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Abstract—Grant-Free (GF) access has been recognized as a
promising candidate for Ultra-Reliable and Low-Latency Com-
munications (URLLC). However, even with GF access, URLLC
still may not effectively gain high reliability and millimeter-
level latency, simultaneously. This is because the network load is
typically time-varying and not known to the base station (BS),
and thus, the resource allocated for GF access cannot well adapt
to variations of the network load, resulting in low resource uti-
lization efficiency under light network load and leading to severe
collisions under heavy network load. To tackle this problem,
we propose a multi-tier-driven computing framework and the
associated algorithms for URLLC to support users with different
QoS requirements. Especially, we concentrate on K- repetition
GF access in light of its simplicity and well-balanced performance
for practical systems. In particular, our framework consists
of three tiers of computation, namely network-load learning,
network-load prediction, and adaptive resource allocation. In the
first tier, the BS can learn the network-load information from
the states (success, collision, and idle) of random-access resources
in terms of resource blocks (RB) and time slots. In the second
tier, the network-load variation is effectively predicted based on
estimation results from the first tier. Finally, in the third tier, by
deriving and weighing the failure probabilities of different groups
of users, their QoS requirements, and the predicted network
loads, the BS is able to dynamically allocate sufficient resources
accommodating the varying network loads. Simulation results
show that our proposed approach can estimate the network load
more accurately compared with the baseline schemes. Moreover,
with the assistance of network-load prediction, our adaptive
resource allocation offers an effective way to enhance the QoS
for different URLLC services, simultaneously.

Index Terms—URLLC, grant-free access, multi-tier-driven
computing, network-load estimation, adaptive resource allocation

I. INTRODUCTION

Ultra-Reliable Low-Latency Communications (URLLC),
along with enhanced Mobile Broadband (eMBB) and massive
Machine-Type Communications (mMTC) are the three main
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application scenarios of the fifth generation (5G) of mobile
communications networks. As the 5G had inspired widespread
research efforts, some researchers begin to envisage the next
steps in wireless networking [1]–[3]. In beyond 5G (B5G)
and 6th generation (6G), URLLC will keep evolving to its
advanced version, while still encountering many challenges.
The typical quality-of-service (QoS) of URLLC services re-
quires the user-plane latency between the base station (e.g.,
eNB in 4G and gNB in 5G) and the user to be confined within
1 ms. In the meantime, for transmission of short packets, the
reliability needs to be guaranteed with a probability equal to
99.999% [4].

A. State-of-the-Art

The overall latency mainly comes from several factors,
including handshake procedures in random access, retrans-
mission in case of collision, scheduling latency introduced by
the base station (BS), transmission delay, hardware processing
delay at the receiver, etc. Aside from transmission delay and
hardware processing delay, which can already be confined
within 0.5 through 1 ms currently, even delay caused by
the standard handshake procedures for random access [5]
will inevitably exceed 1 ms. In order to shorten the overall
latency, Cheng et al. [6] proposed an adaptive block-length
transmission framework considering the tradeoff between the
transmission delay and the queuing delay. In [7], Qiao et al.
derived the maximum throughput that can be supported under
statistical queuing delay constraints. In [8], Gu et al. ana-
lyzed the effective capacity for machine-type communications
with statistical delay constraints. The above research efforts
mainly concentrated on the queuing delay. However, the most
challenging concerned in URLLC lies in the delay introduced
during the random access phase rather than the transmission
phase. Moreover, URLLC typically serves the short-packet
yet sparse transmissions for each user, the queuing delay of
each user’s transmission does not play an essential role in
contributing to the overall latency.

To assure millisecond-level latency, URLLC typically em-
ploys grant-free (GF) access mode [9], [10], where the delay
can be significantly shortened by avoiding too many hand-
shake procedures. Typical GF access approaches include the
Reactive scheme [11], [12], the K-repetition scheme [12]–
[14], and the Proactive scheme [12], [14], which use redundant
transmissions (retransmission and/or repetition transmission)
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to combat collisions and improve the reliability. In the reactive
scheme, retransmission begins if a negative feedback from the
BS is received by the user. In the K-repetition scheme, each
packet is directly and repeatedly transmitted K times within
a subframe over K different resource units (e.g., K resource
blocks), which can well tradeoff between the retransmission
delay and reliability. In the proactive scheme, the BS imme-
diately notifies the user at once upon the successful packet
arrival, such that the repetition transmission can stop as early
as possible and the occupied random-access resources can be
released.

Based on the existing research and results, it is evident that
GF access integrates random access and data transmission
together and thus avoiding time-consuming handshakes and
shortening waiting delay for BS’s scheduling information. Yet
GF access still faces the essential issues in random access,
i.e., collisions across users, especially given the fact that the
network load of URLLLC is time varying. As the network load
is typically not known to the system, the resource allocated for
random access of URLLC is fixed. If too many resources are
reserved, the utilization efficiency would be very poor; on the
contrary, if random-access resources are insufficient, frequent
collisions under bursty requests will harm the reliability and
prolong the delay by retransmission. Consequently, the key
to effectively lower delay and assure reliability is to allocate
sufficient resources to URLLC well matching the network
load, i.e., the number of active users. Consequently, it is highly
desirable to develop network-load estimation techniques and
then enable adaptive resource allocation for URLLC, benefit-
ing both latency and reliability quality-of-service (QoS).

