
This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

Asynchronous Hybrid Reinforcement Learning for
Latency and Reliability Optimization in the
Metaverse over Wireless Communications

Wenhan Yu, Terence Jie Chua, Jun Zhao

Abstract—Technology advancements in wireless communica-
tions and high-performance Extended Reality (XR) have em-
powered the developments of the Metaverse. The demand for the
Metaverse applications and hence, real-time digital twinning of
real-world scenes is increasing. Nevertheless, the replication of 2D
physical world images into 3D virtual objects is computationally
intensive and requires computation offloading. The disparity in
transmitted object dimension (2D as opposed to 3D) leads to
asymmetric data sizes in uplink (UL) and downlink (DL). To
ensure the reliability and low latency of the system, we consider
an asynchronous joint UL-DL scenario where in the UL stage,
the smaller data size of the physical world images captured by
multiple extended reality users (XUs) will be uploaded to the
Metaverse Console (MC) to be construed and rendered. In the
DL stage, the larger-size 3D virtual objects need to be transmitted
back to the XUs. We design a novel multi-agent reinforcement
learning algorithm structure, namely Asynchronous Actors Hy-
brid Critic (AAHC), to optimize the decisions pertaining to com-
putation offloading and channel assignment in the UL stage and
optimize the DL transmission power in the DL stage. Extensive
experiments demonstrate that compared to proposed baselines,
AAHC obtains better solutions with satisfactory training time.

Index Terms—Reinforcement learning, resource allocation,
latency, reliability, wireless communications, Metaverse.

I. INTRODUCTION

A. Background

The Metaverse has brought about a revolution in the Internet
space, and is an important element of the Web 3.0 [1], [2].
The introduction of the Metaverse opened doors to not only
interactive socialization through Extended Reality (XR), but
also through its highly connected virtual world and ecosystem.
XR is one of the highlights of the Metaverse [1]. With the
extensive research and development in XR technologies [2],
the once-so-expensive equipment has become affordable for
both professionals and ordinary people, entering our daily
life. The increasing accessibility of XR equipment drives the
penetration of XR technologies, and it is postulated to be a
key feature in multi-player games, work-place meetings, and
potentially, simulations for scientific research and engineering.
The crux of XR is to integrate virtual world scenes with
physical world environments. This integrated virtual-physical
experience not only promotes greater interactivity for the users
with virtual scenes, but also paints an illustrative experience
for the users.

The authors are all with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore. Emails:
wenhan002@e.ntu.edu.sg, terencej001@e.ntu.edu.sg, JunZhao@ntu.edu.sg
Corresponding author: Jun Zhao

XR Computation Offloading. The real-time virtual en-
tity transformation with XR technologies is undoubtedly a
highlight application of the Metaverse. We can think of these
virtual entities as a merger of our physical world with the
virtual world [3]. Each physical object in the real world is
3-dimensional (3D), and it has to retain its 3D form when
translated into the virtual world. Hence, scenes of real-world
objects have to be converted into 3D virtual objects. This
replication of physical world objects into the virtual space
is also known as digital twinning, which is a key underlying
component of XR [3]. In recent years, the real-time translation
and rendering of videos and images to 3D objects have been
thoroughly studied [4], which enables the bridge between
our physical world and the Metaverse. An example is the
physical world translation technique, NeuralRecon, proposed
by Sun et al. [5], which obtains remarkable results in real-
time 3D construction from videos. Meng et al. [6] addressed
the synchronization between physical objects and the digital
models by optimizing the sampling rate and the prediction
horizon. Nevertheless, despite rapid development in XR tech-
nologies, even existing state-of-the-art user devices [7] do not
have sufficient computing power to render an XR scenario.
An alternative, yet feasible method to powering XR is to
consider mobile edge computation offloading (MECO) [8],
which needs us to thoroughly study this system over wireless
communications.

xURLLC. In the case of XR computation offloading, the
real-world scenes can first be captured by the user device
and uploaded to an edge console. The console responsible for
translating physical world scenes into virtual scenes (3D) will
handle the translation and rendering task and subsequently
send the rendered XR scenes back to the user device. The
2D to 3D translation and rendering can lead to much data
increment in the downlink (DL) stage. For example, the DL
data size can be tens of times the uplink (UL) data size [9].
Therefore, it could be difficult for the DL data to be transmitted
back to users in the DL stage with an acceptable delay,
which causes transmission failures, and the failures reflect
the unreliability of the system. For example, an unexpectedly
large UL transmission data would result in orders of magnitude
larger DL data size, which may take an astronomical amount
of time for DL transmission. To enable truly immersive XR
applications, the users’ seamless experience and low latency
need to be guaranteed. Therefore, we need to consider the
UL-DL transmission as a whole to fulfill the reliability of the
system and different Key Performance Indicators (KPIs) in

1

ar
X

iv
:2

21
2.

14
74

9v
2

 [
cs

.L
G

]
 9

 M
ar

 2
02

3

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

different transmission stages.

B. Scenario
To address the above issue, this paper considers a novel

interactive and asymmetric joint UL-DL scenario. Multiple
XR users (XUs) are in a localized indoor area, and each user
has physical world scenes (data) to be uploaded to the only
Metaverse Console (MC) in the building for the generation of
a virtual replica (digital twin). The UL and DL stages are taken
in turn. In each UL stage, XUs will upload their data (scenes)
to the MC with fixed transmission power decided by their
devices within a fixed uplink transmission time interval (UTTI)
(in 6G, this is expected to be on the order of milliseconds [10])
to be rendered and transformed into a 3D virtual digital twin.
The MC determines which XU will perform computation
offloading, and establishes an appropriate MC-XU channel
allocation in the UL stage. The XUs that are not allocated
to any channel will be idle for this transmission and wait for
later transmission intervals to upload their data. In the DL
stage, the MC will transfer the generated data to XUs in a
limited downlink transmission time interval (DTTI), and the
MC arranges power selection for the DL transmission to each
XU. The main reason for having the slotted structure with
fixed UTTI and limited DTTI is to ensure the reliability of the
whole system so that the transmission delay for each iteration
(one iteration contains one UL and one DL transmission) does
not take an astronomical amount of time, such that it results
in a backlog of subsequent data to be transmitted. In the
context of current 3D real-time transmissions, only keyframes
are used for generation [5] to lessen the computation overhead.
In other words, these keyframes are very important and we
need to ensure that they will be transmitted to the MC when
embedding MECO. Therefore, to guarantee reliability, if the
DL delivery of a packet of data is not completed within the
limit of the DTTI, the DL transmission is deemed as a failure
and the packet will need to be re-transmitted. Therefore, the
UL rate should not always be as fast as possible, and we are
required to seek a self-adaptive approach for considering the
UL-DL stages in tandem.

