
ar
X

iv
:2

21
0.

12
19

1v
3

 [
ee

ss
.S

P]
 3

 N
ov

 2
02

2
1

Rate-Splitting for Intelligent Reflecting
Surface-Aided Multiuser VR Streaming

Rui Huang, Student Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Robert Schober, Fellow, IEEE

Abstract—The growing demand for virtual reality (VR) appli-
cations requires wireless systems to provide a high transmission
rate to support 360-degree video streaming to multiple users
simultaneously. In this paper, we propose an intelligent reflecting
surface (IRS)-aided rate-splitting (RS) VR streaming system.
In the proposed system, RS facilitates the exploitation of the
shared interests of the users in VR streaming, and IRS creates
additional propagation channels to support the transmission
of high-resolution 360-degree videos. IRS also enhances the
capability to mitigate the performance bottleneck caused by the
requirement that all RS users have to be able to decode the
common message. We formulate an optimization problem for
maximization of the achievable bitrate of the 360-degree video
subject to the quality-of-service (QoS) constraints of the users.
We propose a deep deterministic policy gradient with imitation
learning (Deep-GRAIL) algorithm, in which we leverage deep
reinforcement learning (DRL) and the hidden convexity of
the formulated problem to optimize the IRS phase shifts, RS
parameters, beamforming vectors, and bitrate selection of the
360-degree video tiles. We also propose RavNet, which is a deep
neural network customized for the policy learning in our Deep-
GRAIL algorithm. Performance evaluation based on a real-world
VR streaming dataset shows that the proposed IRS-aided RS
VR streaming system outperforms several baseline schemes in
terms of system sum-rate, achievable bitrate of the 360-degree
videos, and online execution runtime. Our results also reveal
the respective performance gains obtained from RS and IRS for
improving the QoS in multiuser VR streaming systems.

Index Terms—Rate-splitting, virtual reality, intelligent reflect-
ing surface, imitation learning, deep reinforcement learning.

I. INTRODUCTION

Virtual reality (VR) streaming provides the users with an

immersive experience by rendering 360-degree videos using

head-mounted devices (HMDs). VR is considered as one

of the important use cases of the sixth generation (6G) of

wireless systems [1]. Via the wireless connectivity, VR users

can move and interact freely without being restricted by

the cable that connects the HMDs and VR server. Driven

by the development of VR technology, there are emerging

applications of VR streaming in different industries, including

entertainment, retail, and education. It is estimated that the

global VR market size will increase from $16.67 billion US

dollars (USD) in 2022 to $227.34 billion USD by 2029, with

a compound annual growth rate of 45.2% [2].

R. Huang and V. W.S. Wong are with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver, BC,
V6T 1Z4, Canada (e-mail: {ruihuang, vincentw}@ece.ubc.ca).

R. Schober is with the Institute for Digital Communications, Friedrich-
Alexander University of Erlangen-Nuremberg, Erlangen 91058, Germany (e-
mail: robert.schober@fau.de).

The increasing number of VR users and the growing

demand for VR streaming introduce new challenges to the

current wireless systems. First, the bitrate of a high-resolution

360-degree video can be much higher than that of conven-

tional multimedia applications. For example, a 4K 360-degree

video may have a bitrate of 78 mega bits per second (Mbps)

[3]. In addition, a VR user may experience motion sickness

when the motion-to-photon delay, i.e., the delay between the

head movement and the requested 360-degree video segments

being rendered at the HMD of this user, is larger than 20 ms

[4]. To mitigate these issues, the data transmission of 360-

degree videos should be completed within a short downlink

transmission window. Hence, wireless systems have to be

able to support a high data transmission rate to meet the

requirement of 360-degree video streaming.

In multiuser VR streaming, the same 360-degree video seg-

ment may be requested by multiple users due to their shared

interests. As an example, for the streaming of a 360-degree

soccer match video, the supporters of a particular soccer team

may frequently share those field-of-views (FoVs) that include

the players of their team. Thus, the data requested by the

users are correlated due to the shared interests of the users

in the same video tiles in multiuser VR streaming systems.

In this paper, we use rate-splitting (RS) to take advantage

of the correlations resulting from the shared interests of the

users, with the objective to achieve an additional multiplexing

gain to improve the VR streaming quality. RS is a physical

layer technique in which the information intended for the

users is split into two parts, namely a common message

and private messages [5]–[7]. In RS, each user needs to

decode the common message first. The user then subtracts the

common message from the received signal using successive

interference cancellation (SIC) and subsequently decodes its

private message [6]. These features of RS make it a promising

technique for multiuser VR streaming systems since (a) the

data related to the shared interests of the users can be encoded

into the common message to exploit the correlations between

the data requested by the users, and (b) the unique data

requested by each user can be encoded in its private message

to ensure that all the requested video tiles can be received

by the user. In this paper, we show that the quality-of-service

(QoS) in a multiuser VR streaming system can be significantly

improved with a properly designed RS scheme that facilitates

the exploitation of the shared interests of the users.

In multiuser VR streaming systems, a low signal-to-

interference-plus-noise ratio (SINR) may be experienced by

users who are located far from the base station, resulting in

a large path loss and a weak channel gain, as well as users

http://arxiv.org/abs/2210.12191v3

2

who are located close to other users, thereby experiencing

significant interference. A low SINR can lead to a significant

performance degradation in RS systems since the transmission

rate of the common message is limited by the user experienc-

ing the minimum SINR [5]–[7]. Therefore, if the SINR of one

user is low, only a small amount of data can be transmitted

via the common message to exploit the shared interests of the

users, and therefore only a limited multiplexing gain can be

achieved by using RS.

To address this issue, we propose to deploy an intelligent

reflecting surface (IRS) to increase the minimum SINR of

the users and thereby improving the performance of the RS

system. IRSs are reconfigurable planar surfaces with a large

number of passive reflecting elements. Each reflecting element

can apply an independent phase shift to the incident signal

to reflect the phase-shifted signal towards the receiver. IRSs

can effectively improve the minimum SINR in RS systems

because users who suffer large path loss can benefit from

the additional propagation channels (i.e., reflected channels)

created by the IRSs. IRSs also introduce additional degrees of

freedom (DoF) (i.e., the phase shifts of the reflecting elements)

that can be exploited to mitigate interference [8]. Furthermore,

IRSs can be installed on the walls of indoor facilities for VR

streaming, making them flexible and efficient extensions for

existing VR streaming systems.

In this paper, we propose an IRS-aided RS VR streaming

system, where RS is applied to exploit the shared VR stream-

ing interests of the users, and IRSs are used to improve the

minimum SINR experienced by the common message across

the users and the system sum-rate. We aim to maximize the

achievable bitrate of the 360-degree video by optimizing the

IRS phase shifts, RS parameters, beamforming vectors, and

individual bitrates. Solving such a problem using conventional

optimization methods (e.g., alternating optimization (AO)) can

be computationally expensive and time-consuming for VR

streaming systems. In addition, due to the nonconvexity of the

joint optimization problem, some of the optimization variables

need to be relaxed. Such a relaxation (e.g., semidefinite

relaxation (SDR)) may incur performance degradation, ren-

dering the obtained solution to be suboptimal. To tackle these

issues, we propose a deep deterministic policy gradient with

imitation learning (Deep-GRAIL) algorithm, in which deep

reinforcement learning (DRL) is used to solve the formulated

constrained optimization problem in a computationally effi-

cient manner. Using DRL, the solutions can be obtained based

on the forward propagation of the deep neural network (DNN),

which in general requires fewer matrix multiplications than

conventional optimization methods. The forward propagation

of the DNNs can be accelerated by existing software and hard-

ware design methods [9]. Furthermore, DRL can be applied

to solve either convex or nonconvex optimization problems,

without necessarily relying on the (hidden) convexity of the

problems. Apart from DRL, we also use imitation learning

[10], [11] in the proposed Deep-GRAIL algorithm. Imitation

learning allows the learning agent to learn not only from

its own exploration, but also from the iterative problem-

solving process of the conventional optimization methods. The

contributions of this paper are as follows:

• We propose an IRS-aided RS VR streaming system, and

formulate a joint optimization problem for maximization

of the achievable bitrate of the 360-degree video. Our

problem formulation comprises the joint optimization of

the beamforming vectors at the base station, IRS phase

shifts, RS parameters, and bitrates of the 360-degree

video tiles requested by the users.

• We propose the Deep-GRAIL algorithm, in which imita-

tion learning, actor-critic method, and deep deterministic

policy gradient (DDPG) are exploited to learn a policy

for solving the formulated problem. Apart from the ex-

perience replay that maintains the exploration history of

the learning agent, we introduce a demonstration replay

that stores the solutions obtained by conventional opti-

mization methods. Using imitation learning, the proposed

algorithm can effectively improve the learned policy by

exploiting both the experience replay and demonstration

replay.

• We propose RavNet, which is a DNN module designed

for policy learning in the proposed Deep-GRAIL algo-

rithm. In particular, one of the neural network layers in

RavNet is the differentiable convex optimization (DCO)

layer [12], which tackles the convex constraints of the

formulated problem during the learning process.

• We evaluate the performance of the proposed Deep-

GRAIL algorithm using a real-world VR streaming

dataset [13]. Simulation results show that the proposed

algorithm outperforms several baseline schemes, includ-

ing the IRS-aided RS non-orthogonal unicast and multi-

cast (RS-NOUM) system using an AO algorithm [14], the

conventional IRS-aided multiuser system using an AO

algorithm [8], the IRS-aided RS VR streaming system

using an AO algorithm, and the IRS-aided RS VR

streaming system using a supervised learning algorithm,

in terms of the system sum-rate, achievable bitrate, and

runtime.

The remainder of this paper is organized as follows. The

related work is discussed in Section II. The system model

and problem formulation for IRS-aided RS VR streaming

systems are presented in Section III. In Section IV, we develop

the Deep-GRAIL algorithm. In Section V, we introduce the

DNN structure and functionality of the proposed RavNet.

Simulation results are presented in Section VI. Conclusions

are drawn in Section VII.

Notations: In this paper, we use upper-case and lower-

case boldface letters to denote matrices and column vectors,

respectively. CM×N denotes the set of M×N complex-valued

matrices. AT and AH denote the transpose and conjugate

transpose of matrix A, respectively. vec(A) returns a vector

obtained by stacking the columns of matrix A. diag(x)
returns a diagonal matrix where the diagonal elements are

given by the elements of vector x. ℜ(x) and ℑ(x) return

the vectors that include the real and imaginary parts of the

complex-valued elements of vector x, respectively. ∼ means

“distributed as”. E[·] represents statistical expectation. 1(·)
denotes the indicator function, which is equal to 1 if its

argument is true and is equal to 0 otherwise. Key notations

3

TABLE I
LIST OF KEY NOTATIONS

Variable Definition
a Action vector

b0(t)
Beamforming vector for the common message in time

slot t

bn(t)
Beamforming vector for the private message of user n

in time slot t

ci(t)
Proportion of Rc(t) that is dedicated to the data

transmission of video tile i in time slot t

G(t)
Channel gain between the base station and the IRS in

time slot t

hn,D(t)
Channel gain between the base station and user n in

time slot t
hn,R(t) Channel gain between the IRS and user n in time slot t

Imax
Total number of video tiles in each 360-degree video

frame

In(t)
Set that collects the indices of video tiles requested by

user n in time slot t
In(t) Number of video tiles requested by user n in time slot t

Jn,i(t)
Total number of bits that user n received for tile i in

time slot t

Jc
n,i

(t)
Number of bits that user n obtained from the common

message for tile i in time slot t

J
p
n,i

(t)
Number of bits that user n obtained from its private

message for tile i in time slot t
L Number of reflecting elements on the IRS
M Number of available bitrate selections
N Number of users
Nt Number of antennas at the base station

pn,i(t)
Proportion of R

p
n(t) that is dedicated to the data

transmission of video tile i in time slot t
r Reward function

Rc(t) Transmission rate of the common message in time slot t

Rc
n(t)

Achievable rate for the common message at user n in
time slot t

R
p
n(t)

Achievable rate for the private message at user n in
time slot t

s State vector
TDL Downlink transmission time duration
Tv Time duration of a video frame

un(t) Utility function of user n in time slot t
vn,i(t) Bitrate of tile i requested by user n in time slot t

V Set that collects the available bitrate selections
W Bandwidth for downlink transmission

Ψ(t) Phase shift control matrix of the IRS in time slot t
Φact Learnable parameters of the actor network

Φ
(m)
crt

Learnable parameters of the m-th critic network

γ Discount factor

are summarized in Table I.

II. RELATED WORK

A. Rate Splitting

Most existing works studied RS systems where the data

for different users are independent and uncorrelated [7], [15],

[16]. However, in VR streaming, different users may request

the data of the same 360-degree video segment due to their

shared interests. In this case, it becomes important to take the

shared interests of the users into account when designing the

RS scheme. However, the shared interests of the users have not

been exploited in [7], [15], [16]. The RS VR streaming system

we consider in this paper is related to RS multicast systems

[14], [17]. The authors in [14] considered an RS-NOUM

system, where a multicast message needs to be received by

all the users in the system and each user’s private message

is being sent via unicast. The authors in [17] studied RS

multigroup multicast systems, in which the same message

is requested by the users of the same group. Although the

RS schemes considered in [14], [17] exploit the multiplexing

gain of RS-based multicasting, they assumed that a part of

the information is requested by every user in the system (as

in [14]) or in the same group (as in [17]). However, this

assumption may not always hold in RS VR streaming systems

when the FoVs of some users do not overlap. Moreover, while

it is possible to divide the users into groups based on their

FoVs and apply the multigroup RS algorithm in [17], finding

the optimal user grouping (i.e., determining the number of

groups and the number of users within each group) is non-

trivial and computationally intensive. To tackle these issues,

the RS parameters in RS VR streaming systems need to be

optimized based on the FoVs and the shared interests of the

VR users.

