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Trade Reliability for Security: Leakage-Failure

Probability Minimization for Machine-Type

Communications in URLLC
Yao Zhu, Xiaopeng Yuan, Yulin Hu∗, Rafael F. Schaefer, Anke Schmeink

Abstract—How to provide information security while fulfilling
ultra reliability and low-latency requirements is one of the
major concerns for enabling the next generation of ultra-reliable
and low-latency communications service (xURLLC), specially
in machine-type communications. In this work, we investigate
the reliability-security tradeoff via defining the leakage-failure
probability, which is a metric that jointly characterizes both
reliability and security performances for short-packet trans-
missions. We discover that the system performance can be
enhanced by counter-intuitively allocating fewer resources for
the transmission with finite blocklength (FBL) codes. In order
to solve the corresponding optimization problem for the joint
resource allocation, we propose an optimization framework, that
leverages lower-bounded approximations for the decoding error
probability in the FBL regime. We characterize the convexity
of the reformulated problem and establish an efficient iterative
searching method, the convergence of which is guaranteed. To
show the extendability of the framework, we further discuss the
blocklength allocation schemes with practical requirements of
reliable-secure performance, as well as the transmissions with
the statistical channel state information (CSI). Numerical results
verify the accuracy of the proposed approach and demonstrate
the reliability-security tradeoff under various setups.

Index Terms—finite blocklength regime, physical layer security,
machine-type communications, URLLC

I. INTRODUCTION

Future wireless networks are expected to support ultra-

reliable and low-latency communications (URLLC), which

is a key enabler for many newly emerged applications,

e.g., vehicle-to-vehicle/infrastructure communications, aug-

mented/virtual reality, and factory automation [1], [2]. One of

the common features of those applications is latency-sensitive

and mission-critical. In view of this, the transmissions with

URLLC are carried out via finite blocklength (FBL) codes,
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which are also often referred to as short-packet communica-

tions [3], [4]. As a key departure from the assumption of

the infinite blocklength, the transmission error can no longer

be negligible even if the transmission rate is lower than

the channel capacity in FBL regime. Therefore, the impact

of FBL codes on reliability should be carefully considered

for the design framework in URLLC, which requires a fun-

damentally different approach from that in current wireless

communication systems [4]. To tackle this issue, the authors

in [5] derived bounds on the maximal achievable transmission

rate in the FBL regime, based on which abounding works

have been done to provide the FBL designs, e.g., considering

cooperative relay networks [6], non-orthogonal multiple access

(NOMA) schemes [7], wireless power transfer [8] and green

communications [9].

On the other hand, the broadcast nature of wireless medium

makes information security another crucial issue in future

wireless communication system design [10]. This concern

becomes more critical when we shift the focus from human-

centric communications to machine-type communications. For

example, in the Internet-of-Thing (IoT), instead of being

external listeners, the eavesdroppers may be other internal IoT

devices that wiretap confidential information [11], [12]. To

address this problem, significant efforts have been devoted to

enhance security performance. In particular, compared with

conventional upper-layer encryption, physical layer security

(PLS) has become a promising solution for machine-type

communications with massive devices due to its low com-

plexity in the implementation and flexibility in the system

design [13]. In fact, PLS for non-URLLC networks has already

been extensively investigated in various scenarios [14], e.g., in

UAV-assisted networks [15], in cognitive radio networks [16],

and in visible light communications [17].

Recently, PLS in the context of URLLC for machine-type

communications has also received significant attention. In

particular, as a more general expression of widely adopted

Wyner’s secrecy capacity, authors in [18] derived a tight

bound for achievable secrecy transmission rate in FBL regime,

which takes the influence of both finite blocklength codes

and information leakage into account. Adopting this bound,

various performance metrics are proposed. For example, the

authors in [19] employ the artificial noise technique to achieve

both covertness and security. The secrecy transmission rate

is applied directly as the metric to be maximized and an

analytical approach to obtain the global optimum and an

efficient approach to obtain the sub-optimum are proposed.

http://arxiv.org/abs/2303.03880v2
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In [20], the average achievable secrecy throughput based on

the error probability with a given information leakage is

proposed as a secure metric, which is minimized in both

single-antenna and multiple-antenna IoT scenarios. This metric

is adopted and extended to UAV-assisted networks in [21],

where the UAV’s trajectory and transmit power are optimized.

On the other hand, authors in [22] derive the expression of

secrecy throughput in full-duplex multiuser system with the

consideration of self-interference and co-channel interference.

Moreover, the authors in [23] analyze the outage probability

for secure transmission in the FBL regime, based on which the

optimization framework is provided, aiming at maximizing the

effective throughput.

However, the interplay between reliability and security

may be overlooked in the aforementioned works, especially

for machine-type communications in the next generation of

URLLC (xURLLC), since both reliability and security are

the key performance indicator for xURLLC. In particular,

the transmission reliability from transmitter to both legitimate

receiver and eavesdropper with FBL codes depends on the

allocated resources of the transmission, e.g., blocklength or

transmit power. If we reduce the allocated resources on

purpose, it implies the drop of the reliability for legitimate

receiver, but the probability of information leakage, i.e., eaves-

droppers correctly decoding the secrecy information, also

drops. In other words, as long as it hurts the eavesdropper (i.e.,

more secure) more than it hurts the legitimate receiver (i.e.,

less reliable), the overall reliable-secure performance can be

improved. Therefore, we may trade reliability for security via

counter-intuitively allocating fewer resources. This security-

reliability tradeoff in FBL regime is initially discussed in [18]

for deriving the achievable secrecy transmission rate. However,

to the best of our knowledge, it has not been addressed

via a probabilistic metric to represent the reliable-secure

performance with an emphasis on machine-type communica-

tions. In particular, unlike human-centric communications, the

transmission with a fixed amount of information only occurs

sporadically in machine-type communications. Therefore, the

average secrecy rate [19] is not suitable to characterize the

system performance in those scenarios. On the other hand,

the outage probability with fixed transmission error probabil-

ity [23] and the effective throughput with fixed information

leakage probability [20] may not fully reflect the dynamic

between reliability and security in FBL regime.

Motivated by above observations, in this work, we introduce

a novel metric, leakage-failure probability (LFP), which indi-

cates the possibility that the information fails to be decoded

by the legitimate receiver or is successfully decoded by the

eavesdropper. Aiming at minimizing LFP, we formulate an

optimization problem to address the fundamental tradeoff be-

tween reliability and security in the classic three-node scenario,

where Eve is overhearing the communication between Alice

and Bob. Due to its non-convexity, we provide an optimization

framework inspired by majorization-minimization [24] and

successive convex approximation [25] algorithms to solve the

problem. In particular, our contributions can be summarized

as follows:

• To reveal the overall system performance with the

reliability-security tradeoff, we introduce the leakage-

failure probability and characterize its expression for

each transmission. The relationship between our proposed

metric and other well-known metrics is also analyzed.

• The tradeoff between reliability and security is analyti-

cally presented. To address this tradeoff, we formulate

a general optimization problem to minimize the leakage-

failure probability by jointly allocating the blocklength

and transmit power.

• An optimization framework is proposed to solve the

formulated problem via decoupling the multiplication

of FBL error probability and finding its lower-bounded

approximations. To tackle the non-convexity issue, we

provide a novel approximation for the FBL error prob-

ability and its characterization of convexity, which is

a more general result compared to our previous work

in [26, Theorem. 1]. Then, We propose an iterative

search algorithm with successive approximations to solve

the reformulated problem. Moreover, the convergence of

the algorithm and the tightness of the approximation is

ensured analytically. Then, We propose an iterative search

algorithm with successive approximations to solve the

reformulated problem. Moreover, the convergence of the

algorithm is ensured analytically.

• To show the extensibility of our optimization frame-

work, we further discuss the low-complexity solutions for

blocklength allocation scheme with requirements of high

reliable-secure thresholds, as well as under the statistical

channel state information (CSI).

• Via numerical simulations, we validate our analytical

findings and evaluate the performance of the proposed ap-

proach, which is able to achieve nearly optimal solutions.

To provide further insight for the resource allocation, we

also demonstrate the influences of channel gain, number

of Eve, as well as the packet size. Especially, we observe

the reliability-security tradeoff and its potential applica-

tions under various setups that may provide guidance in

the system design for PLS in machine-type communica-

tions.

The remaining part of this paper is organized as follows.

In Section II, we discuss the system model and characterize

the metric. Then, in Section III, we provide the optimization

framework, aiming at minimizing the leakage-failure probabil-

ity. Next, we investigate the extendability in Section IV. The

proposed designs are evaluated in Section V, while Section VI

concludes the whole work.