C. Methodology
Due to the asynchronous multi-stage, discrete-continuous

mixed action space (decisions on computation offloading,
channel assignment, and power allocation) nature of our
problem setting, we propose a novel deep Reinforcement
Learning (RL) structure, namely Asynchronous Actors Hybrid
Critic (AAHC), in quest of a near-optimal solution. We design
two interactive RL Agents to optimize the two transmission
stages. As our problem is sequential and divided into stages,
we decompose the reward into stage-specific rewards and an
overarching global reward. We introduce the AAHC model to
our system, which is inspired by the renowned Hybrid Reward
Architecture [11], and use the state-of-art DRL algorithm,
Proximal Policy Optimization (PPO) [12], as the backbone.

D. Challenges and motivation
We next explain our motivations regarding our scenarios

and methodologies from the following aspects.

6G xURLLC in the Metaverse. Advancements in 6G wire-
less communications [13] and high-performance XR technol-
ogy [14] have empowered the developments of the Metaverse,
but new challenges arise within. Researchers have made great
efforts in the 5G URLLC applications [15]. However, they
do not study diverse mission-critical applications involving
XR or within the Metaverse. To power mission-critical real-
time applications through the seamless digital twinning and
projection of complex and detailed real-world entities onto
the Metaverse, a reliable and ultra-low latency communication
system is required. Furthermore, to cater to an increasingly
“virtual” population in the Metaverse, one has to consider a
more reliable, efficient, and comprehensive 6G xURLLC com-
munication system. Therefore, we design a problem setting
with several XUs in which we optimize the multi-user XR
wireless transmission problem in the Metaverse. Furthermore,
running out of battery in the XR device (often battery-limited)
can also be somehow understood as unreliable Metaverse
experiences, from the perspective of the human user using
the XR device. Hence, incorporating energy consumption into
our optimization can help reliable Metaverse experiences by
human users. Besides, the Metaverse is a gigantic digital
world with immense computational devices, which can lead
to serious energy waste and pollution. The “Green Meta-
verse Networking” is first proposed by Zhang et al. [16]
to address the necessities of energy efficiencies and energy
consumption optimizations. Lee et al. [3] also emphasize that
green computing must be highly regarded, as the waste and
pollution strongly influence the attitudes of people towards the
Metaverse. Based on these, the optimization in our paper also
includes energy consumption.

Joint Optimization in MECO. Three important variables
in improving the MECO efficiency are decision to compu-
tation offloading, channel allocation, and power selection.
In our proposed scenario, the first two are optimized in the
UL stage. The decision on whether to offload computation
refers to which XUs will do computation offloading, and the
channel allocation refers to the assignment of each XU to a
channel for communicating with the Metaverse Console (MC).
Appropriate channel allocation is important in creating an
efficient computation offloading system. If an XU is allocated
to a channel with too many other XUs assigned, there will
be great interference, resulting in an overall inefficient data
transfer [17]. The power selection in DL refers to the selection
of power for each user, to perform the data DL transmission.
An inappropriate allocation of power can increase interference
between users, which is detrimental to data transfer efficiency.
Hence, it is paramount for us to jointly optimize these three
variables in our work.

Asymmetric multi-process to Asynchronous MDP. In
existing computation offloading works as discussed in [8],
[18], the data sizes of downloaded scenes are often taken to be
similar to the data sizes of scenes to be uploaded. These works
mentioned above do not consider the asymmetric data size
scenario. In such circumstances, the downloaded, rendered 3D
virtual objects can possibly be orders of magnitude larger than
the uploaded scenes. This difference in data sizes introduces
an issue of sensitivity, where a slight change in the UL

2

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

transmission size may possibly induce a dramatic change in
the DL data size. Also, the UL and DL are connected and
influenced by each other. In this scenario, the power allocation
in the DL can only be obtained based on the actions in UL.
Thus, the orchestration of the UL and DL transmissions has
to be considered in tandem.

Furthermore, the consideration of an asymmetric multi-
process transmission and the existence of two agents with
different states and actions lead to a new challenge: Asyn-
chronous Markov Decision Process (AMDP). In traditional
MDP, the transition in each slot can be formulated as
S1

1 × A1
1 → R1

1, S
2
1 (here the superscript and subscript

denote the time step and agent index). However, in a two-
agent AMDP, the transition has to be represented as such:
S1

1×A1
1×R1

1×S1
2×A1

2×R1
2 → S2

1 , R
1
g , which means the state

of Agent2 is dependent on and influenced by Agent1, and
it’s not suitable for them to perform actions simultaneously.
Correspondingly, in this scenario, Agent1 is responsible for
optimizing the DCOs and channel access, and Agent2 should
arrange the downlink power allocation based on the DCOs
and channel arrangement. And they are influenced by each
other through the relationship between UL and DL data sizes.
Moreover, we set the global reward Rg as some important
metrics like the transmission failure flag can only be obtained
after all agents have performed actions in the iteration, and
this global reward is related to both agents. Thus, we give
it to both agents to offer them a more specific view of the
global process for the networks. This complex asynchronous
setting serves as the motivation for us to develop an entirely
new approach reinforcement learning approach.

Multiple Objectives to Hybrid reward RL. In our work,
we consider a complex problem scenario in which we take
into account multiple processes and high-dimensional objec-
tives. Traditional RL approaches struggle with handling such
complex problems as they lack the ability to handle each
underlying objective on a minuscule scale. Therefore, we
proposed and designed a hybrid reward architecture that allows
us to achieve optimality in an overarching objective while
ensuring near-optimality in the underlying objectives.

In this paper, we propose a novel multi-agent hybrid rein-
forcement learning approach to solve the joint optimization
problem. Our contributions can be summarized as:
• xURLLC in the Metaverse. We formulated a novel joint

optimization problem in a multi-process xURLLC system
on the Metaverse, and proposed a feasible and practical
RL-based solution to tackle the problem. The UL and DL
are considered in tandem to ensure the reliability and low
latency of the system.

• Joint optimization in multi-process transmissions. We
conducted the joint optimization of decisions on computa-
tion offloading, channel assignment, and power allocation
in the UL-DL transmissions.

• Asynchronous MDP. We first studied a novel AMDP
wireless communication problem, and devised a new RL
structure to solve it.

• Asymmetric Agents. We adopted two agents with sepa-
rate local objectives (one discrete and the other continu-
ous) and an overarching global objective.

