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Abstract

This paper proposes a unified semi-blind detection framework for sourced and unsourced random

access (RA), which enables next-generation ultra-reliable low-latency communications (URLLC) with

massive devices. Specifically, the active devices transmit their uplink access signals in a grant-free

manner to realize ultra-low access latency. Meanwhile, the base station aims to achieve ultra-reliable

data detection under severe inter-device interference without exploiting explicit channel state information

(CSI). We first propose an efficient transmitter design, where a small amount of reference information

(RI) is embedded in the access signal to resolve the inherent ambiguities incurred by the unknown CSI.

At the receiver, we further develop a successive interference cancellation-based semi-blind detection

scheme, where a bilinear generalized approximate message passing algorithm is utilized for joint

channel and signal estimation (JCSE), while the embedded RI is exploited for ambiguity elimination.

Particularly, a rank selection approach and a RI-aided initialization strategy are incorporated to reduce

the algorithmic computational complexity and to enhance the JCSE reliability, respectively. Besides, four

enabling techniques are integrated to satisfy the stringent latency and reliability requirements of massive

URLLC. Numerical results demonstrate that the proposed semi-blind detection framework offers a better

scalability-latency-reliability tradeoff than the state-of-the-art detection schemes dedicated to sourced or

unsourced RA.

Part of the paper has been presented at the 2022 IEEE International Wireless Communications and Mobile Computing

Conference (IWCMC), where the proposed solution is limited to grant-free sourced RA for mMTC [1].

M. Ke, Z. Gao, and D. Zheng are with the School of Information and Electronics, Beijing Institute of Technology, 100081

Beijing, China (e-mails: kemalong@bit.edu.cn; gaozhen16@bit.edu.cn; zhengdezhi@bit.edu.cn). M. Zhou is with Baicells

Technologies Co. Ltd., Beijing 100089, China (e-mail: zhoumingyu@baicells.com). D. W. K. Ng is with the School of Electrical

Engineering and Telecommunications, University of New South Wales, 2052 Sydney, Australia (e-mail: w.k.ng@unsw.edu.au).

H. Vincent Poor is with the Department of Electrical and Computer Engineering, Princeton University, NJ 08542 Princeton,

USA (e-mail: poor@princeton.edu).

ar
X

iv
:2

30
3.

04
41

4v
2 

 [
cs

.I
T

] 
 2

0 
M

ar
 2

02
3



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, JANUARY 2023 2

Index Terms

Massive URLLC, grant-free, sourced/unsourced random access, semi-blind detection, approximate

message passing.

I. INTRODUCTION

A. Background and Motivation

The emerging Internet-of-Things (IoT) applications in various vertical sectors have driven the

massive machine-type communication (mMTC) and ultra-reliable low-latency communication

(URLLC) services in the fifth-generation (5G) cellular systems, which pursue scalability and

reliability with low user plane latency, respectively [1]–[3]. Motivated by the grander Internet-

of-Everything (IoE) that is envisioned to connect millions of people and billions of machines,

the next-generation, i.e., Beyond 5G or sixth-generation (6G), cellular systems must further scale

the classical URLLC across the device dimension, leading to a new massive URLLC service that

merges legacy mMTC and URLLC [4]. The application scenarios range from extended reality

(XR) services to flying vehicles, brain-computer interfaces, and connected autonomous systems.

Although the conventional network slicing is effective in supporting a simple mixture of mMTC

and URLLC, it is still very challenging to simultaneously satisfy the stringent scalability, latency,

and reliability requirements (e.g., 106 devices/km2, 1 ms user plane latency, and 99.99999%

reliability) of massive URLLC [5], [6].

More specifically, the unprecedentedly high density of wireless devices has already posed great

challenges in random access (RA), which is essential for ensuring ubiquitous IoE connectivity

[7]–[9]. In legacy cellular systems, the widely adopted grant-based RA protocol requires multiple

signaling interactions to facilitate the scheduling of interference-free transmissions [8]. Despite

its simplicity and reliability, this protocol would become inefficient or even impractical in the

context of massive URLLC due to its extremely high access latency resulting from severe access

collisions among the massive devices [9]. To tackle this issue, the promising grant-free RA

protocol has been recently proposed as a key enabler to achieve ultra-low access latency, where

the active devices directly transmit their access signals to the base station (BS) without any

scheduling in advance [10]. However, since the signals of all the active devices are transmitted

via the same physical resources, the inter-device interference becomes a severely limiting factor

for realizing ultra-reliable data detection. Therefore, the key challenge of massive URLLC lies

in the improvement of data detection reliability for grant-free massive RA (MRA) [11].
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In general, grant-free MRA can be classified into two paradigms, i.e., sourced and unsourced

RA, which focus on two practical RA scenarios having different access requirements [12]. For

sourced RA, the BS is interested in both the transmitted messages and the identities (IDs) of the

devices that generated them. Hence, some reference information (RI), such as pilot sequence,

should be transmitted along with the payload data for device identification. While for unsourced

RA, the BS is solely interested in estimating a list of sent messages, without any interest in the

identities of the transmitters. Therefore, the payload efficiency can be improved by omitting the

device ID information in the transmission. Considering their different access requirements, the

research community has developed two independent lines of research to study the reliable data

detection for grant-free sourced and unsourced RA, respectively. However, designing a unified

data detection framework for incorporating both RA paradigms is still an open issue, which is

indispensable to satisfy the heterogeneous access requirements of future IoE applications [12].

Meanwhile, the previous works generally focus on the traditional mMTC and fail to support

the emerging massive URLLC that simultaneously pursues the stringent scalability, latency, and

reliability requirements [5], [6].

B. Related Work

Grant-free sourced RA has been intensively investigated in the literature, e.g., [11]–[17],

where the non-orthogonal pilot-based coherent detection framework is generally considered.

Specifically, each active device transmits a non-orthogonal pilot sequence along with its payload

data to the BS in a grant-free manner. Meanwhile, the BS first performs active device detection

(ADD) and channel estimation (CE) based on the received pilot signal, then the acquired results

are adopted for the subsequent coherent data detection [11]. A key feature of massive URLLC is

the sporadic uplink traffic, i.e., for any given time interval, only a small number of devices are

activated by external events and desire to access the network [12], [13]. By leveraging the sparse

device activity, the authors in [14] formulated the joint ADD and CE design as a compressive

sensing (CS) problem and an orthogonal matching pursuit-based algorithm was developed for the

related sparse signal recovery. However, this work assumes only a single-antenna receiver at the

BS and the solution is not applicable to multi-antenna systems. Also, the work in [15] revealed

that the detection error probability of ADD can be driven to zero as the number of BS antennas is

sufficiently large. On the other hand, to reduce the computational complexity in the case of large

numbers of devices and BS antennas, a dimension reduction-based joint ADD and CE approach
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was further proposed in [16]. Particularly, the massive multiple-input multiple-output (MIMO)

channels between the devices and the BS usually exhibit clustered sparsity in the virtual angular

domain [18]. In this context, the authors in [17] developed an approximate message passing

(AMP)-based ADD and CE scheme to leverage the angular-domain clustered sparsity for further

enhanced MRA performance. Overall, the previous works on grant-free sourced RA generally

focus on the scalability of the traditional mMTC service, where the transmission latency (or

pilot length) must increase linearly with the number of active devices to guarantee the reliable

data detection [17]. Therefore, it is challenging for them to simultaneously satisfy the stringent

latency and reliability requirements of massive URLLC.

Recent studies on grant-free unsourced RA mainly rely on the common codebook-based non-

coherent detection framework introduced in [19]. Specifically, according to the payload data bits

to be transmitted, each active device sends a codeword selected from a common codebook. Unlike

the sourced RA counterpart, the BS in this case is solely interested in estimating a list of sent

messages without any interests in the identities of the transmitters, i.e., the estimated messages

have an unknown permutation. The main obstacle of realizing the scheme stems from the

extremely large size of the codebook, i.e., the number of codewords, which grows exponentially

with respect to the payload data length and causes prohibitive computational complexity [19].

To overcome this limitation, the first low-complexity coding scheme for unsourced RA was

proposed in [20], where the transmission period was divided into multiple small sub-blocks

and each active device randomly chose a sub-block to transmit its codeword. Relying on a

similar transmission structure, the subsequent work in [21] further proposed a close-to-optimal

coding strategy, where user-independent successive interference cancellation (SIC) was applied

for improved decoding performance. Subsequently, the authors in [22] proposed another efficient

approach, which leveraged recent advances in the CS field to further reduce the decoding

complexity. For this scheme, the message of each active device is split into several sub-messages

and the coding scheme is divided into two parts, i.e., inner and outer encoder/decoder. Here, a

CS-based inner encoder/decoder is adopted to map a sub-message into a codeword at the devices

and estimate the transmitted sub-messages at the BS, as in [19]. Meanwhile, a tree-based outer

decoder is employed to acquire the original messages by stitching the estimated sub-messages

together. The works in [19]–[22] consider a Gaussian multiple access channel model, where the

BS is equipped with a single-antenna and the channel gains between the devices and the BS

are assumed to be unity. Although this assumption facilitates the performance analysis of the
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proposed coding scheme, it hinders the practical application of the results. Moreover, the authors

in [23], [24] revealed that the required transmit power-per-bit can be driven to an arbitrarily

small value as the number of BS antennas grows sufficiently large. Considering the emerging

massive MIMO systems, an uncoupled CS-based unsourced RA solution was proposed, which

exploited the rich spatial dimensionality offered by the large-scale antenna array to enhance the

decoding performance [25]. The strong common characteristic of the aforementioned works lies

in the employment of the coding scheme based on a common codebook. It is also challenging

for them to simultaneously satisfy the stringent latency and reliability requirements of massive

URLLC due to the low payload efficiency or the high computational complexity resulting from

the employment of the common codebook-based coding scheme [6], [25].

In previous works, the traditional sourced and unsourced RA paradigms generally adopt their

dedicated data detection frameworks, i.e., coherent and non-coherent detection, respectively,

which rely on different transceiver designs, cf. [17], [22]. The authors in [12] have tried to

support both sourced and unsourced RA services in the same IoE system. However, the two

RA paradigms still adopt their dedicated data detection frameworks, which rely on different

transmission schemes, signal models, and data detection schemes. Here, only the related activity

detection algorithm is unified. In this context, we have to integrate two different transceivers

into the same system, allowing the network to switch between sourced and unsourced RA

modes according to practical access requirements. This solution is unattractive in terms of device

size, hardware complexity, and overall cost [12]. Therefore, a more beneficial unified detection

framework is needed, where both RA paradigms can share almost the same RA procedure,

transceiver hardware design, and receive algorithm.

C. Main Contributions

In this paper, we design a unified semi-blind detection framework for grant-free sourced and

unsourced RA, which pursues the ultra-reliable and low-latency requirements of massive URLLC.

Specifically, the active devices directly transmit their uplink access signals exploiting the same

physical resources, where a small amount of RI is embedded in the access signals. Based on

the overlapped received signal, the BS jointly estimates the channels and detects the signals

of the active devices, then the embedded RI is exploited to eliminate the inherent ambiguities.