There have been some research focusing on network-load
estimation in random access, but mainly for machine-to-
machine (M2M) communications or mMTC [15]–[17]. Par-
ticularly, [15] proposed the traffic-load estimation framework
and scheme based on the Markov Chain model. Reference [16]
derived the joint PDF of the number of successful and collided
transmission attempts. Reference [17] proposed the estimation
approach by minimizing the Euclidian distance between the
observed preamble access states and the theoretical means.
However, it is worth noting that in M2M or mMTC networks,
random backoff strategies are applied as response to collisions.
As a result, the correlation between access status across
adjacent time slots is weakened. In contrast, for URLLC,
repetition and immediate retransmission in fact introduce
much stronger correlation across adjacent time slots, making
estimation approaches for mMTC less inaccurate for URLLC.

Multi-tier computing has been regarded as an open topic and
powerful tool to attain excellent network performance. Multi-
tier computing concept can be either fit for task optimization
(e.g., scheduling, caching, power allocation, and/or offload-
ing) [18], [19] or used for network topology partition [20]. We
in this paper show that multi-tier computing can be well de-
signed to serve as an effective approach for resolving the afore-
mentioned problems in random access of URLLC. Towards
this end, we propose a multi-tier-driven computing frame-
work and the associated algorithms for GF random access in
URLLC. The multi-tier-driven computing framework consists
of three tiers, namely, network-load learning, network-load

prediction, and adaptive resource allocation. In this paper, we
concentrate on K-repetition GF access in light of its simplicity
and well-balanced reliability and delay performances, which
are highly desirable to practical systems. The idea behind
the three-tier computing framework comes from the following
principles. The random access resources (e.g., resource blocks)
will be randomly selected by users. Consequently, the access
states (success, collision, or idle) of resource blocks somehow
will carry the information of network load (the active number
of access users) in an implicit and hidden manner, which,
however, is often neglected. Following this thought, the first-
tier computing is designed to learn network-load information
from the access states of resource blocks. Then, with the
extracted network-load information and the recorded history
data, the network load in the coming time slot can be forecast
via the second-tier computing. The predicated results will then
be injected into the third-tier computing to yield the amount of
resources required to accommodate the coming network load,
such that QoS assurance for URLLC can be well fulfilled.
Also conducted is a set of simulation results to verify the
superiority of our proposal compared with the existing baseline
approaches.

B. Contribution
The main contributions of this paper are summarized as

follows:
• We propose the three-tier computing framework for

URLLC adopting K-repetition access, serving for
network-load learning, prediction, and resource alloca-
tion, respectively, towards effectively accommodating the
varying access load and fulfilling all users’ access with
stringent yet differentiated QoS requirements. This frame-
work divides the challenging task, i.e., solving for the
resource amount needed to support users’ QoS under the
unknown network load, into three tractable tiers

• We propose a spectrum of estimation schemes for
network-load learning over URLLC based on the ac-
cess states (success, collision, or idle) of resources
blocks, which are suitable for two variant modes of
K-repetition GF access, termed adjacent-occupation K-
repetition access and arbitrary-occupation K-repetition
access. Simulation results demonstrated the superiority
of our proposed approach compared with the existing
baseline schemes.

• We design an adaptive resource allocation scheme driven
by differentiated QoS requirements. In particular, we
successfully derive the analytical expressions of access
-failure probability within 1 ms for the two K-repetition
access schemes as a function of network load. Then,
the system can precisely allocate resources to different
types of services according to their QoS requirements
and predicated traffic loads. We validate our proposed al-
gorithms via abundant simulations under various network
conditions.

C. Structure
The rest of the paper is organized as follows. Section

II describes the system model and proposes the three-tier
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computing framework for URLLC. Section III proposes a
spectrum of network-load estimation schemes in the first-tier
computing for K-repetition access based URLLC. Section IV
concentrates on the second-tier computing and presents the
network-load prediction schemes. Section V derives the third-
tier computing to develop the adaptive resource allocation
scheme. Section VI presents the simulation results. The paper
concludes with Section VII.

II. SYSTEM MODEL

A. System Description

We consider a multi-user network for URLLC which is
composed of Nal users and one base station (BS). These users
can be in only two states, i.e., active and inactive states. The
number of active users is denoted by Ntr. The users access
and transmit in a synchronized but Grant-Free (GF) manner,
which is coordinated by the BS. It is well-known that URLLC
requires high successful access probability and low latency,
which heavily relies on whether there are sufficient resources
for GF access compared to Ntr. However, Ntr is typically
unknown to the BS, thus imposing the major hurdle to release
GF access potentials. In this paper, we attempt to estimate Ntr,
then enabling adaptive resource allocation to better support
URLLC with assured QoS.

B. The Multi-Tier-Driven Computing Framework

The access states (success, collision, or idle) of resource
blocks can include hidden information of network-loads,
which, however, are typically neglected. In this paper, we
propose a multi-tier-driven computing framework consists of
three tiers, i.e., network-load learning, network-load predic-
tion, and adaptive resource allocation, in order to assure
the QoS requirements of URLLC applications. The network-
load learning is implemented via a Markov-chain model
based estimation technique, and thus in this paper we use
the terminologies network-load learning and network-load
estimation interchangeably. As shown in Fig. 1, firstly the
BS can get the knowledge of resource states in every slot
(success, collision, and idle). Based on these observations,
we can get the estimated number of current active users via
the first tier. The estimated values will be recorded in the
history data pool and also utilized as the input together with
a selected series of history data to the second tier. Based on
the prediction values, the third tier will adaptively allocate
resources driven by different QoS requirements. In particu-
lar, we propose several network-load estimation schemes for
adjacent-occupation K-repetition and arbitrary-occupation K-
repetition, respectively. We also employ ARIMA model to
achieve accurate and timely predictions. With the assistance
of analytical formulations towards access failure probability,
we design a resource negotiation algorithm driven by QoS
requirements.

