close to the convergence proof for distributed dual averaging [31] with some

modifications. First, an useful lemma is introduced as follows.

Lemma 7. [31, lemma 8] Let {xk(n)} and {zk(n)} be the primal and dual variables, then the

expected suboptimality gap for both ZF and MMSE beamforming cases is bounded as

E [fk (x̂k(N))− f (x?)] 6
1

Nα(N)
ψ (x?) +

ξ2

2N

N∑
n=1

α(n− 1)

+
L+ ξ

NK

N∑
n=1

K∑
k=1

α(n)E [‖z̄(n)− zk(n)‖] +
L

N

N∑
n=1

α(n)E [‖z̄(n)− zk(n)‖]

+ E

[
1

NK

N∑
n=1

K∑
k=1

〈gk(n)− ĝk(n),xk(n)− x?〉 ,

] (42)

where ξ =
√

Ω2 + β2 maxn MSE(n)
K

, and ‖ · ‖ represents the `2-norm that is its own dual.

For the ZF beamforming case, by (20), one can find that the last term of (42) is equal

to zero. By taking the upper bound in Lemma 6 into (42) and with ψ (x?) ≤ R2, α(n) =

R
√
1−λ2

4ξ
√
n

, the convergence for ZF beamforming in Theorem 1 can be obtained. However, for the

MMSE beamforming case, by (21), the last term of (42) is nonzero due to the biased gradient.
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Nevertheless, this term can be bounded as

E

[
1

NK

N∑
n=1

K∑
k=1

〈gk(n)− ĝk(n),xk(n)− x?〉

]
6 E

[
1

NK

N∑
n=1

K∑
k=1

‖gk(n)− ĝk(n)‖ ‖xk(n)− x?‖

]

6
1

NK

N∑
n=1

K∑
k=1

E [‖∆k(n)‖]E [‖xk(n)− x?‖]

6
‖x?‖
N

N∑
n=1

√
MSE(n)/K.

(43)

The last inequality follows from E [‖xk(n)− x?‖] 6 E [‖xk(0)− x?‖] and xk(0) = 0, ∀k. Taking

this into (42), then Theorem 1 is proved.
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