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Abstract—Federated Learning (FL) empowers Industrial Inter-
net of Things (IIoT) with distributed intelligence of industrial au-
tomation thanks to its capability of distributed machine learning
without any raw data exchange. However, it is rather challenging
for lightweight IIoT devices to perform computation-intensive
local model training over large-scale deep neural networks
(DNNs). Driven by this issue, we develop a communication-
computation efficient FL framework for resource-limited IIoT
networks that integrates DNN partition technique into the stan-
dard FL mechanism, wherein IIoT devices perform local model
training over the bottom layers of the objective DNN, and offload
the top layers to the edge gateway side. Considering imbalanced
data distribution, we derive the device-specific participation
rate to involve the devices with better data distribution in
more communication rounds. Upon deriving the device-specific
participation rate, we propose to minimize the training delay
under the constraints of device-specific participation rate, energy
consumption and memory usage. To this end, we formulate a
joint optimization problem of device scheduling and resource
allocation (i.e. DNN partition point, channel assignment, transmit
power, and computation frequency), and solve the long-term
min-max mixed integer non-linear programming based on the
Lyapunov technique. In particular, the proposed dynamic device
scheduling and resource allocation (DDSRA) algorithm can
achieve a trade-off to balance the training delay minimization
and FL performance. We also provide the FL convergence bound
for the DDSRA algorithm with both convex and non-convex
settings. Experimental results demonstrate the derived device-
specific participation rate in terms of feasibility, and show that
the DDSRA algorithm outperforms baselines in terms of test
accuracy and convergence time.

Index Terms—Federated learning, deep neural network (DNN)
partition, device-specific participation rate, dynamic device
scheduling and resource allocation.

I. INTRODUCTION

RECENT advances in artificial intelligence (AI) and com-
munication technologies along with wide deployment

of the Industrial Internet of Things (IIoT) are leading us
to Industry 4.0 [1], [2]. With the proliferation of modern
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sensors and controllers, massive data has been collected and
analyzed to derive intelligence, which transforms traditional
industrial manufacturing to modernization and intelligence.
Since raw industrial data often involves sensitive information,
privacy is of the essence in industrial big data analysis. In
traditional machine learning (ML), a large amount of raw data
is collected from IIoT devices and centralized in a third party,
which can lead to privacy leakage. Therefore, it is of crucial
significance to process industrial raw data locally for the sake
of privacy protection. As an emerging AI technology, federated
learning (FL) has been regarded as a promising solution to
privacy-preserving intelligent IIoT applications [3]. In a FL
network, the centralized server aggregates the trained local ML
models transmitted from the distributed devices. Compared
with traditional ML, FL achieves a global ML model without
any raw data exchange, thereby significantly reducing the
communication overhead and promoting the privacy of each
device. In this context, FL is widely applicable to a variety
of IIoT scenarios wherein the local data samples possessed by
every single device are insufficient to train an efficient ML
model.

Wireless communication is of the essence in IIoT scenarios
because it enables seamless, pervasive, and scalable connectiv-
ity among distributed devices without any cabled connections
[4]. The total cost of deploying cabled communication can
be relatively high in an industrial environment, especially
when it requires equipment shutdown and pauses manufac-
turing lines. Therefore, many factories upgrade the existing
equipment with industrial wireless components for additional
intelligent applications (e.g., fault diagnosis and safety early
warning), instead of deploying cables [5]. However, due to
the limited communication resources (e.g., bandwidth), FL
in IIoT systems suffers from inter-channel interference and
prolonged transmission latency in the training process. Since
IIoT systems demand the timely completion of each processing
step during the manufacturing process, the communication
overhead can be a bottleneck in FL-enabled IIoT systems.
In addition, since IIoT devices are typically battery-operated,
low-power consumption is vital to preserve battery life [6]. To
this end, joint communication and energy resource allocation
are of considerable significance to improve FL efficiency in
wireless IIoT networks.

From the perspective of resource allocation, many recent
studies have focused on how to achieve energy-efficient or
communication-efficient FL. Authors in [7] derive the training
loss gap between FL and centralized ML for a given duration
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of communication rounds, and propose a device scheduling
and resource allocation policy to enhance the FL performance
by predicting channel state information. Based on deep multi-
agent reinforcement learning, the works in [5] and [8] optimize
the device selection as well as communication and computa-
tion resource allocation in an online manner to minimize FL
loss function under delay and energy consumption constraints.
To achieve a communication-efficient FL, [9]–[12] minimize
the training latency by jointly optimizing communication and
computation resource allocation as well as device selection. To
evaluate the learning performance of the proposed low-latency
FL framework, both FL training loss and learning delay are
investigated to characterize the impact of device selection and
resource allocation on the FL performance. In addition, to
overcome the battery challenge of IIoT devices, the works in
[13]–[17] propose different algorithms of joint communication
and energy resource management, aiming at minimizing the
total energy consumption of FL training process or weighted
sum of energy consumption, latency and FL training loss.

Although emerging AI endows IIoT the capability to mine
efficient knowledge from big data, the state-of-the-art deep
neural network (DNN) architectures (e.g., GPT3) demand
significant memory and computational resources [18]. Con-
sidering the huge computational cost of large-scale DNN
training, the aforementioned works on communication and
computation resource allocation are not adequate to reduce
the computational burden on lightweight IIoT devices during
the FL training process. To further reduce the computational
cost of FL training for IIoT devices, recent works [19]–[21] on
DNN partition assisted FL propose to divide the DNN model
into two continuous portions, and separately train bottom and
top layers of the DNN model at the device and edge server
sides. However, these works focus on differentially private
data perturbation mechanism designs to preserve the privacy
of training data, and adopt predefined DNN partition strategies
for all devices regardless of limited and heterogeneous com-
putational resources. Later on, [22] and [23] propose to jointly
optimize the partitioning and offloading of DNN inference
tasks to reduce the total execution time. However, these works
focus on DNN inference instead of DNN training. In fact, it
is more challenging to optimize the DNN partition point in
FL training process. This is due to the fact that FL demands
the devices to synchronously perform the local model training
in each communication round, while the DNN inference tasks
can be independently executed by the devices. To our best
knowledge, our paper is the first attempt to investigate the
dynamic DNN partition in FL training process.

In addition, due to diverse computational capacity and
memory resource among different IIoT devices, device het-
erogeneity introduces high training latency or even training
failures, resulting in an unsatisfactory quality of experience
(QoE) for real-time delay-sensitive applications. Furthermore,
data heterogeneity can significantly degrade FL performance
in the presence of non-independent and identically distributed
(non-IID) data distribution [24]. To this end, proper partic-
ipant device selection plays a crucial role in improving FL
performance, especially when there exits a limit on the num-
ber of participant devices due to the limited communication

resources.

To address the aforementioned issues, we propose a
communication-computation efficient FL framework for
resource-limited IIoT networks that integrates the dynamic
DNN partition technique into the standard FL mechanism.
Considering limited and heterogeneous communication, en-
ergy, and memory resources as well as imbalanced data
distribution, we propose a dynamic device scheduling and
resource allocation policy to minimize the training latency
while guaranteeing FL performance. Our contributions are
summarized as follows:

1) By integrating DNN partition with FL, we propose a
two-tier FL framework for IIoT networks wherein the
devices hold the private datasets, perform the local
model training over the bottom layers of the objective
DNN, and offload the top layers to the edge gateway side
at the middle tier. The roles of edge gateways include
local model training of top DNN portion, device-level
model combination, shop-floor-scale model aggregation,
and model transmission. The base station (BS) at the top
tier performs global model aggregation, and transfers
scheduling policy information.

2) According to the forward and backward propagation, we
derive the universal formulas for evaluating the layer-
level memory usage and floating-point operation counts
(FLOPs) based on the hyper-parameters of the DNN
structure (e.g., filter size in convolution layer). As such,
we propose a layer-level calculation model for training
delay, memory usage and energy consumption in our
two-tier FL framework.

3) We derive a divergence bound to analyze the impact
of local dataset size and data distribution on FL train-
ing performance, and then develop the device-specific
participation rate linked to the model performance. To
achieve a low-latency FL, we formulate a joint dy-
namic optimization problem of the device scheduling
and resource allocation (i.e., channel assignment, DNN
partition point, transmit power and computation fre-
quency) under the constraints of device-specific partici-
pation rate, energy consumption and memory usage. The
objective of this optimization problem is to minimize the
training latency while guaranteeing the learning perfor-
mance of FL. To solve this long-term min-max mixed
integer non-linear programming (MINLP) problem, we
propose a dynamic device scheduling and resource al-
location (DDSRA) algorithm to transform the stochas-
tic optimization problem with a time-average device-
specific participation rate constraint into a deterministic
min-max MINLP problem based on the Lyapunov tech-
nique. Then, we solve the deterministic problem by the
block coordinate descent method and bisection method
in each communication round.

4) We conduct a performance analysis of the proposed
DDSRA algorithm to verify its asymptotic optimality. A
trade-off of [O(1/V ), O(

√
V )] is characterized between

the FL training latency minimization and the degree
of which the participation rate constraint is satisfied
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with a control parameter V . This trade-off indicates that
the minimization of the training latency and FL perfor-
mance can be balanced by adjusting V . Furthermore,
we provide the FL convergence bound for the DDSRA
algorithm with both convex and non-convex settings.
Our developed bound reveals that the FL convergence
rate can be improved by increasing the training data size
and setting a higher participation rate for the important
devices with better data distribution.

5) Experimental results are provided to demonstrate the
derived device-specific participation rate in terms of
feasibility. Moreover, we analyze the participation rate of
each device under the proposed DDSRA algorithm, and
the experimental results show that the DDSRA algorithm
outperforms the baselines in terms of learning accuracy
and convergence time.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the basic knowledge of FL
and DNN partition technique. In Section III, we give the
communication-computation efficient FL-enabled IIoT frame-
work and then formulate the stochastic optimization problem.
Section IV derives the device-specific participation rate, and
Section V proposes the DDSRA algorithm. Section VI pro-
duces the performance analysis of the proposed algorithm to
verify asymptotic optimality, and studies the FL convergence
rate. Then, the experimental results are presented in Section
VII. Section VIII concludes this paper. For ease of reference,
Tables I lists the main notations used in this paper.

II. PRELIMINARIES

A. Federated Learning

FL enables local model training across distributed devices,
and global model aggregation at a centralized server. Consid-
ering an FL network of N devices collaborating to train an
ML model over their respective local datasets. The goal of
FL is to find a set of model parameters w that minimizes
the global loss function F (w) on all the local datasets, i.e.,
F (w) =

∑
n |Dn|Fn(w)∑

n |Dn|
, where Fn(w) = f(w,Dn) denotes

the loss function on the local dataset Dn. To keep the training
data localized and private, each device in FL utilizes the
gradient-descent method to minimize the local loss function
Fn(w) over its local dataset by iteratively moving in the
negative direction of the gradient. To obtain the global model,
they synchronously upload the trained local model parameters
to the centralized server, which aggregates all the collected
local model parameters and returns the result to each device to
update the local model parameters. Compared with traditional
ML, FL can collaboratively build a shared model without
raw data exchange, which greatly reduces the communication
overhead and promotes the privacy of localized data.

B. Deep Neural Network Partition

1) Deep Neural Network: A deep neural network (DNN)
can be considered as stacked layers of neural networks, where
raw data gets passed to the input layer and the output layer
outputs the prediction result. Each hidden layer takes in the

TABLE I: List of main notations.