For sourced RA, the RI contains device ID bits, cyclic redundancy check (CRC) bits, and a

scalar pilot symbol, which are adopted for eliminating the phase and permutation ambiguities.
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While for unsourced RA, only CRC bits and a scalar pilot symbol are transmitted for phase

ambiguity elimination, and thus higher payload efficiency can be achieved. In summary, our

main contributions are listed as follows:

• We propose a unified semi-blind detection framework for enabling grant-free sourced and

unsourced RA, under which both RA paradigms share almost the same RA procedure,

transceiver hardware design, and receive algorithm. Moreover, in contrast to the existing

non-orthogonal pilot-based coherent detection for sourced RA [11]–[17], the proposed

detection framework results in a significant transmission latency reduction when the same

detection reliability is considered. Furthermore, compared to the common codebook-based

non-coherent detection for unsourced RA [19]–[25], the proposed detection framework

dramatically reduces the processing latency by circumventing the common codebook-based

coding scheme. Due to the reduced transmission and processing latencies, the proposed

detection framework achieves a much lower user plane latency than its counterparts [13].

• We propose an SIC-based semi-blind detection scheme at the BS, which mitigates the inter-

device interference iteratively. In each SIC iteration, the channels and the signals of the

active devices are jointly inferred from the overlapped received signal, while the embedded

RI is exploited for ambiguity elimination. Moreover, the signal components of reliably

detected active devices are removed from the received signal to alleviate the inter-device

interference in the following iterations.

• We propose a bilinear generalized AMP (BiG-AMP)-based joint channel and signal esti-

mation (JCSE) algorithm, where the JCSE is formulated as a matrix factorization problem

based on the Bayesian theory and the advanced BiG-AMP algorithm is employed to obtain

a low-complexity approximate solution. Particularly, we develop a rank selection approach

to estimate the unknown number of active devices, which facilitates the computational com-

plexity reduction of the BiG-AMP algorithm. Moreover, a RI-aided initialization strategy

is further incorporated for improved JCSE reliability. The proposed algorithm significantly

outperforms the classic BiG-AMP algorithm adopting the random initialization strategy [26].

• We introduce four enabling techniques that can be flexibly integrated into the proposed

semi-blind detection framework to further reduce the user plane latency and enhance the

detection reliability. The obtained URLLC-enhanced version of the proposed detection

framework is capable of simultaneously satisfying the stringent scalability, latency, and
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Fig. 1. An illustration of future massive URLLC scenarios with sparse device activity. A one-ring channel model

is considered between the devices and the massive MIMO BS.

reliability requirements of massive URLLC.

D. Notations

We adopt normal-face letters to denote scalars and lowercase (uppercase) boldface letters to

denote column vectors (matrices). The (n, k)th element, the nth row vector, and the kth column

vector of the matrix G ∈ CN×K are denoted as gn,k, [G]n,:, and [G]:,k, respectively, where C is

the set of complex numbers. B is the set of binary numbers and 0N×K is the zero matrix of size

N ×K. The superscripts (·)T, (·)∗, (·)H and (·)† represent the transpose, complex conjugate,

conjugate transpose, and pseudo-inverse operators, respectively. [K] denotes the set of integers

{1, 2, · · · , K}, |A|c is the cardinal number of the set A, ∅ is an empty set, and supp{·} denotes

the support set of a sparse vector or matrix. ‖G‖F denotes the Frobenius-norm of the matrix

G and ‖G‖0 denotes the zero-norm of G, i.e., the number of non-zero elements in G. [G]:,A

represents the matrix that stacks the columns of G indexed by the set A, while [G]A,: is the

matrix that stacks the rows of G indexed by the set A. R(·) is the real part of a complex number.

dbe rounds b to the nearest integer greater than or equal to b. U(x; a, b) denotes that the variable

x follows the uniform distribution between a and b. Finally, CN (x;µ, v) denotes the complex

Gaussian distribution of a random variable x with mean µ and variance v. E[·] and V[·] denote

statistical expectation and variance operators, respectively.

II. SYSTEM MODEL

Consider the uplink of a typical massive URLLC scenario in massive MIMO systems, as

depicted in Fig. 1. Here, we employ a BS equipped with an N -antenna uniform linear array
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(ULA) to provide access service for K synchronized single-antenna devices. Due to the sporadic

uplink traffic of IoE, it is assumed that only Ka (Ka � K) out of the total K devices are

activated by external events and desire to access the network [17]. To avoid the complicated

access scheduling for ultra-low access latency, the promising grant-free RA protocol is adopted

for uplink transmission, where the active devices directly transmit their access signals to the

BS via the same time-frequency resources. At the BS, the signal rl ∈ CN×1 received in the lth

symbol duration is expressed as

rl =
K∑
k=1

gkαkxk,l + wl = Gxl + wl, (1)

where gk ∈ CN×1 denotes the uplink channel between the kth device and the BS, the binary

variable αk indicates the device activity, i.e., αk = 1 for active and 0 otherwise, xk,l ∈ C is

the transmitted signal (i.e., modulated symbol) of the kth device in the lth symbol duration,

wl ∼ CN (0, σ2I) is the additive white Gaussian noise (AWGN), and σ2 is the noise variance.

Incorporating both channel response and device activity, G = [α1g1, α2g2, · · · , αKgK ] ∈ CN×K

is referred to as the MRA channel matrix and xl = [x1,l, x2,l, · · · , xK,l]T ∈ CK×1. Further

focusing on small data packets, the length of the symbol frame L is usually far smaller than

the channel coherence time. Meanwhile, the device activity remains constant during the frame.

In this context, the number of active devices is fixed within each frame but may change across

different frames. For a specific frame, the received signal over L successive symbol durations is

given as

R = GX + W, (2)

where R = [r1, r2, · · · , rL] ∈ CN×L, X = [x1,x2, · · · ,xL] ∈ CK×L, and W = [w1,w2, · · · ,wL].

Considering the widely studied spatial channel model [17], the channel between the kth device

and the BS is modeled as

gk = ρk

P∑
p=1

βk,paR (φk,p) , (3)

where ρk is the large-scale fading parameter, P is the number of multi-path components (MPCs),

βk,p denotes the complex gain of the MPC, and aR (φk,p) =
[
1, e−j2πφk,p , · · · , e−j2π(N−1)φk,p

]
/
√
N

is the array response vector at the BS. Here, φk,p = d
λ
sin (ψk,p), where ψk,p is the physical angle-

of-arrival (AoA) associated with the kth device and the pth MPC, d is the antenna spacing, and

λ is the wavelength.
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Fig. 2. The clustered sparsity of the angular-domain MRA channel matrix H, where K = 30 devices, Ka = 10

active devices, and N = 500 BS antennas are considered.

For a typical network deployment, the spatial propagation characteristics of the channels

between the devices and the BS can be modeled as an one-ring channel model, see Fig. 1 [17].

Here, the MPCs only can be observed within a small angular window at the BS, i.e., ψk,p ∈

[ψ0 −∆, ψ0 + ∆], where ψ0 is the central AoA and 2∆ � 180◦ is the angular spread. Define

H = ARG as the angular-domain representation of the MRA channel matrix G, where AR

denotes the transformation matrix and becomes a discrete Fourier transform matrix for ULA

with d = λ/2. The limited AoA spread leads to the clustered angular-domain sparsity of massive

MIMO channels, i.e.,

1 <
∣∣∣supp

{
[H]:,k

}∣∣∣
c
� N,∀k ∈ [K] . (4)

Moreover, considering the sparse device activity, we further have∣∣∣supp
{

[H]n,:

}∣∣∣
c
� Ka,∀n ∈ [N ] . (5)

By combining the sparsity features presented in (4) and (5), the clustered sparsity of the angular-

domain MRA channel matrix H is illustrated in Fig. 2, which will be exploited to facilitate the

development of a semi-blind detection scheme at the BS.

Remark 1: It should be noted that the received signal model in (2) is identical for both the

coherent detection framework dedicated to sourced RA and the non-coherent detection framework

dedicated to unsourced RA. The major differences between two detection frameworks lie in the

transmitted signal X and the receive algorithm, which will be detailed in Section III.
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III. TRADITIONAL DETECTION FRAMEWORKS FOR SOURCED AND UNSOURCED RA

As described in Section II, the key idea of grant-free RA protocol is to avoid complicated

signaling interactions between the devices and the BS, thus achieving the ultra-low access latency,

but at the expense of severe inter-device interference. Without access scheduling in advance, the

uplink signals of all the active devices are overlapped on the same time-frequency resources,

which makes reliable data detection at the BS a challenging problem. In this section, we first

introduce two state-of-the-art detection frameworks for grant-free sourced and unsourced RA,

respectively, which focus on different access requirements. Moreover, the related merits and

faults are discussed.

A. Non-Orthogonal Pilot-Based Coherent Detection for Sourced RA

The non-orthogonal pilot-based coherent detection framework for sourced RA adopts a two-

phase transmission scheme [11]–[17], where each frame is divided into the pilot and payload

data phases, i.e., X = [Xp,Xd] with Xp ∈ CK×Lp and Xd ∈ CK×Ld , respectively. Here, the first

Lp symbol durations are used to transmit the non-orthogonal pilot sequences of active devices

and the remaining Ld = L − Lp symbol durations are reserved for payload data transmission.

Similarly, the received signal can be expressed as R = [Rp,Rd], where Rp ∈ CN×Lp and

Rd ∈ CN×Ld correspond to the received pilot and data signals, respectively. At the receiver, the

BS first performs joint ADD and CE based on the received pilot signal Rp = GXp+Wp, which

is equivalent to estimating G based on the known Xp and Rp. By leveraging the sparse device

activity, the problem can be formulated as a CS problem and the advanced AMP algorithm in

[17] can be employed to acquire the solution. With the estimated active device set Â and channel

matrix Ĝ, the coherent data detection is then achieved as

X̂d =
[
Ĝ
]†
:,Â

Rd, (6)

where Rd = GXd+Wd. At this point, the inter-device interference can be effectively resolved as

long as the reliable estimates of the active device set and the MRA channel matrix, i.e., Â and Ĝ,

respectively, are obtained. However, according to the CS theory, the pilot length Lp ≥ Kalog2 (K)

is required to obtain the satisfactory ADD and CE performance, which significantly degrades the

payload efficiency, especially in the scenarios of massive URLLC conveying small data packets

[17]. By further utilizing the angular-domain sparsity of massive MIMO channels, i.e.,

Y = [Yp,Yd] = ARR = H [Xp,Xd] + N, (7)
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with N = ARW denoting the noise matrix, the authors in [17] revealed that the minimum pilot

overhead can be reduced to Salog2 (K) with Sa = max {supp {Hn,:} ,∀n ∈ [N ]} and Sa � Ka.

Yet, the payload efficiency is still limited when K is extremely large. Note that given the fixed

payload data length, a lower payload efficiency indicates a higher transmission latency.

B. Common Codebook-Based Non-Coherent Detection for Unsourced RA

The common codebook-based non-coherent detection framework is dedicated to unsourced

RA, where each active device delivers B-bit information using a common codebook C =

{c1, c2, · · · , c2B} ⊂ CL×1. Specifically, the B-bit information bk ∈ BB×1 produced by the

active device k is mapped to an integer bk ∈
{

1, 2, · · · , 2B
}

. Then, the active device simply

sends the bkth codeword of the common codebook, i.e., cbk , to the BS. We can model the

codeword selection by a set of 2BK Bernoulli random variables δb,k, ∀b ∈
[
2B
]

and ∀k ∈ [K].