C. K-Repetition Access and Transmissions

We will use resource block (RB) to denote a generalized
concept in the following description, e.g., a RB includes 12

GF access process
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Fig. 1. The multi-tier-driven computing framework.

consecutive subcarriers in LTE and 5G NR system. The BS
divides time into consecutive subframes. 1 Each subframe is
dedicated for a GF access cycle and is further divided into
T slots 2 with equal length. Between two adjacent subframes,
two slots are inserted for the BS which are used to broadcast
the available resource information for next cycle to users.
For presentation convenience, we call an access cycle and
the two followed slots as a scheduling cycle, as shown in
Fig. 2. Several GF access approaches have been proposed by
researchers, and typical ones include Reactive, K-Repetition,
and Proactive [12]. In this paper, we mainly concentrate on
the K-repetition scheme, in light of its simplicity and well-
balanced performances. In the K-repetition scheme, the BS
permits every user to repeatedly access and transmit K times
in consecutive slots (i.e., adjacent-occupation) or arbitrary but
different slots (i.e., Arbitrary-occupation) of an access cycle.
In every access slot, each user is permitted to occupy only
one RB. If a RB is occupied by only one user in a slot, this
access is successful. Otherwise, if there are two or more users
occupying the same RB in a slot, they all happen to collide
and fail. Only when all the replicas fail in a cycle, this user
needs to retry in the following cycles.

D. Statistical Feature of URLLC

The general URLLC requirement for one transmission of
a packet is 99.999% reliability and latency within 1ms. A
typical type of URLLC application is in the scenario of

1In practical networks, a number of consecutive subframes typically to-
gether form a frame.

2It is often referred to as mini-slot in 5G. But in this paper, we use the
term slot in short for simplicity.
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Fig. 2. The illustration of K-repetition, access cycle, and scheduling cycle.

sophisticated industrial production and controlling, in which
the machine-type devices, e.g., sensors and controllers, always
call for communication services with high reliability and low
latency. The industrial internet of things (IIoT) applications
with URLLC requirements can be classified into two main
types of use cases [21], [22]: motion control and discrete au-
tomation. For motion control with continuous and stable data
transmission, e.g., automatic production machine tools and 3D
printers, this type of services can be regarded as uniform and
periodic pattern [23], which has stable access intensity. While
for discrete automation, it always has difficulty in accurately
predicting when the packets flow will arrive, especially in
vehicle to everything (V2X) communications [24].

Fortunately, the internal activation order of a batch of
bursty devices can follow some distributions. In particular, the
Beta distribution is one of the suitable types to model this
process [24]–[26], in which all of the devices access to the
BS in a deterministic order during a limited period [27]. The
Beta distribution in bursty traffic has been defined in [27]:

Ni = N

∫ ti

ti−1

p(t)dt, (1)

in which Ni denotes the number of users in the ith access
cycle of the whole event duration.

In this model, ti− ti−1 is equal to the length of a complete
scheduling cycle. Supposing that each subframe is divided into
8 slots in this paper, if the duration of Beta distribution is set as
12.5 ms, we have i ∈ {Z | [1, 10]} considering two scheduling
slots in every scheduling cycle.

The p(t) in (1) is derived by:

p(t) =
tα−1(T − t)β−1

Tα+β−1B(α, β)
(2)

in which B(α, β) = tα−1(1 − t)β−1 with α = 3 and β = 4
typically. We will use B(N,T ) to represent that there are N
users in total to access in T ms with bursty traffic pattern. The
parameters used in this paper are summarized in Table I.

III. NETWORK-LOAD ESTIMATION

The adjacent-occupation K-repetition has strict require-
ments on the slot selection for single user, while the arbitrary-
occupation K-repetition allows a user to access in optional

TABLE I
PARAMETERS AND NOTATIONS

Parameters Descriptions
Nal The total number of users
Ntr The number of active users who attempt to access
N̂tr The estimation of Ntr

N The test number of users for hypothesis in ML
E The prediction of the number of users in next 1ms

n̂t
The estimation of the number of users who access
in the t-th slot

n
The load estimation vector: n =
(n̂1, n̂2, . . . , n̂T )AT

φr
The number of users beginning their first access in
the rth slot

φ The starting vector: φ = (φ1, φ2, . . . , φT−K+1)
T

A
The number of RBs each of which is selected by only
one user to access, suggesting successful access

B
The number of RBs each of which is selected by two
or more users to access, suggesting collision

C
The number of RBs each of which is selected by any
users, suggesting idle states

(A,B,C)
The Markov state denoting the number of success
RBs, collision RBs and empty RBs, respectively

P Markovian transition matrix
S Markovian space for all RBs’ states
W The total number of available RBs

K
The parameter for K-repetition: the number of con-
secutive slots a user attempt to send access signals

T The total number of slots within a subframe

TABLE II
THE SUITABILITY OF NETWORK-LOAD ESTIMATION SCHEMES

K-repetition type Estimation schemes
SS-ML-LS MS-MLI MS-MLD

Adjacent-occupation X X
Arbitrary-occupation X

but different K slots and doesn’t emphasize the adjacency.
We propose two estimation schemes for adjacent-occupation
K-repetition in Section III-A and III-B, and one estimation
scheme for arbitrary-occupation K-repetition in Section III-C,
respectively. We list the suitability of each scheme in Table II.