II. SYSTEM MODEL AND LEAKAGE-FAILURE

PROBABILITY

A. System Model

Consider the typical transmission system with three nodes,

where Alice transmits confidential information to a legitimate

receiver (Bob) while the eavesdropper (Eve) attempting to

overhear the legitimate user messages from Alice. However,

unlike the human-centric scenarios, we consider scenarios with

machine-type communications, in which the transmission only
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occurs sporadically with limited, but important information. In

particular, in each communication round (upon the information

arrival), the transmission of Alice is carried out with a fixed

packet size of d [bits] via finite blocklength codes with

the blocklength of m [chn.use], where the transmission rate

r = d
m

is upper-bounded by d [bits/chn.use]. Without loss of

generality, we assume the channels between Alice and Bob or

Eve experience quasi-static Rayleigh fading, i.e., the channels

are constant within the duration of each transmission and vary

in the next. Therefore, the channel coefficients from Alice to

Bob and Eve, respectively, are denoted as hb =
√
ξbĥb and

he =
√
ξeĥe, where

√
ξb and

√
ξe indicate the large-scale path

loss. Moreover, ĥb ∼ N (0, 1) and ĥe ∼ N (0, 1) represent the

small-scale fading, which are assumed to be independent and

identically distributed. We assume that the devices are with a

single antenna and the perfect CSI of both Bob and Eve is

available at Alice*. Then, the received signals at Bob and Eve

with a given transmit power of p are given by:

yb =
√
phbs+ ab, (1)

ye =
√
phes+ ae, (2)

where s is the transmit signal, ab ∼ CN (0, σ2
b ) and ae ∼

CN (0, σ2
e) are the additive white Gaussian noises at Bob and

Eve, respectively. Accordingly, the SNRs can be expressed as:

γb =
p|hb|2
σ2
b

, (3)

γe =
p|he|2
σ2
e

. (4)

B. Characterization of Leakage-Failure Probability (LFP)

Since only a limited amount of data is transmitted in

each communication round, the conventional metrics, such as

secrecy transmission rate or secrecy outage probability, may

not fully reveal the performance of PLS in the considered

scenario. The main reason is that those metrics focus on the

performance characterization for the transmissions, which are

carried out continuously with multiple packets. In view of this,

we introduce a novel metric, leakage-failure probability (LFP),

εLF , to represent the reliable-secure performance for a single

transmission. It indicates the probability of the event Y that

the transmitted packet is either successfully decoded by Eve

(i.e., leakage occurs) or incorrectly decoded by Bob (i.e., the

legitimate transmission fails). Let Xb and Xe denote the event

of correct decoding by Bob and Eve, respectively. We have

εLF = P(Y = 1) = P(Xb = 0 ∪ Xe = 1). The details for

all possible combinations of the events are listed in Table. I.

Recall that the transmission is carried out with blocklength m.

Due to the FBL impact, the transmission can be erroneous even

if the coding rate is lower than Shannon’s capacity for both

Bob and Eve. In [5], a tight bound of the maximal achievable

*Our system model can also be extended to the cases that Alice equips
multiple antennas, where the proposed framework is still available. Later on,
we will also discuss the cases that Eve equips multiple antennas and the
perfect CSI of Eve is not available.

transmission rate is derived with a given target decoding error

probability ε̄ in AWGN channels:

r∗ ≈ C(γ)−
√

V (γ)

m
Q−1(ε̄), (5)

where C(γ) = log2(1 + γ) is the Shannon’s capacity and

V (γ) is the channel dispersion [27]. In the complex AWGN

channel, V (γ) = 1 − (1 + γ)−2. Moreover, Q−1(x) is

the inverse Q-function with Q-function defined as Q(x) =
∫∞
x

1√
2π

e−
t2

2 dt. Additionally, for any given data size d, ac-

cording to (5), the (block) error probability for a single

transmission is given by:

ε=P(γ, d
m
,m)≈Q

(√
m

V (γ)(C(γ)−r) ln 2
)

, (6)

where r = d
m

is the transmission rate. Accordingly, the error

probability of decoding the packet at Bob and Eve is expressed

as εb = P(Xb = 0) = Q
(√

m
V (γb)

(C(γb)− d
m
) ln 2

)

and

εe = P(Xe = 0) = Q
(√

m
V (γe)

(C(γe)− d
m
) ln 2

)

, respec-

tively. Therefore, the LFP is given by:

εLF (εe, εb) = 1− P(Y = 1) = P(Xb = 0 ∪Xe = 1)

= 1− (1 − εb)εe = εbεe + (1− εe).
(7)

The above equality chain holds since Xb and Xe are two

independent events.

C. Relationship between Leakage-failure Probability and

Other Metrics

In fact, there are various metrics have been proposed to char-

acterize the reliable-secure performance for PLS. In particular,

some of the most common metrics are as follows:

• Secrecy capacity: Cs = Cb − Ce [28], the conventional

metric based on the assumption that blocklength is infi-

nite. It is inaccurate in the FBL regime.

• Maximal achievable secrecy rate: r∗s = Cs −√
V (γb)
m

Q−1(ε̄b)−
√

V (γe)
m

Q−1(δ̄) [18], the upper-bound

of the achievable secrecy rate with a given error probabil-

ity of Bob ε̄b and a given information leakage probability

δ̄ = 1 − ε̄e, where ε̄e is the given error probability

of Eve in the classic three-node scenario). However, it

may not fully represent the security of information in

machine-type communications, in which there is only one

transmission and the packet size is fixed.

• Outage Probability: Pout = P(r∗s ≤ r
m
|ε̄b, ε̄e) [23], the

probability that transmissions with the rate of r∗s violates

either a given reliable constraint εb ≥ ε̄b or a given secure

constraint εe ≤ ε̄e. It characterizes the performance with

fixed constraints, and therefore can not reveal the tradeoff

between reliability and security.

• error probability with a given leakage constraint: εs =

Q
(√

m
V (γb)

(Cs−
√

V (γe)
m

Q−1(1− ε̄e)− d
m
ln 2)

)
[20], the

decoding error probability of Bob with a given threshold

ε̄e for the error probability of Eve. This metric may be

inaccurate to characterize the secure-reliable performance

jointly, since the threshold is given and fixed so that the

leakage is not influenced by the blocklength.
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Xe = 0 Xe = 1
Xb = 1 secure and reliable insecure but reliable

Xb = 0 secure but unreliable insecure and unreliable

TABLE I: The definition for all possible outcomes of event combinations with Xb and Xe. Red indicates non-preferred

outcomes, the possibility of which is considered as the proposed metric, leakage-failure probability εLF .

Compared with those existing metrics, our proposed LFP takes

the FBL impact into account while jointly characterizes the

system performance for both reliability and security. Moreover,

it focuses on the single transmission. Therefore, LFP is suit-

able to represent the feature of machine-type communications,

in which the transmission occurs sporadically.

Note that the transmitted packet size d is fixed. The LFP can

also be interpreted as the possibility that the transmission just

achieves a secrecy transmission rate of r∗s = d
m

. In particular,

for any combination of εe and εb that achieves εLF , it holds

that

r∗s (εb, εe|εLF )

=r∗b (εb)− r∗e(εe)

=C(γb)−
√

V (γb)

m
Q−1(εb)− C(γe) +

√

V (γe)

m
Q−1(εe)

=C(γb)− C(γe)−
√

V (γb)

m
Q−1(εb)−

√

V (γe)

m
Q−1(1− εe)

=Cs −
√

V (γb)

m
Q−1(εb)−

√

V (γe)

m
Q−1(δ).

(8)

Interestingly, (8) coincides with the metric, secrecy trans-

mission rate, in [18, Eq. (106)]. In other words, although

the direct transformation between them seems intractable,

LFP εLF and the secrecy transmission rate r∗s is implicitly

correlated. To more intuitively distinguish those metrics from

each other, we discuss the following example:

Example: Suppose that the channel between Alice and Bob

is extremely good with C(γb) → ∞ while the channel between

Alice and Eve is limited so that C(γe) = (µ+1), where 1
m

≤
µ ≤ 1. In each communication round, there is only a packet

with data size of d = 1 bit needed to be transmitted and

there are sufficiently long blocklength available, i.e., m → ∞.

Therefore, we can deduce the error probability at Bob and Eve

based on (6), i.e., εb = εe = 0. Clearly, the security capacity

is infinity with Cs = C(γb) − C(γe) = ∞. Also, we have an

infinity secrecy transmission rate, i.e., r∗s = C(γb) − C(γe) −√
V (γb)
m

Q−1(εb)−
√

V (γe)
m

Q−1(δ) = ∞. Then, it results in an

outage probability of zero, i.e., Pout = P(r∗s ≤ d
m
|εb, εe) = 0.

According to the outage probability, the transmission is secure.