Here, δb,k = 1 if the kth device is active and transmits the code cb, and δb,k = 0 otherwise. On

this basis, the transmitted signal of the kth device can be expressed as [X]k:, =
∑2B

b=1 δb,kc
T
b , and

the signal model in (2) can be re-formulated as

R = G [δ1, δ2, · · · , δK ]T C + W

= G∆C + W = G̃C + W,
(8)

where C = [c1, c2, · · · , c2B ]T ∈ C2B×L is the common codebook, δk =
[
δ1,k, δ2,k, · · · , δ2B ,k

]T ∈
B2B×1, and G̃ is the matrix combining the spatial-domain MRA channel matrix G and the

codeword selection matrix ∆ ∈ BK×2B . The matrix ∆ contains only Ka non-zero rows, each

of which has a single non-zero entry. With this formulation, each active device contributes a

single non-zero coefficient in [G̃]n,:, thereby resulting in a Ka-sparse 2B-dimensional vector.

Considering the BS with N receive antennas, the problem can be formulated as a multiple

measurement vectors (MMV) support detection problem, where the different rows of G̃ have a

common sparsity pattern. The problem can be effectively addressed by the CS recovery algorithm

such as AMP [17], but the computational complexity scales exponentially with B, which is

prohibitive even for short packets with dozens of bits. The prohibitive computational complexity

leads to an extremely high processing latency at the BS. Although several low-complexity

solutions have been proposed [21], [22], the payload efficiency is dramatically degraded due

to the introduced redundant coding.
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The user plane latency accounts for the one-way latency from the beginning of the packet

processing at the transmitter to the successful detection at the receiver. In grant-free MRA, the

transmission and receive processing latencies are the two most dominant components contributing

to the user plane latency [27]. Therefore, it is generally challenging for the traditional detection

frameworks to satisfy the ultra-low latency requirement of massive URLLC due to the low

payload efficiency or the high data detection complexity. Moreover, their applications are limited

to either sourced or unsourced RA, which is not conductive to accommodating future massive

URLLC with heterogeneous access requirements.

IV. PROPOSED UNIFIED SEMI-BLIND DETECTION FRAMEWORK: TRANSMITTER DESIGN

To overcome the limitations of conventional coherent and non-coherent detection frameworks,

this paper develops a unified semi-blind detection framework for supporting both sourced and

unsourced RA. Particularly, our goal is to jointly infer the sparse MRA channel matrix H and

the signal matrix X from the received signal Y in (7), based on which the payload data of active

devices can be further detected. By avoiding the pilot phase, an extremely high payload efficiency

can be achieved, which leads to an ultra-low transmission latency. However, the JCSE problem

suffers from the inherent phase and permutation ambiguities. Specifically, define Σ and Π as

a diagonal matrix with phase shifts in the diagonal and a permutation matrix, respectively. The

ambiguities are caused by the fact that if
(
Ĥ, X̂

)
is a solution to the JCSE problem based on

(7), then
(
ĤΣ−1Π−1,ΠΣX̂

)
is also a valid solution. In fact, the cost function

∥∥∥Y − ĤX̂
∥∥∥2
F

is

invariant to any phase shifts and permutations of the rows of X. The phase shift will lead to the

demodulation error of estimated signals, while the row permutation will lead to the identification

error of active devices. To tackle this issue, we propose to insert a small amount of RI in the

access signal X to eliminate the ambiguities.

The proposed detection framework involves the transmitter design at the devices and the SIC-

based semi-blind detection scheme at the BS. This section first introduces a unified transmitter

design for sourced and unsourced RA, where the required modules are almost identical for both

RA paradigms, as illustrated in Fig. 3. Therefore, our explanation mainly focuses on the sourced

RA and the major differences between the two RA paradigms will be further clarified.
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Fig. 3. The proposed unified transmitter design for sourced and unsourced RA: (a) Block diagram; (b) Data packet

structure and frame structure.

A. Transmitter Design for Sourced RA

For arbitrary active device with index k, its uplink access signal is generated based on the

following key steps.

• Step 1: To eliminate the permutation ambiguity, a binary device ID sequence of Bi =

dlog2 (K)e bits is inserted at the head of the payload data packet to identify the K devices.

For the kth device, its ID sequence is provided as bik = dec2bin (k), where the operator

dec2bin (·) converts a decimal integer to its binary representation.

• Step 2: To verify the correctness of the detected ID bits, a Bc-bit CRC code bck is added

to the end of the device ID sequence, as bk =
[
bik; b

c
k; b

d
k

]
∈ CB×1, where bdk ∈ CBd×1 is

the payload data packet and B = Bi +Bc +Bd. The CRC code is generated as

bck = f
(
[bik; 0Bc×1]÷ pc

)
, (9)

where ÷ denotes the binary (modulo-2) division, pc is the generator polynomial of CRC,

and f(·) is the function to compute the remainder of the binary division.

• Step 3: The overall data packet bk is modulated by an M -order phase shift keying (PSK)

modulator, where the modulated symbol sequence is defined as xdk ∈ C(L−1)×1 with L =

dB/log2 (M)e+ 1.
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• Step 4: To eliminate the phase ambiguity, a known scalar pilot symbol xp is inserted at the

head of the modulated symbol sequence, i.e., xk = [xp; x
d
k] ∈ CL×1, where xk is the uplink

access signal of the kth device to be transmitted. Here, xp is drawn from the constellation set

of the adopted modulation scheme and is identical for all active devices. Note that since Σ

is a diagonal matrix, the phase shifts of phase ambiguity are identical for all the transmitted

symbols of a specific active device, but different for the symbol frames of different active

devices. In this case, only one pilot symbol in each xk is sufficient to estimate the phase

shift matrix Σ.

B. Extension to Unsourced RA

The aforementioned transmitter design for sourced RA can be further extended to the un-

sourced RA, where the major difference lies in the structure of the data packet, see Fig. 3. For

unsourced RA, the BS is solely interested in the list of the sent messages, without regard for the

identities of individual sources, i.e., the permutation ambiguity could be ignored. Therefore, the

device ID sequence is removed from the data packet for improved payload efficiency. Meanwhile,

the CRC code is attached to the end of the payload data packet, as bk =
[
bdk; b

c
k

]
∈ CB×1 with

B = Bc +Bd, and the generation of the CRC code is modified to

bck = f
(
[bdk; 0Bc×1]÷ pc

)
. (10)

Different from unsourced RA, the CRC code in sourced RA is mainly used for evaluating the

reliability of the detected device ID bits, which effectively avoids the whole packet loss due to

the detection error of few payload data bits, thus dramatically reducing the probability of miss

detection. Based on the proposed transmitter design, both sourced and unsourced RA could share

the same hardware modules and only a software-defined switch is required to determine which

data packet structure is adopted. Compared to the traditional detection frameworks detailed in

Section III, the proposed unified transmitter design is more beneficial to satisfying the ultra-low

latency requirement of massive URLLC due to the significantly improved payload efficiency.

V. PROPOSED UNIFIED SEMI-BLIND DETECTION FRAMEWORK: RECEIVER DESIGN

Adopting the transmitter design proposed in Section IV, the inserted RI is insufficient to achieve

reliable ADD and CE, which significantly degrades the performance of traditional coherent

detection. In this section, we develop an SIC-based semi-blind detection scheme at the BS, where
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the payload data of active devices is directly detected from the overlapped received signal without

exploiting explicit channel state information. Specifically, we first propose a BiG-AMP-based

JCSE algorithm, where the channel and signal matrices are jointly estimated by factorizing the

noisy received signal, without regard for the phase and permutation ambiguities. In particular, a

singular value decomposition (SVD)-based rank selection approach and a RI-aided initialization

strategy are incorporated to reduce the computational complexity and to enhance the JCSE

reliability, respectively, for the conventional BiG-AMP algorithm. Finally, the SIC-based semi-

blind data detection scheme is developed, where the inserted RI is exploited to resolve the

ambiguities and the SIC technique is utilized to mitigate the inter-device interference iteratively.

A. SVD-Based Rank Selection

As clarified in Section II, only Ka (Ka � K) active devices contribute to the received signal

Y, thus the signal model in (7) can be re-expressed as

Y = [H]:,A [X]A,: + N = HactXact + N. (11)

Here, A is the active device set, Hact = [H]:,A ∈ CN×Ka and Xact = [X]A,: ∈ CKa×L represent

the MRA channel matrix and the transmitted signal matrix associated with the active devices,

respectively. For JCSE, our goal is to jointly infer the channel matrix Hact and the signal matrix

Xact based on Y. By exploiting the angular-domain sparsity of massive MIMO channels, as well

as the statistical information of Hact and Xact, the efficient BiG-AMP algorithm derived in [26]

can be employed to achieve the goal, where the concerned problem is formulated as a matrix

factorization problem. In practice, since the number of active devices Ka is generally unknown in

advance, a straightforward solution is to apply the BiG-AMP algorithm to the model (7), where

H and X can be jointly estimated. Then, the estimates of Hact and Xact are obtained by removing

the channels and the signals of the devices whose channel gains are smaller than a predefined

threshold. However, this solution poses stringent requirements on the number of BS antennas

and the length of uplink access signal, i.e., N > K and L > K, which is impractical in massive

URLLC with small data packets [28]. Meanwhile, the resulting computational complexity at each

BiG-AMP iteration scales with the number of the total devices, i.e., O (NK +KL+NL) [29].

Proposition 1: When N > Ka and L > Ka, the rank of the noiseless received signal Z =

HactXact is Ka.
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Fig. 4. The noisy received signal Y has a prominent peak in the pairwise ratios of its adjacent descending singular

values, where N = 512 and L = 274 are considered.

Proof: Due to Z = HactXact, the rank of Z satisfies the following inequalities, as

rank (Z) ≤ min {rank (Hact) , rank (Xact)} (12)

and

rank (Hact) + rank (Xact)−Ka ≤ rank (Z) , (13)

where rank(·) denotes the rank of a matrix. On the one hand, the assumptions N > Ka and L >

Ka lead to min {rank (Hact) , rank (Xact)} ≤ Ka. Thus, the inequality (12) can be re-expressed

as rank (Z) ≤ Ka. On the other hand, since the access signals of different active devices are

generated independently, we have rank (Xact) = Ka. Meanwhile, since the active devices are

independently distributed in the BS coverage, their channels are linearly independent, which

results in rank (Hact) = Ka. Therefore, the inequality (13) can be re-expressed as Ka ≤ rank (Z).

At the point, the rank of Z is proofed to be rank (Z) = Ka by combining the inequalities in

(12) and (13).

With rank (Z) = Ka, the authors in [16] have revealed that the space of Y = Z+N can be

divided into a noisy signal subspace and a pure noise subspace in high signal-to-noise ratio (SNR)

cases. Specifically, by exploiting SVD, the noisy received signal is re-expressed as Y = UΣVH,

where U ∈ CN×N and V ∈ CL×L are unitary matrices, Σ ∈ CN×L is a diagonal matrix with

Kmax non-zero real numbers, i.e., the singular values of Y, on the diagonal, and Kmax =

min (N,L) > Ka. Then, the signal subspace is constructed as Ys = [U]:,Ks
[Σ]Ks,Ks

[V]HKs,:
=
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Z + Ns, with Ks = {1, 2, · · · , Ka} and Ns denoting the noise incorporated in the signal space.