A. Single-Slot Maximum Likelihood with Least Squares Esti-
mation

In the Single-slot Maximum Likelihood with Least Squares
Estimation (SS-ML-LS), we concentrate on the relationship
between the number of users beginning their first access
and total active users, which are denoted as φr(1 6 r 6
T −K + 1) and nt(1 6 t 6 T ), respectively. The φr denotes
the number of users who begin their first access in the rth
slot, and the nt denotes the total number of active users in the
t-th slot. Thus we use this equation set below to describe the
relationship:

nt =



t∑
k=1

φk, if 1 ≤ t < K;

t∑
k=t−K+1

φk, if K ≤ t ≤ T −K + 1;

T−K+1∑
k=t−K+1

φk, if T −K + 1 < t ≤ T,

(3)
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note that users should initiate the first access before and
excluding T −K + 2 th slot, otherwise they are not able to
finish K times in an access cycle.

To obtain the total amounts of users in a cycle, firstly we aim
at the number nt of users in every slot. We use A, B and C to
denote the number of success RBs, collision RBs, and empty
RBs respectively observed by the BS in every slot. Definitely,
here is A+B + C = W . Though this is a established fact
made by users’ RB choices, it is a new perspective to view
the process as a Markov model with N -steps transition, in
which every user’s RB choice is corresponding to one step of
Markov transition.

Thus we employ Maximum Likelihood Estimate (ML) to
find the most likely N for Markov model, which is denoted
by N̂tr:

N̂tr = argmax
N

P
(
(A,B,C) |N

)
= argmax

N
PN

(0,0,W )→ (A,B,C) ,
(4)

where P represents the transition matrix of Markov model,
superscript N denotes the transition steps for hypothesis, and
the subscript (0, 0,W ) → (A,B,C) shows the initial state
and the terminal state in Markov model, respectively.

The state space S of Markov model containing all the
possible states can be formulated with following described
rules: 

a+ b+ c =W ;

0 6 a 6 N ;

0 6 b 6 N
2 ;

0 6 c 6W,

(5)

where (a, b, c) represent the possible states, and other a, b and
c obeying the rules are not allowed. For state (A,B,C) in S,
we define the transition probabilities from (A,B,C) to other
states as: 

P(A,B,C)→(A,B,C) = B
W ;

P(A,B,C)→(A+1,B,C−1) = C
W ;

P(A,B,C)→(A−1,B+1,C) = A
W ;

P(A,B,C)→others = 0.

(6)

The probabilities that state (A,B,C) transfers into above
three states can be explained by:
• The new user randomly chooses a RB belonging to the

collision RBs with probability B
W , and both the number

of success and collision RBs don’t change;
• The new user randomly chooses a RB belonging to the

empty RBs with probability C
W , thus the number of

success RBs increases;
• The new user randomly chooses a RB belonging to

the success RBs exactly with probability A
W , causing

collision between this user and the other user who has
chosen this RB, hereafter, the number of success RBs
decreases while the number of collision RBs increases.

Substituting (6) into (4), we can obtain the most likely
number of users in the t-th slot which is denoted by nt
(1 6 t 6 T).

We further define φ = (φ1, φ2, . . . , φT−K+1)
T , n =

(n1, n2, . . . , nT )
T , and use Ω to denote a (T × (T −K + 1))

matrix. Then we have an overdetermined equation as follows:

Ωφ = n, (7)

where Ω can be derived by:

Ω =

 Γ1

Γ2

Γ3

 . (8)

We can obtain Γ1, Γ2, and Γ3 by:

Γ1 =
[
1low
(K−1)×(K−1) 0(K−1)×(T−2(K−1))

]
;

Γ3 =
[
0(K−1)×(T−2(K−1)) 1up

(K−1)×(K−1)

]
,

(9)

where 1low
(K−1)×(K−1) is a (K− 1)× (K− 1) lower triangular

matrix in which the main diagonal and all entries below the
main diagonal are equal to 1, 1up

(K−1)×(K−1) denotes a (K −
1)×(K−1) upper triangular matrix in which the main diagonal
and all entries above it are equal to 1, and 0(K−1)×(T−2(K−1))
represents a (K−1)×(T−2(K−1)) matrix in which all entries
are equal to 0. Γ2 represents a (T−2(K−1))×(T−(K−1))
which can be derived by:

Γ2=



1 · · · 1 0 · · · · · · 0︸ ︷︷ ︸
K times

0 1 · · · 1 0 · · · 0︸ ︷︷ ︸
K times

...
...

...
. . .

...
...

...

0 · · · · · · 0 1 · · · 1︸ ︷︷ ︸
K times


. (10)

After obtaining the estimation n with ML, we can search
an approximate solution for (7):

φ =
(
ΩTΩ

)−1
ΩTn. (11)

Finally, we obtain the total number of users with φr as follows:

N̂tr =

T−K+1∑
r=1

φr . (12)

B. Multi-Slot Maximum Likelihood Indirect Estimation for
Adjacent-Occupation K-Repetition

In the Multi-Slot Maximum Likelihood Indirect Estimation
(MS-MLI), we consider solving this problem in multi-slot
which turns out to be more accurate. Firstly, we denote the
access states of RBs in the t-th slot as (At, Bt, Ct), and then
we use three vectors to record these states respectively, i.e., A,
B and C. For example, A = (A1, A2, . . . , AT )

T . For every
test number N of users, it determines the space of all possible
vector φ accordingly, denoting the amount of users beginning
their first access in every slot. The probability mass function
(PMF)of every φ can be defined with this equation:

Pr {φ |N} = 1

(T −K + 1)
N

T−K+1∏
r=1

(
N −

∑r−1
j=0 φj

φr

)
.