Notations Descriptions

N Index set of the end devices
M Index set of the edge gateways
a Deployment matrix
Dn Local dataset
L Index set of the DNN layers
J Index set of the available channels
ln(t) DNN partition point
I(t) Channel assignment matrix
K Local iterations
β Step size
D̃n Number of sample points

ol
FLOPs of the forward propagation
for each sample point in the l-th layer

o′l
FLOPs of the backward propagation
for each sample point in the l-th layer

φD
n FLOPs per clock cycle of the n-th device

φG
m FLOPs per clock cycle of the m-th gateway
fD
n Computation frequency of the n-th device

fG
m,n(t)

Computation frequency of the m-th gateway assigned to the
local model training offloaded from the n-th device in the t-th
communication round

etra,D
n (t)

Energy consumption of the n-th device for local
model training in the t-th communication round

vD
n Effective switched capacitance of the n-th device

etra,G
m (t)

Energy consumption of the m-th gateway for
local model training in the t-th communication round

gn,l
Memory usage of the l-th layer for storing the model parameters
and intermediate data in the forward and backward propagation

GD
n(t)

Memory usage for the bottom DNN layers trained
at the n-th device in the t-th communication round

GG
m(t)

Memory usage for the top DNN layers trained
at the m-th gateway in the t-th communication round

GD,max
n Memory size of the n-th device

GG,max
m Memory size of the m-th gateway

hd
m,j(t)

Downlink channel power gain from the BS to the m-th
gateway via the j-th channel in the t-th communication round

Bd Bandwidth of the downlink channel
PB Transmit power of the BS
N0 Noise power spectral density
γ DNN model size

idm,j(t) Co-channel interference of the downlink channel
Bu Bandwidth of the uplink channel

Pm(t)
Transmit power of the m-th gateway
in the t-th communication round

hum,j(t)
Uplink channel power gain from the m-th
gateway to the BS in the t-th communication round

ium,j(t) Co-channel interference of the uplink channel

e
up
m(t)

Energy consumption of the m-th gateway for
model transmitting in the t-th communication round

ED
n(t) Energy arrival at the n-th device in the t-th communication round

EG
m(t)

Energy arrival at the m-th gateway
in the t-th communication round

eG
m(t)

Total energy consumption of the m-th
gateway in the t-th communication round

τ(t) Total latency of the t-th communication round
Γm Participation rate of the m-th gateway and its associated devices

inputs, passes the weighted inputs into an activation function
along with the biases, and forwards the outputs to the next
layer.

2) Forward and Backward Propagation: According to the
gradient-descent method, the backpropagation algorithm is
utilized to calculate the gradient of the objective loss function
with respect to the model parameters (i.e., neural network’s
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weights and biases) by the chain rule [25]. Specifically, for-
ward and backward propagation are executed in each iteration
until the objective loss function converges. In the forward
propagation stage, each hidden layer calculates the outputs by
adding the biases to the weighted inputs and passing results
into the activation function. The data flows from the first input
layer to the last output layer to obtain the prediction result,
where the output of each hidden layer serves as the input
of the next one. In the backward propagation stage, error
propagates in the opposite direction from the output layer to
the input layer in order to compute the gradient of the loss
function with regard to the model parameters. The error term
in the output layer is calculated as the difference of actual
and desired output, and the error term in each hidden layer
is calculated as the weighted sum of the errors from the next
layer. Based on the error passed from the next layer, each layer
computes the gradient to update the model parameters and the
error to be propagated to the previous layer.

3) Deep Neural Network Partition: In DNN partition mech-
anism, we set a partition point to divide the objective DNN into
two continuous portions, and separately deploy the bottom and
top layers of the DNN at an end device and an edge server. To
perform the forward and backward propagation, the end device
first transmits the labels of training dataset to the edge server.
Then, the output of the last layer in the device-side DNN is
transmitted to the edge server during the forward propagation
stage, while the error term of first layer in the server-side
DNN is transmitted to the end device during the backward
propagation stage. Based on DNN partition mechanism, the
local model training of top DNN portion is offloaded to the
edge server, thereby greatly reducing the computational burden
on the resource-constrained device side. Upon completing the
DNN model training, we perform the model combination, i.e.,
combining the bottom and top layers of the trained DNN
model to obtain the complete DNN model. The decision
of DNN partition point mainly depends on three aspects as
follows: (a) computational resources (i.e., processing power,
memory capacity, etc.) of edge server. The computational
resources required by the training of the offloaded DNN layers
cannot exceed the computational resources of the edge server;
(b) communication overhead. In the training process, DNNs
can be partitioned in pooling layers to reduce the data size
of forward outputs and errors transmitted between the end
device and edge server; (c) privacy concern. Deeper DNN
partition points can help mitigating the potential threats of
privacy leakage.

III. SYSTEM MODEL

A. System Overview

As shown in Fig.1, we consider an FL-enabled IIoT network
with M shop floors, wherein each shop floor employs a single
edge gateway and a group of end devices. In every shop floor,
each device monitors the manufacturing process, collects local
datasets, and performs local model training. Due to limited
computation and memory resources at the device side, each
device trains bottom layers of the objective DNN locally, and
the training of top layers is offloaded to the edge gateway in the

same shop floor. Then, the gateway collects the local models,
combines the bottom and top DNN portions, and performs
the shop-floor-scale model aggregation. The base station (BS)
collects the aggregated shop-floor-scale models, and performs
the global model aggregation to obtain a shared model.

1) End devices: Let N = {1, . . . , N} and M =
{1, . . . ,M} denote the index sets of the devices and gateways,
respectively. Define an N ×M deployment matrix as a with
entry an,m ∈ {0, 1}, n ∈ N and m ∈ M. If an,m = 1,
the n-th device is deployed with the m-th gateway in the
m-th shop floor. As such, the deployment matrix satisfies∑
n∈N an,m = 1, ∀m ∈ M. Each group of devices can only

communicate with the gateway in the same shop floor, and we
describe the group of devices as the associated devices with
the gateway in the same shop floor. Each device holds a local
dataset Dn = {xn,i ∈ Rd, yn,i ∈ R}Dni=1 with Dn = |Dn| data
points, where xn,i and yn,i are the feature vector and label
for the i-th data point at the n-th device. Let L = {1, . . . , L}
denote the index set of the DNN layers. For local model
training, the bottom ln(t) layers of the objective DNN are
trained locally at the n-th device in the t-th communication
round, while the training of top L− ln(t) layers are offloaded
to the associated gateway.

2) Edge gateways: The roles of each gateway include
local model training of top DNN portion, device-level model
combination, shop-floor-scale model aggregation, and model
transmission. First, each gateway performs the forward and
backward propagation for the top layers of the objective DNNs
offloaded from the associated devices. Second, each gateway
collects the bottom layers of the DNNs from the associated
devices, combines the bottom and top layers of the trained
DNNs, aggregates the combined local models, and transmits
the aggregated shop-floor-scale model to the BS. Note that
only a part of the shop floors can be selected to participate in
FL in each communication round.

3) Base station: Let J = {1, . . . , J} denote the index
set of the available channels, T = {1, · · · , T} denote the
index set of communication rounds. Orthogonal frequency-
division multiplexing (OFDM) is adopted to transmit the shop-
floor-scale model parameters from the gateways to the BS in
parallel. In each communication round, J selected gateways
can communicate with the BS through the assigned channels.
The BS equipped with a cloud server has two functions: (a)
aggregating the model parameters received from the selected
edge gateways; (b) sending back the global model parameters
and the scheduling policy information (e.g., channel assign-
ment) to the gateways.

Consider that FL operation in each communication round is
synchronous. As Fig.1 illustrated, the FL in the t-th commu-
nication round operates in the following steps:

1) At the beginning of the t-th communication round, the
BS selects J gateways according to scheduling policy,
and broadcasts the global model parameters W t to the
selected gateways. Define the channel assignment matrix
as I(t) with entry Im,j(t) ∈ {0, 1}, m ∈M and j ∈ J .
If Im,j(t) = 1, the m-th gateway is assigned to the j-th
channel in the t-th communication round. Note that the
channel assignment matrix satisfies

∑
m∈M Im,j(t) = 1
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Fig. 1: System model of a two-tier communication-computation efficient FL-enabled IIoT framework.

and
∑
j∈J Im,j(t) ≤ 1, ∀t ∈ T . Then, each selected

gateway broadcasts the global model parameters W t to
its associated devices.

2) Upon receiving W t, each training device and the asso-
ciated gateway collaboratively perform the forward and
backward propagation by DNN partition mechanism to
update the local model parameters. Let w̃0,t

n = W t

denote the initial local model parameters of the n-
th device in the t-th communication round. For each
training device and the associated gateway, local model
parameters are updated according to the gradient-descent
update rule with respect to the local loss function over a
total of K iterations. The update rule in the k-th iteration
is w̃k,t

n = w̃k−1,t
n −β∇F̃n(w̃k−1,t

n ), where w̃k,t
n denotes

the local model parameters of the n-th device in the k-
th iteration and the t-th communication round, β > 0 is
the step size, ∇F̃n(w̃k−1,t

n ) = ∇fn(w̃k−1,t
n , D̃n) is the

stochastic gradient of local loss function, and D̃n is a
batch of the local dataset Dn with D̃n = |D̃n| sample
points.

3) Upon completing the local model training, each training
device transmits the bottom layers of the DNN to the
associated gateway. Then, the selected gateways com-
bine the bottom and top layers of the trained DNNs,
aggregate the combined local model parameters ac-
cording to the federated averaging (FedAvg) algorithm
[26], i.e., ŵt

m =
∑
n∈N an,mD̃nw̃

K,t
n∑

n∈N an,mD̃n
, and transmit the

aggregated shop-floor-scale model parameters ŵt
m to the

BS. With the received model parameters uploaded from
the selected gateways, the BS updates the global model
parameters by performing global aggregation according
to FedAvg, i.e., W t+1 =

∑
m∈M

∑
j∈J Im,j(t)Dmŵt

m∑
m∈M

∑
j∈J Im,j(t)Dm

,

where Dm =
∑
n∈N an,mD̃n.

B. Computation Model

Before delving into the computation model, we first define
the following notations for the hyper-parameters and tensor
shapes in the forward and backward propagation. Let Bs and
Sf denote the batch size and the precision format of the
data type, respectively. For the convolution layer and pooling
layer, Ho, Wo and Co are output height, width, and channel,
respectively; Hi, Wi and Ci are input height, width, and
channel; Hf and Wf are the filter’s height and width. For the
fully connected layer, Si and So are the input and output sizes.
To calculate the memory usage and FLOPs for the bottom and
top DNN portions trained at the device and gateway side, we
list the main layer-level memory usage and FLOPs in Table
II according to the backpropagation algorithm [27], [28].