• Hybrid Critic PPO. We proposed a novel approach that
uses a hybrid Critic to guide the training and convergence
of both agents. Our approach achieves the total delay, re-
transmission percentage, and energy cost improvements
of 65.48%, 90.67%, 56.82% in the most complicated sce-
nario compared to iterative RL [19].

The rest of this paper is organized as follows. (i) We cover
related literature to this piece of work and emphasize the
novelty of our work in Section II. (ii) The system model
and problem formulation are then introduced in Section III.
(iii) In Section IV, we explain how the RL settings are
crafted for our proposed environment. (iv) The details of our
algorithm and model implementation are then expounded in
Section V. (v) Next, we compare our proposed approach with
baseline models and provide in-depth analyses of the results in
Section VI. (vi) Finally, we provide a summary and conclusion
to our work in Section VII.

II. RELATED WORK

This paper studies joint optimization in an ultra-reliable and
low-latency MECO communication system with a reinforce-
ment learning approach. Therefore, the related work contains
the aspects of (i) mobile edge URLLC that is relevant to
our scenario, (ii) joint optimization with RL as we jointly
optimize the decisions on computation offloading, channel
assignment, and power allocation, (iii) multi-agent RL as we
use multiple RL agents in different transmission stages, and
(iv) hybrid reward RL as the objectives in our system are high-
dimensional and complicated.

A. Mobile edge ultra-reliable and low latency communication

Several works have utilized traditional convex optimization
tools [20], game theory [21], reinforcement learning [22],
distributed learning [23] approaches to tackle the channel
allocation and power selection problem in MECO studies.
However, most of these works consider only single-stage data
transmission scenarios: optimizing either the uplink (UL) or
DL process. While it may seem that the UL and DL transmis-
sion processes are two separate processes, it is important to
consider the concurrent optimization of both stages. Besides,
many works have studied the applications of 5G URLLC on
MECO in enhancing the performance of wireless communica-
tion systems applications [24], [25]. However, none of them
considers the scenarios and KPIs in asynchronous multiple
transmission processes in XR or Metaverse. What sets this
work apart from those discussed above is that we consider a
multi-stage scenario with deep reinforcement learning method,
handling both UL and DL transmission which would require
two different agents in a realistic scenario.

B. Joint optimization with reinforcement learning

Recently, there are also some excellent works solving joint
optimization problems with RL. Guo et al. [26] solved the
handover control and power allocation joint problem using
MAPPO and obtained satisfactory results. It aggregates all
users’ actions under two stages and follows the traditional Cen-
tralized Training Decentralized Execution (CTDE) paradigm.

3

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

However, the problem they aimed to address is not multi-stage
and hence directly uses MAPPO. He et al. [27] studied joint
power allocation and channel assignment problems with RL in
NOMA system. This work models the channel assignment as
a reinforcement learning task and conducts power allocation
under the current channel assignment. This method optimizes
channel assignment and power allocation in turn, but it doesn’t
solve a time-sequential problem like the ones specified in our
work.

C. Multi-agent reinforcement learning

In our work, we employed multiple agents. However, the
widely used MARL algorithms [28], [29] are not feasible
methods to tackle our problem. These algorithms adopt the
centralized training and decentralized execution (CTDE) ap-
proach [28], [30]. Specifically, each agent involved will have
its own Critic that considers the actions of all the other
agents in a single time step. The individual agents’ Actors
will have decentralized policies and execute actions in a
decentralized fashion. However, the existing adaptations of
the conventional MARL algorithm are not suitable methods
to solve our proposed problem. Firstly, the agents under the
MARL algorithm select actions simultaneously in each time
step, and the agents’ Critics consider all actions of other agents
in each time step. Each agent’s observation space does not
efficiently take in sequential agent actions, as the observation
space of each agent will be sparse in each time step. Secondly,
the two agents in our problem are utterly distinct from each
other. In the UL stage, the user-console allocation action by
the UL agent is discrete, while the output power selection
by the DL agent is continuous. The asynchronous nature of
our system model and the asymmetric roles of our agents
make it inappropriate and impractical to adopt the existing
MARL approach, with each agent sharing information with
others by allowing the Critic to take in all states and actions
of both agents. Thus, we decompose the reward assignment
into multiple transmission stages and propose our novel model
to address such challenges. We detail and elaborate on our
algorithm in Section V.

D. Hybrid reward reinforcement learning

High-dimensional objective functions are common in com-
munication problems, as we usually need to consider multiple
factors such as energy consumption and time delay. When
using reinforcement learning to tackle such problems, it is
important to design high-dimensional objectives as smaller
components of additive rewards. This issue of using RL to
solve a high dimensional objective function was first studied
in [11]. In their work, they proposed a Hybrid Reward Ar-
chitecture (HRA) for reinforcement learning which aims to
decompose high-dimensional objective functions into several
simpler objective functions. HRA permits the discovery of
reasonably good solutions, easily.

Our proposed Hybrid Critic differs from the HRA [11] in
several aspects. Primarily, the HRA breaks the main objective
into simpler objectives, allocating each simpler objective to
different agents. Then the state-action value pair for each

TABLE I: Notations

Symbol Description
i,m, t Index of XR users, channels, and iteration/time-

step/TTI
M Channels set: {1, 2, . . . ,M}
N XR users set: {1, 2, . . . , N}
T Iteration/time-step (TTI) set: {1, 2, . . . , T}
zt = [ztn|n∈N] Decisions on computation offloading
κt = [κtn|n∈N] Channel access management
d′tn Downlink transmission delay of user n at iteration t
rtn Uplink transmission rate of user n at iteration t
r′tn Downlink transmission rate of user n at iteration t
Dt

n Data from uplink of user n at iteration t
D′t

n Data need to be transmitted in downlink of user n
at iteration t

Bt
n Left data size in the buffer of user n at iteration t

Et Energy consumption in downlink at t.
Wm Bandwidth of channel m
τu Fixed uplink transmission time interval (UTTI)
τd Downlink transmission time interval (DTTI) limit
pn Uplink power of user n
p′t, p′tn Allocated downlink power from MC to XUs
hti,m Channel gain between user n in channel m and MC

at iteration t
(σt

n,m)2, (σt
MC)2 Additive White Gaussian Noise (AWGN) parameter

of XU n in channel m at t and the MC, respectively
N t

m(κt) the set of XUs that are allocated to the channel m
at t with total number of Nt

m(κt)

agent is aggregated to produce a unified value. In our hybrid
value network, our reward is decomposed across several Critic
branches. Instead of aggregating sub-target values of the single
agent as per the HRA, our loss is aggregated across each
Critic branches for each part (UL, DL, global) to facilitate
the cooperative training of the agents, striving to achieve
their own objectives and the global objectives, together. The
HRA aims to find an optimal solution to a complex scenario
by decomposing the reward into target-specific parts. HRA
is designed for the single-agent DRL, which excludes the
possibility of us adopting it directly. Our adaption of HRA
separates the Critic into three branches, for handling the UL,
DL, and global parts, respectively.