Meanwhile, the noise subspace is constructed as Yn = [U]:,Kn
[Σ]Kn,Kn

[V]HKn,:
= Nn with Kn =

{Ka + 1, · · · , Kmax} and Nn denoting the noise incorporated in the noise space. Particularly,

the singular values of Ys are considerably larger than those of Yn as a relatively high SNR is

considered. Therefore, the received signal Y has a prominent peak in the pairwise ratios of its

adjacent descending singular values, i.e.,
{

[Σ]k,k / [Σ]k+1,k+1 |∀k ∈ [Kmax − 1]
}

, as illustrated

in Fig. 4. Moreover, the singular value index corresponding to the maximum ratio is exactly Ka.

Based on this remarkable characteristic, the number of active devices Ka can be estimated via

the following rank selection procedure,

K̂a = arg max
k∈[Kmax−1]

[Σ]k,k / [Σ]k+1,k+1 . (14)

In this context, we can apply the BiG-AMP algorithm to model (11) to jointly estimate Hact and

Xact, where the dimension constraint relaxes to N > Ka and L > Ka with Ka � K, i.e., the con-

sidered problem is independent of the number of potential devices. Meanwhile, the computational

complexity of each iteration of the BiG-AMP algorithm reduces to O (NKa +KaL+NL). This

leads to the dramatically reduced processing latency, which is another key to guarantee the ultra-

low user plane latency of massive URLLC.

Remark 2: In this paper, the considered JCSE problem is formulated based on the angular-

domain signal model (7), rather than the spatial-domain model (2). Compared with the spatial-

domain channel matrix G, the angular-domain channel matrix H exhibits an enhanced sparsity,

which dramatically reduces the number of unknown channel coefficients to be estimated. In this

case, for a given number of measurements, the JCSE performance can be significantly improved

by further leveraging the angular-domain sparsity of massive MIMO channels. The authors in

[40] have revealed that the performance can be very close to the ideal case with perfect CSI as

long as the channel matrix is sufficiently sparse.

Remark 3: For the cases with an extremely low SNR (e.g., SNR < 0 dB) or an extremely

large number of active devices (e.g., Ka > 500), the singular values of Y will decay smoothly,

which makes the signal and noise subspaces indistinguishable. In this context, the proposed

SVD-based rank selection approach fails to work. However, due to the sporadic uplink traffic of

massive URLLC and the adaptive transmit power control, such extreme cases are rare to occur

in practice.
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B. BiG-AMP-Based JCSE Algorithm

Next, we utilize the BiG-AMP algorithm to address the aforementioned matrix factoriza-

tion problem, where the expectation maximization (EM) algorithm is incorporated to learn

the unknown hyper-parameters and a RI-based initialization strategy is proposed to improve

the estimation accuracy. Under the Bayesian inference framework, the detailed description of

the BiG-AMP algorithm begins with the probabilistic model of the problem. Specifically, the

minimum mean-square-error (MMSE) estimates of Hact and Xact, denoted by Ĥact and X̂act,

respectively, are expressed as(
Ĥact, X̂act

)
= E [Hact,Xact|Y] =

∫∫
p (Hact,Xact|Y) dHactdXact, (15)

where the joint posterior distribution is given as

p (Hact,Xact|Y) =
p (Y|Hact,Xact) p (Hact) p (Xact)

p (Y)

∝ p (Y|Hact,Xact) p (Hact) p (Xact) ,

(16)

with the notation ∝ denoting an equality up to a constant scaling factor. It is assumed that the

elements of the noise matrix N are independently drawn from CN (0, σ2). Hence, given Hact

and Xact, the likelihood function can be factorized into

p (Y|Hact,Xact) =
N∏
n=1

L∏
l=1

p

(
yn,l|zn,l =

Ka∑
k=1

hn,kxk,l

)

=
N∏
n=1

L∏
l=1

1

πσ2
exp

(
− 1

σ2
|yn,l − zn,l|2

)
,

(17)

where the subscript “act” is omitted in hn,k and xk,l for notational simplicity. Meanwhile, we

adopt the well-studied spike-and-slab a priori distribution to capture the sparse feature of the

angular-domain channel matrix Hact, i.e.,

p (Hact) =
N∏
n=1

Ka∏
k=1

p (hn,k) =
N∏
n=1

Ka∏
k=1

[
(1− γn,k) δ (hn,k) + γn,kf̃ (hn,k)

]
, (18)

where 0 ≤ γn,k ≤ 1 denotes the sparsity ratio, i.e., the probability of hn,k being non-zero,

δ (·) is the Dirac delta function, f̃ (hn,k) = CN (hn,k;µn,k, τn,k) is the a priori distribution of

non-zero channel coefficients. This distribution has been widely applied in the literature for

AMP-based MIMO channel estimation [17], which shows its effectiveness in modeling the a

priori distribution of real-world MIMO channels Here, the channel coefficients associated with

different BS antennas are assumed to be mutually independent. This assumption simplifies the
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considered problem and facilitates the application of the efficient AMP inference framework

with acceptable performance loss, as discussed in [17]. Note that although taking into account

the correlation of different antennas may further enhance the performance, the corresponding

algorithm would be much more involved. In addition, since the transmitted signals are randomly

drawn from a finite constellation set S, the a priori distribution of Xact is provided as

p (Xact) =
Ka∏
k=1

L∏
l=1

p (xk,l) =
Ka∏
k=1

L∏
l=1

1

M

M∑
m=1

δ (xk,l − sm) , (19)

where sm ∈ S, ∀m ∈ [M ] are the constellation symbols. Benefitting from the factorizability of

the likelihood function and a priori distributions, as in (17)-(19), the joint posterior distribution in

(16) can be represented by a factor graph. In this context, the standard sum-product algorithm can

operate to compute the means of the marginal posterior distributions p (hn,k|Y) and p (xk,l|Y)

for all pairs (n, k) and (k, l), i.e., the solution of the problem in (15) [31]. However, for

massive URLLC in massive MIMO systems, the exact implementation of the sum-product

algorithm is impractical, as the large numbers of BS antennas and active devices make the

related computational complexity prohibitive. To overcome this obstacle, the key idea of the

BiG-AMP algorithm is to provide a low-complexity approximation of the sum-product algorithm

by applying the central-limit theorem and Taylor-series approximations in the large system limits

[26]. Intuitively, with the approximations, the matrix estimation problem in (15) can be decoupled

into multiple independent scalar estimation problems, which avoids high-dimensional integrals

and facilitates the practical implementation of the algorithm.

Algorithm 1 BiG-AMP-Based JCSE Algorithm
Input: Angular-domain received signal Y, the maximum number of iterations U , and termina-

tion threshold εamp.

Output: The estimates of the channel matrix Hact and transmitted signal matrix Xact associated

with the active devices.

1: Determine the problem dimensions, i.e., [N,L] = size (Y), and Ka is estimated by (14).

2: Ĥact = 0N×K̂a
, X̂act = 0K̂a×L.

3: ∀n, k: Initialize the hyper-parameters σ2 (1), µn,k (1), τn,k (1), and γn,k (1).

4: ∀n, k, l: Initialize the marginal posterior means and variances of Hact and Xact, i.e., ĥn,k (1),

vhn,k (1), x̂k,l (1), and vxk,l (1).

5: for u = 1, · · · , U do

6: // BiG-AMP Updates:
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7: ∀n, l: vpn,l (u) =
∑Ka

k=1

∣∣∣ĥn,k (u)
∣∣∣2 vxk,l (u) + vhn,k (u) |x̂k,l (u)|2

8: ∀n, l: pn,l (u) =
∑Ka

k=1 ĥn,k (u) x̂k,l (u)

9: ∀n, l: vpn,l (u) = vpn,l (u) +
∑Ka

k=1 v
h
n,k (u) vxk,l (u)

10: ∀n, l: p̂n,l (u) = pn,l (u)− ĝn,l (u− 1) pn,l (u)

11: ∀n, l: vzn,l (u) = V
[
zn,l|p̂n,l (u) , vpn,l (u)

]
12: ∀n, l: ẑn,l (u) = E

[
zn,l|p̂n,l (u) , vpn,l (u)

]
13: ∀n, l: vgn,l (u) =

(
1− vzn,l (u) /vpn,l (u)

)
/vpn,l (u)

14: ∀n, l: ĝn,l (u) = (ẑn,l (u)− p̂n,l (u)) /vpn,l (u)

15: ∀n, k: vqn,k (u) =
(∑L

l=1 |x̂k,l (u)|2 vgn,l (u)
)−1

16: ∀n, k: q̂n,k (u) = vqn,k (u)
∑L

l=1 x̂
∗
k,l (u) ĝn,l (u) + ĥn,k (u)

(
1− vqn,k (u)

∑L
l=1 v

x
k,l (u) vgn,l (u)

)
17: ∀n, k: vhn,k (u+ 1) = V

[
hn,k|q̂n,k (u) , vqn,k (u)

]
18: ∀n, k: ĥn,k (u+ 1) = E

[
hn,k|q̂n,k (u) , vqn,k (u)

]
19: ∀k, l: vrk,l (u) =

(∑N
n=1

∣∣∣ĥn,k (u)
∣∣∣2 vgn,l (u)

)−1
20: ∀k, l: r̂k,l (u) = vrk,l (u)

∑N
n=1 ĥ

∗
n,k (u) ĝk,l (u) + x̂k,l (u)

(
1− vrk,l (u)

∑N
n=1 v

h
n,k (u) vgk,l (u)

)
21: ∀k, l: vxk,l (u+ 1) = V

[
xk,l|r̂k,l (u) ; vrk,l (u)

]
22: ∀k, l: x̂k,l (u+ 1) = E

[
xk,l|r̂k,l (u) ; vrk,l (u)

]
23: // EM Updates:

24: σ2 (u+ 1) = 1
NL

∑N
n=1

∑L
l=1

[
|yn,l−p̂n,l(u)|2
1+vpn,l(u)/σ

2(u)
+

σ2(u)vpn,l(u)

σ2(u)+vpn,l(u)

]
25: τn,k (u+ 1) =

πn,k(u)
[
|µn,k(u)−d̂n,k(u)|2+vdn,k(u)

]
πn,k(u)

26: µn,k (u+ 1) =
πn,k(u)d̂n,k(u)

πn,k(u)

27: if
∑N

n=1

∑L
l=1|p̂n,l(u)−p̂n,l(u−1)|2∑N

n=1

∑L
l=1|p̂n,l(u)|2

≤ εamp then

28: break;

29: end if

30: end for

31: return Ĥact, X̂act

The overall steps of the BiG-AMP-based JCSE algorithm are summarized in Algorithm 1.