Let ol and o′l denote the FLOPs of the forward and backward
propagation for each sample point in the l-th layer, respec-
tively. As such, the local model training time of the m-th
gateway and its associated devices in the t-th communication
round is represented as

τ tra
m (t) =

∑
j∈J

Im,j(t) max
n∈N

{
am,nKD̃n

(∑ln(t)
l=1 (ol + o′l)

φD
nf

D
n

+

∑L
l=ln(t)+1(ol + o′l)

φG
mf

G
m,n(t)

)}
, (1)

where φD
n and φG

m are the FLOPs per clock cycle of the n-th
device and the m-th gateway, fD

n is the computation frequency
of the n-th device for local model training, and fG

m,n(t) is the
computation frequency of the m-th gateway assigned to the n-
th device’s local model training. Note that fG

m,n(t) is limited
by the total computation frequency of the m-th gateway, i.e.,∑
n∈N am,nf

G
m,n(t) ≤ fG,max

m . The energy consumption of the
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TABLE II: Layer-level memory usage and FLOPs in DNN forward and backward propagation operations

Layer Category Memory Usage Floating-point Operation
Tensor Category Tensor Size Operator Category FLOPs

Convolution

Weight SfCiHfWfCo Forward Propagation 2BsCiHfWfCoHoWo

Forward Outout SfBsCoHoWo Error Calculation
2Bs(2Wf +WfWo − 2)

×(2Hf +HfHo − 2)Backward Error SfBsCiHiWi

Gradient SfCiHfWfCo Gradient Calculation 2BsCiHfWfCoHoWo

Pooling
Forward Outout SfBsCoHoWo Forward Propagation BsCiHiWi

Backward Error SfBsCiHiWi Error Calculation BsCiHiWi

Fully Connected

Weight SiSo Forward Propagation 2BsSiSo

Forward Outout BsSo Error Calculation 2BsSiSo

Backward Error BsSi Gradient Calculation BsSiSoGradient SiSo

n-th device for local model training in the t-th communication
round can be expressed as [23]

etra,D
n (t) =

∑
j∈J

∑
m∈M

Im,j(t)am,nKD̃nv
D
n/φ

D
n

(∑ln(t)

l=1
(ol

+ o′l)

)(
fD
n

)2
, (2)

where vD
n is the effective switched capacitance. Moreover,

the energy consumption of the m-th gateway for the local
model training offloaded from its associated devices in the
t-th communication round is given by

etra,G
m (t) =

∑
j∈J

∑
n∈N

Im,j(t)am,nKD̃nv
G
m/φ

G
m

(∑L

l=ln(t)+1

(ol + o′l)

)(
fG
m,n(t)

)2
. (3)

For the n-th training device with the training dataset D̃n,
let gn,l denote the memory usage of the l-th layer for storing
the model parameters and intermediate data in the forward and
backward propagation. The total memory usage for the bottom
and top layers of the objective DNN, which are trained at the
device and gateway side, are given by

GD
n(t) =

∑
j∈J

∑
m∈M

ln(t)∑
l=1

Im,j(t)am,ngn,l, (4)

and

GG
m(t) =

∑
j∈J

∑
n∈N

L∑
l=ln(t)+1

Im,j(t)am,ngn,l. (5)

Let GD,max
n and GG,max

m denote the memory size of the n-
th device and the m-th gateway, respectively. We can note
that 0 ≤ GD

n(t) ≤ GD,max
n and 0 ≤ GG

m(t) ≤ GG,max
m , since

the memory usage cannot exceed the memory size of the
equipment. In addition, the local model training cannot be fully
offloaded due to the limited memory and energy resources at
the edge gateway side.

C. Communication Model

At the beginning of the t-th communication round, the
BS broadcasts the global model parameters to the selected
gateways over wireless channels. Assume that the wireless

channels are IID block fading. The channel remains static in
each communication round but varies among different commu-
nication rounds. In our communication model, the downlink
channel power gain from the BS to the m-th gateway via the
j-th channel is modeled as hd

m,j(t) = h0ρ
d
m,j(t)(d0/dm)ν ,

where h0 is the path loss constant, ρd
m,j(t) is the small-scale

fading channel power gain from the BS to the m-th gateway
via the j-th channel in the t-th communication round, dm
is the distance from the BS to the m-th gateway, d0 is the
reference distance, and ν is the large-scale path loss factor,
respectively. Thus, the global model transmission time from
the BS to the m-th gateway in the t-th communication round
can be represented as

τ down
m (t) =

∑
j∈J

Im,j(t)γ

Bd log2

(
1 +

PBhd
m,j(t)

BdN0+idm,j(t)

) , (6)

where γ is DNN model size, Bd is the bandwidth of the
downlink channel, PB is the transmit power of the BS, N0 is
the noise power spectral density, and idm,j(t) is the co-channel
interference caused by radio communication services in other
areas, respectively.

After downloading the global model parameters from the
BS, each selected gateway broadcasts the global model pa-
rameters to its associated devices. Due to the short-distance
wireless technology, we consider that the transmission time
between the gateways and the associated devices is negligible
compared with the overall FL training delay [29]–[31]. After
completing the local model training, each training device
transmits the bottom layers of the DNN to its associated
gateway, and the selected gateways perform the device-level
model combination and forward the aggregated shop-floor-
scale model parameters to the BS over wireless links. Sim-
ilarly, the model transmission time from the m-th gateway to
the BS in the t-th communication round is

τ up
m (t) =

∑
j∈J

Im,j(t)γ

Bu log2

(
1 +

Pm(t)hum,j(t)

BuN0+ium,j(t)

) , (7)

where Bu represents the bandwidth of the uplink channel,
Pm(t) denotes the transmit power of the m-th gateway, ium,j(t)
is the co-channel interference, hum,j(t) = h0ρ

u
m,j(t)(d0/dm)ν

is the uplink channel power gain from the m-th gateway to the
BS, and ρu

m,j(t) is the small-scale fading channel power gain,
respectively. The energy consumption of the m-th gateway for
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transmitting the aggregated shop-floor-scale model parameters
in the t-th communication round is

eup
m(t) =

∑
j∈J

Pm(t)Im,j(t)γ

Bu log2

(
1 +

Pm(t)hum,j(t)

BuN0+ium,j(t)

) . (8)

In addition, the energy harvesting (EH) components
equipped at devices and gateways harvest renewable energy
from the nature for local model training and transmission. We
formulate the EH process as successive energy packet arrivals.
Let ED

n (t) and EG
m(t) denote the energy arrival at the n-th

device and the m-th gateway in the t-th communication round.
Consider that ED

n (t) and EG
m(t) are modeled as IID stochastic

processes, i.e., ED
n (t) and EG

m(t) are uniformly distributed
within [0, ED,max

n ] and [0, EG,max
m ], respectively. Note that the

total energy consumption of the m-th gateway in the t-th
communication round can be represented as

eG
m(t) = etra,G

m (t) + eup
m(t). (9)

As such, it can be derived that 0 ≤ etra,D
n (t) ≤ ED

n (t), and
0 ≤ eG

m(t) ≤ EG
m(t), since the energy consumption cannot

exceed the energy arrivals in each communication round.

D. Problem Formulation

According to the analysis above, the time consumption of
each communication round mainly comes from three parts, i.e.,
global model downloading, local model training, and shop-
floor-scale model uploading. Thus, the total delay of the t-th
communication round is given by

τ(t) = max
m∈M

{
τ tra
m (t) + τ up

m (t) + τ down
m (t)

}
. (10)

To obtain a communication-computation efficient FL frame-
work, we develop a dynamic device selection and resource
scheduling protocol to minimize average delay under the
energy consumption and memory usage constraints. Let
X(t) = [I(t), l(t),P (t),fG(t)]. In this context, we formulate
a stochastic optimization problem as

P0 : min
X(t)

1

T

∑T

t=1
τ(t) (11)

s.t. C1 : Im,j(t) ∈ {0, 1},∀m ∈M, j ∈ J , t ∈ T ,

C2 :
∑
j∈J

Im,j(t) ≤ 1,∀m ∈M, t ∈ T ,

C3 :
∑
m∈M

Im,j(t) = 1,∀j ∈ J , t ∈ T ,

C4 : 0 ≤ Pm(t) ≤ Pmax
m ,∀m ∈M, t ∈ T ,

C5 : 0 ≤ ln(t) ≤ L,∀n ∈ N , t ∈ T ,

C6 : fG,min
m ≤

∑
n∈N

am,nf
G
m,n(t) ≤ fG,max

m ,∀m ∈M, t ∈ T ,

C7 : 0 ≤ GD
n(t) ≤ GD,max

n ,∀n ∈ N , t ∈ T ,
C8 : 0 ≤ GG

m(t) ≤ GG,max
m ,∀m ∈M, t ∈ T ,

C9 : 0 ≤ etra,D
n (t) ≤ ED

n (t),∀n ∈ N , t ∈ T ,
C10 : 0 ≤ eG

m(t) ≤ EG
m(t),∀m ∈M, t ∈ T ,

C11 :
1

T

T∑
t=1

1
t
m ≥ Γm,∀m ∈M,

where 1
t
m =

∑
j∈J Im,j(t) indicates whether the m-th

gateway is selected to participate in the local model training
in the t-th communication round. That is, if 1tm = 1, the m-th
gateway and associated devices are selected to train the local
model in the t-th communication round. Γm is the participation
rate of the m-th gateway and its associated devices derived in
the following section. The ranges of the variables I(t), l(t),
P (t) and fG(t) are constrained by C1 ∼ C6, respectively.
C7 ∼ C10 are the memory usage and energy consumption
constraints for devices and gateways in each communication
round, respectively. Furthermore, the long-term constraint C11
is adopted to optimize the FL performance by guaranteeing the
participation rate for each gateway and the associated devices.
Overall, the goal of P0 is to jointly optimize communication
and computation resources under memory usage, energy con-
sumption and participation rate constraints.

IV. DEVICE-SPECIFIC PARTICIPATE RATE

In this section, we derive a model divergence bound to
measure the learning performance of each gateway and the
associated devices’ local model training. As such, the partic-
ipation rate of each gateway and the associated devices can
be determined based on the derived divergence bound. Our
analysis of the model divergence bound focuses on three parts,
i.e., data distribution, training dataset size, and the number of
local epochs.

Before the analysis, two auxiliary notations are introduced.
We use wk,t

n to denote the set of local model parameters
that follows a full gradient descent, i.e., wk+1,t

n = wk,t
n −

β∇f(wk,t
n ,Dn), and vk,t to denote the set of local model

parameters that follows a centralized gradient descent, i.e.,
vk+1,t = vk,t− β∇f(vk,t,∪Dn). Note that although the sets
of model parameters w̃k,t

n , wk,t
n , and vk,t follow different up-

date rules, they are synchronized with w̃K,t−1 at the beginning
of the t-th communication round, i.e., w̃0,t = w0,t = v0,t =

w̃K,t−1. In addition, let w̃k,t =
∑
n

∑
m 1

t
mam,nD̃n∑

n

∑
m 1tmam,nD̃n

w̃k,t
n

and wk,t =
∑
n∈N

Dn∑
n∈N Dn

wk,t
n denote the weighted aver-

age of the sets of model parameters w̃k,t
n and wk,t

n , respec-
tively.

To facilitate the analysis, we make the following assump-
tions on the loss function to describe how the data is dis-
tributed at different devices.

Assumption 1: For each data point {xi, yi} ∈ Dn, the
gradient of the function f(w, {xi, yi}) has bounded variance,
i.e., E‖∇f(w, {xi, yi})−∇f(w,Dn)})‖ ≤ σn.

Assumption 2: For each device, the gradient of the local loss
function f(w,Dn) and the global loss function f(w,∪Dn)
satisfy ‖∇f(w,Dn)−∇f(w,∪Dn)‖ ≤ δn.