The similar conclusion can be drawn for the error probability

with a given leakage constraint δ > 0 , i.e., εs = Q(∞) = 0.

On the contrary, LFP can be written as εLF = 1 − (1 − 0) ·
0 = 1, which indicates an extremely insecure transmission. In

fact, in such cases, despite of Bob successfully decoding the

information, it is also obtained by Eve. In other words, the

transmission is not secure at all.

On one hand, this example points out the key difference in

physical layer security between human-centric and machine-

type communications: In human-centric communications, the

performance of outage probability indicates the performance

of security; however, in machine-type communications, the

security of information can no longer be fully presented by

the quantity of maximal achievable transmission rate, since

the amount of transmitted packet size is fixed.

On the other hand, we can trade reliability for security, since

reliability and security have opposite correlations with respect

to the resources, e.g., transmit power p or blocklength m. In

particular, this can be analytically observed with the following

lemma.

Lemma 1. εb is monotonically decreasing and δ is monoton-

ically increasing in blocklength m and transmit power p.

Proof. See Appendix A. �

It implies that security can be improved via counter-

intuitively allocating fewer resources, even if there are suf-

ficiently more resources available. This is due to the fact that

fewer resources do decrease the reliability at Bob, but also

decrease the reliability at Eve, i.e., enhancing the security. As

long as the decrement for Bob is less than the decrement for

Eve, the reliable-secure performance is improved. Therefore,

the resource allocation needs to be carefully studied to strike

a balance between reliability and security that improves the

overall secure-reliable performance.

D. Problem Formulation

In view of this, it motivates us to propose the new met-

ric, leakage-failure probability εLF , and investigate the opti-

mization framework to characterize the fundamental tradeoff

between reliability and security accordingly. In particular,

we aim at maximizing the secure reliability by optimally

allocating the blocklength m and transmit power p. With

an emphasis on addressing the reliability-security tradeoff,

we consider a minimal setup with unbounded m and p, as

well as unconstrained requirements for reliability and security†.

Therefore, the optimization problem can be written as:

minimize
m, p

εLF (9a)

subject to p ≥ 0, (9b)

m ∈ N+. (9c)

Clearly, Problem (9) is an integer non-convex optimization

problem, which can be solved with an exhaustive search.

However, this may be impractical for real-world applications

due to the high computational complexity. Therefore, in the

subsequent section, we will propose an efficient optimization

framework to solve the optimization problem.

†In a later section, we also investigate the optimization problem in a more
practical scenario, where the resource is upper-bounded and the individual
requirements for reliability and security are constrained.
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Fig. 1: An example of the optimization framework for a general
function f(x).

III. OPTIMIZATION FRAMEWORK

In order to solve Problem (9), we propose an optimization

framework in this section. The general sketch of such a

framework is as follows: Consider an optimization problem,

in which we aim at minimizing a general function f(x) in its

feasible set x ∈ X (but not necessarily convex). In the k-th

round of iteration, we construct a lower-bounded approxima-

tion f (k)(x) ≥ f(x), which is convex in x. The equality holds

at the local point x(k), i.e., f (k)(x(k)) = f(x(k)). We find the

minimum of f (k) with x(k+1) = arg minf (k)(k), which is the

local point for the next iteration. Then, we construct another

lower-bounded and convex approximation f (k+1)(x) ≥ f(x)
at the (k + 1)-th round of iterations, where it holds that

f (k+1)(x(k+1)) = f(x(k+1)). This process repeats until the

result converges. The convergence is ensured by the inequality

chains:

f(x(k)) = f (k)(x(k)) ≥ f (k)(x(k+1)) ≥ f(x(k+1))

= f (k+1)(x(k+1)) ≥ f (k+1)(x(k+2)) ≥ . . .
(10)

An illustration of the optimization framework as shown in

Fig. 1.

A. Bounded FBL Error Probability

Since εLF involves a multiplication of εbεe, which prevents

further convexity analysis, we provide the following lemma to

decouple it:

Lemma 2. For any functions fi(x) > 0, ∀i ∈ {1, . . . , N},

their product
∏N

i=1 fi(x) can be upper-bounded with respect

to constants f̂i, ∀i ∈ {1, . . . , N}, i.e.,

N∏

i=1

fi(x) ≤
1

∏N
i=1 F̂i

(∑N
i=1 F̂ifi(x)

N

)N

, (11)

where F̂i =
f̂1

f̂i
, ∀i ∈ {1, . . . , N}.

Proof. First, we introduce F̂i = f̂1

f̂i
to regroup the product,

i.e.,

N∏

i=1

fi(x) =

∏N
i=1 F̂i

∏N
i=1 F̂i

N∏

i=1

fi(x) =
1

∏N
i=1 F̂i

N∏

i=1

F̂ifi(x),

(12)

where it holds F̂ifi(x) ≥ 0. Then, we can construct the

inequality of arithmetic and geometric means for F̂ifi(x):

N

√
√
√
√

N∏

i=1

F̂ifi(x) ≤
∑N

i=1 F̂ifi(x)

N

⇐⇒
N∏

i=1

F̂ifi(x) ≤
(∑N

i=1 F̂ifi(x)

N

)N

⇐⇒ 1
∏N

i=1 F̂i

N∏

i=1

F̂ifi(x) ≤
1

∏N
i=1 F̂i

(∑N
i=1 F̂ifi(x)

N

)N

⇐⇒
N∏

i=1

fi(x) ≤
1

∏N
i=1 F̂i

(∑N
i=1 F̂ifi(x)

N

)N

,

(13)

which completes the proof. �

Remark: Note that equality holds if fi(x) = f̂i, i.e.,

F̂ifi(x) = F̂jfj(x), ∀i 6= j. This lemma can be intuitively

interpreted as follows: For any product of functions with non-

negative terms, we can approximate it as the summation of

the same terms with a given local point, where the accuracy

is guaranteed at this point.

According to Lemma 2, with a given resource allocation

(m̂, p̂), we have

εLF (m, p) ≤ εe(m̂, p̂)

4εb(m̂, p̂)

(

εb(m, p) +
εb(m̂, p̂)

εe(m̂, p̂)
εe(m, p)

)2

+ (1− εe(m, p)). (14)

However, such an approximation is still not sufficient to

reformulate Problem (9) into a convex one, since both εe
and εb are non-convex and non-concave. To tackle this, we

further aim at reconstructing the Q-function Q(ω), where

ω(m, p) =
√

m
V (γ)(C(γ)− d

m
) ln 2 is the auxiliary function.

In particular, we define ωe =
√

m
V (γe(p))

(C(γe(p))− d
m
) ln 2

and ωb =
√

m
V (γb(p))

(C(γb(p))− d
m
) ln 2 for Bob and Eve,

respectively. Then, we can establish the following lemma:

Lemma 3. For a given ω̂ ∈ R, the Q-function Q(ω) =
∫∞
ω

1√
2π

e−
ω2

2 dω is bounded by

1− b(−ω̂)e−a(−ω̂)ω − c(−ω̂) ≤ Q(ω) ≤ b(ω̂)e−a(ω̂)ω + c(ω̂),
(15)

where

a(ω̂) = max{ e−
(ω̂)2

2√
2πQ(ω̂)

, ω̂} > 0, (16)

b(ω̂) =
1√
2πâ

eâω̂− (ω̂)2

2 > 0, (17)

c(ω̂) = Q(ω̂)− b̂e−âω̂. (18)

Specially, the equality holds for ω = ω̂.

Proof. See Appendix B. �

Note that the decoding error probability of any single

transmission in FBL ε(m, p) is a composition of functions
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Q(ω) and ω(m, p), i.e., ε(m, p) = Q(ω(m, p)). For example,

we have εb = Q(ωb(m, p)) and εe = Q(ωe(m, p)). Therefore,

suppose that there is a pre-defined resource allocation with

local point (m̂, p̂), we can derive the following approximation

for εLF according to Lemma 2 and Lemma 3 along with the

approximations of εb and εe:

εLF (m, p)

.
εe(m̂, p̂)

4εb(m̂, p̂)

(

ε̂b(m, p) +
εb(m̂, p̂)

εe(m̂, p̂)
ε̂e(m, p)

)2

+ δ̂(m, p)

,ε̂LF (m, p|m̂, p̂),
(19)

where

ε̂b = b(ω̂)e−a(ω̂)ωb + c(ω̂), (20)

ε̂e = b(ω̂)e−a(ω̂)ωe + c(ω̂), (21)

δ̂ = b(−ω̂)ea(−ω̂)ωe + c(−ω̂). (22)

According to (19), we have ε = ε̂(m0, p0|m̂, p̂), if (m0, p0) =
(m̂, p̂) and ε < ε̂(m0, p0|m̂, p̂), if (m0, p0) 6= (m̂, p̂). In other

words, this approximation is lower-bounded and it is tight at

the local point (m̂, p̂).