B. IRS-aided Wireless Systems

Existing research has confirmed the benefits of employing

IRSs in conventional multiuser wireless communication sys-

tems without RS [18]–[23]. The authors in [18] solved the

joint phase shift and power control problem for maximization

of the energy efficiency in IRS-aided systems. Fractional

programming (FP) [24] was applied in [19] to develop low-

complexity beamforming and IRS phase shift algorithms. The

authors in [20] proposed a DRL-based algorithm to solve

the joint user scheduling, IRS phase shift, and beamforming

optimization problem in IRS-aided systems. The authors in

[21] showed that IRS can improve both the sum-rate and

reliability of data transmission in VR applications. Physics-

based modeling of IRS and codebook design for scalable IRS

phase shift optimization were studied in [22]. The authors

in [23] proposed a phase hopping algorithm for IRS-aided

systems to improve the reliability of data transmission with-

out requiring channel state information (CSI). However, the

aforementioned works have not investigated the benefits of

combining IRS with RS. The authors in [16] proposed an

IRS-aided rate-splitting multiple access (RSMA) system and

designed an on-off control scheme to adjust the phase shift

of the IRS. The authors in [25] proposed an AO algorithm

to maximize the minimum achievable rate of an IRS-aided

multiuser multiple-input single-output (MU-MISO) RSMA

system. However, the application of RS and IRS in multiuser

VR streaming systems has not been studied in [16], [25]. In

IRS-aided RS VR streaming systems, the joint optimization

of the IRS phase shifts, RS parameters, beamforming vectors,

and bitrate selection of the 360-degree video tiles based on

the FoVs and CSI of the VR users is crucial for achieving a

high performance.

C. DRL for Multimedia Streaming in Wireless Systems

DRL has been applied to improve the quality of adaptive

bitrate (ABR) video streaming in wireless systems [26], [27].

The authors in [26] studied the ABR video streaming in

mobile edge computing (MEC) networks. They proposed

a DRL-based algorithm to jointly optimize the bitrate and

4

transmit power for the videos, as well as the computational

resource allocation at the MEC servers. Moreover, the authors

in [27] proposed an algorithm to support ABR video streaming

in heterogeneous network conditions. They trained a meta-

model by exploiting meta-reinforcement learning and domain

knowledge, such that the meta-model can adapt to specific

network conditions after a few training iterations. Although

the results reported in [26], [27] show the benefits of using

DRL to design bitrate selection algorithms, the DoF offered

by the physical layer techniques, i.e., RS and IRS, have

not been explored. In this paper, we demonstrate that the

video streaming quality can further be improved by jointly

optimizing the DoF of the wireless systems with the bitrate

selection of the video tiles. We also validate the capability

of DRL for solving the joint optimization problem in a

computationally efficient manner.

III. IRS-AIDED RS VR STREAMING SYSTEM AND

PROBLEM FORMULATION

The considered IRS-aided RS VR streaming system is

illustrated in Fig. 1. One base station and an IRS are deployed

in an indoor facility to provide VR streaming service to N
users. Let N = {1, 2, . . . , N} denote the set of users. The

base station has Nt antennas, while the IRS has L reflecting

elements. The HMD of each user has one antenna. We denote

φl ∈ [0, 2π), l ∈ {1, . . . , L}, as the phase shift of the l-th
reflecting element of the IRS. Time is slotted into intervals

of equal duration. Let T = {1, 2, . . .} denote the set of time

slots. The time interval [t, t + 1) is referred to as time slot

t ∈ T . The direct channel gain between the base station and

user n ∈ N in time slot t is denoted by hn,D(t) ∈ CNt .

The channel gain between the base station and the IRS in

time slot t is denoted by G(t) ∈ CL×Nt . The phase shift

matrix of the IRS in time slot t is an L×L diagonal matrix,

denoted by Ψ(t) = diag(ejφ1(t), . . . , ejφL(t)). The channel

gain between the IRS and user n ∈ N in time slot t is denoted

as hn,R(t) ∈ C
L.

To ensure proper functionality of the HMD, each user is

designated a certain area (denoted by the yellow areas in

Fig. 1) inside the indoor facility [28]. Each user can move

freely within his/her designated area during the VR streaming

session. Since the users can only move within the designated

area with a low mobility, we assume the base station can

assign orthogonal pilot symbols to the users, and exploit

existing channel estimation methods proposed for IRS-aided

multiuser systems, such as [29]–[31], to obtain the global CSI.

In order to investigate the performance upper bound of an IRS-

aided RS VR streaming system, we assume that perfect CSI

can be obtained by the base station.

A. Video Tile Request of the Users

Each 360-degree video frame is divided into Imax video

tiles with Nx rows and Ny columns, i.e., Imax = NxNy. As

an example, for the 360-degree video frame shown in Fig.

1, we have Nx = 4, Ny = 6, and Imax = 24. We denote

I = {1, 2, . . . , Imax} as the set of indices of the tiles. At the

beginning of time slot t ∈ T , user n ∈ N sends an uplink

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

User 3’s FoVUser 1’s FoV
User 2’s

FoV

360-degree video frame

IRS

Base station

User 1

User 3

User 2

Wired connection

Wireless control

channel

Indoor facility for

VR streaming

Designated area

Reflected channel

Direct channel

Wired connection

m0 Common message

m1

m2

m3

Private message for user 1

Private message for user 2

Private message for user 3

Wireless control channel

Designated area of each user

VR server

Fig. 1. An IRS-aided RS VR streaming system. The upper part of the figure
shows an indoor facility for VR streaming. The lower part of the figure
illustrates a 360-degree video frame. The 2 × 2 boxes in the video frame
represent the FoVs of the users, while the numbers are the indices of the
corresponding 360-degree video tiles. Here, users 1 and 2 request the same
video tile with index 15. Users 2 and 3 request the same video tile with
indices 10 and 16.

request to the base station that specifies the indices of the tiles

it requested, which can be determined based on the FoV of

user n. The indices of tiles requested by user n in time slot

t are collected in set In(t) ⊆ I. We denote the number of

video tiles requested by user n in time slot t as In(t). We

have |In(t)| = In(t) ≤ Imax, n ∈ N , t ∈ T , where |In(t)|
denotes the cardinality of set In(t).

Remark 1: Although we assume user n informs the base

station about In(t) via uplink signaling, the base station can

also use existing prediction algorithms to predict In(t) based

on historical information, see, e.g., [32]. The prediction of

video tile requests is beyond the scope of this work but our

proposed algorithm can also be straightforwardly applied to

VR streaming systems with video tile request prediction.

B. Bitrate Selection, QoS, and User’s Utility Model

The data of the 360-degree video is stored at the VR server,

which is connected to the base station via a wired connection.

We assume there are M bitrate selections of the 360-degree

video available at the VR server. After receiving the video tile

requests from the users, the base station needs to determine

the bitrate of each requested video tile. Let vn,i(t) denote the

bitrate of tile i ∈ In(t) requested by user n in time slot t.
For bitrate selection, we have

C1: vn,i(t) ∈ V = {v1, . . . , vM}, i ∈ In(t), n ∈ N , (1)

where set V contains the M bitrate selections available at

the VR server, and v1 < v2 < · · · < vM . We use vector

vn(t) = (vn,i(t), i ∈ In(t)) to collect the bitrate selections

of the tiles requested by user n in time slot t.

We model the QoS degradation caused by a bitrate switch

among the tiles requested by a user in a particular time slot

by the intra-frame quality switch loss [33], [34]. We denote

the intra-frame quality switch loss of user n in time slot t as

ℓintra
n (t). ℓintra

n (t) is determined by the variance of the elements

5

of vector vn(t). For user n ∈ N in time slot t ∈ T , we have

[33]

ℓintra
n (t) =

1

In(t)

∑

i∈In(t)


vn,i(t)−

1

In(t)

∑

j∈In(t)

vn,j(t)




2

.

(2)

The utility obtained by user n in time slot t is given by

un(t) =
∑

i∈In(t)

vn,i(t)− κ
intraℓintra

n (t), n ∈ N , (3)

where κintra > 0 is a scaling factor for ℓintra
n (t). The utility

in (3) captures the QoS improvement obtained with higher

bitrates of the requested tiles and the QoS degradation caused

by intra-frame quality switches. The utility function in (3)

is motivated by the current standardization of video stream-

ing in wireless systems. Dynamic adaptive streaming over

HTTP (DASH) has been standardized by the Third Generation

Partnership Project (3GPP) as the protocol for supporting

video streaming services in wireless systems [35]. The utility

function in (3) takes into account two important metrics in

DASH [36] for measuring video streaming quality, namely,

the achievable bitrate of the video and the bitrate switch

during video streaming. The achievable bitrate of the video

is a widely used metric for measuring streaming quality. The

bitrate switch during the video streaming has been recognized

as an important factor in video streaming experience based on

DASH [37].

C. RS-based Downlink VR Tile Transmission

The base station employs RS-based downlink transmission

to exploit the tile requests shared by different users. In

time slot t, the indices of the tiles requested by all users

are collected in set I(t) =
⋃
n∈N In(t), t ∈ T . After

receiving the video tile requests from the users, the base

station constructs a common message taking the video tile

requests and CSI of the users into account. When constructing

the common message in the proposed IRS-aided RS VR

streaming system, the base station needs to determine (a)

the data of which tiles should be included in the common

message, and (b) what is the proportion of the data of each

tile in the common message. After construction, the common

message is encoded into a data stream, which is denoted as

s0(t) ∈ C, where E
[
|s0(t)|2

]
= 1. The beamforming vector

for the common message is denoted as b0(t) ∈ CNt . In

addition, the base station constructs a private message for

user n ∈ N that includes the private part of the data of the

tiles requested by user n in time slot t. The private message

for user n is encoded as sn(t) ∈ C with E
[
|sn(t)|2

]
= 1.

The beamforming vector for the private message of user n is

denoted as bn(t) ∈ CNt . We collect the beamforming vectors

in vector b(t) =
[
bT0 (t) b

T
1 (t) · · · b

T
N (t)

]T
∈ C(N+1)Nt . We

denote the maximum transmit power of the base station as

Pmax. We have the following constraint on the beamforming

vectors:

C2: ||b(t)||22 ≤ Pmax. (4)

At the receiver side, the signal received by user n in time

slot t is given by:

yn(t) =
(
h
H
n,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
b0(t)s0(t)

+
∑

m∈N

(
hHn,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
bm(t)sm(t)

+ zn(t), n ∈ N , t ∈ T ,
(5)

where zn(t) is the additive white Gaussian noise (AWGN)

with zero mean and variance σ2 at user n in time slot t.
User n first decodes the common message by treating the

private messages of all users as interference. The SINR of the

common message at user n in time slot t is given by:

γc
n(t)

=

∣∣
(
hHn,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
b0(t)

∣∣2
∑

m∈N

∣∣
(
hHn,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
bm(t)

∣∣2 + σ2
.

(6)

The achievable rate for the common message at user n in

time slot t is Rc
n(t) = log2(1 + γc

n(t)). Let Rc(t) denote

the transmission rate of the common message in time slot

t. All users need to decode the common message first, and

then remove it from their respective received signal to decode

their private message. To ensure successful decoding of the

common message at all users, we have the following constraint

on Rc(t):

C3: Rc(t) = min{Rc
1(t), . . . , R

c
N(t)}. (7)

We denote the proportion of Rc(t) that is dedicated to the

data transmission of video tile i ∈ I(t) in time slot t as ci(t).
We have

C4:
∑

i∈I(t)

ci(t) ≤ 1, (8)

and

C5: ci(t) ≥ 0, i ∈ I(t). (9)

Remark 2: The shared interests of the users can be exploited

in the proposed the IRS-aided RS VR streaming system by

properly choosing the values of ci(t), i ∈ I(t), based on

the video tile requests and CSI of the users. Through the

optimization of ci(t), the base station can determine which

tiles should be included in the common message, and what

are the corresponding proportions of the common rate that

should be allocated to the transmission of these tiles. When

multiple users request the same tile, it may be beneficial to

use a larger proportion of the common rate to transmit this tile

since it can increase the individual utility of those users that

requested this tile simultaneously. The proposed algorithm for

optimizing ci(t) along with the other DoF of the system will

be presented in Sections III and IV.
Remark 3: When ci = 0, this means that no data from tile

i is included in the common message. As an example, for the

FoVs and the corresponding video tile requests of the users

shown in Fig. 1, one possible construction of the common

message is given as follows: c10 = c15 = c16 = 1
3 , and

c9 = c11 = c14 = c17 = c20 = c21 = 0. This means that the

common message only includes data from tiles 10, 15, and

6

16, which are requested by multiple users, and the common

rate is split equally between these three tiles.