Based on Assumption 1 and 2, we investigate model
divergence

∥∥ŵt
m−vK,t

∥∥ in Theorem 1.
Theorem 1: Assume that the local loss function f(w,Dn)

is Ln-smooth. The divergence between ŵt
m and vK,t in the

t-th communication round can be written as

∥∥ŵt
m − vK,t

∥∥ ≤ Φm ,
∑
n∈N

am,nD̃n∑
n∈N am,nD̃n

(
σn

Ln
√
D̃n
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+
δn
Ln

)(
(βLn + 1)k − 1

)
. (12)

Proof: Please see Appendix A.
Theorem 1 reveals the impact of data distribution on FL

performance, wherein lower variances σn and δn produce bet-
ter training performance. That is, the gateway and associated
devices are more helpful for FL training if the local data
distribution better represents the overall data distribution. In
addition, we find that larger training data size D̃n can lead to
smaller divergence. Moreover, the divergence increases with
the value of local epoch K, which follows the same trend
with the standard FL framework [32].

According to the model divergence bound in (12), we
derive the proportion of the m-th gateway and its associated
devices’ participation rate over the total participation rate as

1/Φm∑
m∈M 1/Φm

. Recall that we select J gateways and the associ-
ated devices to participate in the local model training in each
communication round. In this context, the total participation
rate of all gateways and the associated devices is J . As such,
the participation rate of the m-th gateway and its associated
devices is determined by [33]–[35]

Γm = min

{
J

1/Φm∑
m∈M 1/Φm

, 1

}
. (13)

Note that the participation rate of each gateway and its
associated devices cannot exceed 1.

This participation rate Γm derived by the divergence bound
of the m-th gateway and associated devices is introduced to
show how many communication rounds that the m-th gateway
should participate in the whole FL process. Based on the
derived participation rate Γm, we can optimize the commu-
nication and energy resources while guaranteeing FL training
performance by adopting a device-specific participation rate
constraint. Superior to the general fairness guarantee (e.g.
Round Robin), the participation rate constraint can not only
save the slow devices from being excluded from FL training
process, but also involve important devices with better data
distribution in more communication rounds on the track of low
latency by setting a larger participation rate for the important
devices.

V. DYNAMIC DEVICE SCHEDULING AND RESOURCE
ALLOCATION ALGORITHM

In this section, we propose a dynamic device scheduling and
resource allocation (DDSRA) algorithm to solve the stochastic
optimization problem P0, which is shown in Algorithm 1.
The proposed DDSRA as a centralized scheduling algorithm
is performed by the BS. Compared with the existing DNN
partition approaches using a predefined DNN partition point
for all devices during the FL training process [19]–[21],
the proposed DDSRA algorithm dynamically optimizes DNN
partition point, channel assignment, transmit power, and com-
putation frequency with time-varying channels and stochastic
energy arrivals.

Algorithm 1: Dynamic device scheduling and resource
allocation algorithm

1 Initialize: Virtual queue length Q(t) = 0;
2 for t = 1, 2, ..., T do
3 Require: Virtual queue length and channel state at

the beginning of the t-th communication round;
4 Ensure: X(t) = [I(t), l(t), P (t), fG(t)];
5 do in parallel
6 Optimize DNN partirion point l(t),

computation frequency fG(t) and transmit
power P (t) by solving (21), (22), and (23)
with block coordinate descent method, and
compute Λm,j(t) according to (18);

7 Given the optimized auxiliary variable Λm,j(t),
find the channel assignment policy I(t) by
solving (26) with Hungarian method;

8 Update Q(t) according to (14);
9 Return X(t) = [I(t), l(t), P (t), fG(t)]

A. Problem Transformation

Based on the Lyapunov optimization method [36], we first
transform the original problem P0 into P1 by converting the
time-average inequality constraint C11 to the queue stability
constraint C11’. To this end, we define the virtual queue
Qm(t) for each gateway updated by

Qm(t+ 1) , max
{
Qm(t)− 1tm + Γm, 0

}
. (14)

By replacing the long-term participation rate constraint C11
with mean rate stability constraint of Qm(t), the original
problem P0 can be written as

P1 : max
X(t)

1

T

∑T

t=1
τ(t) (15)

s.t. C1 ∼ C10, C11’ : lim
t→∞

E{|Qm(t)|}
t

= 0,∀m ∈M.

To solve P1, we next transform the long-term stochastic
problem P1 into the static problem P2 in each communication
round by means of characterizing the Lyapunov drift-plus-
penalty function [36].

Definition 1: Given V > 0, the Lyapunov drift-plus-penalty
function is defined as

∆V (t) , V τ(t) + ∆Ξ(t), (16)

where ∆Ξ(t) , E{Ξ(t + 1) − Ξ(t)|Q(t)} is the conditional
Lyapunov drift, and Ξ(t) , 1

2

∑
m∈MQm(t)2 is the Lyapunov

function.
Minimizing ∆Ξ(t) stabilizes the virtual queues Q(t) and

encourages the virtual queues to meet the mean rate stability
constraint C11’ [37]. As such, minimizing the Lyapunov drift-
plus-penalty function can concurrently minimize the FL delay
and satisfy the long-term participation rate constraint C11,
where V is a control parameter to tune the trade-off between
latency minimization and the degree of which the long-term
participation rate constraint is satisfied.
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Lemma 1: Given the virtual queue lengths Q(t),
∆Ξ(t) is upper bounded by ∆Ξ(t) ≤ H +

∑
m∈M

E {Qm(t)(Γm − 1tm)|Q(t)}, where H = 1
2

∑
m∈M(Γm+1).

Proof: Please see Appendix B.
Thus, the DDSRA algorithm is proposed to minimize the

Lyapunov drift-plus-penalty function ∆V (t) in (16) in each
communication round, i.e.,

P2 : min
X(t)

V τ(t)−
∑

m∈M

∑
j∈J

Qm(t)Im,j(t) (17)

s.t. C1 ∼ C10.

B. Optimal Solution of P2
To solve P2, we first introduce an M × J matrix Λ(t) of

auxiliary variables

Λm,j(t) = max
n∈Nm

{(∑ln(t)
l=1 (ol + o′l)

φD
nf

D
n

+

∑L
l=ln(t)+1(ol + o′l)

φG
mf

G
m,n(t)

KD̃n

)}
+ γ/Bd/ log2

(
1 +

PBhd
m,j(t)

BdN0 + idm,j(t)

)

+ γ/Bu/ log2

(
1 +

Pm(t)hum,j(t)

BN0 + ium,j(t)

)
. (18)

Note that Λm,j(t) represents the total delay for the m-th
gateway if it is assigned to the j-th channel in the t-th
communication round, and Nm ⊂ N denotes the index set
of the devices associated with the m-th gateway. As such, P2
can be rewritten as

P3 : min
X(t)

V max
m∈M

∑
j∈J

Im,j(t)Λm,j(t)

−∑
m∈M

∑
j∈J

Qm(t)

Im,j(t) (19)
s.t. C1 ∼ C10.

By exploiting the independence between I(t) and Λ(t) in the
objective function of P3, we decouple the joint optimization
problem into the following sub-problems.

1) Optimal auxiliary variable: Since Λ(t) is independent
of I(t) in P3, we can separately minimize Λm,j(t) by optimiz-
ing the corresponding DNN partition point ln(t), transmitting
power Pm(t), and computation frequency fG

m,n(t) as

min
ln(t),Pm(t),fG

m,n(t),∀n∈Nm
Λm,j(t) (20)

s.t. C4 ∼ C6,

C7’ :
∑ln(t)

l=1
gn,l ≤ GD,max

n ,∀n ∈ Nm,

C8’ :
∑
n∈Nm

∑L

l=ln(t)+1
gn,l ≤ GG,max

m ,

C9’ :
∑
n∈Nm

KD̃n
vG
m

φG
m

(∑L

l=ln(t)+1
(ol + o′l)

)(
fG
m,n(t)

)2
+

γPm(t)

Bu log2

(
1 +

Pm(t)Bhu
m,j(t)

BuN0+ium,j(t)

) ≤ EG
m(t),

C10’ : KD̃n
vD
n

φD
n

ln(t)∑
l=1

(ol+o
′
l)

(fD
n

)2≤ED
n (t),∀n ∈ Nm.

To solve this problem, we decompose (20) into three sub-
problems in (21), (22) and (23). Given the remaining variables,
each sub-problem is solved by the bisection method or suc-
cessive convex optimization method [38]. Thus, (20) can be
optimized by the block coordinate descent method as shown
in Algorithm 1.

Given the optimized Pm(t) and fG
m,n(t), we can rewrite (20)

as

min
ln(t),∀n∈Nm

g1(ln(t)) = max
n∈Nm

{
KD̃n

(∑ln(t)
l=1 (ol + o′l)

φD
nf

D
n

+

∑L
l=ln(t)+1(ol + o′l)

φG
mf

G
m,n(t)

)}
(21)

s.t. C5,C7’,C8’,C9’,C10’.

Note that the sub-problem in (21) is NP-hard. To circum-
vent this difficulty, a greedy solution with polynomial-time
complexity is proposed by adopting the bisection method
[39]. Let gmin

1 =
Kminn∈Nm{D̃n}

∑L
l=1(ol+o

′
l)

max{maxn∈Nm{φD
nf

D
n},maxn∈Nm{φG

mf
G
m,n(t)}}

and gmax
1 =

Kmaxn∈Nm{D̃n}
∑L
l=1(ol+o

′
l)

min{minn∈Nm{φD
nf

D
n},minn∈Nm{φG

mf
G
m,n(t)}} denote

the lower and upper bound of g1(ln(t)). Let η be the mid
point of the interval (gmin

1 , gmax
1 ), i.e., η = 1

2 (gmin
1 + gmax

1 ).
In each iteration, we first compute the lower and upper
bound of ln(t) according to constraints C5, C7’, C9’ and

KD̃n

(∑ln(t)
l=1 (ol+o

′
l)

φD
nf

D
n

+
∑L
l=ln(t)+1(ol+o

′
l)

φG
mf

G
m,n(t)

)
≤ η, ∀n ∈ Nm,

i.e., lmin
n ≤ ln(t) ≤ lmax

n . If constraints C8’ and C10’ hold
when ln(t) = lmin

n , we refine the upper bound of g1(ln(t)) as η.
Otherwise, the lower bound of g1(ln(t)) is refined as η. We can
note that lmin

n = lmax
n if the bisection method converges. Thus,

the optimal DNN partition point is derived as l∗n(t) = lmin
n .

Given the optimized ln(t) and Pm(t), we can rewrite (20)
as

min
fG
m,n(t),∀n∈Nm

g2(fG
m,n(t)) = max

n∈Nm

{
KD̃n

(∑ln(t)
l=1 (ol + o′l)

φD
nf

D
n

+

∑L
l=ln(t)+1(ol + o′l)

φG
mf

G
m,n(t)

)}
(22)

s.t. C6,C10’.