Next, our system model will be expounded on in the
following section.

III. PROBLEM FORMULATION

We first formally describe our proposed system model and
scenario. Then, we present the communication system and give
the achievable transmission rates. Following that, we introduce
the UL and DL objectives and piece them together and present
the overall objective function of the communication model.

A. System Model

Consider the asynchronous UL-DL transmission system of
n XUs (N = {1, 2, . . . , N}) sharing a MC with m channels
(M = {1, 2, . . . ,M}) within a building. A slotted time
structure is applied by using the clock signal from the MC
for synchronization [31], and each slot (transmission time
interval (TTI)) contains two sub-intervals: uplink transmission
time interval (UTTI) and downlink transmission time interval
(DTTI). Each XU n ∈ N has its own data buffer, in which
the XU will note how much data remains to be transmitted

4

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

from the XU to the MC for digital replication. We assume
that the data sizes of the images to be transmitted can be
partitioned into subsets of any size [32]. For each UL, we
set the UTTI as τu (in ms denoting milliseconds) to transmit
data to the MC. At the start of each TTI, the MC will collect
XU’s information about the remaining data and channel gain,
and then decide which one will offload data, arranging the
channel access for them. Since the control information can
be reliably completed through the in-band channel, and the
size of control information is relatively small, we neglect
the time for this control-message transfer, and only consider
each TTI containing one UTTI and one DTTI. As we design
our scenario to have many more users as compared to MC
channels, some users may be arranged with no channel to
upload data at each slot, so as to avoid channel congestion.
And then, they need to wait to be allocated with channels to
transmit data in the following slots. We assume that the uplink
transmission powers are decided by the XUs’ devices, and
they are not optimized in this paper. Consequently, the energy
consumption in the UL stage is not considered explicitly. In
addition, it can be understood that by reducing the number of
UTTIs used to transmit the whole data, we are also reducing
UL energy consumption.

In the DL stage, the MC will select transmission power
for users assigned with a channel in the current transmission
iteration, to facilitate the data DL process. We set the limit
of the downlink transmission time interval (DTTI) as τd (in
ms). Assume that d′tn is the transmission delay of XU n in
DL at time step t, if the DL delay exceeds the τd (d′tn >
τd), we regard this circumstance as an XU’s failed attempt to
receive the DL data. If the data transmission for that round
is considered a failed attempt, the data will have to be re-
scheduled to be transmitted in the subsequent rounds.

To simplify the problem, we assume that the UL and DL
processes are carried out alternately without overlap, and we
use T = {1, 2, . . . , T} as the notation for the iterations taken
to complete the tasks. It should be noted that each iteration
contains both a UL and a DL process.

We next introduce the communication system as well as the
models of UL and DL stages, and tie together all descriptions
above. The system model is shown in Fig. 1.

B. Communication system

We adopt the Non-Orthogonal Multiple Access (NOMA)
technology for the communication model. In NOMA system,
several users can be multiplexed on one channel by the
successive interference cancellation (SIC) and superposition
coding [33]. As there are more XUs sharing fewer channels,
we apply NOMA signal interference structure for both UL and
DL transmissions, and consider the interference between XUs
on the same channel. Below we give detailed descriptions of
the achievable rates from each XU to MC in UL, and the rates
from MC to each XU in DL.

For each n ∈ N , we use ztn to denote XU n’s Decision on
Computation Offloading (DCO) at time step t. Specifically,
ztn = 1 means that XU n will offload the computation to MC
at time step t, whereas ztn = 0 means that XU n will idle at

time step t. Then we define a row vector zt = [zt1, z
t
2, . . . , z

t
N]

to represent all N XUs’ DCO at time step t. We further define
a N × T matrix Z such that the tth row is the vector zt for
t ∈ {1, 2, . . . , T}; i.e., the tth row and nth column of Z is
ztn.

We let κt = [κt1, κ
t
2, . . . , κ

t
N] be the channel access arrange-

ment, and p′t = [p′
t
1, p
′t
2, . . . , p

′t
N] be the downlink power

allocation, where κtn = m (m ∈M) means XU n is allocated
to channel m at time step t, and p′tn is the power that the MC
uses to communicate with XU n at time step t. The uplink
transmission power is p = [p1, p2, . . . , pN]. Since we do not
optimize p for the uplink, we consider p invariant with respect
to time t for simplicity (the extension to time-variant p just
involves using more complex notation).

In the NOMA system, we follow [34] to consider that the
decoders at the MC and XUs can recover the received signals
from each channel through SIC, and multiple VUs can be
multiplexed on each channel by superposition coding. The
decoding sequence follows the rule explained in [34]. To better
illustrate the decoding protocols, we define N t

m(κt) as the set
of N t

m(κt) XUs that are allocated to communicate with MC
through channel m at time slot t, where “(κt)” represents that
N t
m and N t

m are functions of κt. Specifically,

N t
m(κt) := {n ∈ N|κtn = m}, and N t

m(κt) = |N t
m(κt)|.

(1)

For the UL NOMA, we order the XUs of N t
m(κt) in the

descending order of the MC’s received signals [34] sent from
these XUs. After the above process, we denote the resulting
indices of XUs in N t

m by ū1, ū2, . . . , ūNtm , where we simplify
N t
m(κt) and N t

m(κt) as N t
m and N t

m. Then we have

pū1
|htū1,m|

2 ≥ pū2
|htū2,m|

2 ≥ . . . ≥ pūNtm |h
t
ūNtm

,m|2, (2)

where htn,m is the channel gain between XU n and the MC on
channel m at time step t (this paper considers that uplink and
downlink channel conditions are the same). Note that as each
TTI is very short, we assume that the channel gain remains
the same in each TTI (one UL plus one DL transmission), but
varies across different TTIs. The detailed setting of htn,m will
be explained in Section VI-C. According to [34], for n ∈ N t

m,
the achievable uplink rate rtn for XU n is:

rtn(zt,κt)=Wm log2

(
1+

pn|htn,m|2∑Ntm
j=ι+1 pūj |htūj ,m|2+Wm(σtMC)2

)
,

(3)

where ι satisfies ūι = n (i.e., XU n is ranked at ιth position in
N t
m according to descending order of received signals at the

MC). Wm denotes the bandwidth of channel m, and (σtMC)2 is
the power spectral density of Additive White Gaussian Noise
(AWGN) at the MC.