After decoding the common message, user n removes the

signal corresponding to the common message from yn(t)
using SIC, and decodes its private message by treating the

private messages of other users as interference. Thus, the

SINR of the private message at user n ∈ N in time slot

t ∈ T is given by [7]:

γp
n(t)

=

∣∣
(
hHn,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
bn(t)

∣∣2

∑
m∈N\{n}

∣∣
(
hHn,D(t) + h

H
n,R(t)Ψ(t)G(t)

)
bm(t)

∣∣2 + σ2
.

(10)

The achievable rate of the private message of user n is given

by Rp
n(t) = log2(1+γ

p
n(t)). Let pn,i(t) denote the proportion

of Rp
n(t) that is used to transmit the data of tile i ∈ In(t) in

time slot t. We have

C6:
∑

i∈In(t)

pn,i(t) ≤ 1, n ∈ N , (11)

C7: pn,i(t) ≥ 0, i ∈ In(t), n ∈ N . (12)

Remark 4: When ci(t) > 0 and pn,i(t) > 0, this means

that portions of the data of tile i ∈ In(t) are included in both

the common and private messages for user n in time slot t.
However, when ci(t) = 0 and pn,i(t) > 0, the data of tile

i ∈ In(t) is transmitted only via the private message to user

n in time slot t.

D. Per-User Per-Tile QoS Requirement

After decoding the common and private messages, user n
retrieves its requested video tiles by combining the decoded

messages. Let J c
n,i(t) denote the number of bits that user n

obtained from the common message for tile i ∈ In(t) in time

slot t. We have

J c
n,i(t) =WTDLci(t)R

c(t), i ∈ In(t), n ∈ N , (13)

where W and TDL are the downlink transmission bandwidth

and time duration, respectively. Let Jp
n,i(t) denote the number

of bits that user n obtained from its private message for tile

i ∈ In(t) in time slot t. We have

Jp
n,i(t) =WTDLpn,i(t)R

p
n(t), i ∈ In(t), n ∈ N . (14)

By combining the common and private messages, the total

number of bits that user n received for tile i ∈ In(t) in time

slot t is given by Jn,i(t) = J c
n,i(t) + Jp

n,i(t), i ∈ In(t), n ∈
N . The total number of bits required by user n to retrieve tile

i with bitrate vn,i(t) is given by Jmin
n,i (t) = Tv vn,i(t), i ∈

In(t), n ∈ N , where Tv denotes the time duration of a

360-degree video tile. In order to ensure that all the data

requested by user n can be received within the downlink

transmission window, we have the following per-user per-tile

QoS constraint:

C8: Jn,i(t) ≥ J
min
n,i (t), i ∈ In(t), n ∈ N . (15)

E. Problem Formulation

In time slot t, we tackle the following utility maximization

problem for an IRS-aided RS VR system:

maximize
b(t),Ψ(t),

vn(t), n∈N ,

ci(t), i∈I(t),
pn,i(t), i∈In(t), n∈N

u(t)
△
=
∑

n∈N

un(t)

subject to constraints C1−C8,

C9: φl(t) ∈ [0, 2π), l ∈ {1, 2, . . . , L},
(16)

where constraint C1 ensures that the bitrate of each tile can

only be chosen from set V . Constraint C2 is the maximum

downlink transmission power constraint at the base station.

Constraint C3 guarantees that the common message can be de-

coded by all users. Constraints C4−C7 are the constraints for

the common and private rates allocated to the requested video

tiles. Constraint C8 is the per-user per-tile QoS constraint.

Constraint C9 is the IRS phase shift constraint. Problem (16)

is a mixed-integer nonconvex optimization problem. In the

Appendix, we present an AO algorithm for solving problem

(16) using FP, SDR, and convex optimization. In the AO al-

gorithm, we decompose problem (16) into three subproblems

and solve them iteratively. Although a suboptimal solution of

problem (16) can be obtained with the AO algorithm, the AO

algorithm can become computationally expensive and time-

consuming for VR streaming applications, see the Appendix.

To tackle this issue, in the next section, we propose a learning-

based Deep-GRAIL algorithm to efficiently solve problem

(16).

IV. DEEP-GRAIL: DEEP DETERMINISTIC POLICY

GRADIENT WITH IMITATION LEARNING ALGORITHM

Designing a learning-based algorithm for solving problem

(16) is challenging due to the RS encoding and decoding

procedure, and the constraints in problem (16). In the pro-

posed Deep-GRAIL algorithm, we tackle these challenges

using imitation learning [10], [11], and differentiable convex

optimization [12].

A. Markov Decision Process (MDP) Formulation

We first model the sequential decision process for solving

problem (16) in time slot t ∈ T as an MDP with τmax decision

epochs. For notational simplicity, we drop time index t in this

section. The state vector in the τ -th decision epoch of the

MDP is defined as

s(τ) =
[
hn,D, vec(diag(hHn,R)G), n ∈ N ,

b(τ − 1), vec(Ψ(τ − 1)), c(τ − 1), Rc
n(τ − 1),

Rp
n(τ − 1), pn(τ − 1), vn(τ − 1), on, n ∈ N

]
,

(17)

where pn(τ) = (pn,i(τ), i ∈ I) and c(τ) = (ci(τ), i ∈ I).
In addition, the binary vector on = (1 (i ∈ In) , i ∈ I) ∈
{0, 1}Imax in (17) contains the information about the video

tile request of user n. Note that τ = 0 corresponds to the

initialization of the MDP.

7

Furthermore, the action vector in the τ -th decision epoch

is defined as

a(τ) = (b(τ), vec(Ψ(τ)), c(τ),pn(τ),vn(τ), n ∈ N) .
(18)

The action vector a(τ) contains all optimization variables of

problem (16).

For the reward function design, note that the objective

function in problem (16), i.e., u(τ), can only take values from

a finite set due to the discrete nature of bitrate selection. If

u(τ) is used directly as the reward function, then the reward

function becomes sparse and may prevent the learning agent

from effectively improving the policy [38]. To tackle this

issue, we first use the following inequality to establish the

connection between u(τ) and the system sum-rate explicitly:

u(τ) =
∑

n∈N

(∑

i∈In

vn,i(τ) − κ
intra ℓintra

n (τ)

)

(a)

≤
∑

n∈N

WTDL

Tv

(∑

i∈In

pn,i(τ)R
p
n(τ) +

∑

i∈In

ci(τ)R
c(τ)

)

−
∑

n∈N

κintra ℓintra
n (τ)

△
= r(s(τ),a(τ)), (19)

where inequality (a) follows from inequality (15). That is

Jn,i ≥ J
min
n,i (τ)

⇐⇒ WTDL

(∑

i∈In

pn,i(τ)R
p
n(τ) +

∑

i∈In

ci(τ)R
c(τ)

)

≥ Tv
∑

i∈In

vn,i(τ)

=⇒
∑

n∈N

WTDL

Tv

(∑

i∈In

pn,i(τ)R
p
n(τ) +

∑

i∈In

ci(τ)R
c(τ)

)

≥
∑

n∈N

∑

i∈In

vn,i(τ). (20)

We use r(s(τ),a(τ)) as the reward function in the MDP to

provide an informative feedback to the learning agent. In the

reward function r(s(τ),a(τ)), we replace the discrete bitrate

selections with the continuous achievable bitrates to overcome

the sparsity of u(τ). We set the maximum achievable bitrate

of a video tile in r(s(τ),a(τ)) to be equal to the maximum bi-

trate selection vM . Since the difference between r(s(τ),a(τ))
and u(τ) cannot exceed

∑
n∈N |In|maxi=1,...,M−1 |vi+1 −

vi|, using r(s(τ),a(τ)) as the reward function also leads to

a policy that can achieve a high utility u(τ).

B. Actor-Critic Method with q-Step Return

Based on the MDP formulation, we use an actor network

to learn a policy for solving problem (16). We denote the

learnable parameters (i.e., the weights and biases) of the actor

network as Φact. The policy learned by the actor network,

which is denoted by πΦact
(s(τ)), defines a mapping from a

state to an action. That is, a(τ) = πΦact
(s(τ)). The critic

network learns a state-action value function QΦcrt
, which

is parameterized by Φcrt. The state-action value function

QΦcrt
(s(τ),a(τ)) estimates the discounted total reward of

selecting action a(τ) in state s(τ). That is,

QΦcrt
(s(τ),a(τ))

= Es∼pπΦact
,a∼πΦact

[
τmax∑

τ ′=τ

γτ
′−τr(s(τ ′),a(τ ′))

]
, (21)

where pπΦact
denotes the distribution of the state transition as

the result of taking actions based on policy πΦact
, and γ ∈

[0, 1] is the discount factor.

The goal of the actor-critic method is to learn a policy

which maximizes the discounted total reward [39]. We have

maximize
Φact

L(Φact)

, Es∼pπΦact
,a∼πΦact

[
τmax∑

τ ′=1

γτ
′−1r(s(τ ′),a(τ ′))

]
.

(22)

The deterministic policy gradient [39] for solving problem

(22) is given by:

∇LDPG = Es∼pπΦact

[
∇QΦcrt

(s,a) | a=πΦact (s)
∇πΦact

(s)
]
.

(23)

The policy update based on the deterministic policy gradient

may suffer from Q-value overestimation [40]. To tackle the

overestimation issue in the proposed Deep-GRAIL algorithm,

we use the following two techniques. First, while the vanilla

DDPG algorithm [39] only uses one critic network, we use

V critic networks to obtain V independent approximations

of the Q-value. The target of Q-value approximation is

determined by the minimum of these V approximations to

alleviate overestimation. Second, we determine the target of

Q-value approximation using the q-step return [?, Section 7.1].

Compared with the single-step return, q-step return determines

the discounted future reward over q consecutive decision

epochs. It provides the learning agent with more information

regarding future planning when compared with the single-step

return (i.e., when q = 1). Hence, the target Q-value in the

proposed Deep-GRAIL algorithm is given by:

Q̂Φcrt
(s(τ), πΦact

(s(τ))

=

τ+q−1∑

τ ′=τ

γτ
′−τr(s(τ ′), πΦact

(s(τ ′)))

+ γq min
m=1,2,...,V

Q
Φ

(m)
crt

(s(τ + q), πΦact
(s(τ + q))),

(24)

where Φ
(m)
crt denotes the learnable parameters of the m-th

critic network. Then, Φ
(m)
crt ,m = 1, . . . , V , is updated by

minimizing the following temporal difference (TD) error of

Q-value approximation [?, Ch. 6]:

minimize
Φ

(m)
crt

L(Φ
(m)
crt)

, Es∼pπΦact
,a∼πΦact

[(
Q

Φ
(m)
crt

(s, πΦact
(s))

− Q̂Φcrt
(s, πΦact

(s))
)2]

.

8

We update Φ
(m)
crt ,m = 1, . . . , V, using gradient descent with

the following gradient:

∇L(Φ
(m)
crt)

= Es∼pπΦact
,a∼πΦact

[
2∇Q

Φ
(m)
crt

(s, πΦact
(s))

(
Q

Φ
(m)
crt

(s, πΦact
(s))− Q̂Φcrt

(s, πΦact
(s))

)]
.

(25)

The learning agent maintains an experience replay that

stores the system transition history due to past decisions as a

system transition tuple (s(τ),a(τ), r(s(τ),a(τ)), s(τ + 1)).
To determine the gradients in (23) and (25), we first sample the

system transition tuples of q consecutive decision epochs from

the experience replay, and then determine the gradients for the

sampled system transition. Note that q consecutive decision

epochs are sampled in order to determine the q-step return in

(24). We find the gradients in a minibatch-based manner and

average the gradients over MD different samples.

Note that while the aforementioned actor-critic method is

designed for maximizing the expected discounted total reward,

we tackle the constraints in problem (16) during the learning

process by using DCO layers in the DNN structure design

of the proposed RavNet. The corresponding details will be

presented in Section V-B.

C. Policy Improvement using Imitation Learning and Demon-

stration Replay

In the vanilla DDPG algorithm [39] and its variant [40],

the learning agent improves the learned policy only based on

exploration and experience replay. However, the exploration of

the learning agent can be inefficient when the dimensionality

of the state and action space is large. To tackle this issue,

we notice that problem (16) has a hidden convexity due to

the fractional form of the SINR expressions in (6) and (10).

Hence, a suboptimal solution of problem (16) can be obtained

by using an AO algorithm exploiting convex optimization, FP,

and SDR. The details of the AO algorithm are provided in the

Appendix.

In the proposed Deep-GRAIL algorithm, we use imitation

learning [10], [11] to allow the agent to learn from the

AO algorithm and exploit the hidden convexity of problem

(16). We introduce the imitation loss to characterize the

difference between the action chosen by the learned policy

and the suboptimal solution obtained by the AO algorithm. By

using imitation learning, the proposed Deep-GRAIL algorithm

provides the actor-critic method with knowledge about the

hidden convexity of the formulated problem, leading to an

efficient policy learning.