Similarly, the sub-problem in (22) can be solved by the bisec-

tion method. Let gmin
2 =K minn∈Nm{D̃n}

( ∑ln(t)
l=1 (ol+o

′
l)

maxn∈Nm{φD
nf

D
n}

+∑L
l=ln(t)+1(ol+o

′
l)

φG
mfm,n

G,max

)
and gmax

2 =K max
n∈Nm

{D̃n}
( ∑ln(t)

l=1 (ol+o
′
l)

maxn∈Nm{φD
nf

D
n}

+∑L
l=ln(t)+1(ol+o

′
l)

φG
mfm,n

G,min

)
denote the lower and upper bound of

g2(fG
m,n(t)). Let ϑ be the mid point of the interval

(gmin
2 , gmax

2 ), i.e., ϑ = 1
2 (gmin

2 + gmax
2 ). In each itera-

tion, we first compute the lower bound of fG
m,n(t) ac-

cording to KD̃n

(∑ln(t)
l=1 (ol+o

′
l)

φD
nf

D
n

+
∑L
l=ln(t)+1(ol+o

′
l)

φG
mf

G
m,n(t)

)
≤ ϑ,

i.e., fG
m,n(t) ≥

(∑L
l=ln(t)+1(ol+o

′
l)
)
/φG

m/
(
−
∑ln(t)
l=1 (ol+o

′
l)

φD
nf

D
n

+ ϑ
KD̃n

)
. If constraints C6 and C10’ hold when fG

m,n(t) =(∑L
l=ln(t)+1(ol + o′l)

)
/φG

m/
(
−
∑ln(t)
l=1 (ol+o

′
l)

φD
nf

D
n

+ ϑ
KD̃n

)
, we re-

fine the upper bound of g2(fG
m,n(t)) as ϑ. Otherwise, the
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lower bound of g2(fG
m,n(t)) is refined as ϑ. Suppose that

ϑ = ϑ∗ when the bisection method converges. Thus, the
optimal computation frequency is derived as fG

∗

m,n(t) =(∑L
l=ln(t)+1(ol + o′l)

)
/φG

m/
(

ϑ∗

KD̃n
−
∑ln(t)
l=1 (ol+o

′
l)

φD
nf

D
n

)
.

Given the optimized ln(t) and fG
m,n(t), we rewrite (20) as

min
Pm(t),∀n∈Nm

g3(Pm(t)) =
γ

Bu log2

(
1+

Pm(t)hum,j(t)

BuN0+ium,j(t)

) (23)

s.t. C4,C10’.

Note that the sub-problem in (23) is convex. The optimal
transmit power is as follows.

P ∗m(t)=



0, if Bu

γ ln 2

(
EG
m(t)−

∑
n∈Nm

KD̃n
vG
m

φG
m

(
L∑

l=ln(t)+1

(ol+o
′
l)

)
(fG
m,n(t))2

)
−BN0+ium,j(t)

hum,j(t)
≤ 0,

min{x∗, Pmax
m }, otherwise,

(24)

where x∗ > 0 is the solution to Bu

γ

(
EG
m(t)−

∑
n∈NmKD̃n v

G
m∑L

l=ln(t)+1(ol+o
′
l)

φG
m

(fG
m,n(t))2

)
log2

(
1+

hum,j(t)x

BuN0+ium,j(t)

)
−x = 0.

2) Optimal channel assignment: Given the optimized Λ(t),
the channel assignment matrix I(t) can be optimized as

min
I(t)

V max
m∈M

∑
j∈J

Im,j(t)Λm,j(t)

−∑
m∈M

∑
j∈J

Qm(t)Im,j(t)

(25)
s.t. C1 ∼ C3.

To solve the problem in (25), we first introduce an auxiliary
variable λ, and thus the problem can be equivalently trans-
formed into

min
λ,I(t)

λ−
∑
m∈M

∑
j∈J

Qm(t)Im,j(t) (26)

s.t. C1 ∼ C3, C12 : λ ≥ V
∑
j∈J

Im,j(t)Λm,j(t),∀m ∈M.

Following the solution of the problem in (20), we decompose
(26) into two sub-problems in (27) and (30), and then optimize
the auxiliary variable λ and the channel assignment matrix
I(t) by solving the sub-problems in an iterative manner.

Given the optimized auxiliary variable λ, we can rewrite
(26) as

min
I(t)

−
∑
m∈M

∑
j∈J

Qm(t)Im,j(t) (27)

s.t. C1 : Im,j(t) ∈ {0, 1},∀m ∈M, j ∈ J ,

C2 :
∑
j∈J

Im,j(t) ≤ 1,∀m ∈M,

C3 :
∑
m∈M

Im,j(t) = 1,∀j ∈ J ,

C12 :
∑
j∈J

V Λm,j(t)Im,j(t) ≤ λ,∀m ∈M.

From constraints C1 and C2, constraint C12 can be equiv-
alently transformed into C12’, i.e., Im,j(t) = 0,∀(m, j) ∈
{(m, j) ∈M×J |Λm,j(t) > λ/V }. By replacing the corre-
sponding weights Qm(t) in the objective function of (27) with
an extremely large positive value, the problem in (27) can be
transformed into a standard weighted bipartite matching linear
program as

min
I(t)

∑
m∈M

∑
j∈J

Θm,jIm,j(t) (28)

s.t. C1 : Im,j(t) ∈ {0, 1},∀m ∈M, j ∈ J ,

C2 :
∑
j∈J

Im,j(t) ≤ 1,∀m ∈M,

C3 :
∑
m∈M

Im,j(t) = 1,∀j ∈ J ,

where

Θm,j=

{
Ψ, if (m, j)∈{(m, j)∈M×J |VΛm,j(t)>λ} ,
−Qm(t), otherwise.

(29)

Note that Ψ is set as an extremely large positive value to create
the composite objective function in (28) which incorporates
the effect of constraint C12’. Based on the Hungarian method
[40], [41], the optimal channel assignment matrix I∗(t) can
be obtained in polynomial time.

Given the optimized channel assignment matrix I(t), we
can rewrite (26) as

min
λ

λ (30)

s.t. C12 : λ ≥ V
∑
j∈J

Im,j(t)Λm,j(t),∀m ∈M.

Obviously, the optimal auxiliary variable is given by

λ∗ = max
m∈M

∑
j∈J

Im,j(t)Λm,j(t)

 . (31)

With the optimal channel assignment matrix I∗(t), whether
the m-th gateway and its associated devices are selected to
participate in the local model training in the t-th communica-
tion round is determined by 1

t
m =

∑
j∈J im,j(t).

C. Optimality, Complexity, Applicability, and Scalability Anal-
ysis

In this subsection, we present the optimality, complexity,
applicability, and scalability analysis of the proposed DDSRA
algorithm as follows.

Optimality analysis: The DDSRA algorithm converges to
at least a locally optimal solution. From Section V-B, the
DDSRA algorithm consists of two parts: a) solve the auxiliary
variables Λm,j(t) in (20) based on block coordinate descent
method in the outer layer loop and bisection method in the
inner layer loop, and b) solve the channel assignment matrix
I(t) in (26) based on block coordinate descent method in
the outer layer loop and Hungarian method in the inner layer
loop. According to the existing works on the block coordinate
descent method [42]–[44], the convergence to a local optimum
can be guaranteed when the sub-problems in each iteration can
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be solved exactly with optimality. Notably, bisection method
is an efficient and widely-used algorithm which can converge
to the global optimum superlinearly [45], [46], and Hungarian
method is a straightforward method of finding the optimal
solution to an assignment problem [40], [41]. According to the
above analysis, the DDSRA algorithm converges to at least a
locally optimal solution.

Complexity analysis: Let L1 and L2 denote the required
number of iterations for solving (20) based on the block
coordinate descent method in the outer layer loop and the
bisection method in the inner layer loop, respectively. The
computational complexity of solving the auxiliary variables
Λm,j(t) is represented as O(NJL1L2). From Section V-
B, the computational complexity of the Hungarian method
in the inner layer is represented as O(M3). Let L3 denote
the required number of iterations for solving (26) based
on the block coordinate descent method in the outer layer
loop. The computational complexity of solving the channel
assignment matrix I(t) in (26) is represented as O(M3L3).
To sum up, the total computational complexity of DDSRA is
O(NJL1L2 +M3L3).

Applicability analysis: The DDSRA algorithm is applicable
to a variety of IIoT scenarios. Thanks to the joint opti-
mization of device scheduling and resource allocation (i.e.
DNN partition point, channel assignment, transmit power,
and computation frequency), our proposal can be potentially
applied in device heterogeneity scenarios wherein IIoT devices
are intrinsically heterogeneous in computational capacity and
memory resource. Thanks to the developed device-specific
participation rate linked to the training dataset size and data
distribution, our proposal is robust against data heterogeneity
(i.e., non-IID data distribution). Moreover, thanks to the layer-
level memory usage and FLOPs calculation model, our pro-
posal is applicable to diverse DNN models such as multilayer
perceptron (MLP) and convolutional neural network (CNN).

Scalability analysis: The computational complexity of the
DDSRA algorithm is directly proportional to the number of
end devices, i.e., N . Furthermore, by exploiting the indepen-
dence between the auxiliary variables Λm,j(t), the DDSRA
algorithm is decomposed into MJ multi-threaded parallel
computation tasks (see line 5 in Algorithm 1), which can
greatly reduce the time complexity. Therefore, the DDSRA
algorithm is scalable to a large number of end devices.

VI. PERFORMANCE ANALYSIS

A. Asymptotic Optimality of DDSRA

In this subsection, we will analyze the performance of the
proposed DDSRA algorithm in terms of asymptotic optimality,
and characterize the trade-off between the delay minimization
and the degree of which the participation rate constraint is
satisfied.

Theorem 2: With the optimal policy of P2 in each commu-
nication round, and note that E{Q(0)} <∞, we have

ϕ∗ − ϕopt ≤ H

V
+

E{Ξ(0)− Ξ(T )}
V T

, (32)

and

1

T

T−1∑
t=0

1
t
m ≥ Γm −

√
H+V (ϕopt−τmin)

T
+
∑
m∈M

E{Qm(0)2}
T 2

,

(33)
where ϕopt is the optimal utility of P0 over all possi-
ble scheduling policies, ϕ∗ represents the optimal utility

of P2, and τmin =
Kminn∈N{D̃n}∑L

l=1(ol+o
′
l)

min{minn∈N {φD
nf

D
n},minm∈M{φG

mf
G,max
m }} +

γ/Bu/ log2

(
1 +Pmax

m hum,j/
(
BuN0+ium,j

))
+γ/Bd/log2

(
1+

PBhdm,j/
(
Bd N0+idm,j

))
.

Proof: Please see Appendix C.
We have verified the asymptotic optimality of the proposed

DDSRA algorithm in (32). That is, the proposed DDSRA
algorithm converges to the optimal solution as V increases.
Moreover, (33) indicates that the participation rate of each
gateway and its associated devices increases, and finally con-
verges to the optimized device-specific participation rate Γm as
V decreases. Hence, Theorem 2 shows an [O(1/V ), O(

√
V )]

trade-off between the minimization of FL training latency
and the degree of which the participation rate constraint is
satisfied, where the control parameter V represents how much
we emphasize the maximization of the FL training latency.
To be specific, a large value of V encourages reducing the
FL training latency, which can be adopted for real-time delay-
sensitive IIoT applications. Meanwhile, a small value of V
pushes the participation rate of each gateway and its associated
devices to the optimized device-specific participation rate Γm,
thereby promoting the FL training performance.

B. FL Convergence Analysis of the DDSRA Algorithm

For ease of exposition, we define δ = maxn{δn}, σ =
maxn{σn}, Fn(w) = f(w,Dn), F̃n(w) = f(w, D̃n), and
F (w) = f(w,∪Dn). Based on Assumption 1 and 2, the FL
convergence bound of the proposed algorithm is derived as
follows.

Theorem 3: Assume that the loss function Fn(w) is convex,
Ln-smooth and ρn−Lipschitz continuous, the FL convergence
bound is represented as

E
[
F
(
W T

)
− F (w∗)

]
≤

1

T

βφ− ρ

(
δ+
∑
n∈N

ξn
σn√
D̃n

)
((βL+1)K−1)+β

(
δ+
∑
n∈N

∣∣∣∣∣ξn− Dn∑
n∈N

Dn

∣∣∣∣∣ρn
)

ε2KL


,

(34)

where L = maxn{Ln}, ρ = maxn{ρn}, φ , ω(1 −βL/2),
ω , mint∈T

1
‖vK,t−1−w∗‖2 , ξn =

∑
m∈M Γmam,nD̃n∑

n∈N
∑
m∈M Γmam,nD̃n

,

and ε , mint∈T
[
F (vK,t)− F (w∗)

]
.