For completeness, we provide more detailed descriptions as follows. Lines 7 and 8 acquire a
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plug-in1 estimate of the noiseless received signal Z = HactXact, where the corresponding means{
pn,l
}

and variances
{
vpn,l
}

are computed in element-wise. Lines 9 and 10 introduce the so

called Onsager reaction term2 (i.e., the last term on the right-hand side of the equation) to

correct the the rough plug-in estimates, which further improves the estimation accuracy. With

the obtained quantities {p̂n,l} and
{
vpn,l
}

, lines 11 and 12 compute the marginal posterior means

{ẑn,l} and variances
{
vzn,l
}

of Z. Specifically, the MMSE estimation of Z is decoupled into NL

independent scalar inference problems, i.e., p̂n,l = zn,l+wzn,l, ∀n, l, with zn,l ∼ CN (zn,l; yn,l, σ
2)

and wzn,l ∼ CN
(
wzn,l; 0, vpn,l

)
. Therefore, lines 11 and 12 are explicitly computed as

vzn,l (u) =
σ2 (u) vpn,l (u)

σ2 (u) + vpn,l (u)
, (20)

ẑn,l (u) =
yn,lv

p
n,l (u) + σ2 (u) p̂n,l (u)

σ2 (u) + vpn,l (u)
, (21)

respectively. Subsequently, lines 13 and 14 use the related posterior moments to compute the

scaled residual {ĝn,l} and its inverse variances
{
vgn,l
}

. Finally, lines 15 and 16 obtain an equivalent

AWGN corrupted observation of the true hn,k, i.e., q̂n,k = hn,k + whn,k,∀n, k, with wqn,k ∼

CN
(
wqn,k; 0, vqn,k

)
. Adopting the a priori distribution p (hn,k) given in (18), the posterior distri-

bution of hn,k is computed as

p
(
hn,k|q̂n,k (u) , vqn,k (u)

)
= (1− πn,k (u)) δ (hn,k) + πn,k (u) CN

(
hn,k; d̂n,k (u) , vdn,k (u)

)
,

(22)

where

vdn,k (u) =
τn,k (u) vqn,k (u)

τn,k (u) + vqn,k (u)
, (23)

d̂n,k (u) =
µn,k (u) vqn,k (u) + τn,k (u) q̂n,k (u)

τn,k (u) + vqn,k (u)
, (24)

L = ln
vqn,k (u)

τn,k (u) + vqn,k (u)
+
|q̂n,k (u)|2

vqn,k (u)
+
|q̂n,k (u)− µ (u)|2

τn,k (u) + vqn,k (u)
, (25)

πn,k (u) =
γn,k (u)

γn,k (u) + (1− γn,k (u)) exp (−L)
. (26)

1The plug-in principle is a technique used in the probability theory and statistics to approximately estimate a feature of a

distribution (e.g., the expected value and the variance) that cannot be computed exactly. It is widely used in the theories of

Monte Carlo simulation and bootstrapping [32].
2The Onsager reaction term has been extensively discussed in the context of AMP. For more details, please refer to reference

[33].
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Then, the posterior mean ĥn,k and variance vhn,k of hn,k in lines 17 and 18, respectively, are

explicitly given as

ĥn,k (u+ 1) = πn,k (u) d̂n,k (u) , (27)

vhn,k (u+ 1) = πn,k (u)

[∣∣∣d̂n,k (u)
∣∣∣2 + vdn,k (u)

]
−
∣∣∣ĥn,k (u+ 1)

∣∣∣2 , (28)

respectively. Similarly, the AWGN corrupted observation of the true xk,l and its variance are

computed in lines 19 and 20. Based on r̂k,l = xk,l+wxk,l,∀k, l, with wxk,l ∼ CN
(
wxk,l; 0, vrk,l

)
and

p (xk,l) in (19), the posterior mean x̂k,l and variance vxk,l of xk,l in lines 21 and 22, respectively,

are explicitly computed as

x̂k,l (u+ 1) =

M∑
m=1

smexp

[
− |sm|2 −

2R(r̂∗k,l(u)sm)
vrk,l(u)

]
M∑
m=1

exp

[
− |sm|2 −

2R(r̂∗k,l(u)sm)
vrk,l(u)

] , (29)

vxk,l (u+ 1) =

M∑
m=1

|sm|2 exp

[
− |sm|2 −

2R(r̂∗k,l(u)sm)
vrk,l(u)

]
M∑
m=1

exp

[
− |sm|2 −

2R(r̂∗k,l(u)sm)
vrk,l(u)

] , (30)

respectively. Note that lines 7-22 of Algorithm 1 constitute the basic version of the BiG-AMP

algorithm developed in [26]. Here, based on the likelihood function and the a priori distributions

provided in (17)-(19), we re-derived the explicit expressions of the MMSE estimates of Hact

and Xact, i.e., (20)-(30). In this paper, we further introduce the following two mechanisms to

improve the realizability and the estimation reliability of the algorithm.

1) EM-Based Hyper-Parameter Learning: The implementation of the BiG-AMP algorithm

requires the full knowledge of the likelihood function p (Y|Hact,Xact) and the a priori distri-

butions p (Hact) and p (Xact). In practice, only the families of these distributions are known

in advance and the governing hyper-parameters ξ = {σ2, µn,k, τn,k, γn,k,∀n, k} are generally

unknown to the BS. Therefore, the EM algorithm proposed in [34] is incorporated to iteratively

learn the unknown hyper-parameters. Intuitively, each iteration of the EM algorithm consists

of two steps: E-step computes the joint distribution of all involved variables given the current

estimate of the hyper-parameters ξ̂ (u); M-step re-estimates the hyper-parameters with the goal

of maximizing the likelihood, as
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ξ̂ (u+ 1) = arg max
ξ

E
[
lnp (Hact,Xact,Z,Y; ξ) |Y; ξ̂ (u)

]
= arg max

ξ

{
N∑
n=1

Ka∑
k=1

E
[
lnp (hn,k; ξ) |Y; ξ̂ (u)

]
+

Ka∑
k=1

L∑
l=1

E
[
lnp (xk,l; ξ) |Y; ξ̂ (u)

]
+

N∑
n=1

L∑
l=1

E
[
lnp (yn,l|zn,l; ξ) |Y; ξ̂ (u)

]}
.

(31)

Here, the factorizability of p (Hact), p (Xact), and p (Y|Z) simplifies the computation of the joint

distribution in (31). Moreover, instead of jointly optimizing all parameters in ξ, we adopt the

incremental update strategy from [35], where ξ is updated one element at a time and the other

parameters are held constant. By setting the derivative of (31) with respect to one element of ξ

to zero, the estimates of the hyper-parameters are provided in lines 24-26 of Algorithm 1.

2) RI-Aided Initialization Strategy: For lines 3 and 4 of Algorithm 1, the traditional random

initialization strategy may lead the algorithm to converge to a local extremum of the mean-square-

error function [17]. To avoid this situation, the authors in [29] proposed to initialize the algorithm

multiple times and select the optimal pair of solutions as the final estimates, which improves the

estimation accuracy but significantly increases the computational complexity. In this paper, we

propose a more efficient RI-aided initialization strategy, where the transmitted reference signal

for eliminating phase and permutation ambiguities also serves as a short pilot sequence to acquire

an initial estimate of the MRA channel matrix. Specifically, the reference signal is composed

of the modulated symbols of device ID bits and CRC bits, as well as the scalar pilot symbol.

By stacking all devices’ reference signals in rows as the pilot matrix, the angular-domain joint

ADD and CE scheme proposed in [17] is employed to acquire the coarse estimates of the active

device set and MRA channel matrix. On this basis, the transmitted signal matrix of active devices

can be further estimated by the least squares (LS) method. The aforementioned processing has

been detailed in Section III-A, i.e., non-orthogonal pilot-based coherent detection. Note that the

hyper-parameters can be simultaneously estimated with the incorporated EM algorithm, as in

[17] . In this context, the estimated channel matrix, signal matrix, and hyper-parameters are

exploited as the initial estimates of the proposed BiG-GAMP-based JCSE algorithm.
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C. SIC-Based Semi-Blind Detection Scheme

With the BiG-AMP-based JCSE algorithm developed in Section V-B, we further propose an

SIC-based semi-blind detection scheme, where the embedded RI is utilized for ambiguity elim-

ination. Meanwhile, the SIC technique is incorporated to mitigate the inter-device interference

iteratively, as summarized in Algorithm 2. In the jth SIC iteration, line 6 computes the residual

received signal Ỹj and the residual number of active devices K̂j
a, where Âj−1, Ĥj−1, and

X̂j−1 are the estimated active device set, channel matrix, and signal matrix in the last iteration,

respectively. If all the active devices have been detected or the power of the residual received

signal is small enough, the processing is terminated to avoid unnecessary iterations, see lines

7-9. In line 10, without regard for the phase and permutation ambiguities, we employ the BiG-

AMP-based JCSE algorithm to jointly infer the residual channel and signal matrices, i.e., [H]:,Aj

and [X]Aj ,:, respectively, based on the following model

Ỹj = Y − Ĥj−1X̂j−1 = [H]:,Aj [X]Aj ,: + N̂ + N, (32)

with the estimation error of the last iteration given as

N̂ =

(
[H]:,Âj−1 −

[
Ĥj−1

]
:,Âj−1

)(
[X]Âj−1,: −

[
X̂j−1

]
Âj−1,:

)
. (33)

Here, Aj = A− Âj−1 denotes the residual active devices to be detected.

Algorithm 2 SIC-Based Semi-Blind Detection Scheme
Input: Angular-domain received signal Y, the maximum number of SIC iterations J , and

termination threshold εsic.

Output: The estimated active device set Â, channel matrix Ĥ, signal matrix X̂, and binary data

matrix B̂.

1: Estimate the number of active devices based on (14).

2: // SIC Initializations:

3: Â0 = ∅, Ĥ0 = 0N×K , X̂0 = 0K×L, B̂0 = 0K×B.

4: // SIC Loops:

5: for j = 1, · · · , J do

6: Ỹj = Y − Ĥj−1X̂j−1, K̂j
a = K̂a −

∣∣∣Âj−1∣∣∣
c

7: if K̂j
a ≤ 0 ||

∥∥∥Ỹj
∥∥∥2
F
/‖Y‖2F < εsic then

8: break;

9: end if
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10: Employ the BiG-AMP-based JCSE algorithm to acquire the estimates of residual channel

and residual signal matrices, i.e., Ĥj
act and X̂j

act, respectively, based on Ỹj , where the

phase and permutation ambiguities are ignored, as in Algorithm 1.

11: // Phase Ambiguity Elimination:

12: Σ̂ = diag

(
xp/

[
X̂j

act

]
:,1

)
, Ĥj

act = Ĥj
actΣ̂

−1, X̂j
act = Σ̂X̂j

act

13: With X̂j
act, perform M -PSK demodulation to obtain the estimated binary data matrix B̂j

act.

14: With B̂j
act, perform CRC to acquire the corresponding checking result cj ∈ CK̂j

a×1.