(13)
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Considering the relationship between a specific φ and n
has been derived by (3), next we calculate the transition
probability from the initial state (0, 0,W ) to the terminal state
(At, Bt, Ct) with nt steps according to n, which is similar
to (4). The difference is that here nt is definite under the
restriction of each φ, not a test number. Finally, we have the
probability of the test number N of users with Total Probability
Theorem, and the result of ML can be formulated by:

N̂tr = argmax
N

P
(
(A,B,C) |N

)
= argmax

N

∑
φ

Pr

{(
A,B,C

)
|n (φ)

}
Pr {φ |N}

= argmax
N

∑
φ

{ T∏
t=1

Pr
(
(At, Bt, Ct) |nt

)}
Pr {φ |N} .

(14)

Thus we infer this scheme as an indirect estimation in that
it utilizes mediate information, i.e., the number of users who
begin their first access in every slot.

C. Multi-Slot Maximum Likelihood Direct Estimation for
Arbitrary-Occupation K-Repetition

In the Multi-Slot Maximum Likelihood Direct Estimation
(MS-MLD), a single user is still considered as a transition step
in Markov model, but will cause the states of K RBs to change
at one time. The state space S of Markov model containing all
the possible states can be formulated with following described
rules: 

a+ b+ c =WT ;

0 6 a 6 N ;

0 6 b 6 N
2 ;

0 6 c 6W,

(15)

where (a, b, c) represent the possible states, and other a, b and
c obeying the rules are not allowed in S.

For an arbitrary state (A,B,C) in S, we use (Ã, B̃, C̃) to
denote the possible next state, which must satisfy the following
relationships:

A−min (K,A) 6 Ã 6 A+ min (K,C) ;
B 6 B̃ 6 B + min (K,A) ;
C −min (K,C) 6 C̃ 6 C.

(16)

Considering the rule of arbitrary-type repetition, we can also
have:  x = B̃ −B;

y = C − C̃;
z = K − (x+ y) ,

(17)

where x, y, z > 0. It can be thought that the single user
chooses x RBs belonging to A success RBs and causes the
number of collision RBs to increase from B to B̃; chooses y
RBs belonging to C idle RBs and causes the number of idle
RBs to reduce from C to C̃; chooses z RBs belonging to B
collision RBs respectively. Thus for (Ã, B̃, C̃) calculated by
(16), the (17) will filter suitable states again.

The transition probability can be formulated as follows: P(A,B,C)→ (Ã,B̃,C̃) =

(
A
x

) (
C
y

) (
B
z

)(
WT
K

)
P(A,B,C)→ others = 0

, (18)

in which x ∈ [0, A], y ∈ [0, C], and z ∈ [0, B].
Thus we can calculate the probabilities of transferring from

the initial state (0, 0,WT ) to the final observed state via N -
steps, and the estimated number N̂tr of active users is related
to the maximum one, which can be depicted follows:

N̂tr = argmax
N

P
(
(A,B,C) |N

)
= argmax

N
PN

(0,0,WT )→ (A,B,C) .
(19)

Thus we refer this scheme as a direct estimation because it
directly considers each user’s K choices and the corresponding
transition of resource states, without benefited by the informa-
tion of vector φ which represents the number of users who
begin their first access in every slot.

IV. NETWORK-LOAD PREDICTION

Though we have mentioned that it’s unrealistic to accurately
predict for bursty traffic when the occasional event will
happen, the prediction module should have ability to timely
response once it detects the beginning, which is the critical
basis of resource allocation. There are some common schemes
of time series prediction, including simple equal, moving
average, exponential smoothing, and machine learning. The
simple equal scheme assumes that the next expected value is
equal to the current observed value, which always falls behind
the real change. The machine learning schemes typically
require training process, thus will inevitably raise challenges
in model choosing and time complexity.

Then we employ the auto-regressive integrated moving
average (ARIMA) model [28], which simultaneously considers
the past observations and random errors, to sense and predict
the bursty event enabled by the estimated real-time network-
loads. The training sequence is generated by B(100, 20).
Firstly, we evaluate whether the series of Beta distribution
in (1) are stationary with Augmented Dickey-Fuller, and after
making second-order difference, they proves to be stationary.
An ARIMA (p, d, q) model can be formulated as follows:

ñt = c+
p∑
i=1

φint−i +
q∑
j=1

θjεt−j + εt, (20)

in which ñt denotes the predicted value in the t-th point, while
nt−i and εt−j represent the observed values and random errors
in the history respectively. The random errors are assumed
as following the Gaussian distribution, and we will verify its
rationality via DW test below. The p, d, and q denote the
model parameters of past observed item, difference item and
error item, respectively. Note that input training data should
make second-order difference, and we have d = 2.

For determining the values of p and q, we generate a group
of data following the Beta distribution, and employ the Akaike
information criterion (AIC) and Durbin-Watson (DW) test to
evaluate the model’s performances. DW test can measure the
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Fig. 3. The prediction performances of ARIMA model using different metrics. (a) uses the AIC metric. (b) uses the DW metric, and all the values have been
minus 2 and taken absolute.

first-order autocorrelation of residuals in regression analysis, if
random errors follow the assumption, the effective information
of series will be completely utilized to training and fitting
the model, thus the results of DW test will approach to 2,
suggesting there is no autocorrelation. Akaike information
criterion (AIC) can measure the goodness of data fitting, and
the model with smallest score is viewed as the most accurate.

As shown in Fig. 3, AR(0) & MA(3) model performs well
in both the two metrics, especially its DW score is equal to
2.008721 showing the rationality of Gaussian assumption and
high efficiency. Thus we finally choose ARIMA model (0,2,3).