Proof: Please see Appendix D.
From Theorem 3, we can see that larger training data
sizes D̃n can reduce the value of the term ρ

(
δ +∑

n
ξn

σn√
D̃n

) (
(βL+ 1)K − 1

)
in (34), which contributes to

a smaller convergence bound and thereby a better FL per-
formance. In addition, by setting a larger participation rate for
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important devices with better data distribution (i.e., lower vari-
ances σn), our derived device-specific participation rate Γm
can produce a lower weighted sum of σn√

D̃n
, thereby leading

to a lower FL convergence bound. Moreover, it also shows
that when the participation rate is set to be the same for each
gateway and its associated devices, i.e., Γm = Γm′ ,∀m 6= m′,
the term

∣∣∣ξn − Dn∑
nDn

∣∣∣ in (34) is zero if the training data sizes

are proportionate to the local dataset sizes (i.e., D̃n = αDn,
∀n ∈ N , where α represents the data sampling ratio for the
local datasets). That is, the training data sizes proportionate to
the local dataset sizes can lead to a small convergence bound,
thereby promoting a better FL performance.

In addition, we derive a convergence bound for non-convex
setting in Theorem 4. Theorem 4 below indicates that the
proposed DDSRA algorithm can achieve a FL convergence
rate of O(1/T ) for non-convex loss functions.

Theorem 4: Assume that the loss function Fn(w) is non-
convex and Ln-smooth, the convergence bound is represented
as

1

T

T−1∑
t=0

E
[∥∥∇F (w̃t

)∥∥2
]
≤ 2

KβT

(
E
[
F
(
w̃0
)]
−E
[
F
(
w̃T
)])

+

LβN

T

T−1∑
t=0

N∑
n=1

K−1∑
k=0

( ∑
m∈M Γmam,nD̃n∑

n∈N
∑
m∈M Γmam,nD̃n

)2

E
[
‖∇Fn

(
w̃k,t
n

)∥∥2
]
+
Nβ2

KT

T−1∑
t=0

N∑
n=1

K−1∑
k=0

( ∑
m∈M Γmam,nD̃n∑

n∈N
∑
m∈M Γmam,nD̃n

)2

L2
nβ

2k

k−1∑
j=0

E
[∥∥∇Fn (w̃j,t

n

)∥∥2
]
. (35)

Proof: Please see Appendix E.

VII. EXPERIENTIAL RESULTS

A. Experimental Setting

To evaluate the FL training performance of the proposed
algorithm for complex datasets and DNNs, we utilize Street
View House Numbers (SVHN) [47] and CIFAR-10 [48]
datasets trained on VGG-11 [49] for non-IID setting to demon-
strate the test accuracy performance.
• SVHN. SVHN contains over 600000 32×32 RGB images

in 10 classes (from 0 to 9), which is cropped from pictures
of house number plates.

• CIFAR-10. The CIFAR-10 dataset consists of 60000 32×
32 RGB images in 10 classes (from 0 to 9), with 50000
training images and 10000 test images per class.

For non-IID setting, we follow the previous work [50] to
distribute the data points in each local dataset. The data
points are sorted by class and divided into two extreme cases:
(a) qm-class non-IID, where each device holds data points
in qm classes, and (b) IID, where each device holds data
points in all of the 10 classes. In this experiment, qm is
randomly generated, and we set the non-IID degree of the data
distribution (proportion of the qm-class non-IID data points)
as χ = 1.

For comparison purpose, we also consider the following
baseline schemes:

• Random Scheduling [26]. The BS uniformly selects J
gateways and the associated devices at random for local
model training in each communication round.

• Round Robin [26]. The BS divides the M gateways and
the associated devices into d JM e groups and consecutively
assigns each group to the wireless channels in each
communication round.

• Loss Driven Scheduling. The BS selects J gateways and
the associated devices according to the local training loss
for local model update in each communication round.

• Delay Driven Scheduling. The BS selects J gateways
and the associated devices for local model training with
the objective of minimizing FL latency in each commu-
nication round.

Besides, we consider M = 6 gateways, N = 12 de-
vices, and J = 3 channels. Each gateway is designed to
be associated with 2 of the devices. For each device, the
local dataset size Dn is uniformly distributed within (0, 2000],
ED,max
n = 5 J, GD,max

n = 2 GB, fD
n is uniformly distributed

within [0.1, 1] GHz, φD
n = 16 FLOPs per CPU cycle [51], and

vD
n = 10-27. For each gateway, dm is uniformly distributed

within [1000, 2000] m, EG,max
m = 30 J, GG,max

m = 4 GB,
fG,max
m = 4 GHz, φD

m = 32 FLOPs per CPU cycle, vG
m = 10-27,

and Pmax
m = 200 mW. The channel parameters are set as

d0 = 1 m, ν = 2, Bu = 1 MHz, Bd = 20 MHz, N0 = −174
dBm/Hz, h0 = −30 dB, PBS = 1 W, the uplink and downlink
interferences ium,j(t) and idm,j(t) are produced by the Gaussian
distribution with different variances, and the channel power
gains ρu

m,n(t) and ρd
m,n(t) are exponentially distributed with

unit mean. For local model training, we set local epoch K = 5,
training data sampling ratio α = 0.05, and learning rate
β = 0.01. The memory usage and FLOPs for the DNN
layers trained at the device and gateway side can be calculated
according to Table II. In addition, the values of Ln, σn, δn
and ρn are estimated by observing the model parameters in
the FL training process.

B. Performance of Device-specific Participate Rate Policy

To demonstrate the derived device-specific participation rate
linked to FL performance in Section IV, we compare our
derived participation rate of each gateway and the associated
devices in (13) with the experimental value on SVHN and
CIFAR-10 datasets, as shown in Fig.2. Note that the derived
value is calculated based on the upper bound of the divergence
between the local model parameters learned in the FL training
process and the model parameters learned in the centralized
training process, i.e., ||ŵt

m − vK,t||, while the experimental
value is obtained by observing ||ŵt

m − vK,t|| in the training
process. First, Fig.2 shows that the derived participation rate
of each gateway and the associated devices is consistent with
the experimental value, which justifies the divergence bound
in Theorem 1. Second, Fig.2 shows that the 1-th gateway and
the associated devices can achieve the highest participation
rate. This is because we set each device associated with the
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Fig. 2: The derived and experimental participation rate of each gateway and associated
devices on (a) SVHN and (b) CIFAR-10 datasets.
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Fig. 3: Test accuracy comparison between the proposed device-specific participation
rate policy and the baseline device scheduling policies (i.e., Random Scheduling policy

and Round Robin policy) on (a) SVHN and (b) CIFAR-10 datasets.
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Fig. 4: Test accuracy comparison between DDSRA algorithm and the baseline schemes
on (a) SVHN and (b) CIFAR-10 datasets.

1-th gateway a local dataset with a wider variety of the qm-
class non-IID data points, which makes the data distribution of
the devices associated with the 1-th gateway better represents
the overall data distribution. In addition, Fig.3 shows the
comparison of the test accuracy between the proposed device-
specific participation rate policy, Random Scheduling policy
and Round Robin policy on SVHN and CIFAR-10 datasets. It
can be observed that, with the same number of participant gate-
ways and associated devices in each communication round,
the proposed device-specific participation rate policy achieves
better learning performance than the baseline schemes with
fairness guarantee. Compared with Random Scheduling policy,
the proposed device-specific participation rate policy reduces
the number of communication rounds required for convergence
by 35% for SVHN dataset, and improves the test accuracy by
6% for CIFAR-10 dataset.

C. Performance of DDSRA Algorithm

Fig.4 and 5 show the test accuracy and the training delay
comparison between the proposed DDSRA algorithm (with
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Fig. 5: Training delay comparison between DDSRA algorithm and the baseline
schemes on (a) SVHN and (b) CIFAR-10 datasets.

V = 0.01, 1000, and 10000) and the baseline schemes, i.e.,
Random Scheduling, Round robin, Loss Driven Scheduling,
and Delay Driven Scheduling. First, we can observe that a
smaller V can lead to a better FL performance but a higher
FL training delay. It reveals that a smaller V guaranteeing
the proper participation rate of each gateway and associated
devices can obtain a higher test accuracy while prolonging
the training delay, which conforms to Theorem 2. Second, it
can be observed that, with limited energy supply and memory,
the proposed algorithm can achieve an obvious advantage on
test accuracy and convergence rate than baseline schemes.
Compared with Round Robin, the DDSRA algorithm with
V = 0.01 reduces the number of communication rounds
required for convergence by 53% for SVHN dataset and 78%
for CIFAR-10 dataset, and improves the test accuracy by 22%
for SVHN dataset and 37% for CIFAR-10 dataset, respectively.
The intuition is that the proposed DDSRA algorithm guaran-
tees a proper participation rate of each gateway and associated
devices, which makes the local datasets with better data distri-
bution more involved in the FL training process. In addition,

the joint communication, energy and memory resources allo-
cation circumvents the local model training and transmitting
failure due to the shortage of energy and memory, as such the
gateways and devices can participate in more communication
rounds to improve FL performance. Meanwhile, the baseline
schemes fix the transmit power, computation frequency and the
DNN partition point in the training process, as such devices
and gateways often fail to complete the local model training
and transmitting due to energy shortage. As a result, the low
participation rate degrades the FL learning performance. Third,
Fig.5 shows that the proposed DDSRA algorithm achieves
a much less FL latency than the baseline schemes, and the
advantage of DDSRA algorithm is increasingly obvious as the
communication round elapses. Compared with Loss Driven
Scheduling, the DDSRA algorithm with V = 0.01 reduces
the training latency by 26% for SVHN dataset and 23% for
CIFAR-10 dataset, respectively. Compared with Delay Driven
Scheduling, the DDSRA algorithm with V = 0.01 prolongs
the training latency by 6% for SVHN dataset and 7% for
CIFAR-10 dataset, while improving the test accuracy by 7%
for SVHN dataset and 17% for CIFAR-10 dataset, respectively.

Fig.6 shows the participation rate comparison between the
proposed DDSRA algorithm (with V = 0.01, 1000, and
10000) and the baselines. First, it can be observed that for
CIFAR-10 dataset, the 1-th, 4-th and 5-th gateways and the
respective associated devices rarely participate in FL training
process in the Loss Driven Scheduling. This is due to that
the local datasets at the devices associated with the 1-th, 4-
th and 5-th gateways are assigned with a wider variety of
the non-IID data points than the other devices. That is, the
1-th, 4-th and 5-th gateways and the respective associated
devices are removed from the FL training process by the
Loss Driven Scheduling since they achieve a lower train-
ing accuracy in each communication round. Second, Delay
Driven Scheduling excludes the 4-th gateway and its associated
devices from the training process due to long transmission
distance to the BS. This reduces the training latency at the cost
of degrading the FL performance. Meanwhile, the proposed
DDSRA algorithm saves the slow gateways and devices from
being excluded from FL training process. To complete the FL
training with limited harvested energy, the DDSRA algorithm
lowers computational frequency and transmit power for the
offloaded local model training and model transmitting, which
improves the FL performance but increases the FL training
latency. Third, the proposed algorithm achieves a much higher
participation rate than the baselines, which contributes to the
better learning performance as shown in Fig.4. In addition, it
can be observed that a smaller V encourages more gateways
and devices participating in the FL process, which leads to
a better FL performance. The experiential results shows that
the proposed algorithm can not only save the slow devices
from being excluded from FL training process, but also involve
important devices in more communication rounds on the track
of low latency by setting a larger participation rate for the
important devices.
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Fig. 6: Participation rate comparison between DDSRA algorithm and the baseline
schemes on (a) SVHN and (b) CIFAR-10 datasets.