B. Problem Reformulation and Convexity Characterization

According to Lemma 2 and Lemma 3, Problem (9) with

given local point (m̂, p̂) can be reformulated as:

minimize
m, p

ε̂LF (m, p|m̂, p̂) (23a)

subject to p ≥ 0, (23b)

m ≥ 0, (23c)

ε̂e ≤ 1, ε̂b ≤ 1, (23d)

where additional constraints (23d) ensure the approximation

is feasible, since the error probability can not exceed 1.

Moreover, the blocklength m is relaxed from m ∈ N+ into

m ≥ 0. Then, we provide the following lemma to characterize

the convexity:

Lemma 4. ω(m, p) =
√

m
V (γ(p)) (C(γ(p))− d

m
) ln 2 is jointly

concave in blocklength m and transmit power p if the follow-

ing condition holds:

r ≥ −∆b +
√

∆2
b − 4∆a∆c

2∆a

, (24)

where

∆a =
8 + 9t

4t2
, (25)

∆b =
t(6t+ 8)− (3t+ 8)C(γ) ln 2

4t2 ln 2
, (26)

∆c =
tC ln 2(4− 3 ln 2) + t2(C ln 2− 1)− 4C2(ln 2)2

4t2(ln 2)2
,

(27)

with t = γ2 + 2γ.

Proof. See Appendix C. �

Remark 2: Although similar analytical results are already

shown in [26], Lemma 4 provides a more general character-

ization of the joint convexity, where the condition of γ ≥ 1
in [26] is no longer necessary. This significantly improves the

applicability in machine-type communications with URLLC, in

which the SNR of the transmission may not always be good

enough due to the dynamic nature of the wireless environments.

Moreover, despite the intuitive expression, the condition (24)

actually presents a relationship between transmission rate and

SNR for the validity of concavity. In other words, for a given

SNR, a convex feasible range of transmission rate can be

found. Numerically, the condition is fulfilled if r ≥ 0.023
[bit/chn.use]. In fact, the accuracy of (6) requires the trans-

mission rate to be sufficiently high [29]. In the remainder of

this paper, we assume that the condition in (24) is implicitly

fulfilled for most practical FBL applications in the region of

interest.

According to Lemma 4, the convexity of Problem (23)

can be straightforwardly characterized via the composition

rule [30] as follow:

Corollary 1. Problem (23) is convex.

Proof. The objective function ε̂LF is a sum of exponential

functions with respect to ωb and ωe with a ≥ 0. There-

fore, according to (20), (21) and (22), ε̂LF (ωb, ωe) is con-

vex and decreasing in ωb(m, p) and ωe(m, p) while both

of them are jointly concave in variables m and p, i.e.,

ε̂LF (ωb(m, p), ωe(m, p)) is jointly convex in m and p. Ob-

viously, all constraints are either affine or convex. As a result,

Problem (23) is convex. �

Therefore, Problem (23) can be efficiently solved with

standard convex optimization tools. Recall that ε̂LF is a lower-

bounded approximation of the actual objective function εLF ,

with which the accuracy is only guaranteed at ω = ω̂. Solving

Problem (23) once is not sufficient to provide the solutions for

the original Problem (9).

C. Iterative Searching with Successive Approximations

In view of this, we propose an iterative searching method,

with which the objective function is approximated successively

in each iteration. In particular, we first initialize the pair

(m(0), p(0)) = (minit, pinit) for the 1-st iteration, where

minit > 0 and pinit > 0. Note that those initial pair must also

be feasible for Problem (23). Otherwise, the convergence rate

may be impacted. Then, in the k-th iteration, we construct

Problem (23) at the k-th local point (m̂, p̂) = (m(k), p(k)),
with which the corresponding approximated LFP is defined as

ε̂
(k)
LF (m, p) = ε̂LF (m, p|m(k), p(k)). According to Lemma 4,

it can be solved optimally. We denote the solutions as

(m
(k)
opt , p

(k)
opt ) and put it into (7) to obtain the result in the k-th

iteration, i.e., ε
(k)
LF (m

(k)
opt , p

(k)
opt ). Next, we assign (m

(k)
opt , p

(k)
opt ) as

the local point of the next iteration, i.e., (m(k+1), p(k+1)) =

(m
(k)
opt , p

(k)
opt ). This process will be repeated until the gap

between two iterations is smaller than a threshold µth with

|ε(k)LF (m
(k)
opt , p

(k)
opt ) − ε

(k+1)
LF (m

(k+1)
opt , p

(k+1)
opt )| ≤ µth. Then, we

obtain the relaxed solution (m∗
R, p∗) = (m

(k)
opt ,m

(p)
opt ). Finally,
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Algorithm 1 Algorithm to solve Problem (9)

1: Initialize a feasible pair (m(0), p(0)) and k = 1.

2: Construct ε(k) according to (20), (21) and (22).

3: Solve (23) according to Lemma 4 and get (m
(k)
opt ,m

(k)
opt ).

4: if |ε(k)LF (m
(k)
opt , p

(k)
opt )−ε

(k+1)
LF (m

(k+1)
opt , p

(k+1)
opt )| ≤ µth then

5: (m∗
R, p∗) = (m

(k)
opt ,m

(k)
opt )

6: else

7: (m(k+1), p(k+1)) = (m
(k)
opt , p

(k)
opt ) and r = r + 1.

8: Back to Step 2.

9: end if

10: Obtain the integer solution via m∗ =
arg max

m∈{⌊m∗

R
⌋,⌈m∗

R
⌉}
εLF (m, p∗)

we reconstruct the solutions by comparing the integer neigh-

bors of the blocklength m∗ = arg max
m∈{⌊m∗

R
⌋,⌈m∗

R
⌉}
εLF (m, p∗),

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respec-

tively. It should be emphasized that the stop criterion is based

on the actual LFP instead of its approximation. Moreover,

the convergence of the iteration is ensured with the following

inequality chains:

εLF (m
(k), p(k)) = ε̂

(k)
LF (m

(k), p(k)) ≥ ε̂
(k)
LF (m

(k)
opt , p

(k)
opt )

≥εLF (m
(k+1), p(k+1)) = ε̂

(k+1)
LF (m(k+1), p(k+1))

≥ε̂
(k+1)
LF (m

(k+1)
opt , p

(k+1)
opt ) ≥ . . .

(28)

In other words, the objective can be reduced over iterations

until it eventually converges to a sub-optimal solution. Recall

that the approximation of εLF is tight at the local point.

Therefore, since our proposed algorithm always converges, the

tightness of the approximation is also guaranteed at the sup-

optimal solution. The gap between the obtained solution and

the globally optimal solution is also investigated in Section V.

Moreover, the pseudo-code of the above algorithm is given in

Algorithm 1. Since Algorithm 1 solves a convex optimization

problem in each iteration, the complexity can be represented

as O(θ(L)4), where θ is the iteration number and L is the

number of variables.

D. Special Cases: Multiple Eves

In machine-type communications, it is unlikely that Alice

transmits information only to one destination. Instead, there

may exist multiple devices, where one of the devices is the

legitimate user (Bob) while the rest of them are potential

eavesdroppers (Eves). In particular, consider a multi-node

scenario, where N Eves are available with the channel gain

he,n, ∀n ∈ {1, . . . , N}. we investigate two types of Eve, i.e.,

passive Eves and super Eves.

Passive Eves: during the transmission between Alice and

Bob, there are also other receivers close to Bob, which receive

the broadcast signal at the same. They are not necessarily

malicious, but still able to overhear the confidential message,

i.e., as passive eavesdroppers [31]. Due to the impact of finite

blocklength codes, each of the passive Eve n has a possibility

to incorrectly decode the packet, the event of which Xe,n is

independent to the events of others. Let εe,n denote its error

probability, the LFP with passive Eves can be rewritten as:

εLF,P = 1− P(Xb = 1

N⋃

n=1

Xe,n = 1) = 1− (1− εb)

N∏

n=1

εe,n

= εb

N∏

n=1

εe,n + (1−
N∏

n=1

εe,n),

(29)

where εe,n = Q
(√

m
V (γe,n) (C(γe,n)− d

m
) ln 2

)

with γe,n =

p|he,n|2
σ2
e

according to (6). Due to the negative multiplication of

error probability of each Eve, i.e., 1 −∏N
n=1 εe,n, Lemma 2

does not hold for LFP with passive Eves, which prevents the

direct application of the aforementioned optimization frame-

work. In particular, Lemma 2 requires each function fi(x) to

be non-negative. To tackle this issue, we reformulate it with

the following manipulations:

1−
N∏

n=1

εe,n =1+ (1 − εe,1)

N∏

n=2

εe,n −
N∏

n=2

εe,n

=1+ (1 − εe,1)

N∏

n=2

εe,n

+ (1− εe,2)

N∏

n=3

εe,n −
N∏

n=2

εe,n

...