In particular, the framework of the proposed Deep-GRAIL

algorithm is illustrated in Fig. 2. Apart from the actor-critic

method and the experience replay, we introduce a demonstra-

tion replay to store the solutions of problem (16) obtained by

the AO algorithm over D time slots. Note that one time slot

corresponds to one episode comprising τmax decision epochs

in the MDP. We define set D = {1, 2, . . . , D}. In the d-th

time slot, where d ∈ D, the AO algorithm is invoked to

IRS-aided RS VR

Streaming System

State
ActionReward

AO Algorithm

Demonstration

Replay

Experience

Replay

Update

UpdateSample minibatch

for training

Problem parameters

(e.g., CSI, video tile requests)

Critic

Network V

Actor Network

Critic

Network 1

Learning agent

…

System transition tuples in the

experience replay

System transition tuples in the

demonstration replay

Fig. 2. Overall framework of the proposed Deep-GRAIL algorithm. The
learning agent comprises an actor network and V critic networks. An
experience replay is employed to maintain the exploration history of the
learning agent. A demonstration replay is maintained by the learning agent
to store the system transition tuples obtained from the AO algorithm.

solve problem (16). Since AO leads to an iterative algorithm,

using it to solve problem (16) also results in a sequential

system transition. In particular, in the τ -th decision epoch

of the d-th time slot, we first initialize the AO algorithm

with the variables in s(d)(τ), which is the state vector in

the τ -th decision epoch of the d-th time slot. Here, we use

the superscript (d) to denote the values of variables in the

d-th time slot. We then execute the AO algorithm for one

iteration and obtain the solution. We denote this solution as

a
(d)
AO(τ). With a

(d)
AO (τ), we determine the reward and the next

state of the MDP as r(s(d)(τ),a
(d)
AO (τ)) and s(d)(τ + 1),

respectively. Then, the system transition obtained from the

execution of the AO algorithm in the τ -th decision epoch

of the d-th time slot is denoted as the system transition

tuple (s(d)(τ),a
(d)
AO(τ), r(s

(d)(τ),a
(d)
AO (τ)), s

(d)(τ + 1)). We

index this system transition tuple with the tuple (d, τ). The

system transition tuples obtained from the execution of the AO

algorithm are stored in the demonstration replay for imitation

learning.

In each training iteration, we sample a minibatch of MD

different transition tuples from the demonstration replay. We

denote the set that collects the indices of the system transition

tuples within the minibatch as MD. Then, for each state

s(d)(τ), (d, τ) ∈ MD, in the minibatch, we determine the

imitation loss of the actor network based on the mean squared

error between the action chosen by the actor network, i.e.,

πΦact
(s(d)(τ)), and the solution obtained by the AO algorithm,

i.e., a
(d)
AO (τ). In particular, the imitation loss L̂IMI is given by:

L̂IMI =
1

MD

∑

(d,τ)∈MD

||πΦact
(s(d)(τ)) − a

(d)
AO(τ)||

2. (26)

We scale the elements in πΦact
(s(d)(τ)) and a

(d)
AO (τ) that

correspond to beamforming and IRS phase shift variables to

be between −1 and 1 to mitigate the potential impact of the

different ranges of the variables.

Note that the solution obtained by the AO algorithm is in

general suboptimal due to the nonconvexity of the formulated

problem. Hence, using the imitation loss in (26) may prevent

9

the learning agent from finding better solutions than those

obtained by the AO algorithm. To tackle this issue, for each

sample with index (d, τ) ∈MD, we determine the discounted

total reward that can be achieved by following the actor’s

policy in the remaining decision epochs (i.e., the Monte Carlo

estimation of the value function [?, Section 7.1]) by

Q̂
(d)
Φact

(τ) =
τmax∑

τ ′=τ

γτ
′−τ r(s(d)(τ ′), πΦact

(s(d)(τ ′))). (27)

The discounted total reward obtained by using the AO algo-

rithm in the remaining decision epochs is given by

Q̂
(d)
AO(τ) =

τmax∑

τ ′=τ

γτ
′−τ r(s(d)(τ ′),a

(d)
AO(τ

′)). (28)

To overcome the potential suboptimality of the AO algorithm,

we only calculate the imitation loss for those states and actions

for which the AO algorithm achieves a higher discounted total

reward than the actor’s policy. This results in the following

modified imitation loss:

LIMI =
1

M̂D

∑

(d,τ)∈MD

(
||πΦact

(s(d)(τ)) − a
(d)
AO (τ)||

2

1

(
Q̂

(d)
AO(τ) > Q̂

(d)
Φact

(τ)
))

,

(29)

where M̂D =
∑

(d,τ)∈MD
1

(
Q̂

(d)
AO(τ) > Q̂

(d)
Φact

(τ)
)

.

By combining with the deterministic policy gradient in (23),

the overall gradient for updating the actor network in the

proposed Deep-GRAIL algorithm is given by:

∇Lact = ω1∇LDPG + ω2∇LIMI, (30)

where ω1 and ω2 are positive parameters representing the

weights of the deterministic policy gradient and the gradient

of imitation loss, respectively.

D. Training Algorithm

The proposed training algorithm is illustrated in Algorithm

1. We first obtain the demonstration replay by executing the

AO algorithm over D episodes. This results in Dτmax system

transition tuples being stored in the demonstration replay.

Meanwhile, the learning agent explores the state and action

space by taking actions based on the learned policy, and stores

the resulting system transition tuples in the experience replay.

We train the learning agent for Tmax episodes. In each

training iteration, we first sample a minibatch from the demon-

stration replay and determine the imitation loss based on

(29). Then, we sample another minibatch from the experience

replay and determine the gradient for updating Φ
(m)
crt ,m =

1, . . . , V , based on (25). Moreover, we determine the gradient

for updating the actor network based on (30). We use the

Adam optimizer [41] with a learning rate of α to update the

learnable parameters of the actor and critic networks based

on the aforementioned gradients. In addition, the following

techniques are employed in our training algorithm to improve

the efficiency of policy learning:

Algorithm 1 Deep-GRAIL: Training Algorithm

1: Set episode counter t← 0.

2: Initialize Φact, Φ
(m)
crt ,m = 1, . . . , V .

3: Execute the AO algorithm for D episodes and store the

system transition tuples in the demonstration replay.

4: Perform random exploration for Twarm-up episodes and

store the system transition tuples in the experience replay.

5: while t ≤ Tmax do

6: Observe the CSI and In(t) of the users.

7: Initialize ci(0) = 1(i ∈ I(t)) 1
|I(t)| , pn,i(0) = 1(i ∈

In(t))
1

In(t)
, i ∈ I, n ∈ N .

8: Initialize Ψ(0) and b(0) based on random initialization.

9: Initialize τ ← 1.

10: while τ ≤ τmax do

11: Determine the action a(τ)← πΦact
(s(τ)) + ̺epl.

12: Observe the reward r(s(τ),a(τ)).
13: Obtain the next state s(τ + 1) and store the tuple

(s(τ),a(τ), r(τ), s(τ +1)) in the experience replay.

14: Sample MD transition tuples from the demonstration

replay and experience replay, respectively.

15: Determine the gradients for updating the actor and

critic networks based on (30) and (25), respectively.

16: Update Φact, Φ
(m)
crt ,m = 1, . . . , V, using the Adam

optimizer and (31).

17: τ ← τ + 1.

18: end while

19: t← t+ 1.

20: end while

• Exploration noise: We add an exploration noise ̺epl

to the action determined by the actor network during

the training phase to facilitate the exploration of the

learning agent. The elements in ̺epl are generated from

the Gaussian distribution with zero mean and variance

σ2
epl

1. In addition, the learning agent randomly explores

the state and action spaces for Twarm-up episodes before

updating the learnable parameters.

• Delayed actor network update: Delaying the update of

the actor network can alleviate the impact of overestima-

tion of the critic network on policy learning [40]. In the

proposed Deep-GRAIL algorithm, we update the actor

network every δ training iterations (δ > 1), while the

critic networks are updated in each iteration.

• Soft learnable parameter update: The soft update tech-

nique can stabilize the training process and prevent

divergence. Let Φ
(m)′

crt ,m = 1, . . . , V, and Φ
′
act denote

the new parameters of the critic and actor networks

that we obtain based on the gradients in (25) and (30),

1Note that we scale the values of the elements in a(τ) that correspond
to the beamforming and IRS phase shift variables to be between −1 and 1
in our implementation. Hence, we can generate the exploration noise for all
elements in a(τ) using the same Gaussian distribution since they all have
the same range of magnitudes.

10

respectively. We update the learnable parameters with the

following soft update rule:

Φ
(m)
crt ← κΦ

(m)′

crt + (1− κ)Φ
(m)
crt ,m = 1, . . . , V,

Φact ← κΦ′
act + (1 − κ)Φact,

(31)

where κ is a constant and is between zero and one.

E. Online Execution Algorithm

The algorithm for online execution is illustrated in Algo-

rithm 2. Given the CSI and video tile requests of the users,

the proposed Deep-GRAIL algorithm is executed for τmax

iterations to obtain the solutions. In the τ -th iteration, we feed

state s(τ) into the actor network and determine the action

a(τ). Then, the next state s(τ + 1) is observed. We repeat

this process iteratively until the maximum decision epoch τmax

is reached. Compared with the training algorithm, the online

execution algorithm has a lower computational complexity

since the update of the learnable parameters and the demon-

stration replay (i.e., the execution of the AO algorithm) are

not required during online execution.

V. RAVNET: PROPOSED DEEP NEURAL NETWORK FOR

IRS-AIDED RS VR STREAMING SYSTEMS

In this section, we propose RavNet, a DNN that we design

for policy learning in the considered RS VR streaming system.

With the help of the DCO layer, we are able to integrate

convex optimization as one of the DNN layers in RavNet.

When combined with the proposed Deep-GRAIL algorithm,

RavNet is capable of learning the policy efficiently, and

meanwhile satisfying the constraints in problem (16).

A. Input Pre-processing

We first construct two three-dimensional (3-D) matrices,

namely S(1)(τ) and S(2)(τ), from state s(τ). S(1)(τ) collects

the information about the channel, beamforming vectors, and

IRS phase shifts. S(2)(τ) collects the information about the

video tile requests, RS parameters, and bitrate selections.
1) Construction of S(1)(τ): S(1)(τ) is a 3-D matrix of

size (L+1)Nt×N × 7. For ease of presentation, we refer to

the first, second, and third dimensions of the 3-D matrix as

row, column, and depth, respectively. S(1)[x, y, z] returns the

element in the x-th row, y-th column, and z-th depth of matrix

S(1)(τ). S(1)[:, y, z], z = 1, . . . , 7, returns the y-th column

vector in the z-th depth of S(τ). S(1)[:, :, z], z = 1, . . . , 7,
returns the 2-D matrix of size (L + 1)Nt × N in the z-th

depth of S(1). The elements in the first and second depths of

S(1)(τ) are constructed from the real and imaginary parts of

the CSI of the users, respectively. We have

S(1)[:, n, 1](τ) =
(
ℜ{hn,D} ,

ℜ
{

vec(diag(hHn,R)G)
})

, n ∈ N .

and

S(1)[:, n, 2](τ) =
(
ℑ{hn,D} ,

ℑ
{

vec(diag(hHn,R)G)
})

, n ∈ N .

Algorithm 2 Deep-GRAIL: Online Execution Algorithm for

Time Slot t
1: Obtain the CSI and video tile requests of the users.

2: Initialize ci(0) = 1(i ∈ I(t)) 1
|I(t)| , pn,i(0) = 1(i ∈

In(t))
1

In(t)
, i ∈ I, n ∈ N .

3: Initialize Ψ(0) and b(0) based on random initialization.

4: Initialize τ ← 1.

5: while τ ≤ τmax do

6: Determine the action a(τ)← πΦact
(s(τ)).

7: Obtain the next state s(τ + 1).
8: τ ← τ + 1.

9: end while

10: Retrieve b(t), Ψ(t), c(t), p(t), and v(t) from a(τmax).

The remainder of S(1)(τ) is constructed from the beam-

forming vectors and IRS phase shifts. We align the beam-

forming vectors and IRS phase shifts with the CSI of the

corresponding subchannels in the depth dimension of matrix

S(1)(τ). By doing this, we allow the DNN to learn from the

positional information (e.g., each beamforming or IRS phase

shift variable is linked to the corresponding subchannel) in

matrix S(1)(τ).

In particular, the elements in the 3rd and 4th depth of

S(1)(τ) are obtained from the beamforming vector of the

common message chosen in the previous decision epoch, i.e.,

b0(τ − 1). For n ∈ N , we have

S(1)[:, n, 3](τ) =
(
ℜ{b0(τ − 1)} , . . . ,ℜ{b0(τ − 1)}︸ ︷︷ ︸

L+1

)
,

and

S(1)[:, n, 4](τ) =
(
ℑ{b0(τ − 1)} , . . . ,ℑ{b0(τ − 1)}︸ ︷︷ ︸

L+1

)
.

The elements in the 5th and 6th depth of S(1)(τ) are

obtained from the beamforming vector of the private messages

chosen in the previous decision epoch, i.e., bn(τ − 1). For

n ∈ N , we have

S(1)[:, n, 5](τ) =
(
ℜ{bn(τ − 1)} , . . . ,ℜ{bn(τ − 1)}︸ ︷︷ ︸

L+1

)
,

and

S(1)[:, n, 6](τ) =
(
ℑ{bn(τ − 1)} , . . . ,ℑ{bn(τ − 1)}︸ ︷︷ ︸

L+1

)
.

The elements in the last depth of S(1)(τ) are determined

by the IRS phase shifts chosen in the previous decision epoch.