VIII. CONCLUSION

In this paper, we develop a communication-computation
efficient FL framework for resource-limited IIoT networks
that integrates DNN partition technique into the standard
FL mechanism. By jointly optimizing the DNN partition
point, channel assignment, transmit power, and computation
frequency, the proposed DDSRA algorithm can be applied
in a wide variety of device heterogeneity scenarios. With
the developed device-specific participation rate, the DDSRA
algorithm is robust against data heterogeneity by involving
more devices with better data distribution over more commu-
nication rounds. Thanks to the layer-level memory usage and
FLOPs calculation model, the DDSRA algorithm is widely
applicable to other large-scale DNN models. Furthermore, we
characterize a trade-off of [O(1/V ), O(

√
V )] between the

FL training latency minimization and the degree of which
the participation rate constraint is satisfied with a control
parameter V . The analytical convergence bound shows that
the FL convergence rate can be improved by increasing the
training data size and setting a higher participation rate for

the important devices with better data distribution. Finally,
experimental results demonstrate the developed device-specific
participation rate in terms of feasibility. In addition, it has also
been shown that DDSRA can obtain higher learning accuracy
than the baselines under limited energy supply and memory
capacity.

Several interesting directions immediately follow from this
work. First, this work utilizes FLOPs to approximate the layer-
level training latency and energy consumption. To provide
a more accurate estimate, it is of interest to measure the
latency and energy consumption by the DNN model training
in real-world experiments. Second, due to the feedback loops
in hidden layers, how to adapt the proposed FL framework to
other large-scale artificial neural networks such as Recurrent
Neural Network remains challenging.

APPENDIX A
PROOF OF THEOREM 1

Before we show the main proof of Theorem 1, we first give
Lemma 2 below.

Lemma 2: For any local epoch k and communication round
t, we have ∥∥∥wk,t

n − vk,t
∥∥∥ ≤ δn

Ln

(
(βLn + 1)k − 1

)
, (36)

and

E
∥∥∥w̃k,t

n −wk,t
n

∥∥∥ ≤ σn

Ln

√
D̃n

(
(βLn + 1)k − 1

)
. (37)

Proof: The upper bound of
∥∥wk,t

n − vk,t
∥∥ in (36) is de-

rived by induction. Initially, the upper bound of
∥∥wk,t

n − vk,t
∥∥

in (36) holds when k = 0 since w0,t
n = v0,t. Suppose that (36)

holds at the k-th local epoch. Then, according to the update
rule, it can be derived that∥∥∥wk+1,t

n − vk+1,t
∥∥∥=
∥∥∥wk,t

n −β∇Fn

(
wk,t

n

)
−vk,t+β∇F

(
vk,t

)∥∥∥
≤
∥∥∥wk,t

n − vk,t
∥∥∥+ β

∥∥∥∇Fn

(
wk,t

n

)
−∇Fn

(
vk,t

)∥∥∥+ β
∥∥∥∇Fn

(
vk,t

)
−∇F

(
vk,t

)∥∥∥ ≤ (1 + βLn)
∥∥∥wk,t

n − vk,t
∥∥∥+ βδn ≤

δn
Ln

(
(βLn + 1)k+1 − 1

)
. (38)

As a result, the upper bound of
∥∥wk,t

n − vk,t
∥∥ in (36) also

holds at the (k + 1)-th local epoch. This concludes the proof
of (36) in Lemma 2.

Note that from Assumption 1, it can be derived that
E
∥∥∥∇F̃n (w̃k,t

n

)
−∇Fn

(
w̃k,t
n

)∥∥∥ ≤ σn√
D̃n

. Similarly, the upper

bound of E
∥∥w̃k,t

n −wk,t
n

∥∥ can be obtained by induction.
Based on Lemma 2, it can be derived that∥∥∥w̃t

m − vK,t
∥∥∥ =

∥∥∥∥∥∑
n

am,nD̃n∑
n am,nD̃n

w̃K,t
n − vK,t

∥∥∥∥∥
≤
∑
n

am,nD̃n∑
n am,nD̃n

(∥∥∥w̃K,t
n −wK,t

n

∥∥∥+
∥∥∥wK,t

n − vK,t
∥∥∥)

≤
∑
n

am,nD̃n∑
n am,nD̃n

( σn

Ln

√
D̃n

+
δn
Ln

)(
(βLn + 1)K − 1

)
. (39)

This concludes the proof of Theorem 1.
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APPENDIX B
PROOF OF LEMMA 1

First, from (14), we have

Qm(t+ 1)2 ≤ Qm(t)2 + (Γm−1t
m)2 + 2Qm(t)(Γm−1t

m). (40)

Next, by moving Qm(t)2 to the left-hand side of (40), dividing
both sides by 2, summing up the inequalities from m = 1 to
M , and taking the conditional expectation, it can be derived
that

∆Ξ(t) ≤
∑

m∈M

E
{
Qm(t)(Γm − 1

t
m)
∣∣Q(t)

}
+

1

2

∑
m∈M

E
{

Γm + 1
t
m

2
∣∣∣Q(t)

}
. (41)

Note that 1tm =
∑
j∈J Im,j(t). Given constraints C1 and C3,

i.e., Im,j(t) ∈ {0, 1},∀m ∈ M, j ∈ J , and
∑
j∈J Im,j(t) ≤

1,∀j ∈ J , it can be derived that 0 ≤ 1
t
m

2 ≤ 1. Thus, the
upper bound of the conditional Lyapunov drift ∆Ξ(t) can be
derived as

∆Ξ(t) ≤ 1

2

∑
m∈M

(Γm+1)+
∑

m∈M

E
{
Qm(t)(Γm−1t

m)
∣∣Q(t)

}
. (42)

This concludes the proof of Lemma 1.

APPENDIX C
PROOF OF THEOREM 2

Before we represent the main proof of Theorem 2, we first
give Lemma 3 below.

Lemma 3: For any ς > 0, there exists an IID policy π′ such
that

E
{
τ(t)|π′

}
≤ ϕopt + ς, E{1t

m|π′} ≥ Γm − ς. (43)

Proof: Given any ς > 0, we can note that there exists
a policy π0 which meets all of the constraints in P0 and
yields that limT→∞ inf

[
1
T

∑T−1
t=0 E{τ(t)|π0}

]
≤ ϕopt+ς , and

limT→∞ sup
[

1
T

∑T−1
t=0 E{1tm|π0}

]
≥ Γm − ς . For a integer

T0, it can be derived that
1

T0

∑T0−1

t=0
E{τ(t)|π0} ≤ ϕopt + ς, (44)

1

T0

∑T0−1

t=0
E{1t

m|π0} ≥ Γm − ς. (45)

From [3], we can note that there exists an IID policy π′ such
that

1

T0

T0−1∑
t=0

E
{[
τ(t),1t

1, ...,1
t
M

]∣∣π0} = E
{[
τ(t),1t

1, ...,1
t
M

]∣∣π′} .
(46)

Thus, by plugging (46) into (44) and (45), we have (43).
Next, from Lemma 1, we have

∆V (t)≤H+
∑

m∈M

E
{
V τ(t) +Qm(t)(Γm−1t

m)|Q(t), π′
}
. (47)

Plugging (43) into the right-hand-side of (47), letting ς → 0,
and taking expectation of both sides, we have

E{Ξ(t+ 1)− Ξ(t)|Q(t)}+ V E{τ(t)|Q(t)} ≤ H + V ϕopt. (48)

By summing up (48) form t = 0 to T − 1, and dividing both
sides by T and V , we have∑T

t=1 τ(t)

T
≤ ϕopt +

H

V
+

E{Ξ(0)− Ξ(T )}
V T

, (49)

which concludes the proof of (32).
Next, from (48), it can be derived that

∆Ξ(t)) ≤ H + V (ϕopt − τmin), (50)

where τmin =
Kminn∈N{D̃n}∑L

l=1(ol+o
′
l)

min{minn∈N {φD
nf

D
n},minm∈M{φG

mf
G,max
m }} + γ/Bu/

log2

(
1 +

Pmax
m hum,j

(BuN0+Ium,j)

)
+ γ/Bd/ log2

(
1 +

PBhdm,j

(BdN0+Idm,j)

)
.

By summing up (50) from t = 0 to T − 1, taking expec-
tations, dividing both sides by T , and recalling that Ξ(t) =
1
2

∑
m∈MQm(t)2, it can be derived that∑

m∈M

E{Qm(T )2}
T

≤ H+V (ϕopt − τmin)+
∑

m∈M

E{Qm(0)2}
T

. (51)

Thus, for each gateway and the associated devices, we have

E{Qm(T )2}
T

≤ H + V (ϕopt − τmin) +
∑

m∈M

E{Qm(0)2}
T

. (52)

By dividing both sides of (52) by T , and taking the square
root of both sides, we have

E{Qm(T )}
T

≤
√
H + V (ϕopt − τmin)

T
+
∑

m∈M

E{Qm(0)2}
T 2

. (53)

From (14), it can be derived that

Qm(t+ 1) ≥ Qm(t)− 1
t
m + Γm. (54)

Note that E{Qm(0)} <∞. By summing up (54) from t = 0
to T − 1, taking expectations, and dividing both sides by T ,
it can be derived that E{Qm(T )}

T ≥ Γm − 1
T

∑T−1
t=0 1

t
m. Thus,

from (53), we have

1

T

T−1∑
t=0

1
t
m ≥ Γm−

√
H+V (ϕopt−τmin)

T
+
∑

m∈M

E{Qm(0)2}
T 2

, (55)

This concludes the proof of (33).

APPENDIX D
PROOF OF THEOREM 3

Before we show the main proof of Theorem 3, we first give
Lemma 4 below.

Lemma 4: For any local epoch k and communication round
t, we have∥∥∥wk,t − vk,t

∥∥∥ ≤ δ

L

(
(βL+ 1)k − 1

)
− βδk, (56)

E
∥∥∥w̃k,t −wk,t

∥∥∥ ≤ 1

L

(∑
n∈N

ξn
σn√
Dn(t)

)(
(βL+ 1)k − 1

)
+ βk

(∑
n∈N

∣∣∣∣ξn − Dn∑
n∈N Dn

∣∣∣∣ ρn
)
, (57)

where ξn =
∑
m∈M Γmam,nD̃n∑

n∈N
∑
m∈M Γmam,nD̃n

.
Proof: In this proof, we first derive the upper bound of∥∥wk,t − vk,t

∥∥ in (56) by induction. Initially, the upper bound
of
∥∥wk,t − vk,t

∥∥ in (56) holds at k = 0 since w0,t = v0,t.
Suppose that (56) holds at the k-th local epoch. According to
the update rule, it can be derived that∥∥∥wk+1,t−vk+1,t

∥∥∥=

∥∥∥∥wk,t−vk,t− β∑
nDn

∑
n
Dn

(
∇Fn

(
wk,t

n

)
−∇Fn

(
vk,t

))∥∥∥≤∥∥∥wk,t−vk,t
∥∥∥+

β∑
nDn

∑
n
Dn

∥∥∥∇Fn

(
wk,t

n

)
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−∇Fn

(
vk,t

)∥∥∥≤∥∥∥wk,t − vk,t
∥∥∥+

βL∑
nDn

∑
n
Dn

∥∥∥wk,t
n − vk,t

∥∥∥
≤
∥∥∥wk,t − vk,t

∥∥∥+ βδ(βL+ 1)k − βδ ≤ δ

L

(
(βL+ 1)k+1 − 1

)
− βδ(k + 1). (58)

As a result, the upper bound of
∥∥wk,t − vk,t

∥∥ in (56) also
holds at the (k + 1)-th local epoch. This concludes the proof
of (56) in Lemma 4.