=

N∑

n=1

(1 − εe,n)

N+1∏

i=n+1

εe,i.

(30)

In particular, to ease the notation, we define εe,N+1 = 1.

Clearly, all the terms in (30) is non-negative, since it always

holds that 0 ≤ εe,n ≤ 1, ∀n ∈ {1, . . . , N+1}. Then, according

to Lemma 2 and Lemma 3, we can establish the following

approximation:

εLF,P . ε̂b

N∑

n=1

ε̂e,n +
N∑

n=1

δ̂n

N+1∑

i=n+1

ε̂e,i, (31)

where ε̂e,n = b(ω̂)e−a(ω̂)ωe,n + c(ω̂), and δ̂n =
b(−ω̂)ea(−ω̂)ωe,n + c(−ω̂), ∀n. Then, we follow the method-

ology in Section III-C to solve the optimization problem with

passive Eves by replacing (14) with (31) in the optimization

problem. To avoid repetition, we omit the details.

Super Eve: However, if some of those receivers are mali-

cious, e.g., as internal attackers, they may collude with each

others. Consider a worst case, where each Eve is able to

share their received signal perfectly so that maximum-ratio

combining (MRC) can be applied [19], [32]. Then, all N
collusive Eves with channel gain of ze,n can be considered as a

combined super Eve with channel gain ze,super =
∑N

n=1 ze,n.

Therefore, the optimization framework in Section III can

be directly applied. However, it should be emphasized that,

despite the simplicity of the analytical model, super Eve is

significantly difficult to be dealt with compared with passive
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Eve, which will be observed and discussed in Section V.

IV. BLOCKLENGTH ALLOCATION WITH

RELIABLE-SECURE REQUIREMENTS

In Section II and III, we study a minimal setup in the

optimization problem to reveal the fundamental insight for

the reliability-security tradeoff. For example, unconstrained

reliability and security for the transmission, as well as the

assumption of the perfect CSI. Moreover, in the practical

URLLC system, power control may not be an option for Alice

due to the simple circuit while the blocklength allocation being

in our interest. Therefore, in this section, we focus on the

blocklength allocation with reliable-secure requirements, while

the impact of different CSI on the system is discussed.

A. Problem Reformulation and the Optimal Solution

Consider a similar scenario as in Section III, where Alice

transmits the message to Bob and Eve is the eavesdropper.

We still aim at minimizing the LFP εLF by allocating the

blocklength m. Moreover, we also consider that the transmis-

sion has specific requirements on the reliability and security,

so that 1) the transmission rate is larger than the Shannon’s

capacity of Eve so that the information leakage probability is

sufficiently low in URLLC, i.e., δ ≤ δmax ≤ 0.5, where δmax

is the tolerance of leakage; 2) and the transmission rate is less

than the Shannon’s capacity of Bob so that the reliability is

sufficiently high in URLLC, i.e., εb ≤ εb,max ≤ 0.5, where

εe,min is a given threshold of the error probability. Then, the

optimization problem (9) can be rewritten as:

minimize
m

εLF (32a)

subject to δ ≤ δmax, (32b)

εb ≤ εb,max, (32c)

m ∈ N+. (32d)

Although the proposed optimization framework in the previous

section can also be applied to solve Problem (32), in this

section, we provide an approach with lower complexity for

this special case. In particular, we also relax blocklength

to real value, i.e., m ∈ N+ → m ∈ R+. Then, instead

of approximating εLF , we directly establish the following

corollary based on Lemma 4:

Lemma 5. With the relaxation of blocklength m ∈ R+,

Problem (32) is convex.

Proof. First, we characterize the convexity/concavity of εb and

εe. Note that εb ≤ εb,max indicates Cb ≥ d/m = r. According

to (57) and the composition rule of convexity, εb is convex in

m, which can be shown as

∂2εb
∂m2

=
∂2εb
∂ω2

b
︸ ︷︷ ︸

≥0

(
∂ωb

∂m

)2

+
∂εb
∂ωb
︸︷︷︸

≤0

∂2ωb

∂m2
︸ ︷︷ ︸

≤0

≥ 0. (33)

It coincides with the results in [26]. Moreover, we can deduce

that constraint (32c) is also convex. On the other hand, εb ≤
εb,max implies Cb ≤ d/m = r. Therefore, the composition rule

can not be applied for εe. In particular, its second derivative

is given by

∂2εe
∂m2

=
∂2εe
∂ω2

e

(
∂ωe

∂m

)2

+
∂εe
∂ωe

∂2ωe

∂m2

=
1

4
√
Vem3

(
(Ce + r)2ωe + (Ce + 3r)

)

Ve≤1

≤ 1

4
√
Vem3




(Ce + r)2

√
m (Ce − r)
︸ ︷︷ ︸

≤0

+(Ce + 3r)






=
1

4
√
Vem3

−r3 − Cer2 +
(

3

m5
+ C2

e

)

+
Ce√
m

+ C3
e

︸ ︷︷ ︸

g(r)

,

(34)

where Ce = C(γe) and Ve = V (γe) = 1− (1+γe)
−2 ≤ 1. We

show that h(r) is a monotonically decreasing function with

respect to r ≥ 0 via its derivative:

∂h(r)

∂r
=

(
3√
m5

+ C2
e

)

− 2Cer − 3r2, (35)

which is a second polynomial function that opens down-

ward and has no real root, since it holds that (2Ce)2 − 4 ·
3
(

3√
m5

+ C2
e

)

≤ 0. Recall that 0 ≤ Ce ≤ r. In other words,

if r = 0, it must also hold that Ce = 0. Then, we have

h(r) ≤ h(0) ≤ 0. It implies that

∂2εe
∂m2

=
1

4
√
Vem3

h(r) ≤ 0, (36)

which means that εe is concave in m and constraint (32b) is

convex. Accordingly, we can conclude the objective function,

εLF , is convex in m by showing

∂2εLF

∂m2
=

∂2εb
∂m2
︸ ︷︷ ︸

≥0

εe +
∂εb
∂m
︸︷︷︸

≤0

∂εe
∂m
︸︷︷︸

≤0

+(εb − 1)
︸ ︷︷ ︸

≤0

∂2εe
∂m2
︸ ︷︷ ︸

≤0

≥0.

(37)

As a result, the objective function and all constraints are

convex, i.e., Problem (32) is convex. �

According to Lemma 5, we can solve Problem (32) effi-

ciently with standard convex optimization tools. Compared

with Algorithm 1, the convex problem only needs to be solved

once with neither approximation nor iteration. Moreover, the

obtained solutions are guaranteed to be the global optimum.

However, we should emphasize that Lemma 5 is only valid

with blocklength allocation under a reliable-secure require-

ments, which is less general than the problem considered in

Section III.

Moreover, it is also worth to mention that those analytical

results can be applied for other objective functions. For exam-

ple, we can also maximize the secrecy effective throughput,

which is defined as τLF = d
m
(1 − εLF )

‡. Then, we have the

‡It should be emphasized that the secrecy effective throughput is different
from the one in [23], which is based on the outage probability, also different
from the one in [20], which is based on a fixed leakage probability.
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following modified problem:

maximize
m

τLF (38a)

subject to (32b), (32c) and (32d).

We have the following Corollary to characterize it:

Corollary 2. Problem (38) is quasi-concave.

Proof. We have proven that εLF is a convex function in

Lemma 5. Moreover, it is clear that 1/m is positive and convex.

It means that τLF = d1−εLF

m
, which can be considered as a

concave function divided by a positive and convex function,

is quasi-concave [30]. �

Therefore, it exists a unique locally optimal solution in

Problem (38), which is the same as the globally optimal

solution. It implies that Problem (38) can be solved efficiently,

e.g., via a greedy search. The similar conclusion can be

drawn for the cases with multiple transmissions. For total

T transmission, the effective secrecy throughput is given by

τ = 1
T

∑T
t=1

d(t)
m

(1 − ε(t)), where d(t) is the packet size

at t-th transmission, ∀t ∈ {1, . . . , T }. In other words, τLF

can be approximated with the sum of lower-bounded concave

functions τ̂LF , since every transmission is independent to each

other.