15: // Permutation Ambiguity Elimination:

16: for k = 1, · · · , K̂j
a do

17: k̂ = bi2dec

([
B̂j

act

]
k,Bi

)
, Bi = {1, · · · , Bi}

18: if 0 ≤ k̂ ≤ K && cj (k) == 0 then

19: Âj = Âj−1 ∪ k̂,
[
B̂j
]
k̂,:

=
[
B̂j

act

]
k,:

20:
[
Ĥj
]
:,k̂

=
[
Ĥj

act

]
:,k

,
[
X̂j
]
k̂,:

=
[
X̂j

act

]
k,:

21: end if

22: end for

23: end for

24: return Âj , Ĥj , X̂j , B̂j

For a specific active device, it has been revealed in [36] that the phase shifts of phase ambiguity

are identical for all transmitted symbols. Therefore, the phase ambiguity can be eliminated by

computing the corresponding phase shift as in line 12 of Algorithm 2, where xp is the common

scalar pilot symbol inserted in the access signals for all the active devices. Given the estimated

signal matrix with phase correction, i.e., X̂j
act, line 13 further executes M -PSK demodulation

to obtain the estimated binary data matrix B̂j
act. Moreover, leveraging the validity checking

procedure and the inserted device ID bits, the permutation ambiguity is further resolved, as in

lines 16-21 of Algorithm 2. Specifically, the CRC is firstly adopted to validate the correctness

of the detected ID bits, as

cj (k) = f̂

([
B̂j

act

]
k,Bi
÷ pc

)
,∀k ∈

[
K̂j
a

]
, (34)

where Bi is the index set of device ID bits, f̂ (·) = 1 if the remainder of the binary division

is non-zero and f̂ (·) = 0 otherwise. For the kth detected active device, if all the device ID

bits are correctly recovered, i.e., cj (k) = 0, the estimated device ID can be used to identify
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Fig. 5. Block diagram of the proposed unified SIC-based semi-blind detection scheme at the BS.

the corresponding active device, which is added to the estimated active device set Âj , and the

corresponding estimates are updated, as in lines 19 and 20.

Obviously, the phase and permutation ambiguities can be effectively resolved based on the

embedded RI, i.e., the device ID bits, the CRC bits, and the scalar pilot symbol. Meanwhile, the

amount of RI scales logarithmically with the number of devices, as detailed in Section IV, which

leads to a very small time resource consumption. Moreover, due to the fact that the reliable

BiG-AMP-based JCSE makes the error propagation controllable, the proposed SIC-based semi-

blind detection scheme can further enhance the detection reliability by mitigating the inter-device

interference iteratively.

D. Extension to Unsourced RA

As analyzed in Section IV, the major difference between sourced and unsourced RA lies in

that the permutation ambiguity in the unsourced RA does not have to be resolved. Therefore,

the proposed SIC-based semi-blind scheme can be directly applied to the unsourced RA by just

making some minor modifications at the software level. Specifically, since the CRC is utilized

to validate the correctness of the detected payload data bits rather than the detected ID bits, the

validity checking procedure in lines 14 is modified to

cj (k) = f̂

([
B̂j

act

]
k,Bd
÷ pc

)
,∀k ∈

[
K̂j
a

]
, (35)
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where Bd is the index set of payload data bits. Moreover, the step for device identification, i.e.,

line 17, is removed. Finally, the update rules in lines 19 and 20 are modified as

Âj = Âj−1 ∪
(
K̂j−1
a + k

)
, if cj (k) == 0, (36)[

Ĥj
]
:,Ãj

= Ĥj
act,
[
X̂j
]
:,Ãj

= X̂j
act,
[
B̂j
]
:,Ãj

= B̂j
act, (37)

where Âj represents the active device set with correctly detected data bits and unknown identity,

K̂j−1
a denotes the number of devices that have been detected in the (j − 1)th SIC iteration,

and Ãj =
{
k|K̂j−1

a + 1 ≤ k ≤ K̂j−1
a + K̂j

a

}
. In this context, we propose a unified semi-blind

data detection scheme at the BS, as shown in Fig. 5. Here, both RA paradigms share the same

hardware modules and a software-defined switch is utilized to determine which RA mode is

enabled. This facilitates more flexible network deployment and reduces the cost of network

re-configuration.

E. Computational Complexity Analysis

For the practical implementation, the processing latency mainly depends on the computational

complexity of the adopted receive algorithm. In the non-orthogonal pilot-based coherent detection

for sourced RA, the complexity of AMP-based joint ADD and CE is calculated by the function

as

Camp (N,K,Lp, Ua) = Ua (4NKLp + 3KLp + 16NLp + 20NK) , (38)

and the complexity of LS-based coherent data detection is calculated as

Cls (N,Ka, Ld) = K3
a +NK2

a +NKaLd, (39)

where Ua is the number of AMP iterations. Therefore, the overall computational complexity is in

the order of O [Camp (N,K,Lp, Ua) + Cls (N,Ka, Ld)]. While in the common codebook-based

non-coherent detection for unsourced RA, the computational complexity mainly stems from the

AMP-based codeword detection, which is in the order of O
[
Camp

(
N, 2B, L, Ua

)]
.

The computational complexity of the proposed unified semi-blind detection framework is

mainly composed of three parts. Specifically, the complexity of SVD-based rank selection is

calculated as

Csvd (N,L) = 2NL2 + L3 + L+NL, (40)
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the complexity of RI-aided initialization is calculated as

Cinit (N,K,Ka, L, Lr, Ua) = Camp (N,K,Lr, Ua) + Cls (N,Ka, L− Lr) , (41)

and the complexity of BiG-AMP-based JCSE is calculated as

Cjcse (N,Ka, L, U) = U (NKa +KaL+NL) . (42)

Here, Lr is the number of consumed symbol durations for transmitting the RI, which is expressed

as

Lr =

⌈
Bi +Bc

log2 (M)

⌉
+ 1. (43)

Further considering the SIC procedure, the overall computational complexity of the proposed

semi-blind detection framework is in the order of O [Csic (N,K,Ka, L, Lr, Ua)] with

Csic (N,K,Ka, L, Lr, Ua, U) =
J∑
j=1

Csvd (N,L) + Cinit

(
N,K, K̂j

a, L, Lr, Ua

)
+ Cjcse

(
N, K̂j

a, L, U
)

+ Cres

(
N,
∣∣∣Âj−1∣∣∣

c
, L
)
,

(44)

where Cres(N, |Âj−1|c, L) = N |Âj−1|cL is the complexity for computing the residual received

signal, K̂j
a is the number of active devices to be estimated in the jth SIC iteration, |Âj−1|c is the

detected active devices in the (j−1)th SIC iteration, and J is the number of SIC iterations. Since

the RI-aided initialization strategy is only applicable for sourced RA, the complexity of RI-aided

initialization, i.e., Cinit (N,K,Ka, L, Lr, Ua), should be removed from (44) when unsourced RA

is considered.

VI. SOURCED RA AND UNSOURCED RA COEXISTENCE SCHEMES

For simplicity, the previous descriptions on the proposed unified transceiver design assume that

the BS provides only one of the sourced and unsourced RA services during a given time interval,

and the RA mode may switch between sourced and unsourced RA in different time intervals.

Meanwhile, the enabled RA mode is assumed to be known in advance at both the devices

and the BS. These assumptions fail to consider the more general sourced RA and unsourced

RA (SRA-URA) coexistence scenarios having unknown device access requirements. To this

end, we further develop two SRA-URA coexistence schemes, where the aforementioned unified

transceiver design can be directly applied by making minor software-level updates.
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A. Orthogonal SRA-URA Coexistence Scheme

Considering the devices with periodic uplink traffic and predictable access requirements, such

as the sensors that need to report their data periodically, we first propose an orthogonal SRA-URA

coexistence scheme. Specifically, for a specific time interval, the potential devices are divided

into two groups, i.e., sourced and unsourced RA device groups, according to their practical access

requirements. Meanwhile, the time-frequency resources reserved for grant-free RA are divided

into multiple orthogonal resource blocks (RBs), which are then allocated to the two device

groups for avoiding inter-group interferences. Here, due to the predictable uplink traffic and

access requirements, the associations between the device groups and the orthogonal RBs are pre-

configured. In this context, the received signals of sourced and unsourced RA are distinguishable

at the BS. Therefore, the proposed unified transceiver design in Sections IV and V can be

independently applied to all RBs for semi-blind data detection, and the RA mode can flexibly

switch between sourced and unsourced RA according to the served device type in different RBs.

The proposed orthogonal SRA-URA coexistence scheme is inspired by the traditional orthogonal

frequency division multiple access (OFDMA) developed in the fourth-generation (4G) Long-

Term Evolution (LTE), where the interferences among all the active devices are avoided through

orthogonal resource allocation. The key difference lies in that only the access signals from

different device groups are orthogonal, while the signals from the same device group are still

overlapped on the same RB.

B. Non-Orthogonal SRA-URA Coexistence Scheme

In practice, since a considerably number of devices may randomly access the network and

change their access requirements, the application scenario of the aforementioned orthogonal

SRA-URA coexistence scheme is still very limited. To overcome this limitation, we further

propose a non-orthogonal SRA-URA coexistence scheme, where the access signals of both

types of devices, i.e., sourced and unsourced RA devices, are directly transmitted exploiting the

same time-frequency resources without uplink resource pre-allocation or scheduling. In this case,

the received signals of sourced and unsourced RA are overlapped at the BS and unable to be

separated. By exploiting the common receive modules of sourced and unsourced RA paradigms,

i.e., lines 1-14 of Algorithm 2, the overlapped received signals can be jointly processed to obtain

the estimated data packets of active devices, while their adopted RA modes are still unavailable.

To tackle this issue, we propose to add a one-bit mode indicator at the beginning of the data
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packet, which serves as the reference information and indicates the adopted RA mode. Here, the

mode indicator takes 1 for sourced RA and 0 for unsourced RA. Since there are two types of RA

modes, only one-bit reference information is sufficient to identify which RA mode is adopted

by the active devices. At this point, with the estimated data packets and corresponding mode

indicators, the remaining steps of the proposed semi-blind detection scheme can be executed to

acquire the final estimates of the payload data bits. Specifically, for a specific detected active

device, if its RA mode is judged to be sourced RA, the corresponding estimated data packet is

processed by lines 16-22 of Algorithm 2 for permutation ambiguity elimination and estimates

update; otherwise, the estimated data packet is processed by (36) and (37) for estimates update,

as detailed in Section V and illustrated in Fig. 5. It is clear that, based on the proposed unified

transceiver design presented in Sections IV and V, the aforementioned non-orthogonal SRA-URA

coexistence scheme can be realized by making minor software-level updates.

VII. URLLC ENHANCEMENTS

According to previous discussions, the proposed unified semi-blind detection framework facil-

itates massive URLLC via simplifying the access scheduling, improving the payload efficiency,

reducing the computational complexity, and enhancing the JCSE reliability. However, these are

still not enough to satisfy the stringent latency and reliability requirements in the context of

massive devices, e.g., over 99.99999% reliability within 1 ms user plane latency for 32 bytes [27].

Indeed, it is generally difficult for a single grant-free MRA technique to satisfy these requirements

and several key enabling techniques should be further integrated to achieve the goal.