For n ∈ N , we have

S(1)[:, n, 7](τ) =
(
0, . . . , 0︸ ︷︷ ︸

Nt

, ψ1(τ − 1), . . . , ψ1(τ − 1)︸ ︷︷ ︸
Nt

,

. . . , ψL(τ − 1), . . . , ψL(τ − 1)︸ ︷︷ ︸
Nt

)
.

11

FC1

+ReLU

CNN1 + ReLU

CNN2 + ReLU

Vectorization

CNN3 + ReLU

CNN4+ ReLU

CNN5 + ReLU

FC2

+ ReLU

FC3

+ tanh
DCO Layer 1

Vectorization

Concatenation

DCO Layer 2

State

Beamforming

vectors and phase

shift variables

RS parameters

and bitrate

selections

MLP Module

CNN6 + ReLU

Fig. 3. The network architecture of the actor network in RavNet. The actor network takes S
(1)(τ) and S

(2)(τ) as input, and determines the action a(τ).

2) Construction of S(2)(τ): S(2)(τ) is a 3-D matrix of

size Nx × Ny × 2N . We construct S(2)(τ) in such a way

that the 2-D matrices S(2)[:, :, n] and S(2)[:, :, n + N] show

the achievable bitrates of the video tiles requested by user

n ∈ N obtained from the common and private messages,

respectively, based on the control variables determined in the

previous decision epoch. We have

S(2)[x, y, z](τ)

=





1 {i ∈ Iz} ci(τ − 1)Rc(τ − 1)), z = 1, . . . , N,

1 {i ∈ Iz−N} pz−N,i(τ − 1)Rp
z−N (τ − 1),

z = N + 1, . . . , 2N,

where i = y+(x−1)Nx for x = 1, . . .Nx, and y = 1, . . . , Ny.

In fact, the value of i corresponds to the index of the video tile

located in the x-th row and the y-th column of the 360-degree

video frame.

B. Actor Network Structure

The actor network takes both S(1)(τ) and S(2)(τ) as inputs

to determine the control variables. The proposed actor network

structure tackles the constraints of problem (16) during the

policy learning process. As shown in Fig. 3, we use the

following DNN modules in the actor network:

1) Convolutional Neural Network (CNN) Module: First,

S(1)(τ) is fed into three CNN layers with kernel sizes k1×k1,

k2 × k2, k3 × k3, and channel numbers ch1, ch2, and ch3,

respectively. Each CNN layer is followed by a rectified linear

unit (ReLU) activation layer. The output of the last CNN layer

is vectorized into a vector, which is denoted by s(1)(τ).
We employ another network module comprising three CNN

layers to process S(2)(τ). The kernel sizes of these three CNN

layers are given by k4× k4, k5× k5, and k6× k6, while their

channel numbers are ch4, ch5, and ch6, respectively. We also

apply an ReLU activation layer after each of the CNN layers.

The output of the last CNN layer is reshaped into a vector,

which we denote as s(2)(τ).
The CNN module is an important component in the pro-

posed actor network because (a) it can learn from the po-

sitional information in S(1)(τ), and (b) it can capture the

spatial correlation between the video tile requests of the users

in S(2)(τ).

2) Multilayer Perceptron (MLP) Module: We concatenate

s(1)(τ) and s(2)(τ) together to obtain a new vector s(3)(τ).
That is, s(3)(τ) = (s(1)(τ), s(2)(τ)). We feed s(3)(τ) into

an MLP module with three fully-connected (FC) layers, two

ReLU activation layers, and one tanh activation layer to obtain

the beamforming variables b′(τ) and IRS phase shifts ψ′(τ).
We denote the hidden dimensionality of the MLP module in

the actor network as dact. We define a′(τ) = (b′(τ),ψ′(τ)).

3) DCO Layers: In order to satisfy the constraints in

problem (16), we determine the projection of a′(τ) onto

the feasible set of problem (16) by solving the following

optimization problem with the RS parameters and bitrate

selection given by c(τ − 1), pn(τ − 1), and vn(τ − 1),
respectively:

minimize
a(τ)

||a(τ)− a′(τ)||2

subject to constraints C2, C8, C9.
(32)

Note that constraint C9 can be satisfied by using the outputs of

the neural network as the phase shift values. Problem (32) can

be transformed into a convex problem by applying quadratic

transform [24] to the common and private rate expressions.

In the proposed RavNet, we solve problem (32) using the

12

DCO layer [12]. Compared with conventional convex solvers

(e.g., CVX), the DCO layer can be integrated as a layer in

RavNet. In addition, it can solve problem (32) efficiently in a

batch-wise manner, which significantly facilitates the training

process. We denote the feasible beamforming and IRS phase

shift solutions obtained by solving problem (32) as b(τ) and

ψ(τ), respectively.
We then feed b(τ) andψ(τ) into a second DCO layer which

solves the following optimization problem to obtain the RS

parameters and bitrate selections:

maximize
vn, n∈N ,
ci, i∈I,

pn,i, i∈In, n∈N

∑

n∈N

(∑

i∈In

vn,i − κ
intraℓintra

n

)

subject to constraints C1, C3−C8.

(33)

Note that the intra-frame quality switch loss ℓintra
n is a convex

function with respect to the bitrate selection variables in vector

vn. Moreover, Rc(τ) and Rp
n(τ), n ∈ N , in problem (33) can

be determined given b(τ) and ψ(τ). All constraints except

constraint C1 are affine constraints. We relax constraint C1 as

v1 ≤ vn,i ≤ vM , i ∈ In, n ∈ N . (34)

The relaxed problem is a convex optimization problem and can

be solved using the DCO layer. We round down the solution

of vn,i, i ∈ In, n ∈ N , to the nearest feasible solution.

C. Critic Network Structure

The proposed critic network has a similar structure as the

actor network. Since the critic network approximates the Q-

value, the layers for obtaining the feasible actions in the actor

network are not required in the critic network. This leads to

the following two modifications: (a) the DCO layers are not

present in the critic network, and (b) the tanh activation layer

in the MLP module is replaced by the ReLU activation layer to

generate the Q-value. Although all the V critic networks have

the same network structure, their initial learnable parameters

are different. By doing this, we can obtain V independent

approximations of the state-action value function. While it is

a known problem that the state-action value function approxi-

mated by each critic network may suffer from overestimation,

this problem can be tackled by using multiple (i.e., V > 1)

critic networks to obtain multiple estimates. The minimum

among these estimates is then used as the target for updating

the learnable parameters. We note that this technique has been

applied in several state-of-the-art DRL algorithms, including

[40], [42]–[44], to address the overestimation of the state-

action value function. We denote the hidden dimensionality

of the MLP module in the critic network as dcrt.

D. Computational Complexity

The computational complexity for the policy learning in the

proposed Deep-GRAIL algorithm depends on the following

processes: (a) obtaining the demonstration replay for imita-

tion learning, (b) updating the policy learned by the actor

network, i.e., πΦact
, and (c) updating the state-action value

function approximated by each of the V critic networks, i.e.,

Q
Φ

(m)
crt
, m = 1, . . . , V .

1) Imitation learning and demonstration replay: In order to

obtain the demonstration replay for imitation learning, the AO

algorithm presented in the Appendix needs to be executed for

Dτmax iterations. Based on the analysis of the computational

complexity of the AO algorithm, see (57) in the Appendix, the

imitation learning process incurs the following computational

complexity [45, Section 1.3]:

OIMI = O
(
Dτmax(CBFN

3
t N

3 + CPSL
4.5 log(1/ǫ) +N3)

)

= O
(
Dτmax(CBFN

3
t N

3 + CPSL
4.5 log(1/ǫ))

)
, (35)

where CBF and CPS denote the number of iterations of the

FP-based beamforming algorithm and the FP-based phase

shift control algorithm invoked in each iteration of the AO

algorithm, respectively. In addition, ǫ is a positive constant

denoting the solution accuracy [46].

2) Actor-Critic Method and DDPG for Policy Learning:

In each training iteration, updating the policy learned by the

actor network, i.e., πΦact
, incurs a computational complexity

of

Oact = O
(
k21ch1 + k22ch1ch2 + k23ch2ch3 +Nk24ch4

+ k25ch4ch5 + k26ch5ch6 + d2act +NtN + L
)
.

(36)

Updating the state-action value function approximated by

each of the V critic networks, i.e., Q
Φ

(m)
crt
, m = 1, . . . , V ,

incurs the following computational complexity:

Ocrt = O
(
k21ch1 + k22ch1ch2 + k23ch2ch3 +Nk24ch4

+ k25ch4ch5 + k26ch5ch6 + d2crt

)
.

(37)

Given the total number of training iterations Tmaxτmax, the

overall computational complexity for the policy learning in

the proposed Deep-GRAIL algorithm is:

O
(
Dτmax(CBFN

3
t N

3 + CPSL
4.5 log(1/ǫ)) + TmaxτmaxV

(k21ch1 + k22ch1ch2 + k23ch2ch3 +Nk24ch4 + k25ch4ch5

+ k26ch5ch6 + d2crt) + Tmaxτmax(d2act +NtN + L)
)
.

(38)

Our analysis shows that the number of reflecting elements L
has a more significant impact on the computational complexity

of imitation learning than the number of antennas Nt and the

number of users N . Apart from the aforementioned variables,

the computational complexity of the actor-critic method and

DDPG also increases with the dimensionality of the DNNs.

In addition, while training V critic networks can mitigate the

overestimation issue, we observe from (38) that a larger V
also leads to a higher computational complexity.

Remark 5: In order to construct the common and private

messages, the base station needs to determine the values of

the RS parameters, i.e., ci, i ∈ I and pn,i, i ∈ In, n ∈ N , by

solving problem (33). Compared to the systems without RS,

this process incurs an additional computational complexity of

O
(
N3
)
.

13

VI. PERFORMANCE EVALUATION

We consider a 10 m × 10 m × 3.5 m indoor facility for

VR streaming as illustrated in Fig. 1. Each user is designated

a 2.7 m × 2.7 m area [28]. The base station is installed at

the center of the ceiling, and the IRS is installed on one side

of the wall at the midpoint between the ceiling and the floor.

We assume all channels, including the channels between the

base station and the users, are line-of-sight (LoS) based on the

aforementioned deployments of the base station and the IRS.

We consider the presence of LoS channels in our simulations

to investigate the full potential of the proposed IRS-aided

RS VR system. We assume a carrier frequency of 60 GHz

as this value is used in several commercial wireless VR

systems, see, e.g., [47], [48]. Let dn,D, dn,R, and d0 denote

the distance between the base station and user n, the distance

between the IRS and user n, and the distance between the base

station and the IRS, respectively. We determine the CSI of

the direct and reflected channels by hn,D = (ν
4πdn,D

)ζ ĥn,D,

hn,R = (ν
4πdn,R

)ζĥn,R, and G = (ν
4πd0

)ζĜ, where ν is

the wavelength of the carrier signal and ζ is the pathloss

exponent. The elements in ĥn,D, ĥn,R, and Ĝ are complex

Gaussian distributed with zero mean and unit variance. The

other simulation parameter settings are given in Table II.

To properly model the pattern of the video tiles requested

by the users during the VR streaming session, we use the

real-world dataset from [13] to determine the video tile

requests in our simulations. The dataset from [13] includes the

head movements of 20 users during multiple real-world VR

streaming sessions. The head movement record of a particular

user is used to determine the FoV and the video tile requested

by this user. We divide each 360-degree video frame into 24
tiles, with Nx = 4 and Ny = 6. The FoV of each user covers

110 degrees in horizontal direction and 90 degrees in vertical

direction of the video frame. In Fig. 4, we visualize the video

tile requests that we determined based on two VR streaming

sessions from the real-world dataset [13]. We use FFmpeg

[49] to encode the 360-degree video into different bitrates as

given by set V = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} Mbps.

We conduct the simulation using a computing server with

an Intel Core i5-9500 @ 3.0 GHz CPU, and an NVIDIA

GeForce RTX 2070 GPU with 8 GB memory. The codes

for the proposed Deep-GRAIL algorithm are available on

https://github.com/ruihuang1967/Deep-GRAIL.

We compare the performance of the following baseline

systems and algorithms:

• IRS-aided RS VR streaming system with AO al-

gorithm: We use the AO algorithm presented in the

Appendix to solve problem (16).

• IRS-aided RS VR streaming system with supervised

learning (SL) algorithm: In this algorithm, we train a

DNN module using SL to minimize the mean squared

error between its output and the solution of the AO

algorithm presented in the Appendix. This DNN module

uses the same network structure as the proposed actor

network.

• IRS-aided RS-NOUM system [14]: We extend the RS-

NOUM system proposed in [14] by including an IRS.