B. Discussions with statistical CSI of Eve

In the previous sections, we assume that the perfect CSI

of Eve is known. However, in practice, we may only know

the statistical CSI instead. In particular, let ze = |he|2
denote the channel gain of Eve and fZ(ze) the corresponding

probability density function (PDF), the (expected) leakage-

failure probability Ez [εLF ] with the statistical CSI can be

rewritten as:

Ez [εLF ] =

∫ ∞

0

εLF (m, p|ze)fZ(ze)dze. (39)

Similarly, the error probability of Eve is given by Ez [εe] =∫∞
0 εe(m, p|ze)fZ(ze)dze. 2.4-3The integral form does not

influence the validity of the optimization framework of Prob-

lem (9) in Section III, since the convexity of the approximated

LFP ε̂LF introduced in (19) does not depend on ze. Then,

Ez [ε̂LF ] can be considered as a continuous sum of convex

functions, and therefore we can still approximate Ez[εLF ] with

Ez [ε̂LF ] for any given constants (m̂, p̂) without influencing

the convexity. However, the validity of Lemma 5 has to be

revisited, since the convexity/concavity of εe only holds in

a certain feasible range of ze. This is due to the fact that

Q-function in (6) Q(ω) is a function that is first convex

and then concave depending on ω. To tackle this issue, we

follow the methodology of our previous work [26] to establish

the convexity of Ez[εLF ] with the statistical CSI with the

following corollary:

Corollary 3. The convexity of Ez [εLF ] with respect to block-

length m is valid with statistical CSI of Eve.

Proof. The second derivative of Ez [εLF ] is given by

∂2
Ez[εLF ]

∂m2
=

∂2εb
∂m2
︸ ︷︷ ︸

≥0

Ez [εe] +
∂εb
∂m
︸︷︷︸

≤0

∂Ez[εe]

∂m
︸ ︷︷ ︸

≤0

+(εb − 1)
︸ ︷︷ ︸

≤0

∂2
Ez [εe]

∂m2

(40)

It is trivial to show that Ez[εe] is monotonically decreasing in

m, i.e.,
∂Ez[εe]
∂m

≤ 0, since εe is decreasing in m regardless of

ze. Therefore, we focus on determining whether Ez[εe] is still

concave in m. In particular, let z̄e denote the average channel

gain of Eve and z̄th is a threshold, with which the transmission

rate is just higher than the instantaneous Shannon’s capacity.

Recall that there is a constraint so that Ez [εe] ≥ εe,min ≥ 0.5.

It must hold that z̄e ≤ z̄th. Otherwise, the constraint cannot be

fulfilled. Therefore, we have

∂2
E[εe]

∂m2
=

∫ z̄e

0

∂2ε

∂x2
fZ(ze)dze

︸ ︷︷ ︸

≤0

+

∫ z̄th

z̄e

∂2ε

∂x2
fZ(ze)dze

︸ ︷︷ ︸

≤0

+

∫ ∞

z̄th

∂2εe
∂x2

fZ(ze)dz

︸ ︷︷ ︸

≥0

.

(41)

Moreover, since z̄e is the average channel gain, the cumulative

distribution function (CDF) can be broken down as follows
∫ z̄th

0

fZ(ze)dze ≥
∫ z̄e

0

fZ(ze)dze =

∫ ∞

z̄e

fZ(ze)dze =
1

2

≥
∫ ∞

z̄th

fZ(ze)dze.

(42)

Therefore, we have
∣
∣
∣
∣

∫ z̄th

0

∂2εe
∂m2

dze

∣
∣
∣
∣
≥
∣
∣
∣
∣

∫ ∞

z̄th

∂2εe
∂m2

dze

∣
∣
∣
∣

⇐⇒
∣
∣
∣
∣

∫ z̄th

0

∂2εe
∂m2

fZ(ze)dze

∣
∣
∣
∣
≥
∣
∣
∣
∣

∫ ∞

z̄th

∂2εe
∂m2

fZ(ze)dze

∣
∣
∣
∣
,

(43)

which implies that
∂2

E[εe]
∂m2 ≤ 0. Therefore, E[εe] is indeed

concave in m, i.e., E[εLF ] is convex in m. �

According to Corollary 3, Problem (32) with statistical CSI

of Eve is convex. Note that the validity of Corollary 3 does

not depend on the distribution of ze, i.e., fZ(ze) as long as

the average of ze is lower than the threshold z̄e. Therefore,

Corollary 3 can also be applied for the cases where Eve

equips multiple antennas. In this case, only the distribution of

ze will changes and it follows gamma distribution [23]. The

same conclusion can be drawn with imperfect CSI. Moreover,

although we focus on the performance of single transmission

in this work, Corollary 3 actually implies that we can extend

the system model to multiple transmissions with fixed packet

size d. In particular, denote t = {1, . . . , T } is the index of total

T transmissions. Then, we have Et[εLF ] = Ez [εLF ], since the

time-sharing condition is satisfied [33], [34]. Therefore, we

can conclude that all our previous analytical results still hold

regardless of the CSI or the number of transmissions.
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Fig. 2: LFP εLF versus blocklength m and transmit power p. For the
sake of clarity, the points where εLF ≥ 0.5 are omitted. The mark
indicates the minimum of εLF . Moreover, the z-axis is reversed.

V. SIMULATION RESULTS

In this section, we validate the analytical results and in-

vestigate the system performance in the considered scenarios

via numerical simulations. Unless specifically mentioned oth-

erwise, we have the following setups for the simulation: We

consider a normalized scenario, where we set the channel

gain of Bob to zb = |hb|2 = 1.5 and the channel gain

of Eve to ze = |he|2 = 1. The noise power level is set

as σ2
e = σ2

b = 0.1. The transmitted packet size d is 320
bits. Moreover, the available blocklength and transmit power

is set to be sufficiently large with 3000 channel uses and

10W, respectively. The results of the integer programming for

solving Problem (9) is shown as a benchmark, which provides

globally optimal solutions.

First, we illustrate the relationship between the LFP and its

variables in Fig. 2. In particular, we plot the values of the

LFP εLF in a logarithmic scale in a reversed manner with

the corresponding transmit power p and blocklength m. For

the sake of clarity, we omit the points where εLF ≥ 0.5. In

fact, according to (7), if εLF ≥ 0.5, it implies that either

the decoding error probability of Bob εb ≥ 0.5 or the error

probability of Eve εe ≤ 0.5, i.e., the transmission is either

unreliable or insecure. As expected, εLF is non-convex. It

means that the standard convex method is insufficient to solve

the optimization problem which involves εLF . This motivates

us to investigate a more efficient optimization framework. On

the other hand, with the practical leakage and error probability

thresholds (corresponding to Problem (32)), εLF is indeed

partially convex in blocklength m. This phenomenon confirms

our analytical findings in Lemma 5. However, it should be

pointed out that it cannot be directly extended to the joint

optimization of m and p. This is due to the fact that the feasible

set that fulfills εb ≤ εb,max and εe ≤ εe,min, which are the

reliable-secure requirements we discussed in Section IV-A, is

actually non-convex. Therefore, it is important to investigate

the efficiency of our proposed optimization framework, as well

as the performance gap compared with the optimal solutions,

which is marked as red in Fig. 3.

In Fig. 3, we show the LFP obtained in each k-th iteration.

To demonstrate the performance of the convergence for the

Fig. 3: Obtained actual LFP ε
(k)
LF and approximated ε̂

(k)
LF according

to Algorithm 1 versus iteration k under variant SNR of Bob zb =
{1.5, 1.8}. Moreover, the globally optimal results ε∗int obtained via
integer programming are also shown as a benchmark.

Fig. 4: Minimized LFP ε∗LF versus channel gain of Bob zb under
variant channel gains of Eve ze. Both cases with perfect CSI and
imperfect CSI are presented. The lines indicate solutions obtained
via our proposed Algorithm 1 while the markers represent solutions
obtained via integer programming. Moreover, the performance of
LFP with fixed leakage threshold δ ≤ 0.001 is also shown as the
benchmark.

proposed optimization framework, we plot both approximated

LFP ε̂
(k)
LF obtained via solving the convex problem (23) and

actual LFP ε
(k)
LF based on (7). Moreover, we also show the

optimal values ε∗int, which is obtained via integer program-

ming as the benchmark. We can observe that ε̂
(k)
LF in the initial

rounds are far away from the actual optimum, since it has to

guarantee to be the lower-bound of the actual LFP. However,

our proposed optimization framework converges quickly at

a sub-linear rate. Moreover, the tightness is ensured at the

converged point while ε
(k)
LF achieves the globally optimal result

ε∗int. It should be mentioned that the convergence and the

optimality are not influenced by the setups. For example, by

varying the channel gain of Bob zb from 1.5 to 1.8, despite of

the different values of LFP, both iterations converge at almost

at the same round and achieve a (nearly) optimal solution.