For the DL, we also order XUs in a descending order based
on channel-to-noise ratios, and denote the resulting indices of
XUs using channel m as d̄1, d̄2, . . . , d̄Ntm , satisfying [34]:

|ht
d̄1,m
|2

(σt
d̄1,m

)2
≥
|ht
d̄2,m
|2

(σt
d̄2,m

)2
≥ . . . ≥

|ht
d̄Ntm,m

|2

(σt
d̄Ntm,m

)2
. (4)

5

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

Indoor

NOMA

P
o

w
e

r

User 1

User 2

Agent 1

DCOs,Channel
allocation

none
1
2
3
2

Power
allocation

none
1
2
3
2

data from
users

generated
data

calculate
delay

True:
retransmit

Agent 2

Actor

Actor

CriticEnv

real time 3d
construction

Channel

Scenario

Algorithm

...

Uplink

Downlink

delay > τ?
Generate

virtual data

Randomly moving XUs

Inter-channel
interference

SIC at receiver
following

NOMA protocal

From NeuralRecon by
Sun et,al CVPR 2021

Asynchronous Actors
Hybrid Critic

Fig. 1: Our proposed system model. The top left of the figure illustrates our problem scenario, while the bottom left showcases
a snippet of our proposed algorithm. The right of the figure highlights our transmission mechanism.

Then the achievable downlink rate r′tn for XU n is:

r′
t
n(z

t,κt,p′
t
)=Wm log2

1+
p′
t
n|htn,m|2

ι′−1∑
j=1

p′d̄j |htn,m|2+Wm(σtn,m)2

,
(5)

where ι′ satisfies d̄ι′ = n (i.e., XU n ranks ι′th in channel m in
the descending order of channel-to-noise ratios), and (σtn,m)2

denotes the power spectral density of Additive White Gaussian
Noise (AWGN) of XU n in channel m at time step t. Next,
we will expound on the formulated problem.

C. Uplink

An important objective of the UL stage is to reduce the total
delay in transmitting the data in all XUs’ buffers to the MC.
As described in Section III-A above, we aim to ensure the
successful transmissions of these keyframes. Hence if the DL
delay exceeds the DTTI limit τd (i.e., if d′tn > τd), that set of
data transmitted in that iteration is nullified and has to be re-
transmitted. Re-transmissions will increase overall delay (i.e.,
the number of TTIs used for finishing the whole task), and
it is considered as a system unreliability. This is because in
real applications, more transmissions may cause more packet
losses, more energy usage and longer delay. Hence, the UL
transmission delay is influenced by the DL power allocation,
because poor actions selected by the DL agent (Agent2) will

cause re-transmission. We let a UL agent (Agent1) arrange
XUs to the available channels. Considering that this is a multi-
stage sequential optimization problem, an XU n which is not
arranged with any channel at time step t will not partake in
both UL and DL stages, contributing no interference to other
XUs.

With the UL transmission rate rtn(zt,κt) (abbreviated as
rtn below) defined in Eq. (3), the data transmitted from XU n
to MC at time step t is:

Dt
n = min(Btn, r

t
n × τu), ∀n ∈ N , (6)

where Btn means the remaining data of XU n at time step
t to be transmitted. This set of data will be digitized on the
MC and sent back to XUs in the DL stage. The size of the
rendered data is formulated as D′tn = fn(Dt

n). The function
fn(·) is the data size translation and rendering formula from
2D to 3D. The expression of fn(·) depends on the specific
Metaverse application that XU n executes with the help from
the MC.

The 3D real-time construction has already been applied
with the local computation methods and obtained impressive
performance. Even a single home edition GTX 2080 can
handle this task in milliseconds [5], but we consider a server
with much more computing power. Thus, this paper mainly
studies the communication problem of this scenario, consider-
ing the asynchronous UL-DL communication, and seeks near-
optimal channel resources and power allocation. We take the
computation resources at the MC as sufficient and assume the

6

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

digital replication execution time on the MC as negligible.
Thus, the sub-target of UL agent in each iteration t is to
maximize the UL sum rate:

Ou : max
zt,κt

(∑
n∈N

rtn

)
, (7)

s.t. κtn ∈ {1, 2, . . . ,M}, ∀n ∈ N , ∀t ∈ T ,
ztn = 1, ∀n ∈ N , ∀t ∈ T .

D. Downlink

In the DL stage, Agent2’s main objective is to (i) minimize
the total re-transmission counts and (ii) minimize energy spent
for the DL transmission. As described in the previous section
(III-A), to ensure the reliability of the whole system, if the
DL delay exceeds the DTTI limit τd (d′tn > τd) permitted
for downlink, that set of data transmitted in that iteration is
nullified and has to be re-transmitted.

In contrast to the fixed uplink transmission power in the UL
stage, we adopt the variable p′t = [p′

t
1, p
′t
2, . . . , p

′t
N] as the

power allocated to each XU by Agent2 in the DL stage to be
optimized. Therefore, the transmission delay d′tn of each XU
in DL stage is represented as:

d′
t
n =

D′
t
n

r′tn
=
fn(Dt

n)

r′tn
, (8)

where r′
t
n is short for the downlink transmission rate

r′
t
n(zt,κt,p′

t
). We note that each XU n will have a different

DL delay d′
t
n. To simplify the problem of having a variable

start time for each subsequent transmission, we assume that
all XUs have the same UTTI and DTTI limit synchronized by
the MC, and the next UL turn will start immediately after all
XUs finish the current DL transmission.

In the desirable event that d′tn doesn’t exceed the DTTI
limit τd, this transmission is considered successful, and the
remaining data in the XUs’ buffers are as shown:

Btn = Bt−1
n − (1− Itn)Dt

n. (9)

where Itn is the failure flag:

Itn =

{
0, if d′

t
n ≤ τd.

1, if d′
t
n > τd.

(10)

In addition, the energy Et used at time step t is

Et =
∑

n∈N :ztn=1

p′
t
n ×min(d′

t
n, τd). (11)

The building floor-plan is taken to be a rectangle with length
X and width Y , and the center of the rectangle has coordinates
(0, 0). The location of XU n is designed to be confined to
the space. Therefore, the sub-targets of the DL agent in each
iteration t is to minimize the number of XUs exceeding the
pre-defined DL time limit τd and MC energy expenditure:

Od : min
p′t

(
wn

∑
n∈N

Itn + weE
t

)
. (12)

s.t. p′
t
n ∈ [p′min, p

′
max], ∀n ∈ N , ∀t ∈ T .

where wn and we are the weights of each sub-target, and they
are represented by the reward instead of being directly set as
constants in our proposed DRL algorithm.