TABLE II
SIMULATION PARAMETERS FOR PERFORMANCE EVALUATION

Parameter Value
Bandwidth for downlink W 1 GHz

Path loss exponent ζ 2.29 [50]
Maximum transmit power Pmax 1 Watt

Noise power −174 dBm/Hz
Time duration of each video tile Tv 1 sec
Downlink transmission window TDL 10 ms

Coefficient for inter-frame quality switch
loss κintra 10

Number of decision epochs per time slot
(i.e., per episode) τmax 50

Learning rate α 5× 10−4

Minibatch size MD 512
Number of critic networks V 6
Value of q for q-step return 5

Kernel size of the CNN layers 2× 2
Number of channels of the CNN layers ch1,

ch2, ch3, ch4, ch5, ch6

16, 16, 32, 16, 16,
32

Hidden dimensionality of the MLP modules
dact , dcrt

1024

Coefficients for training loss ω1, ω2 10−3 , 1
Coefficient for soft update κ 5× 10−3

Discount factor γ 0.95

1000 2000 3000 4000 5000 6000 7000

Time Frame

4

8

12

16

20

24

V
id

eo
 T

ile
 In

de
x

0

5

10

15

20

N
um

be
r

of
 u

se
rs

 th
at

 r
eq

ue
st

ed
 th

e
til

e

(a) 360-degree video streaming session 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time Frame

4

8

12

16

20

V
id

eo
 T

ile
 In

de
x

0

5

10

15

20

N
um

be
r

of
 u

se
rs

 th
at

 r
eq

ue
st

ed
 th

e
til

e

(b) 360-degree video streaming session 2

Fig. 4. Visualization of the video tile requests obtained from two VR
streaming sessions in the real-world dataset [13]. Each video frame is divided
into 24 video tiles. The x-axis indicates the video frame, while the time
duration of each frame is 1 sec. The y-axis shows the indices of the video
tiles (i.e., from 1 to 24). The color of the grid centered at (x, y) indicates
the number of users that requested the y-th tile in the x-th video frame.

In this system, the information of the requested tiles are

sent to all users via multicast. Each user also receives a

dedicated unicast message regarding its requested tiles.

The multicast and unicast messages are combined using

RS. We solve the sum-rate maximization problem for

the resulting system with the constraints of problem (16)

using an AO-based algorithm with weighted minimum

mean square error (WMMSE), SDR, and convex opti-

mization.

• IRS-aided multiuser system without RS (IRS-aided

MU system) [8]: In this system, the requested video tiles

are sent to the users via unicast without RS. We solve the

sum-rate maximization problem for the resulting system

https://github.com/ruihuang1967/Deep-GRAIL

14

0 20000 40000 60000 80000 100000 120000 140000 160000
Training iterations

0

10

20

30

40

50

60

70

Sy
st

em
 s

um
-r

at
e

(b
its

/s
/H

z)

 = 5 10-4, M
D

 = 512

 = 5 10-4, M
D

 = 64

 = 1 10-4, M
D

 = 512

 = 1 10-5, M
D

 = 512

Fig. 5. Convergence of the proposed Deep-GRAIL algorithm. We set Nt =
6, N = 6, and L = 100.

0 20 40 60 80 100 120 140 160
Number of reflecting elements on the IRS

15

20

25

30

35

40

45

50

55

60

65

Sy
st

em
 s

um
-r

at
e

(b
its

/s
/H

z)

IRS-aided RS VR streaming system with Deep-GRAIL
IRS-aided RS VR streaming system with AO
IRS-aided RS VR streaming system with SL
IRS-aided RS-NOUM system
IRS-aided MU system

Fig. 6. System sum-rate versus the number of reflecting elements L. We set
Nt = N = 6. Note that L = 0 represents the system without an IRS.

with the constraints of problem (16) using an AO-based

algorithm with FP, SDR, and convex optimization.

A. Convergence of the Deep-GRAIL Algorithm

We first investigate the convergence of the proposed Deep-

GRAIL algorithm. We show the achievable system sum-rate

of the Deep-GRAIL algorithm versus the number of training

iterations in Fig. 5. We observe that with a properly chosen

learning rate α, e.g., 5 × 10−4, the proposed Deep-GRAIL

algorithm can efficiently improve the learned policy. The

results in Fig. 5 also show that setting α to be too small,

e.g., 10−5, can lead to slow convergence and inefficient policy

learning. In addition, we observe that increasing the minibatch

size MD from 64 to 512 leads to a higher system sum-rate.

B. Achievable System Sum-Rate

In Fig. 6, we vary the number of reflecting elements L
and investigate the system sum-rate. We observe that the

performance improvement of the proposed IRS-aided RS VR

streaming system with Deep-GRAIL algorithm over the same

system with AO algorithm increases with the value of L. This

is because when the IRS phase shift subproblem is solved

2 4 6 8
Number of VR users

10

20

30

40

50

60

70

Sy
st

em
 s

um
-r

at
e

(b
its

/s
/H

z)

IRS-aided RS VR streaming system with Deep-GRAIL
IRS-aided RS VR streaming system with AO
IRS-aided RS VR streaming system with SL
IRS-aided RS-NOUM system
IRS-aided MU system

Fig. 7. System sum-rate versus the number of VR users N . We set Nt = 6
and L = 100.

using FP and SDR, Gaussian randomization is needed to

obtain IRS phase shift matrix, which may incur significant

performance degradation [46]. The proposed Deep-GRAIL

algorithm avoids such performance loss since (a) SDR is not

required for the Deep-GRAIL algorithm, and (b) the imitation

loss in (29) prevents the learning agent from being affected

by the suboptimality of the AO algorithm with SDR. In

particular, when L = 160, the IRS-aided RS VR streaming

system with the proposed Deep-GRAIL algorithm achieves

a system sum-rate that is 2.8%, 19.1%, 21.6%, and 66.1%
higher than that of the IRS-aided RS VR streaming system

with AO algorithm, IRS-aided RS VR streaming system with

SL algorithm, IRS-aided RS-NOUM system, and IRS-aided

MU system, respectively.

In addition, in Fig. 6, L = 0 implies a system without IRS.

We observe that all considered systems benefit significantly

from having an IRS present for improving the system sum-

rate. For the IRS-aided RS VR streaming system with Deep-

GRAIL algorithm, deploying an IRS with L = 100 reflecting

elements results in a system sum-rate improvement of 91.44%
compared to the same system without IRS. This is due to the

SINR improvement achieved with the additional propagation

channels created by the IRS. Furthermore, for the proposed

IRS-aided RS VR streaming system, since the common rate

is determined by the user experiencing the minimum SINR

(as shown in (7)), the additional DoF introduced by the IRS

are implicitly exploited to increase the rate of the common

message. In particular, our results show that the average of

the achievable rate of the common message of the users,

i.e., Rc in (7), in the proposed IRS-aided RS VR system

with L = 100 reflecting elements is 12.81 bits/s/Hz, while

only an average of 5.61 bits/s/Hz is achieved in the same

system without IRS. Therefore, using an IRS with L = 100
reflecting elements increases the common rate by 128.3%,

which allows more data to be transmitted via the common

message to exploit the shared interests and improve the QoS

of the users. Our results demonstrate the benefits of IRS for

mitigating the performance bottleneck of RS caused by the

user experiencing the minimum SINR.

In Fig. 7, we show the system sum-rate versus the number

15

4 6 8 10
Number of antennas at the base station

20

25

30

35

40

45

50

55

60

65

70

Sy
st

em
 s

um
-r

at
e

(b
its

/s
/H

z)

IRS-aided RS VR streaming system with Deep-GRAIL
IRS-aided RS VR streaming system with AO
IRS-aided RS VR streaming system with SL
IRS-aided RS-NOUM system
IRS-aided MU system

Fig. 8. System sum-rate versus the number of antennas Nt at the base station.
We set N = 6 and L = 100.

of users N . We set Nt = 6 and L = 100. We observe that the

performance gains of the IRS-aided RS VR streaming system

over the IRS-aided RS-NOUM and IRS-aided MU systems

become more pronounced with more users. With more users, a

particular tile is more likely to be requested by multiple users,

and therefore there are more shared tile requests of the users to

be exploited by the IRS-aided RS VR streaming system. When

N = 8, the IRS-aided RS VR streaming system with the

proposed Deep-GRAIL algorithm achieves a system sum-rate

that is 2.6%, 25.2%, 26.7%, and 90.8% higher than that of the

IRS-aided RS VR streaming system with AO algorithm, IRS-

aided RS VR streaming system with SL algorithm, IRS-aided

RS-NOUM system, and IRS-aided MU system, respectively.

In Fig. 8, we show the system sum-rate of the users versus

the number of antennas Nt at the base station. All algorithms

except the IRS-aided RS VR streaming system with SL

algorithm exhibit a similar performance gain as the number of

antennas increases. The IRS-aided RS VR streaming system

with SL algorithm suffers a larger sum-rate degradation when

Nt becomes larger. This is caused by the increase in the mean

squared error between the beamforming vectors determined

by the SL algorithm and the beamforming vectors obtained

by the AO algorithm. When Nt = 10, the IRS-aided RS VR

streaming system with the proposed Deep-GRAIL algorithm

achieves a 2.3%, 20.3%, 20.5%, and 60.5% higher system

sum-rate than the IRS-aided RS VR streaming system with

AO algorithm, IRS-aided RS VR streaming system with SL

algorithm, IRS-aided RS-NOUM system, and IRS-aided MU

system, respectively. Compared with the baseline schemes,

the performance gain of the IRS-aided RS VR streaming

system is due to the optimization of the RS parameters,

i.e., ci, i ∈ I, given the video tile requests of the users.

Through the optimization of ci, the base station can properly

determine the video tiles that should be included in the

common message, as well as the proportion of the common

message allocated to them, such that the utility is maximized.

Fig. 9. Average achievable bitrate for each user. We set Nt = N = 6 and
L = 100.

C. Bitrate Allocation per User

In Fig. 9, we show the average bitrate per video tile for

each user. We set Nt = N = 6 and L = 100. We sort the

users in descending order of their average bitrates. That is,

the user with the highest average bitrate is referred to as user

1, while the user with the lowest average bitrate is referred

to as user 6. The results in Fig. 9 show that the users achieve

higher bitrates in the IRS-aided RS-enabled systems compared

to the IRS-aided MU system. This is because, with RS, the

common message can be exploited to improve the QoS of

multiple users simultaneously when those users have shared

video tile requests.

In Fig. 10, we show the standard deviation of the bitrates

for the video tiles received by the users. For the IRS-aided

MU system, solving the bitrate selection subproblem yields

the same bitrates for all video tiles requested by a particular

user. This is due to the fact that (a) the IRS-aided MU system

does not employ RS-based video tile transmission, and (b)

the consideration of the intra-frame quality switch loss in

the objective function u(t) encourages the base station to

minimize the standard deviation of the bitrates of the video

tiles. Therefore, as can be observed in Fig. 10, the standard

deviation for the IRS-aided MU system is zero for all users.

For the RS-enabled systems, those users with lower average

bitrates (e.g., users 5 and 6) experience higher standard

deviations of the bitrates of the received video tiles. This is

because by exploiting the common message, those users can

obtain higher bitrates for video tiles that are requested by

multiple users than for video tiles that are requested only by

an individual user.

D. Runtime Comparison

In Table III, we compare the online execution runtime of

different algorithms per time slot. We observe that the average

runtimes of the learning-based algorithms, i.e., the Deep-

GRAIL and SL algorithms, are lower than that of the AO

algorithms. Moreover, the increases in runtime with respect to

the value of Nt, N , and L for the learning-based algorithms

are less significant than the AO algorithms. This is because

16

TABLE III
AVERAGE RUNTIME COMPARISON FOR DIFFERENT SCHEMES

Parameter Settings
Nt = 6, N = 4,

L = 100
Nt = 6, N = 6,

L = 100
Nt = 6, N = 6,

L = 160
Nt = 10, N = 6,

L = 100
IRS-aided RS VR streaming system with Deep-GRAIL algorithm 8.52 sec 10.38 sec 13.71 sec 8.65 sec

IRS-aided RS VR streaming system with SL algorithm 0.75 sec 1.15 sec 1.64 sec 0.85 sec
IRS-aided RS VR streaming system with AO algorithm 14.01 min 16.36 min 63.32 min 19.46 min

IRS-aided RS-NOUM system 12.98 min 14.93 min 59.49 min 18.24 min
IRS-aided MU system 9.36 min 10.20 min 41.70 min 13.21 min

Fig. 10. Standard deviation of the bitrates for the video tiles. We set Nt =
N = 6 and L = 100. The standard deviation for the IRS-aided MU system
is zero for all users because solving the bitrate selection subproblem for this
system yields the same bitrates for all tiles requested by a particular user.

the computationally expensive processes needed for solving

the beamforming and IRS phase shift subproblems using

WMMSE and SDR are not needed in the learning-based

algorithms. In particular, when Nt = 6, N = 6, and L = 160,

the average runtime of the Deep-GRAIL algorithm is only

0.36%, 0.38%, and 0.55% of the average runtimes of the IRS-

aided RS VR streaming system with AO algorithm, IRS-aided

RS-NOUM system, and IRS-aided MU system, respectively.

The average runtime of the SL algorithm is lower than that of

the Deep-GRAIL algorithm since the Deep-GRAIL algorithm

needs to be executed for τmax decision epochs per time slot,

while the SL algorithm is not an iterative algorithm and only

needs to be executed once per time slot.

E. Ablation Experiment

We conduct an ablation experiment to investigate the effec-

tiveness of the following components of the proposed Deep-

GRAIL algorithm: (a) the reward approximation in (20), (b)

the q-step return in (24), and (c) the imitation loss in (29).