V. ADAPTIVE RESOURCE ALLOCATION

As diverse URLLC applications is emerging in the 5G and
future communication systems, some services with different
QoS requirements will inevitably access and request for the
same frequency range simultaneously. This calls for more
reasonable resource allocation scheme, which would not only
fully consider the current users’ QoS requirements but also
have prediction capability towards the future pressure of re-
sources. We have derived several network-load estimation and
prediction schemes above, and in this section we will discuss
the allocation strategy driven by different QoS requirements
correspondingly.

A. Access Failure Probability

We derive the access failure probability with W RBs, N
users, K repetitions, and T slots in an access cycle, which
will provide prospective bases for resource allocation.

1) Adjacent-type K-Repetition: The number of active users
in the t-th slot is represented as nt, and the number of users
beginning their first access in the rth slot is denoted as φr. The
vector φ denotes (φ1, φ2, . . . , φT−K+1)

T . Firstly we target at
a randomly chosen user, and at the start of access cycle, it will
randomly begin its first attempt at the first T −K + 1 slots.

The access failure probability of this target user who begin at
the rth slot(1 6 r 6 T −K + 1) can be formulated by:

Pr {tar} =
r+K−1∏
t=r

1−

(
W

1

)
(W − 1)

nt−1

Wnt
. (21)

We have derived the equation (3) above, which depicts the
relationship between nt and φr, and here we refer it as f(φ).
For every determined φ, we can use f(φ) to derive the exact
number nt of users in each slot.

In the following equation, we formulate the total access
failure probability, in which Pr {φ |N} and Pr {tar} have
been derived in (13) and (21) respectively:

Pr {total} =
∑
φ

{
Pr {φ |N}

{∑
r

φr
N

Pr {tar}

}}
.

(22)

2) Arbitrary-type K-Repetition: The expected number e of
users in every slot is equal to NK

T , and the total access failure
probability can be derived by:

Pr {total} =

1−

(
W

1

)
(W − 1)

e−1

W e


K

. (23)

B. Allocation Strategy

We consider two types of services, the one named event A
(e.g., following bursty traffic pattern) requires the reliability
within 1 ms to meet Q1, and the other named event B (e.g.,
following uniform traffic pattern) requires the reliability within
1 ms to meet Qmin

2 at least, and its ideal reliability is equal
to Qide

2 . The number of users is N̂1 and N̂2 respectively,
which can be calculated by the prediction module. Without
loss of generality, Q1 > Qmin

2 . Thus the priority of event A
is higher than event B. The whole number of available RBs
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Fig. 4. The flow diagram of resource allocation.

TABLE III
THE ADVISED ALLOCATION STRATEGY AND EXPECTED QOS

Conditions W1 W2 Q̂1 Q̂2

Cond.1 Wreq WQide
2

Q1 Qide
2

Cond.2 Wreq Wall −Wreq Q1 > Qmin
2

Cond.3 Wall−WQide
2
+Wmax

neg WQide
2
−Wmax

neg 6 Q1 Qmin
2

is denoted as Wall. If available RBs are sufficient, we can
allocate RBs independently according to each QoS. However,
we also need to discuss resource negotiation considering the
conditions when available RBs are inadequate or the system
is under high-loads. Moreover, in order to methodically deal
with the sudden access, we also allocate a small number of
RBs to event A even though its users are inactive [29].

The aim of resource allocation is to achieve two services’
QoS as high as possible, and once the number of available
RBs cannot support them simultaneously, the negotiation part
would spontaneously sacrifice the uniform service’s QoS to
satisfy bursty service’s QoS. Note that the least permitted QoS
of event B should be larger than Qmin

2 . Thus the maximum
number of RBs that can be negotiated is equal to WQide

2
−

WQmin
2

, and we denote it as Wmax
neg .

We illustrate the allocation logic in Fig. 4. For event A, we
firstly calculate the required number Wreq of RBs to meet Q1

according to (22) or (23). The realistic condition is divided
according to the following rule:

• Condition 1: Wreq 6 Wall −WQide
2

;
• Condition 2: Wall−WQide

2
<Wreq 6 Wall−WQide

2
+Wmax

neg ;
• Condition 3: Wall −WQide

2
+Wmax

neg <Wreq.

The final number of allocated resource for each service is
denoted as W1 and W2, and the expected QoSs are denoted as
Q̂1 and Q̂2. We list these parameters under different conditions
in Table III. In particular, the system will comes to outage in
Condition 3, which cannot support the permitted least QoS
of each service simultaneously. One possible result is to meet
Qmin

2 preferentially and allocate the remaining RBs to event
A.

VI. SIMULATION EVALUATIONS

A. Load Estimation

Baselines I: Minimum Square Error for Mean Values of
Access States Estimation (MSEM)

For comparative analysis, we briefly describe another
scheme based on [17] (for mMTC), and here we modify it
to fit the model of URLLC in this paper. Firstly, a parameter
θer is used to denote the total number of users who access in
e consecutive slots (1 < e ≤ K) starting from rth slot, i.e.,
θer = nr +nr+1 + · · ·+nr+e−1. The total number of users in
1ms can be derived by:

N̂tr =
1

K2

(
K−1∑
e=1

θe1 +

T−K+1∑
r=1

θKr +

T∑
r=T−K+2

θT−r+1
r

)
.