Next, we obtain the upper bound of E
∥∥w̃k,t −wk,t

∥∥
by induction as follows. Initially, the upper bound of
E
∥∥w̃k,t

n −wk,t
n

∥∥ holds at k = 0 since w̃0,t
n = w0,t

n . Suppose
that the upper bound of E

∥∥w̃k,t
n −wk,t

n

∥∥ in (37) holds at the
k-th local epoch. Thus, it can be derived that∥∥∥w̃k+1,t −wk+1,t

∥∥∥ =

∥∥∥∥∥w̃k,t − β
∑
n

∑
m 1

t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

∇F̃n

(
w̃k,t

n

)
−wk,t+β

∑
n

Dn∑
nDn

∇Fn

(
wk,t

n

)∥∥∥∥∥≤∥∥∥w̃k,t −wk,t
∥∥∥+β∥∥∥∥∥∑

n

∑
m 1

t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

∇F̃n

(
w̃k,t

n

)
−
∑
n

Dn∑
nDn

∇Fn

(
wk,t

n

)∥∥∥∥∥
≤
∥∥∥w̃k,t −wk,t

∥∥∥+ β
∑
n

∥∥∥∥∥(∇F̃n

(
w̃k,t

n

)
−∇Fn

(
w̃k,t

n

)
+∇Fn

(
w̃k,t

n

)
−∇Fn

(
wk,t

n

)) ∑
m 1

t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

∥∥∥∥∥+β
∑
n

∥∥∥∇Fn

(
wk,t

n

)
( ∑

m 1
t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

− Dn∑
nDn

)∥∥∥∥∥ ≤ ∥∥∥w̃k,t−wk,t
∥∥∥+β

∑
n

∥∥∥∥∥∑
m 1

t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

(
∇F̃n

(
w̃k,t

n

)
−∇Fn

(
w̃k,t

n

))∥∥∥∥∥+β

∥∥∥∥∥(∇Fn

(
w̃k,t

n

)
−∇Fn

(
wk,t

n

)) ∑
m 1

t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

∥∥∥∥∥+β
∑
n

∥∥∥∥∥∇Fn

(
wk,t

n

)
( ∑

m 1
t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

− Dn∑
nDn

)∥∥∥∥∥ ≤ ∥∥∥w̃k,t −wk,t
∥∥∥+ β

∑
n∥∥∥∥∥

∑
m 1

t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

∥∥∥∥∥(∥∥∥∇F̃n

(
w̃k,t

n

)
−∇Fn

(
w̃k,t

n

)∥∥∥+
∥∥∥∇Fn

(
w̃k,t

n

)
−∇Fn

(
wk,t

n

)∥∥∥)+β
∑
n

∥∥∥∥∥
∑

m 1
t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

− Dn∑
nDn

∥∥∥∥∥∥∥∥∇Fn

(
wk,t

n

)∥∥∥ . (59)

Based on (37) in Lemma 2 and Assumption 1, we have∥∥∥w̃k+1,t −wk+1,t
∥∥∥ ≤ ∥∥∥w̃k,t −wk,t

∥∥∥+β
∑
n

(
σn√
D̃n

+
σn√
D̃n

(
(βLn + 1)k − 1

))∥∥∥∥∥
∑

m 1
t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

∥∥∥∥∥+β
∑
n

∥∥∥∥− Dn∑
nDn

+

∑
m 1

t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

∥∥∥∥∥ ρn. (60)

By taking expectation of both sides, we have

E
∥∥∥w̃k+1,t −wk+1,t

∥∥∥ ≤ E
∥∥∥w̃k,t −wk,t

∥∥∥+ β
∑

n
‖ξn‖

σn√
D̃n

(βLn + 1)k + β
∑

n

∥∥∥∥ξn − Dn∑
nDn

∥∥∥∥ ρn. (61)

Plugging (57) in Lemma 4 into the right-hand-side of (61),
it can be proved that the upper bound of E

∥∥w̃k,t −wk,t
∥∥ in

(57) also holds at the (k + 1)-th local epoch. This concludes
the proof of (57) in Lemma 4.

Thus, based on Lemma 4, it can be derived that

E
∥∥∥w̃k,t − vk,t

∥∥∥ ≤ 1

L

(
δ +

∑
n
ξn

σn√
D̃n

)(
(βL+ 1)k − 1

)
+ βk

(
δ +

∑
n

∣∣∣∣ξn − Dn∑
nDn

∣∣∣∣ ρn) . (62)

Based on (62), the detailed proof of Theorem 3 can be found
in [32].

APPENDIX E
PROOF OF THEOREM 4

First, due to F (w) is L-smooth, it can be derived that

F
(
w̃t+1)− F (w̃t)

≤ L

2

∥∥w̃t+1 − w̃t
∥∥2 +

〈
∇F

(
w̃t) , w̃t+1 − w̃t〉 . (63)

Taking the conditional expectation on both sides of (63), we
have

E
[
F
(
w̃t+1)∣∣ w̃t]− F (w̃t) ≤ L

2
E
[∥∥w̃t+1 − w̃t

∥∥2∣∣∣ w̃t
]

+
〈
∇F

(
w̃t) ,E [ w̃t+1 − w̃t

∣∣ w̃t]〉 . (64)

Second, according to the update rule, we have

E
[
F
(
w̃t+1)∣∣ w̃t]−F (w̃t) =

Lβ2

2
E

[∥∥∥∥∥∑
n

∑
m 1

t
mam,nD̃n∑

n

∑
m 1t

mam,nD̃n

K−1∑
k=0

∇Fn

(
w̃k,t

n

)∥∥∥∥∥
2 ∣∣∣∣∣w̃t

+

〈
∇F

(
w̃t) ,E[−β∑

n

K−1∑
k=0

∇Fn

(
w̃k,t

n

)
∑

m 1
t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

∣∣∣∣∣w̃t

]〉
≤ Lβ2NK

2
E

[∑
n

K−1∑
k=0

∥∥∥∇Fn

(
w̃k,t

n

)
∑

m1
t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

∥∥∥∥∥
2∣∣∣∣∣w̃t

]
+

〈
E

[
−β
∑
n

∑
m 1

t
mam,nD̃n∑

n

∑
m1

t
mam,nD̃n

K−1∑
k=0

∇Fn

(
w̃k,t

n

) ∣∣∣∣∣w̃t

]
,∇F

(
w̃t)〉=

Lβ2NK

2

∑
n

K−1∑
k=0

ξ2nE
[ ∥∥∥∇Fn

(
w̃k,t

n

)
∥∥∥2∣∣∣∣w̃t

]
+

〈
∇F

(
w̃t) ,−β∑

n

K−1∑
k=0

ξnE
[
∇Fn

(
w̃k,t

n

) ∣∣∣w̃t
]〉

. (65)

Note that ξn =
∑
m∈M Γmam,nD̃n∑

n∈N
∑
m∈M Γmam,nD̃n

. Taking the expecta-
tion on both sides of (65), we have

E
[
F
(
w̃t+1)]−E [F (w̃t)] ≤ Lβ2NK

2

∑
n

K−1∑
k=0

ξ2nE
[∥∥∥∇Fn

(
w̃k,t

n

)
∥∥∥2]+

〈
E
[
∇F

(
w̃t)] ,−β∑

n

K−1∑
k=0

ξnE
[
∇Fn

(
w̃k,t

n

)]〉
=
Lβ2NK

2∑
n

K−1∑
k=0

ξ2nE
[∥∥∥∇Fn

(
w̃k,t

n

)∥∥∥2]+β

K−1∑
k=0

E

[〈
−
∑
n

ξn∇Fn

(
w̃k,t

n

)
,

∇F
(
w̃t)〉]. (66)

Note that

E

[〈
∇F

(
w̃t) ,−∑

n

ξn∇Fn

(
w̃k,t

n

)〉]
=E

[〈
∇F

(
w̃t) ,∇F (w̃t)
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−∇F
(
w̃t)−∑

n

ξn∇Fn

(
w̃k,t

n

)〉]
=−E

[〈
∇F

(
w̃t) ,∇F (w̃t)〉]

+ E

[〈
∇F

(
w̃t) ,∇F (w̃t)−∑

n

ξn∇Fn

(
w̃k,t

n

)〉]
≤ −1

2
E
[∥∥

∇F
(
w̃t) ∥∥2]+ 1

2
E

[∥∥∥∥∥∇F (w̃t)−∑
n

ξn∇Fn

(
w̃k,t

n

)∥∥∥∥∥
2]
≤ −1

2
E
[∥∥

∇F
(
w̃t)∥∥2]+

N

2

∑
n

ξ2nE
[∥∥∥∇F (w̃t)−∇Fn

(
w̃k,t

n

)∥∥∥2] ≤ −1

2

E
[∥∥∇F (w̃t)∥∥2]+N

2

∑
n

ξ2nL
2
nE
[∥∥∥w̃t−w̃k,t

n

∥∥∥2] ≤−1

2
E
[∥∥∇F (

w̃t) ∥∥2]+N

2

∑
n

ξ2nL
2
nβ

2E

∥∥∥∥∥
k−1∑
j=0

∇Fn

(
w̃j,t

n

)∥∥∥∥∥
2
≤−1

2
E
[∥∥∇F

(
w̃t) ∥∥2]+

N

2

∑
n

ξ2nL
2
nβ

2k

k−1∑
j=0

E
[∥∥∥∇Fn

(
w̃j,t

n

)∥∥∥2] . (67)

Plugging (67) into the right-hand-side of (66), we have

E
[
F
(
w̃t+1)]− E

[
F
(
w̃t)] ≤ Lβ2NK

2

∑
n

∑K−1

k=0
ξ2nE

[∥∥∥∇Fn(
w̃k,t

n

)∥∥∥2]− Kβ

2
E
[∥∥∇F (w̃t)∥∥2]+

Nβ3

2

∑
n

∑K−1

k=0
ξ2nL

2
nβ

2

k
∑k−1

j=0
E
[∥∥∥∇Fn

(
w̃j,t

n

)∥∥∥2] . (68)

Finally, by summing up (68) form t = 0 to T − 1, we have
1

T

∑T−1

t=0
E
[∥∥∇F (w̃t)∥∥2]≤ 2

KβT

(
E
[
F
(
w̃0)]−E [F(w̃T

)])
+
LβN

T

∑T−1

t=0

∑
n

∑K−1

k=0
ξ2nE

[∥∥∥∇Fn

(
w̃k,t

n

)∥∥∥2]+
Nβ2

KT

∑T−1

t=0∑
n

∑K−1

k=0
ξ2nL

2
nβ

2k
∑k−1

j=0
E
[∥∥∥∇Fn

(
w̃j,t

n

)∥∥∥2] . (69)

This completes the proof of Theorem 4.
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