Next, we further validate the performance of our proposed

approach under different setups. In Fig. 4, we plot the min-

imized LFP ε∗LF the channel gain of Bob zb under variant
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Fig. 5: Minimized LFP ε∗LF versus data size d while the optimal
solutions of blocklength m∗ and optimal transmit power p∗ also being
depicted.

channel gain of Eve, where the performance under both perfect

CSI and statistical CSI is depicted, where the number of

channel realizations is set as 5000. Furthermore, the minimized

LFP obtained via integer programming (labeled as int. prog.),

as well as via fixing the leakage threshold δ ≤ 0.001 (labeled

as fixed leak.) is also shown as the performance benchmark.

It should be pointed out that minimizing LFP with fixing

the leakage threshold is equivalent to minimizing the error

probability of Bob. Therefore, compared with Algorithm 1, the

optimization problem can be more efficiently solved according

to Lemma 4. However, its performance gap to the optimal

results is also significant. Obviously, with the increase of zb,
ε∗LF decreases. This is not only due to the fact that larger

gap between zb and ze results in higher secrecy capacity

Cs = C(zb) − C(ze), but also thanks to the more significant

tradeoff between reliability and security. In other words, via

reducing each resource allocated to the transmission, we can

increase εe more, i.e., more improved security, with a little

drop of εb, i.e., less loss of reliability. This observation im-

plies that we should carefully allocate the available resources

accordingly. More importantly, regardless of the CSI setups,

similar to the results in the previous figure, the performance

of our proposed algorithm is close to the performance of the

integer programming. Those results also confirm the analytical

findings in Section IV-B, i.e., both optimization framework

and the partial convexity of LFP are valid regardless of the

channel knowledge. Therefore, for the sake of clarity, we only

show the results obtained with our algorithm in the rest of the

figures.

According to (6), both εe and εb are also significantly

influenced by the packet size of the transmission d in a similar

trend. In Fig. 5, we show the impact of d on the system

performance by plotting the minimized LFP versus data size d.

In order to gain more insight for resource allocation schemes,

we also plot the blocklength m and transmit power p when

it achieves the minimized LFP. Interestingly, the figure shows

that increasing data size d actually improves the reliable-secure

performance of the system. Despite that the behavior seems to

be counter-intuitive, it actually fits the concept of trading reli-

Fig. 6: Maximized effective throughput τ∗

LF versus Channel gain of
Bob zb with variant maximal transmit power Pmax = {1, 2} W, as
well as data size d = {480, 320, 160} bits.

ability for security we emphasized in this work. In particular,

under the condition that the channel gain of Bob is better than

channel gain of Eve, i.e., zb ≥ ze, the negative influence on the

decoding error probability can be compensated by allocating

more radio resource, if it is available, as shown in the bottom

sub-figure of Fig. 5. However, such compensation is less

significant for Eve, since its channel gain is worse. Therefore, a

larger d requires more compensation, which then causes larger

performance gap between Bob and Eve in terms of decoding

error probability. As a result, minimized εLF decreases if we

increase d. It should be pointed out that this phenomenon

should be considered as a numerical observation instead of

providing guidance for actual resource allocation schemes.

First, the packet size in machine-type communications is given,

since the amount of information is fixed. One potential solution

could be combing with other technologies in the cost of the

cost of implementation complexity, e.g., with advanced coding

schemes or retransmission schemes to increase the redundancy.

Moreover, in practical system, the available resources are

limited. To achieve the optimal solutions, a larger packet size

requires more resources, which could be infeasible.

Next, we move on to investigate the system performance

where we take effective throughput τLF as the metric. In

Fig. 6, we plot the maximized effective throughput τ∗LF versus

channel gain of Bob zb. To demonstrate the different influences

of available resources to τ∗LF compared with that to LFP

ε∗LF , we also vary the maximal available transmit power

Pmax = {1, 2} W and packet size d = {480, 320, 160} bits.

Similar to the LFP performance, increase zb also improve τ∗LF .

However, the improvement becomes less significant when zb is

sufficiently good. This is due to the fact that further improving

zb with the high reliable-secure performance contributes little

on the increment of τ∗LF = d/m(1 − εLF ), since it is

dominated by d/m when (1−εLF ) approaches to 1. Therefore,

the system prefers to choose higher transmit power p with less

blocklength m, in order to increase τLF . This can be confirmed

by comparing τ∗LF with Pmax = 1 W and Pmax = 2 W. It also

implies that the system is also less sensitive to the changes of

packet size d when zb is good enough compared with ze. Under

such conditions, it can always trade reliability for security, i.e.,

with less loss on Bob side for the high loss on Eve side.
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Fig. 7: Minimized LFP ε∗LF versus the number of Eve in the network
N with variant data size d = {160, 320} [bit], as well as the channel
gain of Bob zb = {1.5, 2}. Both passive Eve and super Eve types
are considered.

In Fig. 7, we demonstrate the influence of different types of

Eve to the system by plotting the minimized LFP ε∗LF versus

the number of Eve in the network N in various setups of d =
{160, 320} bits and zb = {1.5, 2}. Specially, we set ze,1 =
... = ze,N = 1. Although a rise in N causes to an increase

in ε∗LF for both types of Eve, its impacts of them on the

system performance are significantly different. On one hand,

for passive Eve, we can trade the loss of Bob for the loss

of each Eve, where the influences of the loss for those Eves

are multiplicative with
∏N

n=1 εe,n. Therefore, N plays a less

significant role when ε∗e,n approaches 1. In other words, the

system performance with passive Eve is dominated by those

Eves with the better channel gains while the negative effect

of N can be compromised by giving up a small amount of

reliability performance. Therefore, the tolerated N is subjected

to the Eve with the best channel gain. On the other hand, for

super Eve, each new Eve in the system introduces a higher

channel gain of super Eve in an additive manner. This can

not be addressed by the reliability-security tradeoff, since the

loss of super Eve could be even less than the loss of Bob

with higher N . In fact, the tolerated N highly depends on the

actual gap between the channel gain of Bob zb and the sum

of channel gain of Eves
∑N

n=1 ze,n.

In order to investigate the system performance for super

Eve, we consider a general scenario with two Eves, where

the channel gain of one Eve is fixed as ze,1 = 1 while the

channel gain of the second Eve ze,2 is varied. Fig. 8 shows

the minimized LFP ε∗LF under such a scenario with different

setups of packet size d = {160, 320, 640} bits and channel

gain of Bob zb = {1.5, 2}. As expected, the rise of ze,2 leads to

a significant performance drop, i.e., higher ε∗LF , regardless of

setups. Similar to Fig. 5, we can observe that the transmission

generally benefits from a larger d in the cost of more allocated

resources. This advantage becomes more notable when zb
is elevated. However, this conclusion is drawn based on the

condition that zb is sufficiently good so that zb ≥
∑N

n=1 ze,n.

If such a condition is not fulfilled, the advantage turns into

a disadvantage, with which the reliability-security tradeoff is

no longer in favor of Bob (as shown in the zoom-in sub-

figure of Fig. 8). In those cases, increase d implies the loss of

Fig. 8: Minimized LFP εLF with two super Eve versus channel gain
of second Eve ze,2 while the channel gain of first Eve ze,1=1 is fixed.
Moreover, we vary the channel gain of Bob zb = {1.5, 2}, as well
as the packet size d = {160, 320, 640} bits.

reliable-secure performance. Therefore, the robustness of the

system against the super Eve is lower-bounded by zb, which is

generally difficult to be improved for the broadcasting channel

in machine-type communications. This observation also shows

the importance of other signal enhancement technologies, e.g.,

beam-forming technologies or non-orthogonal multiple access

schemes.

VI. CONCLUSION

In this work, we investigated the approach to enhance the

reliable-secure performance for machine-type communications

via the resource allocation scheme in finite blocklength regime.

To more accurately characterize the concept of trading relia-

bility for security, we defined the leakage-failure probability,

as the metric that jointly considering the information leakage

probability and decoding error probability. We showed the

relationship between such a metric and conventional secrecy

transmission rate. Interestingly, we revealed that the reliable-

secure performance can be enhanced by counter-intuitively

allocating fewer resources for the short-packet transmission.

In view of this, we formulated the optimization problem and

provided an optimization framework accordingly. In particu-

lar, we proposed lower-bounded approximations for decoding

error probability with FBL codes. Then, we established the

joint convexity of those approximations in blocklength and

transmit power, which can also be applied for the original error

probability expression. Based on those analytical findings, we

proposed an iterative search algorithm that can obtain solutions

for the optimization problem, which are later shown that being

able to achieve the nearly optimal solutions. With an em-

phasis on the extendability, we further discussed applications

of our proposed optimization framework for other practical

scenarios, including networks with multiple eavesdroppers

and blocklength allocation with assumptions of high reliable-

secure threshold. Via numerical simulations, we validate the

performance of our proposed approaches and demonstrated the

tradeoff between reliability and security while showing the in-

fluence of channel gain, data size and number of eavesdroppers

to the system.
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Finally, we are motivated to highlight the generality of

the concept trading reliability for security, as well as the

proposed leakage-failure probability. Although we discussed

this concept with the classic three-node setup, it is still

available for other setups including multiple antennas, multiple

access, as well as multi-functional networks. By adopting the

corresponding setup combing with other practical constraints,

e.g., resource budget, individual requirement of reliability or

security, the leakage-failure probability can also be applied to

characterize the reliable-secure performance.