(24)
Next, we use (A,B,C) to describe the total access states

of RBs in e consecutive slots, which the expectations A, B
and C can be formulated as follows:

A = N

(
1− 1

eW

)N−1
;

B = eW −A− C;

C = eW

(
1− 1

eW

)N
,

(25)

where N denotes the test number of total users for hypothesis
in e slots. Then, the BS can reasonably obtain an estimate θer
by minimizing the Euclidian distance between the observed
access states of RBs and the theoretical means:

θer = argmin
N

[
(A−A)2 + (B −B)2 + (C − C)2

]
. (26)

Baselines II: Idle Resources Counting Estimation (ISCE)
In [30] Oh et al. proposed estimation scheme based on idle

resources which can be formulated as follows:

nt =
log

Ci
W

log
W − 1

W

, (27)

in which nt denotes the number of active users in the t-th
slot. According to the system model described in this paper,
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we know that Ntr users with K replicas contribute to the sum
of nt, thus we can obtain:

N̂tr =
1

K

T∑
t=1

nt . (28)

Note that MSEM is suitable to adjacent-occupation K-
repetition, and ISCE is suitable to both of two types.
In this subsection, we verify the estimation performances
with the results from Monte-Carlo simulations. For adjacent-
occupation K-repetition, the SS-ML-LS, MS-MLI, and base-
line I (MSEM) are employed; for arbitrary-occupation K-
repetition, the MS-MLD and baseline II (ISCE) are employed.
Furthermore, in order to accelerate our proposed schemes
which significantly utilize Markov model, we generate a state
table in advance which can support the quick search of
transition probabilities. Thus for every hypothetical N in ML,
we only need to query the transition probability with N -steps
with this table, rather than calculate S and P repeatedly.

The number range of users is from 8 to 18, and we suppose
that these users can be served as sufficient resources consider-
ing URLLC applications’ high QoS requirements. Firstly, we
simulate a group of users’ choices with MATLAB and count
the number of success, collision, and idle RBs respectively.
Note that this step has no correlation to certain traffic patterns,
and the resource states are only determined by the number
of users and available resources. Then all of the estimation
schemes will work based on the input (A,B,C).

Fig. 5 depicts the accuracy performances of estimation
schemes compared with the true values. The most accurate
estimation schemes are MS-MLI and MS-MLD with almost no
bias, which both consider the overall resource states of a com-
plete access cycle simultaneously and thus avoid introducing
errors again caused by quadratic estimation. However, the huge
state space of complete access cycle will significantly increase
the time complexity searching for the optimal solution, and
SS-ML-LS can well offset this problem which estimates in
every slots separately. The estimation accuracy of SS-ML-LS
is second only to MS-MLI and MS-MLD. The baseline MSEM
always has large error, while the baseline ISCE cannot perform
stably. In conclusion, if accuracy is a more important factor
for estimation, we advice to adopt MS-MLI and MS-MLD; if
operation time is more important, we advice to adopt SS-ML-
LS. In the following simulations, we employ the latter.

B. Load Prediction

Baseline: Moving average with sliding window (MASW)
The t-th expected value is equal to the average of past w

observations, which can be formulated as:

ñt =

t−1∑
i=t−w

ni , (29)

in which ni (t − w 6 i 6 t − 1) denotes the ith observation
selected by the sliding window whose length is equal to w.

In this section we employ ARIMA model (0,2,3) and
MASW to achieve single-step prediction. Due to the BS
typically has no knowledge on the accurate number of users,
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Fig. 6. The prediction performances derived from ARIMA and baseline
(MASW).

the estimated value will be added into the history pool as
the realistic observation. As shown in Fig. 6, the uniform
event lasts for the whole simulation period, and a bursty event
happens over 10 ∼ 25 ms which is generated by B(80, 15).
The average prediction error by ARIMA is equal to 6.8%,
and that by MASW is equal to 21.9%. From the perspective
of global fluctuation, ARIMA can sense and response to the
rise and fall tendency of observations in time, while there are
always lags between the predictions derived by MASW and
realities.

C. Access Failure Probability

In Fig. 7, we compare the analytical results of access
failure probability with simulation results and also discuss
performances of two types of K-repetition schemes with
different K values. The number of active users is set as 10,
and the range number of available RBs is from 7 to 33.
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Firstly for adjacent-occupation K-repetition calculated by
Eq. (22), analytical results (i.e., Ana ad) are very close to
simulation results (i.e., Sim ad) with errors ranging in 0.52%
˜ 0.74%, as shown in Fig. 7(a). For arbitrary-occupation K-
repetition calculated by Eq. (23), as repetition times are closer
to the total number of slots in an cycle, the analytical results
(i.e., Ana ar) will be more accurate, as shown in Fig. 7(b).

Moreover, with the same K and repetition times, arbitrary-
occupation K-repetition can achieve better access perfor-
mances compared with adjacent-occupation K-repetition. This
is because arbitrary-type permits users to access with higher
degrees of freedom and thus reduces collisions. When K = 8,
i.e., a user will utilize all the available slots of a an access
cycle, the arbitrary-occupation K-repetition is equivalent to
adjacent-type.

In the K-repetition access scheme, on the one hand, the
replicas can enhance success probabilities, while on the other
hand, excessive repetitions will also lead to frequent collisions
and decline success probabilities instead. Considering the
resources allocated to URLLC applications are sufficient, the
users can access with relatively high K values without intense
collisions. In Fig. 7 we can notice that with the same number
of available RBs, either in arbitrary-type or adjacent-type,
the larger the repetition times K is, the better the access
performances are.