E. Overall

To sum up, our objectives are to minimize the total time
used to complete the whole UL and DL processes, and to
minimize the energy spent in the DL transmission. In our
global objective, we do not include the energy spent on UL
as we defined the UL output power as fixed. Therefore, the
global objective can be written as:

min
zt,κt,p′t,T

{
w1

[
T × τu +

T∑
t=1

min

(
max
n∈N

(d′
t
n), τd

)]
+

(13a)

w2

 T∑
t=1

∑
n∈N :ztn=1

p′
t
n ×min(d′

t
n, τd)

+

(13b)

w3

[
T∑
t=1

∑
n∈N

Itn

]}
(13c)

s.t. C1 :

T∑
t=1

(1− Itn)Dt
n = B0

n, ∀n ∈ N , (13d)

C2 : p′
t
n ∈ [p′min, p

′
max], ∀n ∈ N , ∀t ∈ T , (13e)

C3 : ztn ∈ {0, 1}, ∀n ∈ N , ∀t ∈ T , (13f)
C4 : κtn ∈ {1, ..,M}, ∀n ∈ N , ∀t ∈ T , (13g)

where

d′
t
n =

fn(min(Btn, r
t
n × τu))

r′tn
. (14)

The term in (13a) refers to the total time taken in UL-DL
iterations to complete the task. The term in (13b) denotes the
energy spent in the DL transmission. The term in (13c) is the
transmission failure count. Note that we do not include the
UL energy consumption in the formulated problem, because
we fix the UL transmission power and time in each iteration.
Also, minimizing the number of iterations can be understood
as implicitly minimizing the energy consumption in UL. All
the weights (w1, w2, w3) will be reflected in the reward settings
in Section IV-C instead of being specific constants.

Constraint C1 means the whole system will finish with T
TTIs, where T is also a variable in our optimization problem.
In practice, we let the episode (one episode includes the entire
execution of the above-mentioned process) continue if there is
still data in any XU’ s data buffer to fulfill this constraint.
C2 is the range of downlink transmission power allocated by
MC for communicating with each XU. This constraint will be
satisfied by setting the DL agent action space in practice. C3
and C4 specify the domains for the decisions on computation
offloading and channel resource arrangement, respectively,
which will be guaranteed by designing the UL agent action
space. According to the above-formulated problem, we pro-
pose an innovative model-free reinforcement learning method.
The reasons for not using convex optimization techniques and

7

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

model-based reinforcement learning strategies are explained
as follows.

RL over Convex Optimization: Firstly, our defined prob-
lem scenario aims to be reflecting “true-to-real world” .
As such, our problem formulation (objective function and
constraints) is not naturally convex. There are three options
we considered: (1) Redefining our problem as a convex one.
This would certainly make the defined problem much easier
to solve, but it does not represent an accurate model of the
real world. A clear example of problem redefinition for the
proposed problem would be the constraint relaxation of the
discrete MC-XU allocation into a continuous one. (2) Finding
an approximate solution to the non-convex problem. Solution
will then only be an approximate solution and it is difficult
to gauge how far it is from the optimal solution. (3) Adopting
deep reinforcement learning techniques. Deep reinforcement
learning (RL) techniques may not provide the optimal solution.
However, with sufficient model training, the RL agents are able
to handle complex non-convex and sequential problems and
provide near-optimal solutions. Secondly, the XUs’ remaining
data at each transmission iteration is sequential (collective) and
changing, which makes the number of variables increase with
T . This increases the solution search space indefinitely, ren-
dering convex optimization techniques or heuristic search as
infeasible approaches. Moreover, the discrete variables (DCOs
and channel access) and the continuous variable (power)
are highly coupled, which causes an Inseparable Mixed-
integer Non-linear programming (MINLP) problem. This is
NP-hard [35] and tough to tackle.

Model-free over Model-based RL: Model-based (MB)
mainly differs from model-free (MF) RL in that model-based
requires the specification of the entire model, such as the
transition probabilities. In other words, MB RL algorithms use
a predictive model to select the optimal actions, whereas MF
RL algorithms involve the training of a control policy. MB RL
algorithms have brilliant performance in many scenarios. How-
ever, due to the predictive model requirement, these algorithms
are hard to implement in communication problems. There
are too many random variables and unpredictable changes
in communication models. The model-based methods cannot
accommodate the randomly evolving environment and are
impractical for implementation due to the daunting compu-
tational complexity. This is also another reason why convex
optimization approaches are not suitable for our proposed
scenario.

Next, we demonstrate how the problem formulated above
can be transformed into an RL problem.

IV. REINFORCEMENT LEARNING SETTING

Deep reinforcement learning is a state-of-the-art technique
to solve time-sequential optimization problems with randomly
evolving environments. In this section, we will dissect our
previously proposed problem and present the RL approach
to solving it. The goal of a model-free RL algorithm is to
find a near-optimal policy π∗(a|s) of the sequential Markov
Decision Process (MDP), which can guide the agent to select
the best action a under state s. This can also be extended to

the multi-agent scenario. When designing an RL environment,
we will set rewards to guide the agents to find a near-optimal
solution to our problem. Thus, in the subsequent subsections,
we discuss our design of the most important parts of RL: state
design, action formulation, reward decomposition, and their
reflection on our environment setting.

A. State

Although sophisticated states provide the agent with more
information and a more comprehensive view, complex states
can result in erratic training. Therefore, the amount of
information to be perceived by each XU needs to be limited.
Hence, weeding out less relevant variables is essential. Key
attributes to include in the states are those which are collective
or sequential. Therefore, the state stu in UL and state std in
DL stages are as follows:

1) Uplink State stu: (i) The remaining data in each XU’s
buffer Btn, (ii) the UL transmission power of each XU’s
device pn, and (iii) channel gain of each XU n at TTI t:
hti,m.

2) Downlink State std: (i) The action by UL agent (com-
bined by DCOs zt and channel access management κt, which
will be explained in the following part), (ii) The data buffer
of each XU Btn, to equip the DL agent the overall view of
the remaining data to be transmitted, (iii) The data size after
generated and rendering: D′tn, and (iv) channel gain in current
TTI hti,m.

B. Action

The action space defines the boundaries of possible actions
our agents can take. An appropriate and relevant setting, as
per our earlier discussed optimization variables, is crucial.
In our scenario, the action atu and action atd are respectively
uplink action and downlink action, explained below.