The results for the ablation experiment are shown in Fig. 11,

where we compare the performance obtained after removing

each of the three components from the proposed Deep-

GRAIL algorithm. We first observe that imitation learning

offers the highest performance improvement among the three

components. Without imitation learning, the agent learns a

suboptimal policy, based on which only a sum-rate of ap-

proximately 20 bits/s/Hz can be achieved. This demonstrates

that imitation learning can help the learning agent explore the

state and action spaces more efficiently, and therefore discover

0 20000 40000 60000 80000 100000 120000 140000 160000
Training iterations

0

10

20

30

40

50

60

70

Su
m

 r
at

e
(b

its
/s

/H
z)

The proposed Deep-GRAIL algorithm
Deep-GRAIL without q-step return
Deep-GRAIL without reward approximation
Deep-GRAIL without imitation learning

Fig. 11. Ablation experiment for evaluating the effectiveness of the reward
approximation, q-step return, and imitation learning in the proposed Deep-
GRAIL algorithm.

a better policy. We also observe that both the q-step return and

reward approximation contribute to the improvement of the

system sum-rate. In particular, when reward approximation is

not used, we observe a lower rate of convergence of the policy

learning. This is because without reward approximation, the

reward function can be sparse due to the discrete bitrate

selections. Such sparsity can affect the learning efficiency.

The results in Fig. 11 also show the benefits of using the

q-step return to mitigate the overestimation of the state-action

value function. Without the q-step return, the actual total

reward obtained by a chosen action can be lower than the

one approximated by the state-action value function. Since

the policy learned by the actor network depends on the

approximated state-action value function, such an inaccurate

approximation can lead to performance degradation.

F. Impact of Imperfect Channel Estimation

For the deviation of the proposed Deep-GRAIL algorithm,

we assumed that the base station has the perfect CSI of the

users. In this subsection, we investigate the robustness of

the proposed Deep-GRAIL algorithm to imperfect channel

estimation using the statistical channel estimation error model

from [51], [52]. In particular, we use Ĝ(t) = G(t) +∆G(t),
ĥn,D(t) = hn,D(t) + ∆hn,D(t), and ĥn,R(t) = hn,R(t) +
∆hn,R(t) to denote the estimated channel gain between the

base station and the IRS, the estimated channel gain between

user n and the base station, and the estimated channel gain

between user n and the IRS, respectively. For the channel

17

10-4 10-3 10-2 10-1 100

Coefficient

10

20

30

40

50

60

70

80
A

ch
ie

va
bl

e
sy

st
em

 s
um

-r
at

e
(b

its
/s

/H
z)

IRS-aided RS VR streaming system with Deep-GRAIL
IRS-aided RS VR streaming system with AO
IRS-aided RS VR streaming system with SL
IRS-aided RS-NOUM system
IRS-aided MU system

Fig. 12. Achievable system sum-rate for imperfect channel estimation. We
set Nt = N = 6 and L = 100.

estimation errors ∆G(t), ∆hn,D(t), and ∆hn,R(t), the ele-

ments of ∆G(t), ∆hn,D(t), and ∆hn,R(t) are assumed to

follow complex Gaussian distributions with zero mean and

variances µ2‖vec(G(t))‖22, µ2‖hn,D(t)‖22, and µ2‖hn,R(t)‖22,

respectively. The coefficient µ ∈ [0, 1) is a measure for the

significance of the estimation error. In Fig. 12, we evaluate

the achievable system sum-rate for imperfect channel estima-

tion. We observe performance degradations in all considered

algorithms due to imperfect channel estimation. When µ is

equal to 0.01, the proposed Deep-GRAIL algorithm can retain

85.32% of the system sum-rate that can be achieved for perfect

channel estimation.

VII. CONCLUSION

In this paper, we proposed a novel IRS-aided RS VR

streaming system, in which the shared interests of the VR

users were exploited via RS to improve the QoS of 360-degree

video streaming. We used IRS to create additional propagation

channels, and improve the performance of RS by increasing

the minimum SINR experienced by the common message at

different users. We formulated the joint optimization of the

RS parameters, IRS phase shifts, beamforming vectors, and

bitrate selection as a mixed-integer nonlinear programming

problem, in which the intra-frame quality switch loss and per-

user per-tile QoS requirement were taken into consideration.

We proposed the Deep-GRAIL algorithm and RavNet, in

which imitation learning, actor-critic method, DDPG, and

DCO layers were employed to efficiently solve the formulated

problem. Simulation results based on a real-world dataset

showed that the DoF introduced by RS and IRS can be

efficiently exploited by the proposed Deep-GRAIL algorithm

to achieve a higher system sum-rate compared to that of

the IRS-aided RS-NOUM and IRS-aided MU systems. The

performance improvement of the proposed IRS-aided RS VR

system became more pronounced in the presence of more

shared video tile requests. Our simulation results also revealed

the respective contribution of RS and IRS to the performance

gain achieved with the proposed IRS-aided RS VR system.

Through a runtime comparison with existing AO algorithms,

we demonstrated the advantages of the proposed learning-

based Deep-GRAIL algorithm in terms of runtime reduction,

and its suitability for potential deployment in practical VR

streaming systems. For future work, we will extend the system

model and solution approach to consider the IRS-aided RS VR

streaming systems with imperfect CSI. It is also interesting

to take the subjective awareness of the users into account and

study the quality of experience improvement achieved by IRS-

aided RS VR streaming systems.

APPENDIX

We decompose problem (16) into three subproblems where

each of the subproblems can be solved by exploiting its hidden

convexity. For notational simplicity, we drop time index t
in this section. We define p = (pn,i, i ∈ I, n ∈ N),
c = (ci, i ∈ I), and v = (vn,i, i ∈ I, n ∈ N). While the

objective function in problem (16) only depends on bitrate

selection v, motivated by the inequality in (19), we use the

following function to take the effects of b, Ψ, c, p, and v on

the objective function into consideration:

r(b,Ψ, c,p,v)

=
∑

n∈N

WTDL

Tv

(∑

i∈In

pn,iR
p
n(b,Ψ) +

∑

i∈In

ciR
c(b,Ψ)

)

−
∑

n∈N

κintra ℓintra
n (v) (39)

For the beamforming subproblem, we optimize the beamform-

ing vectors for maximization of r(b) subject to the maximum

transmit power constraint C2 and the per-user per-tile QoS

constraint C8. We have

maximize
b

r(b)

subject to constraints C2 and C8.
(40)

Subproblem (40) can be solved using WMMSE [7] or FP

[24] by introducing auxiliary variables, and updating the

beamforming vectors and the auxiliary variables iteratively.

Both WMMSE and FP are guaranteed to converge to a

stationary solution of problem (40).

The IRS phase shift subproblem is given by

maximize
Ψ

r(Ψ)

subject to constraints C8 and C9.
(41)

For the IRS phase shift subproblem, we define vector λ =
(e−jψ1 , . . . , e−jψL , ρ) ∈ CL+1, where ρ ∈ C and |ρ|2 =
1. We further define matrix Λ = λλH ∈ C(L+1)×(L+1) to

replace the IRS phase shift constraint C9. This leads to the

following equality constraints:

C10: Diag(Λ) = IL+1, (42)

C11: rank(Λ) = 1, (43)

where IL+1 denotes the (L + 1) × (L + 1) identity matrix.

For user n ∈ N , we define the following matrix

Θn =

[
diag(hHR,n)G

hHD,n

]
∈ C

(L+1)×Nt. (44)

18

To solve subproblem (41) in a tractable manner, we rewrite

the SINR of the common message of user n in (6) as follows:

Γc
n =

Tr(ΛT
Θnb0b

H
0 Θ

H
n)∑

j∈N Tr(ΛT
Θnbjb

H
j Θ

H
n) + σ2

. (45)

The SINR of the private message of user n in (10) can be

rewritten as

Γp
n =

Tr(ΛT
Θnbnb

H
n Θ

H
n)∑

j∈N\{n} Tr(Λ
T
Θnbjb

H
j Θ

H
n) + σ2

. (46)

Similar to the beamforming subproblem, we use FP [24] to

tackle the multi-ratio fractional objective function in subprob-

lem (41). We apply quadratic transform [24] to the common

rate and the private rate of user n ∈ N as follows:

R̃c
n = log2

(
1 + 2yn

√
Tr(ΛT

Θnb0b
H
0 Θ

H
n)

− y2n
(∑

j∈N

Tr(ΛT
Θnbjb

H
j Θ

H
n) + σ2

))
,

(47)

and

R̃p
n = log2

(
1 + 2zn

√
Tr(ΛT

Θnbnb
H
n Θ

H
n)

− z2n
(∑

j∈N\{n}

Tr(ΛT
Θnbjb

H
j Θ

H
n) + σ2

))
,

(48)

where yn and zn are the auxiliary variables. This leads to the

following optimization problem

maximize
Λ,y, z, R̃c

fPS(Λ, R̃c,y, z)

,
∑

n∈N

WTDL

Tv

(
R̃p
n +

∑

i∈In

ciR̃
c
)

subject to R̃c ≥ 0 (49)

R̃c ≤ R̃c
n, n ∈ N

WTDL(pn,iR̃
p + ciR̃

c) ≥ Tv vn,i, i ∈ In, n ∈ N

constraints C10 and C11,

where y = (y1, . . . , yN) and z = (z1, . . . , zN). For user n ∈
N , the optimal yn and zn for fixed Λ are given by

y⋆n =

√
Tr(ΛT

Θnb0b
H
0 Θ

H
n)

∑
j∈N Tr(ΛT

Θnbjb
H
j Θ

H
n) + σ2

, n ∈ N , (50)

and

z⋆n =

√
Tr(ΛT

Θnbnb
H
n Θ

H
n)

∑
j∈N\{n} Tr(Λ

T
Θnbjb

H
j Θ

H
n) + σ2

, n ∈ N . (51)

For fixed yn and zn, n ∈ N , we use SDR [46] to tackle

constraint C11, and after relaxation the problem can be

solved using convex optimization. A suboptimal solution of

subproblem (49) can be obtained by iteratively optimizing

yn, zn, n ∈ N , and Λ [24]. The FP-based algorithm for

solving subproblem (49) is provided in Algorithm 3.

After Ψ and b have been determined, the RS parameters and

bitrate selection can be obtained using the same approach as

for solving problem (33). We omit the details here for brevity.

We solve the aforementioned three subproblems iteratively un-

til the objective function converges. Since a feasible solution is

required for the initialization of the AO algorithm, we propose

the following method for obtaining a feasible solution. We first

initialize the bitrate selection to the minimum value.

That is,

vn,i(t) =

{
v1, i ∈ In,

0, otherwise.
(52)

We initialize vector c by splitting the common rate equally

between the tiles in I. That is,

ci =

{
1
|I| , i ∈ I,

0, otherwise.
(53)

Similarly, we initialize pn,i as follows:

pn,i(t) =

{
1

|In|
, i ∈ In,

0, otherwise.
(54)

Then, we find a feasible beamforming solution by solving

the following problem:

maximize
b

r(b) +
∑

n∈N

∑

i∈In

ηmin{Rcci +Rp
npn,i − vn,i, 0}

subject to constraint C2, (55)

where η > 0 is the scaling factor of the penalty from violating

constraint C8. Similar to the beamforming subproblem in (40),

problem (55) becomes a convex optimization problem after

applying quadratic transform to Rc and Rp
n.

After solving problem (55), we solve the following opti-

mization problem to obtain a feasible IRS phase shift matrix:

maximize
Ψ

r(Ψ) +
∑

n∈N

∑

i∈In

ηmin{Rcci +Rp
npn,i − vn,i, 0}

subject to constraint C9. (56)

Problem (56) can be solved using FP and SDR. The proposed

iterative algorithm for obtaining an initial solution is shown

in Algorithm 4. We increase the value of η by multiplying it

with a scale factor β > 1 after each iteration to increase the

penalty for violating constraint C8. Typical values of β range

from 2 to 10. We solve problems (55) and (56) iteratively

until a feasible solution is found or the maximum number of

iterations is reached.

For the computational complexity analysis of the AO algo-

rithm, we assume that
∑

n∈N In and |I| increase linearly with

respect to the number of users N . For convex optimization, we

assume that the computational cost of evaluating the first and

second derivatives of the objective and constraint functions

are dominated by the remainder of the convex optimization

process [45, Section 1.3]. In each iteration of the FP-based

beamforming algorithm, a convex optimization problem with

Nt(N+1) optimization variables and
∑

n∈N In+1 constraints

is solved. Using the interior-point method, this incurs a

computational complexity of OBF = O(N3
t N

3) [45, Section

1.3]. Moreover, an SDR problem is solved in each iteration

of the IRS phase shift control algorithm. The worst case com-

plexity of solving such problem is OPS = O(L4.5 log(1/ǫ)),
where ǫ > 0 is a constant denoting the solution accuracy

19

Algorithm 3 Algorithm for Phase Shift Subproblem (49)

1: Initialize λ to a feasible value λ(0) and obtain Λ
(0).

2: Initialize the FP termination threshold εFP.
3: Initialize the iteration counter τ ← 0.
4: Initialize fPS(Λ(τ), (R̃c)(τ),y, z)← 0.
5: repeat
6: Determine the values of y⋆

n, z⋆n, n ∈ N based on (50) and
(51), respectively.

7: yn ← y⋆
n, zn ← z⋆n, n ∈ N .

8: Solve subproblem (49) for fixed y and z, and obtain the

optimal Λ(τ+1) and (R̃c)(τ+1).
9: τ ← τ + 1.