A. Multi-Carrier Deployment

The basic version of the proposed semi-blind detection framework considers the single-carrier

transmission. In practical orthogonal frequency division multiplexing (OFDM) systems, it can be

directly deployed by selecting one of the subchannels for grant-free MRA, while the remaining

subchannels are reserved for other purposes, such as control signaling exchanges. Meanwhile,

it can be easily extended to multi-carrier deployment, where the payload data bits are delivered

in parallel at multiple subcarriers for further reduced transmission latency. Specifically, for each

active device, its data packet is uniformly split into Nsc sub-blocks, where Nsc is the number

of occupied subcarriers. Then, the device ID bits, the CRC bits, and the scalar pilot symbol are

inserted in each sub-blocks to eliminate the ambiguities, as detailed in Section IV. On this basis,
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Fig. 6. Multi-carrier deployment of the proposed semi-blind detection framework.

the single-carrier version of the proposed SIC-based semi-blind detection scheme is employed to

detect the sub-blocks carried by different subcarriers. Finally, the original data packet is acquired

by stitching the detected sub-blocks together according to the device ID. However, it is not

efficient to insert the device ID bits in all the sub-blocks, which significantly degrades the payload

efficiency. The authors in [18] have revealed that the subchannels across different subcarriers

generally have a common sparsity pattern in the angular domain. Meanwhile, the AoAs of

different devices are usually distinguishable. Considering this characteristic, we propose a more

efficient deployment for the improved payload efficiency, where only one sub-block is selected to

carry the device ID bits to eliminate the permutation ambiguity of the corresponding subchannels,

as depicted in Fig. 6. While the permutation ambiguities of the remaining subchannels are

resolved by leveraging the fact that the subchannels having a common angular-domain sparsity

pattern belong to the same active device. This can be realized by various clustering algorithms,

such as K-means algorithm in [37]. Based on the above descriptions, the complexity of the

multi-carrier deployment of the proposed detection framework is calculated as

Cmc (N,K,Ka, L, Lr, Ua, U,Nsc) = Csic (N,K,Ka, L1, Lr, Ua, U)

+ (Nsc − 1) [Csvd (N,L2) + Cjcse (N,Ka, L2, U)] ,
(45)

where Lsc = (L− Lr)/Nsc is the payload signal length at each subcarrier, L1 = Lsc + Lr is the

overall signal length of the first subcarrier, L2 = Lsc + Lr − Li is the overall signal length of

the remaining subcarriers, and Li is the signal length for transmitting the device ID bits.
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Fig. 7. The flexible frame structure introduced in 5G NR, where different SCSs affects the slot duration and TTI.

B. Flexible Frame Structure

In addition to payload efficiency, the transmission time interval (TTI) also plays an important

role in contributing to the transmission latency [27]. Hence, reducing TTI is another key to

satisfying the ultra-low user plane latency of massive URLLC. In the 4G LTE, the subcarrier

spacing (SCS) is fixed at 15 kHz and each TTI contains 14 OFDM symbols, leading to a

TTI (equals to two slots) of 1ms. This is only the transmission time on the air interface. The

overall user plane latency would be much larger than 1 ms by further considering other delay

components. Therefore, the 5G New Radio (NR) has introduced a more flexible frame structure,

where the TTI can be shortened by using the scalable SCS [38]. Specifically, each frame with

10 ms consists of 10 subframes and the number of slots within a certain subframe depends on

the SCS, as illustrated in Fig. 7. Furthermore, each slot is composed of 14 OFDM symbols. By

using different SCSs in 5G NR, different slot durations and TTIs are configurable. For example,

15 kHz SCS with 14 symbols spanning the entire 1 ms subframe corresponds to the LTE’s

configuration. While at 240 kHz SCS, 14 symbols are squeezed into a mini-slot with 62.5 µs,

thus significantly reducing the transmission latency.

C. Concurrent Access Mechanism

By reducing the transmission latency, the aforementioned multi-carrier deployment and flexible

frame structure also create more retransmission opportunities within a target latency. As a

result, various hybrid automatic repeat request (HARQ) transmission schemes, including re-

active HARQ, K-repetition HARQ, and proactive HARQ, can be incorporated into grant-free

MRA for further enhanced reliability [27]. However, the number of retransmission times is

still very limited due to the stringent latency requirement. To overcome this limitation, we
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further propose a concurrent access mechanism in this paper, which resorts to the relatively

richer frequency resource for diversity gain. Specifically, the whole bandwidth is divided into

multiple independent sub-bands. Moreover, the same payload data is repeatedly delivered in

these sub-bands, where the proposed semi-blind detection framework is employed for each

sub-band. In this context, the detection reliability could be dramatically improved due to the

frequency diversity. More specifically, although an active device may be missed in a specific

sub-band, it can be successfully detected in other sub-bands with a high probability. The overall

computational complexity of the URLLC-enhanced semi-blind detection framework is in the

order of O [NbCmc (N,K,Ka, L, Lr, Ua, U,Nsc)], where Nb is the number of sub-bands.

D. Adaptive Transmit Power Control

In the proposed semi-blind detection framework, the corresponding whole payload data packet

would be lost if an active device is not successfully detected, i.e., miss detection. On the other

hand, all the active devices have an identical transmit power. Due to the severe path loss, the

active devices located in the cell edge generally suffer from a far smaller received SNR than

those in the cell center. This leads to a high miss detection probability of active devices in the

cell edge and becomes a major limiting factor for improving the data detection reliability [13].

To tackle this issue, we propose an adaptive transmit power control (ATPC), where the transmit

power of the kth device is given as Pk = Pmaxd
α̃
k/d

α̃
max. Here, Pmax is the maximum transmit

power, dk is the distance between the kth device and the BS, α̃ is the path loss decay exponent,

and dmax is the cell radius. In this context, all the active devices will have a similar received

SNR at the BS, which significantly improves the data detection reliability by reducing the miss

detection probability.

VIII. NUMERICAL RESULTS

This section conducts exhaustive Monte-Carlo simulations to assess the performance of the

proposed unified semi-blind detection framework. We consider a grant-free massive URLLC

scenario in massive MIMO systems, where a BS equipped with an N -antenna ULA is employed

to serve K single-antenna devices. The devices are uniformly distributed in the BS’s coverage and

only Ka out of the total K devices are active within any given time interval. The massive MIMO

channels are generated as in (3). Moreover, considering the perfect synchronization between

different devices, we further assume the device activity and the massive MIMO channels remain
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TABLE I: Simulation Parameters [17]

Parameter Value

Number of potential devices K 500

Number of BS antennas N 512

Number of payload data bits Bd 100

Number of CRC bits Bc 8

Generator polynomial of CRC pc x8 + x7 + x6 + x4 + x2 + 1

Modulation order M 2

Carrier frequency 3.9 GHz

System bandwidth 400 MHz

Number of MPCs P U (P ; 31, 61)

Angular spread in degree 10◦

Complex gain of the MPCs βk,p CN (βk,p; 0, 1)

Maximum transmit power Pmax 35 dBm

Background noise power -174 dBm/Hz

Number of SIC iterations J 3

Number of BiG-AMP iterations U 500

Termination threshold εamp 10−5

Termination threshold εsic 10−5

Device-to-BS distance dk in km U (dk; 0.1, 1)

Path loss in dB at the distance dk 128.1 + 37.6log10 (dk)

unchanged during the considered transmission duration. The assumed simulation parameters are

provided in Table I unless otherwise specified. According to the practical access requirements,

the system can flexibly switch to either sourced or unsourced RA mode, where the proposed

unified transceiver design detailed in Sections IV and V is adopted. Here, we first focus on

the basic version of the proposed semi-blind detection framework, then the effectiveness of the

URLLC-enhanced version is further verified. All simulation results are obtained by averaging

over 10000 independent channel realizations.

A. Performance of Sourced RA

For sourced RA, the state-of-the-art non-orthogonal pilot-based coherent detection framework

detailed in Section III-A is compared as the benchmark. Particularly, based on the angular-domain

received pilot signal, the advanced generalized MMV-AMP algorithm is employed for joint ADD

and CE, as in [17]. The length of non-orthogonal pilot sequence in the baseline scheme is set
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Fig. 8. Activity detection performance comparison of the traditional non-orthogonal pilot-based coherent detection

framework and the proposed semi-blind detection framework under different numbers of BS antennas N : (a) AER

performance; (b) Miss detection probability; (c) False alarm probability.

to Lp = Lr for comparison fairness. For performance evaluation, we consider the activity error

rate (AER) of ADD and the bit error rate (BER) of data detection, which are defined as

AER =

∣∣∣A− Â∣∣∣
c

+
∣∣∣Â − A∣∣∣

c

K
, (46)

BER =

∥∥∥[B]A∩Â,Bd − [B̂]A∩Â,Bd

∥∥∥
0

+Bd

∣∣∣A− Â∣∣∣
c

KaBd

, (47)

respectively. Here, the set Bd = {Bi +Bc + 1, · · · , B} with |Bd|c = Bd denotes the column

indexes corresponding to the payload data bits in the binary data matrix B. The AER takes both

miss detection and false alarm into account, as expressed in the numerator of (46). The BER

also consists of two parts: the number of error bits due to the failure of symbol detection and

the number of bits that are lost due to the miss detection, cf. the numerator of (47).

In Figs. 8 and 9, we first compare the sourced RA performances of the conventional non-

orthogonal pilot-based coherent detection framework and the proposed semi-blind detection

framework. To validate the most fundamental superiority of the proposed detection framework,

the SIC procedure is disabled to exclude the performance gain provided by SIC. Meanwhile,

both detection frameworks occupy the same number of time-frequency resources for comparison

fairness. Meanwhile, both detection frameworks occupy the same number of time-frequency

resources for comparison fairness. As can be observed, the AER and BER performances of all

the considered schemes degrade as the number of active devices increases. This is because a

larger number of active devices indicates severer inter-device interferences and a larger number of

unknown variables to be estimated. Note that only the devices whose estimated data packet passes
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Fig. 9. Data detection performance comparison of the traditional non-orthogonal pilot-based coherent detection

framework and the proposed semi-blind detection framework under different numbers of BS antennas N : (a) Overall

BER; (b) Symbol detection error rate.

the CRC will be identified as the active devices. Therefore, in the proposed semi-blind detection

framework, the miss detection probability is generally larger than the false alarm probability.

Meanwhile, the proposed semi-blind detection framework achieves much better AER and BER

performance than the baseline scheme. This verifies the superiority of the proposed detection

framework in combating inter-device interferences when the same number of physical resources

is consumed for grant-free MRA. As for the baseline scheme, the length of non-orthogonal

pilot sequence is too short to realize satisfactory ADD and CE performance, which leads to an

inaccurate signal matrix estimate in (6) and becomes the major limiting factor of the reliable

data detection. The performance of the baseline scheme can be improved by increasing the

pilot length, but the payload efficiency would be significantly degraded, especially for massive

URLLC with short data packets. While for the proposed semi-blind detection framework, the

channel and signal matrices are jointly estimated via the advanced BiG-AMP algorithm, which

does not rely heavily on the length of pilot sequence, thus reaps a better performance. Besides,

the sourced RA performance of both detection frameworks becomes better as the number of

BS antennas increases. This is because a larger number of BS antennas indicates the enhanced

angular-domain sparsity of the MRA channel matrix, which leads to the improved ADD and CE

performance in the pilot phase. In this context, a more accurate initialization for JCSE is available

and the BiG-AMP algorithm will converge to the global optimum with a higher probability and
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Fig. 10. Sourced RA performance of the proposed semi-blind detection framework under different numbers of SIC

iterations J and initialization strategies.: (a) AER performance; (b) BER performance.
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Fig. 11. Convergence of the proposed BiG-AMP-based JCSE algorithm and the proposed SIC-based semi-blind

detection scheme, where Ka = 80 is considered: (a) BiG-AMP iteration; (b) SIC iteration.

a faster speed. On the other hand, more spatial observations are available by equipping more

antennas at the BS, which further improves the JCSE performance. Indeed, the BS must have

a sufficient number of measurement samples, i.e., N � Ka, to avoid over-fitting, thus allowing

more flexible and richer channel matrix estimates [39], [40]. Therefore, we conclude that the

massive MIMO shows great benefits in grant-free MRA and makes the semi-blind detection

framework practical.
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Fig. 12. Sourced RA performance comparison of the traditional coherent detection framework and the proposed semi-

blind detection framework under different modulation orders M : (a) AER performance; (b) BER performance.