1) Uplink Action atu: The discrete action atu in UL includes
the DCOs and channel assignment:

atu = {zt;κt}. (15)

For discrete action space RL, we need to encode the actions
into discrete indicators. Thus, we integrate the DCO and
channel assignment as: Γtn = {0, 1, 2, . . . ,M}. Γtn = 0 means
ztn = 0 (i.e., XU n does not offload the computation to MC at
time step t). And Γtn = m for m ∈ M means n is allocated
to channel m.

We use a tuple in which there are N elements corresponding
to N users and each element can take M + 1 values, which
corresponds to the number of MC channels, plus 1 for the pos-
sibility of a user not being assigned a channel. In practice, the
discrete actions are in fact discrete indices to the DRL Agent.
Therefore, we need to allocate consecutive but distinct indexes
to each action. The most intuitive way of implementing this is

8

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

...

Action
Number

(M+1)0 1(M+1) 2(M+1) 3(M+1) 1(M+1)N−

Fig. 2: The encoding method for the uplink (UL) action.

to use N -bit-(M +1)-number to denote the tuple, and convert
it into a decimal action index (similar to binary to decimal):

atu =

N∑
n=1

Γtn(M + 1)n−1, ∀t ∈ {1, · · · , T}. (16)

The encoding method is shown in Fig. 2.
2) Downlink Action: On the other hand, the continuous

action power allocation to each XU is:

atd = {p′t1, p′
t
2, . . . , p

′t
N}, ∀p′

t
n ∈ [p′min, p

′
max]. (17)

C. Reward

In our scenario, the two agents not only have their own
role-specific goals, but also have to fulfill a global target
that works in the combined best interest of both agents. In
our proposed scenario, we can observe some trade-offs: (i)
While Agent1 aims to fulfill its task of uploading the data to
MC in the shortest time possible, it has to observe the data
downlink speed to ensure that the uploaded data size can be
managed by the DL agent in the downlink transmission. (2)
While Agent2’s objective is to minimize the DL transmission
delay, it has to manage the energy spent for transmission at
the same time. Due to these trade-offs between and within
agents, we have to establish a unified priority by introducing
a global target that serves as the global information to both
agents. In our proposed work, minimizing the overall total time
spent on UL and DL transmission (including re-transmissions)
are related to both agents, and hence, are adopted as the
global target. We also let the proposed algorithm learn the
global reward separately with a global branch (which will be
discussed in Section V-C), to give the networks a more specific
view of the global process.

Therefore, we have chosen to adopt both role-specific
rewards and global rewards for our scene. We introduced
additional self-defined rewards to guide the agents’ training,
as sparse rewards detract the training progress of RL agents.
In practice, the rewards are structured as follows:

1) Uplink Reward: Rtu encompasses: (i) Upload efficiency
penalty Rtur: a penalty will be given in each UL transmission
in which a lower data transmission rate results in a bigger
penalty.

2) Downlink Reward: Rtd encompasses: (i) Download
efficiency penalty Rtdr: a larger downlink delay results in
a larger penalty. (ii) Energy expenditure penalty Rtene: a
penalty will be issued to the agent for the expense of energy.
(iii) Power allocation guide Rti,gu: a small penalty will be

given when the XU that is not allocated a channel is assigned
a power greater than 0.

3) Global Reward: Rtg encompasses: (i) total delay penalty
Rtite: a larger penalty will be added to every transmission
iteration for both UL and DL agents, and (ii) Re-transmission
penalty Rti,re: Higher transmission failures and hence, higher
re-transmission counts result in a larger penalty added to both
UL and DL agent.

In a hybrid reward setting where rewards of multiple agents
are considered, we recommend standardizing the values across
the different contributing rewards to smaller scales, to ease
the training. Therefore, note that all the rewards are shaped
(weighted) to easy-for-training scales in this paper. The numer-
ical reward settings in this paper for reference are as follows:
• Uplink – upload efficiency penalty:

Rtur = −
∑N
n=1

(1−D
t
n

B0
n

)

N . This reward denotes the average
XUs’ transmitted portions of their total data in buffers,
and the range of this reward is [−1, 0].

• Downlink – download efficiency penalty:
Rtdr = −min(

∑N
n=1

d′tn
τdN

, 1). This reward is the average
XUs’ ratio of the actual required time to tolerant DL
transmission delay. The range is [−1, 0].

• Downlink – energy penalty:
Rtene = −

∑N
n=1

p′tn−p
′
min

(p′max−p′min)N×0.5. This is the average
XUs’ ratio of the allocated power to the maximum DL
transmission power. Its range is [−0.5, 0].

• Downlink – power allocation guide:
Rti,gu = −0.2 if user n in channel 0 is allocated to power.

• Global – total system delay penalty:
Rtite = −1 for every iteration.

• Global – re-transmission penalty:
Rti,re = −0.5 for every re-transmission. The re-
transmissions also lead to an increased number of iter-
ations. Therefore, we do not give the re-transmission a
too large penalty.

V. METHODOLOGY

In this section, we introduce our proposed novel algorithm,
Asynchronous Actors Hybrid Critic (AAHC). We will first
introduce our inspiration behind this algorithm, and then
introduce the preliminary algorithm: Proximal Policy Opti-
mization (PPO). Finally, we will detail the derivation of AAHC
from PPO, the structure of AAHC, and discuss the training
mechanism.

A. Inspiration

In our problem definition, we aim to minimize the overall
task delay (including re-transmission delay) and transmission
energy consumption to fulfill the “Green Metaverse” demand
while achieving each agent’s objectives. Given the multitude of
objectives, reinforcement learning agents struggle in achieving
them and may fail to achieve convergence. We propose a novel
multi-input, multi-objective (output) Critic which aims to be
able to handle complex scenarios such as the one presented in

9

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

our work, and simplify the objectives into bite-size challenges.
Our Critic’s objectives can be broken down as such: The UL
Critic branch guides the UL agent in (i) increasing the UL data
transmission rate in every UL. The DL Critic branch guides
the DL agent in (ii) decreasing the DL transmission delay and
(iii) minimizing MC DL transmission energy consumption.
We employ an additional, overarching branch within our
Critic which handles the global objective, (iv) to reduce the
overall time taken to complete the task (UL and DL), and (v)
total energy spent by MC for the DL transmission, as these
are important objectives of our system. It is crucial to note
that agent policies that minimize transmission failure and re-
transmission could potentially assist in decreasing the overall
system transmission delay.