D. Negotiation in Adaptive Resource Allocation

We illustrate the negotiation part of allocation scheme via
Fig. 8. Here we consider two applications with different QoS
requirements, i.e., event A and event B. Without loss of
generality, we assume the event B has higher priority than
event A. The WA and WB denote the resources allocated to
event A and event B originally. If WB cannot satisfy event
B’s QoS, the negotiation part will be switched on. For brief
description, the parameter δ is used to control negotiation part.
In particular, the negotiated number of resources allocated to
event A and event B is WA ∗ (1− δ) and WB +WA ∗ δ. Thus
in the actual operation, after we get the predicted number of
users for the nest cycle, we can calculate the corresponding
failure probabilities versus δ, then find the most appropriate
δ considering different QoS limitations. For instance, in the
Fig. 8, if the minimum reliability requirements of event A and
event B are 99% and 99.999% respectively, δ should be 0.55;
If the minimum reliability requirements of event A and event
B are 99.99% and 99.999% respectively, the total available
RBs are insufficient thus it comes to outage.

E. Integrated Simulation

In this part we will simulate to verify the performances of
complete framework proposed in this paper. We set the fol-
lowing methods for comparison: 1) Fairy proportion allocation
(FAP): The requirements of various services will be considered
fairly rather than according to priorities. The RBs allocated to
each service is determined according to the ratio of the number
of this service’s users to the total number of users. 2) Fixed
priority allocation (FIP): The event with lower priority will be
allocated with fixed RBs according to its idle QoS (FIP ide)
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Fig. 7. The number of available RBs versus the failure probabilities. Here we
compare the analytical results with simulation results and also discuss several
variables including K-repetition types and repetition times. (a) discusses the
adjacent-occupation K-repetition with K = 2, 4, 8, and (b) discusses the
arbitrary-occupation K-repetition with K = 2, 4, 8.

or minimum QoS (FIP min), thus the remaining RBs can be
reserved for the bursty event with higher priority. Here we
suppose the baselines FAP and FIP have the same knowledge
of predicted users as our proposed framework.

Specifically, the simulation scenario is composed by two
types of services, i.e., uniform and bursty event. We have
introduced them in Section II-D and Section V-B. Due to the
BS is able to designate RBs to them separately, the access
states of each service can be observed independently. The
average intensity of beta distribution ranges in 0.5 ∼ 6 users
every 1 ms typically [31]. Here we set two groups of arrival
intensities, as shown in Table IV. For clear comparison, we
employ the empirical complementary cumulative distribution
functions (CCDF) of delay as an evaluation index. Note that
there are two idle slots between two cycles for the BS to
broadcast, thus the CCDF of 1 ∼ 1.25ms remain unchanged.
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TABLE IV
INTEGRATED SIMULATION PARAMETERS

Parameters Setup 1 Setup 2
Uniform intensity 10 users 18 users

Bursty intensity 50 users in 10
cycles

25 users in 10
cycles

Qmin
u 99% reliability within 1 ms

Qide
u 99.999% reliability within 1 ms
Qb
Wall 48 RBs
T 8 slots in 1 ms
K 8 repetitions

The simulation results are presented in Fig. 9. In Fig. 9(a)
and Fig. 9(b), FIP ide scheme achieves the best QoS for
uniform users at cost of serious loss of bursty users’ QoS.
On the contrary, FIP min scheme enhances bursty users’ QoS
compared with FIP ide, however, its uniform QoS is much
lower than other schemes. Our proposed adaptive scheme can
achieve 99.999% reliability for bursty users within 1.375 ms,
which is similar to FIP min scheme. At the same time, its
uniform QoS is also higher than Qmin

u . Because when there
is no bursty event, the uniform users will have the right to
flexibly utilize more RBs than that in FIP min scheme. For
FAP scheme, it seems to achieve perfect performances both in
bursty event and uniform event. However, this is because the
ratio Nbur

Nbur+Nuni
under parameter group 1 coincidentally makes

reasonable divisions of total resources.

In Fig. 9(c) and Fig. 9(d), we won’t discuss FIP ide in
that 18 uniform users calling for Qide

u will occupy almost
all the RBs which causes bursty users’ QoS unbearable. Due
to the number of uniform users is much larger than bursty
users under parameter group 2, most of the available RBs
are allocated to the uniform event in FAP scheme. The more
unbalanced the ratio is, the more evident this tendency is.
Under this condition, our proposed scheme is still better than
FIP min scheme assured by flexible allocation.

VII. CONCLUSIONS

In this paper, we considered K-repetition Grant-Free access
in URLLC services and proposed a multi-tier-driven comput-
ing framework to assure different QoS requirements. In the
first tier we designed three network-load estimation schemes,
which can estimate the number of current active users based on
the resource states (success, collision, and idle). In the second
tier we formulated adaptive resource allocation scheme. We
employed ARIMA model to predict loads for the next cycle
firstly. Moreover, we also derived analytical formulations of
access failure probability within 1 ms for K-repetition access.
Then the allocation scheme would calculate the reasonable
RBs driven by different QoS requirements. Our simulation
results showed that MS-MLD and MS-MLI were the most
accurate schemes with almost no error, the ARIMA model
could achieve accurate and timely predictions with 6.8%
relative error, the analytical formulations had relative errors
lower than 1% compared with simulation results. Finally,
in the integrated simulation, we verified the flexibility and
rationality of adaptive resource allocation facing the different
access intensities and QoS requirements compared with other
baselines.
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(c) Bursty event with Setup 2
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Fig. 9. The success access delay of our proposed adaptive allocation scheme compared with baseline FIP min, FIP ide, and FAP. (a) and (b) are derived
with parameter Setup 1, while (c) and (d) are derived with parameter Setup 2. Note that FIP min means the fixed RBs of uniform users are determined
according to their minimum QoS, and FIP ide means the ideal QoS.
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