In Fig. 10, we further investigate the effectiveness of the proposed SIC-based semi-blind

detection scheme and the RI-aided initialization strategy. Note that the SIC procedure is disabled

when the number of SIC iterations is set to J = 1. It is clear that the proposed semi-blind

detection framework reaps better AER and BER performance as the number of SIC iterations

increases, and only J = 3 iterations are sufficient to converge. This is due to the fact that the

reliable BiG-AMP-based JCSE makes the error propagation of SIC controllable. Meanwhile, as

the SIC iterations proceed, the signal components associated with the reliably detected active

devices, i.e., whose detected device ID bits passes the CRC, are removed from the received

signal, which mitigates the inter-device interference in the following SIC iterations. On this

basis, the activity and the payload data of residual active devices can be detected with improved

reliability. Moreover, the proposed RI-aided initialization strategy outperforms the traditional

random initialization strategy. This demonstrates that the traditional BiG-AMP algorithm using

the traditional random initialization is easy to stuck in the local extremum, while the proposed

RI-aided initialization can guarantee the algorithm to converge to the global optimum.

Fig. 11 validates the convergence of the proposed BiG-AMP-based JCSE algorithm and the

proposed SIC-based semi-blind detection scheme, where only U = 100 and J = 3 are sufficient

to converge. Fig. 12 compares the sourced RA performances of the traditional non-orthogonal

pilot-based coherent detection framework and the proposed semi-blind detection framework,

where N = 128 and different modulation orders are considered. It is clear that the AER and
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Fig. 13. Sourced RA performance of the proposed semi-blind detection framework for different numbers of CRC

bits Bc: (a) AER performance; (b) BER performance.

BER performances of both detection frameworks degrade when a higher modulation order is

adopted. This is because a higher modulation order leads to smaller Euclidean distances among

the constellations and a worse RI-aided initialization. However, the proposed detection framework

still achieves a much better performance than the traditional coherent detection framework

dedicated to sourced RA.

In Fig. 13, the AER and BER performances of the proposed semi-blind detection framework

for different numbers of CRC bits Bc are also studied. In the simulations, Bc ∈ [4, 8, 16] are

investigated, where the corresponding Lp = Lr with Lr ∈ [14, 18] are considered in the baseline

scheme for comparison fairness. The relationship between Bc and Lr is provided in (43). The

generator polynomials of 4-bit and 16-bit CRC codes are given as x4 + x3 + x2 + x + 1 and

x16 + x15 + x2 + 1, respectively. Meanwhile, the payload efficiency of the proposed semi-blind

detection framework is defined as

PEsbd =
Bd

dB/log2 (M)e+ 1
, (48)

that is, the number of payload data bits to the number of consumed symbol durations for

transmission. As shown in the Fig. 13 and (48), a larger Bc improves both AER and BER

performance, but at the expense of payload efficiency. Meanwhile, the performance gain is

limited when Bc > 8. With the limited number of CRC bits, the generator polynomial can be

optimized to fulfill a specified error detection performance [41].
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Fig. 14. The user-plane latency comparison of the traditional coherent detection framework, the basic semi-blind

detection framework, and the URLLC-enhanced semi-blind detection framework, where N = 512, Ka = 50, and

Bd = 256 are considered: (a) Transmission latency; (b) Processing latency.
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Fig. 15. Data detection performance comparison of the basic version and the URLLC-enhanced version of the

proposed semi-blind detection framework for N = 512 and Bd = 256: (a) BER under different numbers of active

devices; (b) BER under different maximum transmit powers with Ka = 50.

The aforementioned simulation results focus the basic version of the proposed semi-blind

detection framework, which is still not enough to satisfy the stringent latency and reliability

requirements of massive URLLC. Therefore, the enabling techniques introduced in Section VII

should be further integrated to obtain a URLLC-enhanced version of the proposed detection

framework. Fig. 14 compares the user-plane latency of the traditional non-orthogonal pilot-
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based coherent detection for sourced RA, the basic semi-blind detection framework, and the

URLLC-enhanced semi-blind detection framework. The user plane latency mainly consists of

the transmission latency, propagation latency, and receive processing latency. The propagation

latency only depends on the distance between the device and the BS, which is at a maximum

of 3.3 µs for a cell radius of 1 km. Therefore, the propagation latency is identical for all

the considered schemes. The processing latency generally depends on the computational com-

plexity of the receive algorithm and the computing power of the processing unit. Since the

available computing resources are identical for all the considered schemes, we mainly analyze

the processing latency in terms of the computational complexity, which is quantified by the

number of required complex multiplications. As can be observed, by exploiting the multi-

carrier deployment, the proposed URLLC-enhanced semi-blind detection framework achieves a

significantly reduced transmission latency than its counterparts. Moreover, the basic semi-blind

detection framework has a slightly higher computational complexity than the non-orthogonal

pilot-based coherent detection. Meanwhile, for the URLLC-enhanced version, the complexity

will further increase by incorporating the concurrent access mechanism. However, it should be

noted that the complexities of the all considered schemes are in the same order of magnitudes.

Considering the rapid development of high-performance processing units and the rich computing

resources at the BS, the increased processing latency is expected to be very minor. Since the

traditional coherent detection framework and the proposed basic semi-blind detection framework

occupy the same number of time-frequency resources, they have an identical transmission latency.

Hence, the 1 ms user-plane latency can be satisfied as long as the processing latency is less

than 0.4 ms. Fig. 15 verifies the effectiveness of the proposed concurrent access mechanism and

ATPC in improving data detection reliability. It is observed that the URLLC-enhanced version

effectively satisfy the 99.99999% reliability requirement when Ka ≤ 65. Moreover, increasing

the maximum transmit power further improves the detection reliability.

B. Performance of Unsourced RA

For unsourced RA, we employ the most widely studied common codebook-based non-coherent

detection framework as the benchmark, which was briefly introduced in Section III-B and

detailed in [19]. Moreover, the coupled CS-based coding scheme is adopted for reducing the

computational complexity, where the concatenated coding is utilized to couple an outer tree code

and an inner CS code [22]. Specifically, for each active device, its payload data of B = 180 bits is
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Fig. 16. PUPE performance comparison of the proposed semi-blind detection framework and the conventional

common codebook-based non-coherent detection framework.
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Fig. 17. The user-plane latency comparison of the traditional non-coherent detection framework, the basic semi-

blind detection framework, and the URLLC-enhanced semi-blind detection framework: (a) Transmission latency;

(b) Processing latency.

non-uniformly divided into Q = 32 fragments and the length of the qth fragment is bq satisfying∑Q
q=1 bq = B. To realize the coupling of different fragments, aq redundant parity check bits are

added to the end of each fragment to form a sub-block with a fixed-length of B̃ = bq +aq = 12.

Considering the typical simulation setup in [22], the parity profile a = [a1, a2, · · · , aQ] is set to

a = [0, 6, · · · , 6, 12, 12, 12]. Subsequently, the inner encoder maps each sub-block to a codeword

of a common codebook with size L× 2B̃, which will be transmitted over L successive symbol

durations. Due to the absence of device identification, i.e., the permutation ambiguity is ignored,
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the widely adopted RA performance metrics including AER and BER are not available. In this

paper, the unsourced RA performance is evaluated in terms of per-user probability of error

(PUPE), defined as the average fraction of transmitted messages not contained in the detected

message list, i.e.,

PUPE =
Ka −

∣∣∣M−M̂∣∣∣
c

Ka

, (49)

where M̂ =
{

[B̂]k,Bd|k ∈ [Ka]
}

and M = {[B]k,Bd |k ∈ A} are the detected message list and

the transmitted message list, respectively.

Fig. 16 examines the unsourced RA performance of the proposed semi-blind detection frame-

work and the traditional common codebook-based non-coherent detection framework, where the

codeword lengths L ∈ [45, 50, 55] are considered and the corresponding payload efficiencies are

indicated. The payload efficiency is defined as the number of transmitted payload data bits to

the total number of consumed symbol durations, which turns out to be

PEncd =
Bd

QL
, (50)

for the traditional common codebook-based non-coherent detection and

PEsbd =
Bd

dB/log2 (M)e+ 1
, (51)

for the proposed semi-blind detection. As shown in Fig. 16, the proposed semi-blind detection

framework significantly outperforms the baseline scheme and offers a much better payload

efficiency. This is because, in the baseline scheme, a large proportion of time resources are

consumed to transmit the redundant parity check bits to guarantee the reliable stitching of the

message fragments. Indeed, even under a very low payload efficiency, e.g., PEncd = 10.23%,

the corresponding number of measurements, i.e., the codeword length L, is too small to achieve

the reliable CS-based inner decoding for the baseline scheme. Although the performance can be

further improved by increasing the codeword length, the payload efficiency would continue to

degrade, as in (50). While for the proposed detection framework, only a small proportion of time

resources are consumed to transmit a Bc-bit CRC code and a scalar pilot symbol, leading to a

payload efficiency over 90%. Therefore, compared to the baseline scheme, the proposed semi-

blind detection framework has a better tradeoff between the transmission latency and the detection

reliability. Fig. 17 compares the user-plane latencies of the traditional non-coherent detection

framework, the basic semi-blind detection framework, and the URLLC-enhanced semi-blind
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detection framework. Here, the transmission latency of the traditional non-coherent detection

framework is computed as
dncd =

QL

Nscs

, (52)

where Nscs is the subcarrier spacing. While for the proposed unified detection framework, the

transmission latency for unsourced RA is given as

dsbd =
d(Bd +Bc)/log2(M)e+ 1

NscsNsc

. (53)

The subcarrier spacing is set to 240 kHz for URLLC-enhanced scheme and 15 kHz for other

schemes. Compared with the traditional non-coherent detection framework, the proposed unified

semi-blind detection framework significantly reduces the transmission latency and computational

complexity thus leading to a much smaller user-plane latency.

IX. CONCLUSION

This paper has proposed a unified semi-blind detection framework for grant-free sourced and

unsourced RA, which effectively facilitates the massive URLLC in massive MIMO systems.

Under this framework, the system can flexibly switch to either sourced or unsourced RA mode

according to the practical heterogeneous access requirements, making the network configuration

more efficient and economical. By leveraging the large spatial degrees-of-freedom offered by

the massive MIMO BS, we have developed a BiG-AMP-based JCSE algorithm to jointly infer

the channel and signal matrices, where a rank selection approach and a RI-aided initialization

strategy are incorporated for the reduction of computational complexity and the improvement of

estimation reliability, respectively. Moreover, a small amount of RI is embedded in the access

signal to eliminate the inherent phase and permutation ambiguities and the SIC technique has

been introduced for further enhanced detection reliability. Besides, the four enabling techniques

have also been integrated to satisfy the stringent latency and reliability requirements of massive

URLLC. Numerical results have revealed that the proposed semi-blind detection framework

offers a much better scalability-latency-reliability tradeoff than its counterparts dedicated to

either sourced or unsourced RA, and thus it is more attractive for supporting massive URLLC.
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