10: until |fPS(Λ(τ), (R̃c)(τ),y,z)−fPS(Λ(τ−1), (R̃c)(τ−1),y,z)|
≤ εFP.

11: Decompose Λ
(τ) to obtain the phase shift matrix Ψ

⋆.

Algorithm 4 Algorithm for Obtaining an Initial Solution

1: Initialize v based on (52).
2: Initialize c and p based on (53) and (54), respectively.
3: Initialize b(0) and Ψ

(0) based on random initialization.
4: Initialize η ← η0.
5: Initialize iteration counter τ ← 1.
6: for τ ≤ τmax do
7: Solve problem (55) and obtain solution b(τ).
8: Solve problem (56) and obtain solution Ψ

(τ).
9: if (b(τ),Ψ(τ)) is a feasible solution then

10: break.
11: end if
12: τ ← τ + 1.
13: η ← βη.
14: end for

[46]. The joint RS parameter optimization and bitrate se-

lection subproblem is a convex optimization problem with

2
∑
n∈N In + |I| variables and 3

∑
n∈N In + |I| + N + 2

constraints. Solving this subproblem incurs a computational

complexity of ORS = O
(
N3
)
.

Let CBF, CPS, and CAO denote the number of iterations

of the FP-based beamforming algorithm, the FP-based phase

shift control algorithm, and the overall AO-based algorithm,

respectively. The overall computational complexity of the AO

algorithm is

OAO = O
(
CAO(CBFN

3
t N

3 + CPSL
4.5 log(1/ǫ) +N3)

)

= O
(
CAO(CBFN

3
t N

3 + CPSL
4.5 log(1/ǫ))

)
. (57)

REFERENCES

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE

Network, vol. 34, no. 3, pp. 134–142, Jun. 2020.
[2] Fortune Business Insights, “Virtual reality

market size,” Jan. 2022. [Online]. Available:
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378

[3] GoPro, “Video settings and resolutions,” Feb. 2022. [Online]. Available:
https://community.gopro.com/s/article/MAX-Video-Settings-and-Resolutions

[4] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
pp. 78–84, Apr. 2018.

[5] B. Clerckx, Y. Mao, R. Schober, E. A. Jorswieck, D. J. Love, J. Yuan,
L. Hanzo, G. Y. Li, E. G. Larsson, and G. Caire, “Is NOMA efficient
in multi-antenna networks? A critical look at next generation multiple
access techniques,” IEEE Open J. Commun. Soc., vol. 2, pp. 1310–1343,
Jun. 2021.

[6] H. Joudeh and B. Clerckx, “Sum-rate maximization for linearly pre-
coded downlink multiuser MISO systems with partial CSIT: A rate-
splitting approach,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4847–
4861, Nov. 2016.

[7] Y. Mao, E. Piovano, and B. Clerckx, “Rate-splitting multiple access for
overloaded cellular Internet of things,” IEEE Trans. Commun., vol. 69,
no. 7, pp. 4504–4519, Jul. 2021.

[8] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans. Wire-

less Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
[9] NVIDIA, “CUDA release: 11.7,” Aug. 2022. [Online]. Available:

https://developer.nvidia.com/cuda-toolkit
[10] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell, “Bridging offline

reinforcement learning and imitation learning: A tale of pessimism,” in
Proc. of Conf. Neural Inf. Proc. Syst. (NeurIPS), Dec. 2021.

[11] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in Proc. of IEEE Int’l Conf. Robot. Autom. (ICRA), Brisbane,
Australia, May 2018.

[12] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter,
“Differentiable convex optimization layers,” in Proc. of Conf. Neural Inf.

Proc. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019.
[13] S. Knorr, C. Ozcinar, C. O. Fearghail, and A. Smolic, “Director’s cut: A

combined dataset for visual attention analysis in cinematic VR content,”
in Proc. of ACM SIGGRAPH European Conf. Visual Media Production,
London, United Kingdom, Dec. 2018.

[14] Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting for multi-antenna
non-orthogonal unicast and multicast transmission: Spectral and energy
efficiency analysis,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8754–
8770, Dec. 2019.

[15] G. Zhou, Y. Mao, and B. Clerckx, “Rate-splitting multiple access for
multi-antenna downlink communication systems: Spectral and energy
efficiency tradeoff,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp.
4816–4828, Jul. 2022.

[16] A. Bansal, K. Singh, B. Clerckx, C.-P. Li, and M.-S. Alouini, “Rate-
splitting multiple access for intelligent reflecting surface aided multi-
user communications,” IEEE Trans. Veh. Techno., vol. 70, no. 9, pp.
9217–9229, Sept. 2021.

[17] H. Joudeh and B. Clerckx, “Rate-splitting for max-min fair multigroup
multicast beamforming in overloaded systems,” IEEE Trans. Wireless
Commun., vol. 16, no. 11, pp. 7276–7289, Nov. 2017.

[18] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wireless Commun., vol. 18,
no. 8, pp. 4157–4170, Aug. 2019.

[19] X. Ma, S. Guo, H. Zhang, Y. Fang, and D. Yuan, “Joint beamforming
and reflecting design in reconfigurable intelligent surface-aided multi-
user communication systems,” IEEE Trans. Wireless Commun., vol. 20,
no. 5, pp. 3269–3283, May 2021.

[20] R. Huang and V. W. S. Wong, “Joint user scheduling, phase shift control,
and beamforming optimization in intelligent reflecting surface-aided
systems,” IEEE Trans. Wireless Commun., Early access, 2022.

[21] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski,
“Risk-based optimization of virtual reality over terahertz reconfigurable
intelligent surfaces,” in Proc. of IEEE Int’l Conf. Commun. (ICC),
Dublin, Ireland, Jun. 2020.

[22] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based mod-
eling and scalable optimization of large intelligent reflecting surfaces,”
IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr. 2021.

[23] K.-L. Besser and E. A. Jorswieck, “Reconfigurable intelligent surface
phase hopping for ultra-reliable communications,” IEEE Trans. Wireless

Commun., pp. 1–1, Early access, 2022.
[24] K. Shen and W. Yu, “Fractional programming for communication

systems − Part I: Power control and beamforming,” IEEE Trans. Signal

Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
[25] H. Fu, S. Feng, and D. W. K. Ng, “Resource allocation design for IRS-

aided downlink MU-MISO RSMA systems,” in Proc. of IEEE Int’l
Conf. Commun. (ICC) Workshop, Jun. 2021.

[26] S. Wang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning with
communication transformer for adaptive live streaming in wireless edge
networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 308–322,
Jan. 2022.

[27] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, and L. Sun, “Learning tai-
lored adaptive bitrate algorithms to heterogeneous network conditions:
A domain-specific priors and meta-reinforcement learning approach,”
IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp. 2485–2503, Aug. 2022.

https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://community.gopro.com/s/article/MAX-Video-Settings-and-Resolutions
https://developer.nvidia.com/cuda-toolkit

20

[28] Meta Quest, “Setting up your play area and guardian,” Dec. 2021.
[Online]. Available: https://support.oculus.com/guardian/

[29] Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflect-
ing surface assisted multiuser communications: Framework, algorithms,
and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607–
6620, Oct. 2020.

[30] L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and
M. Debbah, “Channel estimation for RIS-empowered multi-user MISO
wireless communications,” IEEE Trans. Commun., vol. 69, no. 6, pp.
4144–4157, Jun. 2021.

[31] X. Guan, Q. Wu, and R. Zhang, “Anchor-assisted channel estimation
for intelligent reflecting surface aided multiuser communication,” IEEE
Trans. Wireless Commun., vol. 21, no. 6, pp. 3764–3778, Jun. 2022.

[32] A. Nguyen, Z. Yan, and K. Nahrstedt, “Your attention is unique:
Detecting 360-degree video saliency in head-mounted display for head
movement prediction,” in Proc. of ACM Int’l Conf. Multimedia, Seoul,
Republic of Korea, Oct. 2018.

[33] M. Tang and V. W. S. Wong, “Online bitrate selection for viewport
adaptive 360-degree video streaming,” IEEE Trans. Mobile Comput.,
vol. 21, no. 7, pp. 2506–2517, Jul. 2022.

[34] S. Tavakoli, S. Egger, M. Seufert, R. Schatz, K. Brunnström, and
N. Garcı́a, “Perceptual quality of HTTP adaptive streaming strategies:
Cross-experimental analysis of multi-laboratory and crowdsourced sub-
jective studies,” IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2141–
2153, Aug. 2016.

[35] 3GPP TS 26.247 V17.1.0, “Technical specification group services
and system aspects; Transparent end-to-end packet-switched streaming
service (PSS); Progressive download and dynamic adaptive streaming
over HTTP (3GP-DASH) (Release 17),” Jun. 2022.

[36] DASH Industry Forum, “DASH-IF position paper:
Proposed QoE media metrics standardization for
segmented media playback,” Oct. 2016. [Online]. Available:
https://dashif.org/docs/ProposedMediaMetricsforSegmentedMediaDelivery-r12.pdf

[37] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A survey on quality of experience of http adaptive streaming,” IEEE

Commun. Surveys & Tuts., vol. 17, no. 1, pp. 469–492, First Quarter
2015.

[38] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experi-
ence replay,” in Proc. of Conf. Neural Inf. Proc. Syst. (NeurIPS), Long
Beach, CA, Dec. 2017.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proc. of Int’l Conf. Learning Representations, (ICLR), San
Juan, Puerto Rico, May 2016.

[40] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” in Proc. of Int’l Conf. Machine

Learning (ICML), Stockholm, Sweden, Jul. 2018.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of Int’l Conf. Learning Representations, (ICLR), San Diego,
CA, May 2015.

[42] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. of Int’l Conf. Machine Learning (ICML), Stockholm,
Sweden, Jul. 2018.

[43] L. Pan, Q. Cai, and L. Huang, “Softmax deep double deterministic
policy gradients,” in Proc. of Conf. Neural Inf. Proc. Syst. (NeurIPS),
Dec. 2020.

[44] L. Meng, R. Gorbet, and D. Kulić, “The effect of multi-step methods on
overestimation in deep reinforcement learning,” in Proc. of Int’l Conf.
Pattern Recognition (ICPR), Milan, Italy, Jan. 2021.

[45] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[46] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[47] Steam, “Valve Index base station,” Jun. 2022. [Online]. Available:
https://store.steampowered.com/app/1059570/Valve Index Base Station/

[48] VIVE, “VIVE wireless adapter,” Apr. 2022. [Online]. Available:
https://www.vive.com/ca/accessory/wireless-adapter/

[49] FFmpeg, https://ffmpeg.org/, Jun. 2022.

[50] S. Ju, Y. Xing, O. Kanhere, and T. S. Rappaport, “Millimeter wave
and sub-terahertz spatial statistical channel model for an indoor office
building,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1561–1575,
Jun. 2021.

[51] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework
of robust transmission design for IRS-aided MISO communications with
imperfect cascaded channels,” IEEE Trans. Signal Process., vol. 68, pp.
5092–5106, Aug. 2020.

[52] J. Zhang, M. Kountouris, J. G. Andrews, and R. W. Heath, “Multi-mode
transmission for the MIMO broadcast channel with imperfect channel
state information,” IEEE Trans. Commun., vol. 59, no. 3, pp. 803–814,
Mar. 2011.

https://support.oculus.com/guardian/
https://dashif.org/docs/ProposedMediaMetricsforSegmentedMediaDelivery-r12.pdf
https://store.steampowered.com/app/1059570/Valve_Index_Base_Station/
https://www.vive.com/ca/accessory/wireless-adapter/
https://ffmpeg.org/

	I Introduction
	II Related Work
	II-A Rate Splitting
	II-B IRS-aided Wireless Systems
	II-C DRL for Multimedia Streaming in Wireless Systems

	III IRS-aided RS VR Streaming System and Problem Formulation
	III-A Video Tile Request of the Users
	III-B Bitrate Selection, QoS, and User's Utility Model
	III-C RS-based Downlink VR Tile Transmission
	III-D Per-User Per-Tile QoS Requirement
	III-E Problem Formulation

	IV Deep-GRAIL: Deep Deterministic Policy Gradient with Imitation Learning Algorithm
	IV-A Markov Decision Process (MDP) Formulation
	IV-B Actor-Critic Method with q-Step Return
	IV-C Policy Improvement using Imitation Learning and Demonstration Replay
	IV-D Training Algorithm
	IV-E Online Execution Algorithm

	V RavNet: Proposed Deep Neural Network for IRS-aided RS VR Streaming Systems
	V-A Input Pre-processing
	V-A1 Construction of bold0mu mumu SSSSSS(1)()
	V-A2 Construction of bold0mu mumu SSSSSS(2)()

	V-B Actor Network Structure
	V-B1 Convolutional Neural Network (CNN) Module
	V-B2 Multilayer Perceptron (MLP) Module
	V-B3 DCO Layers

	V-C Critic Network Structure
	V-D Computational Complexity
	V-D1 Imitation learning and demonstration replay
	V-D2 Actor-Critic Method and DDPG for Policy Learning

	VI Performance Evaluation
	VI-A Convergence of the Deep-GRAIL Algorithm
	VI-B Achievable System Sum-Rate
	VI-C Bitrate Allocation per User
	VI-D Runtime Comparison
	VI-E Ablation Experiment
	VI-F Impact of Imperfect Channel Estimation

	VII Conclusion
	Appendix
	References