APPENDIX A

PROOF OF LEMMA 1

Proof. Define an auxiliary function ω, where ω(m, p) =√
m

V (γ)(C(γ)− d
m
) ln 2. It is trivial to show that Q(ω) =

∫∞
ω

1√
2π

e−
t2

2 dt is monotonically decreasing in ω, i.e., ∂ε
∂ω

≤ 0.

Then, the monotonicity with respect to m is straightforward,

which can be shown via derivative test, i.e.,

∂ε

∂m
=

∂ε

∂ω

ln 2

2
m− 1

2 V − 1
2 (C +m−1d) ≤ 0, (44)

On the other hand, the partial derivative of ε with respect to

p is given by

∂ε

∂p
=
∂ε

∂ω

∂ω

∂γ

∂γ

∂p

= |h|2 m
1
2V − 1

2

σ2 (γ2 + 2γ) (γ + 1)
︸ ︷︷ ︸

≥0

(
γ2 + 2γ − ln(γ + 1)

)

︸ ︷︷ ︸

∆1

+m− 1
2V − 3

2 d ln 2
1

(1 + γ)3
︸ ︷︷ ︸

≥0

,

(45)

where ∆1(γ) = γ2 + 2γ − ln(γ + 1) is an auxiliary function

with respect to γ. According to (45), if ∆1 is non-negative, it

holds that ∂w
∂γ

≥ 0. This can be proven by showing that ∆1 is

monotonically increasing in γ > 0 with ∂∆1

∂γ
= 2γ+2− 1

γ+1 ≥
0, i.e.,

∆1(γ) ≥ ∆1(0) = 0. (46)

Therefore, ε is also monotonically decreasing in p. Immedi-

ately, we have that the monotonicity of δ = 1− ε is reversed,

i.e., increasing in m and p. �

APPENDIX B

PROOF OF LEMMA 3

Proof. We first define the functions g(ω) and h(ω):

g(ω) = Q(ω)− b(ω̂)e−a(ω̂)ω) − c(ω̂), (47)

h(ω) = Q(ω)− 1 + b(−ω̂)e−a(−ω̂)ω) + c(−ω̂). (48)

Recall that ω̂ is a constant and ω(m,P ) =
√

m
V (γ)(C(γ)− d

m
) ln 2 is an auxiliary function with respect

to blocklength m and transmit power p. Therefore, Lemma 3

can be proven by showing that g(ω) ≤ 0 and h(ω) ≤ 0 hold

for arbitrary m and p, i..e, an arbitrary ω. In particular, the

derivative of g(ω) with respect to ω is given by

∂g

∂ω
= − 1√

2π
e−

ω2

2 + abe−aω

=
1√
2π

(

eaω̂−
ω̂2

2 −aω − e−
ω2

2

)

.
(49)

It is trivial to show that exponential function ex is a monoton-

ically increasing function with respect to x. Therefore, since
∂g
∂ω

is the sum of two exponential functions, it holds that

sign(
∂g

∂ω
) = sign(gsgn(ω)), (50)

where gsgn(ω) =
ω2

2 − aω+(aω̂− ω̂2

2 ) and sign(·) is the sign

function with

sign(x) =







1, if x > 0,

0, if x = 0,

−1, if x < 0.

(51)

Since gsgn(ω) is a quadratic polynomial function with respect

to ω and a(ω) ≥ 0, there exists two roots, which can be written

as ω1 = ω̂ and ω2 = 2(a− ω̂) so that ω2−ω1 = 2a− 2ω̂ ≥ 0
according to (16). Therefore, the two roots are always real and

sign(
∂g

∂ω
) =sign(gsgn(ω))

{

< 0, if ω ∈ (ω1, ω2),

≥ 0, if ω ∈ (−∞, ω1] ∪ [ω2,∞).

(52)

In other words, g(ω) is increasing in ω ∈ (−∞, ω1], decreas-

ing in ω ∈ (ω1, ω2), and then increasing again in ω ∈ [ω2,∞),
i.e., the maximum of g(ω) at ω = ω1 = ω̂ or ω → ∞. Clearly,

we have g(ω̂) = 0. Moreover, according to (16) and (18), it

holds that

lim
ω→∞

g(ω) =Q(∞)− be−a·∞ − c

=1− 1
1√

2πa(ω̂)
−Q(ω̂) < 0.

(53)

As a result, we can deduce that

g(ω) ≤ max{g(ω̂), lim
ω→∞

g(ω)} ≤ 0, ∀ω ∈ R. (54)

Similarly, we can prove that h(ω) ≤
max{h(−ω̂), limω→−∞ h(ω)} ≤ 0, ∀ω ∈ R with

Q(x) = 1 − Q(−x) and by replacing ω̂ with −ω̂. The

rest of the proof follows the above methodology. To avoid

repetition, we omit the details. �

APPENDIX C

PROOF OF LEMMA 4

Proof. Note that the SNR γ = p|h|2
σ2 is linear in the transmit

power p. Therefore, the concavity/convexity of ω with respect

to γ is equivalent to the concavity/convexity with respect to

p. To ease the notation, in the following, we investigate the

joint concavity of ω with respect to m and γ. In particular,

according to Sylvester’s criterion [30], ω can be proven as

concave, if the first leading principal minor of the Hessian

matrix H, which is the second derivative ∂2ω
∂m2 , is non-negative
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and the determinate of Hessian matrix detH is also non-

negative, where

H =

(
∂2ω
∂m2

∂2ω
∂m∂γ

∂2ω
∂γ∂m

∂2w
∂γ2

)

(55)

and

det(H) =
∂2w

∂m2

∂2ω

∂γ2
−
(

∂2ω

∂m∂γ

)2

. (56)

Subsequently, we investigate each component in matrix H. On

the one hand, for the partial derivative of w with respect to

m, we have

∂w

∂m
=

ln 2

2
m− 1

2V − 1
2 (C +m−1d) ≥ 0,

∂2w

∂m2
= − ln 2

4
m− 3

2V − 1
2 (C + 3m−1d) ≤ 0,

(57)

which indicates that ω is increasing and concave in m. Next,

we move on to the second-order derivative, which can be

written as

∂2w

∂γ2
=

m
1
2

(γ(γ + 2))
5
2

·
(

−(γ+1)3+
1

γ+1
+3(γ+1) ln(γ+1)

︸ ︷︷ ︸

∆2

− 3 ln 2(γ+1)
d

m
︸ ︷︷ ︸

≤0

)

,

(58)

where ∆2(γ) is a monotonically decreasing function, which

can be shown via

∂∆2(γ)

∂γ
= −3(γ + 1)2 − 1

(γ + 1)2
+ 3 + 3 ln(γ + 1)

≤ −3(γ + 1)2 − 1

(γ + 1)2
+ 3 + 3γ

= −3(γ + 1)γ − 1

(γ + 1)2
≤ 0.

(59)

Therefore, it holds that ∆2(γ) ≤ ∆2(0) = 0, i.e.,

∂2ω

∂γ2
≤ m

1
2

(γ(γ + 2))
5
2

(

0− 3 ln 2(γ + 1)
d

m

)

≤ 0. (60)

Hence, ω is increasing and concave in γ. Finally, we derive

the expression of the last two elements in H, which can be

written as

∂2w

∂m∂γ
=

∂2w

∂γ∂m
=

m− 1
2 ln 2

2γ
1
2 (γ + 2)

1
2

(−C(γ) + r

γ2 + 2γ
+

1

ln 2
). (61)

Combing (57), (58) and (61), we reformulate detH via

grouping in terms of r = d
m

as shown in (62) where

h(r) = ∆ar
2 + ∆br + ∆c is a quadratic polynomial with

respect to r. Clearly, we have sign(detH) = sign(h(r)).
Since γ ≥ 0, it is straightforward to determine ∆a ≥ 0
and ∆b ≥ 0. It implies that h(r) has either no real roots or

one positive root at maximum while the negative root can be

discarded as r ≥ 0. Hence, detH is non-negative, if it holds

r ≥ −∆b+
√

∆2
b
−4∆a∆c

2∆a
. As a result, ω is jointly concave in m

and p. �
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