Our multi-input, multi-objective Critic is inspired by Hybrid
Reward Architecture (HRA) [11], which has not been used for
solving problems related to wireless communications to the
best of our knowledge. HRA can utilize the domain knowledge
by decomposing the reward into simpler parts, which has been
demonstrated by extensive experiments in multiple fields, e.g.,
video games [36]. However, unlike our proposed AAHC, HRA
does not consider the multi-agent setting and the asynchronous
interaction between agents. Our reward is decomposed across
two agents, and uses a similar way of updating the value
network (Critic) by the weighted sum of the loss functions.
In the next sub-section, we will introduce the preliminary
RL algorithm, Proximal Policy Optimization (PPO), which is
chosen as the backbone of our AAHC algorithm.

B. Preliminary: Proximal Policy Optimization (PPO)

PPO is a state-of-the-art, effective RL algorithm, which
has been actively used in wireless communication research
[37]. PPO is a suitable RL algorithm to tackle our proposed
scenario as PPO can handle both discrete and continuous
action spaces through fitting different output heads on the
Actor network. Next we will expound PPO, focusing on
its three main underlying features: (i) Policy gradient, (ii)
Importance sampling and (iii) Policy constrain.

Based on policy gradient methods. The widely used policy
gradient method computes an estimator and embeds it into a
stochastic gradient ascent algorithm to maximize the expected
reward:

J(θ) =
∑
τ

πθ(τ)R(τ), (18)

∇θJ(θ) =
∑
τ

∇θπθ(τ)R(τ)

=
∑
τ

πθ(τ)∇θlogπθ(τ)R(τ)

= Eτ∼πθ [∇θlogπθ(τ)R(τ)], (19)

where πθ is a stochastic policy, R(...) denotes the reward func-
tion, and τ denotes the trajectories including (s0, a0, ..., st, at).
Recent works use an advantage function instead of a reward
function to make training more stable. Thus, we rewrite Eq.
(18) into:

J(θ) = Eτ∼πθ [A(τ)]. (20)

Note that this expected value E = [...] represents the average
value of the sampled data.

Use of importance sampling. Importance sampling (IS)
[38] is a method where an expectation with respect to a target
distribution is approximated from another distribution. Hence,
IS is an important trick adopted in PPO as it allows PPO to
use different policies for sampling and evaluating trajectories,
increasing the overall sample efficiency [12].

Here we use πθ as the policy for evaluation and πθ′ as
the policy for sampling data for training, and Eq. (20) can be
rewritten as:

Eτ∼πθ [A(τ)] = Eτ∼πθ′
[
πθ(τ)

πθ′(τ)
A(τ)

]
. (21)

However, in practice, we use state-action pairs instead of
trajectories to update the gradient. Thus, the objective function
of the Actor can be written as:

J(θ) = E(st,at)∼πθ′

[
πθ(s

t, at)

πθ′(st, at)
At
]
,

≈ E(st,at)∼πθ′

[
πθ(a

t|st)
πθ′(at|st)

At
]
, (22)

where At is short for A(st, at). Note that we use the ≈ instead
of the = symbol as calculating the exact probabilities of πθ
and πθ′ is impractical. This is because some states within our
proposed scenario occur infrequently. Therefore, we assume
that πθ(st) = πθ′(s

t) [12].
Add KL-divergence penalty. After switching to πθ′ for

data sampling, there remains an issue of unequal variances.
Although Eq.s (20) and (21) have the same expectations, their
variances are very different, as shown below:

V arτ∼πθ [A(τ)]

= Eτ∼πθ [A2(τ)]− (Eτ∼πθ [A(τ)])2, (23)

V arτ∼πθ′

[
πθ(τ)

πθ′(τ)
A(τ)

]

=
∑
τ∼πθ′

π2
θ(τ)

π2
θ′(τ)

A2(τ)πθ′(τ)−

 ∑
τ∼πθ′

πθ(τ)

πθ′(τ)
A(τ)πθ′(τ)

2

=
∑
τ∼πθ′

π2
θ(τ)

πθ′(τ)
A2(τ)−

 ∑
τ∼πθ′

πθ(τ)A(τ)

2

= Eτ∼πθ
[
πθ(τ)

πθ′(τ)
A2(τ)

]
− (Eτ∼πθ [A(τ)])2. (24)

From the two variances (23) and (24), we can see that the
distance between the distributions θ and θ′ can not be large.
Therefore, PPO adds a KL divergence penalty to the Actor
objective function to constrain the distance:

J(θ) = E(st,at)∼πθ′ [r(θ)A
t] (25)

s.t. DKL(πθ||πθ′) ≤ σ, (26)

where rt(θ) = πθ(at|st)
πθ′ (a

t|st) is the probability ratio between
old and new policies. DKL(·||·) denotes the Kullback–Leibler
(KL) divergence for measuring the distance between πθ and
πθ′ .

10

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

These strategies make PPO an effective and reliable RL
algorithm to tackle wireless communication optimization prob-
lems. Nevertheless, this KL divergence is impractical to cal-
culate in practice as this constraint is imposed on every
observation. Thus, in [12], the objective function is finally
represented as:

E(st,at)∼πθ′ [f
t(θ,At)], (27)

where

f t(θ,At) = min{rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At}. (28)

The problem in (27) is solved by gradient ascent, therefore,
the gradient is finally written as:

∆θ = E(st,at)∼πθ′ [∇θf
t(θ,At)]. (29)

Critic loss. In terms of the Critic, PPO uses a Critic with
an identical network to the Actor, just like in other Actor-
Critic algorithms. We use Generalized advantage estimation
(GAE) [39] to calculate the advantage in practice. Thus, the
loss function is formulated in [26] as:

L(φ) = (Vφ(st)− V ttarget)2, (30)

V ttarget = AGAE + γVφ′(st). (31)

AGAE is the advantage calculated using GAE, which will be
explained in the next part, and V (s) is the widely used state-
value function [40], which is estimated by a learned Critic
network with parameter φ. We update φ by minimizing the
L(φ), and the parameter φ′ of the target state-value function
periodically with φ. Using target value is a prevailing trick in
RL, which has been used in many algorithms [41], [42].

C. Asynchronous Actors Hybrid Critic (AAHC)

This paper proposes a novel structure AAHC that selects the
state-of-art RL algorithm PPO as the backbone. In our work,
we equipped the AAHC with a discrete-action space Actor, a
continuous-action space Actor, and a multi-head hybrid Critic.
Different from existing algorithms like independent multi-
agent RL in [19] that uses two separate independent agents,
and the widely used CTDE-based algorithm like MAPPO [26]
that uses the concatenation of states and actions in different
stages, AAHC uses two asynchronous Actors and a hybrid
Critic with three branches to learn the information in UL, DL,
and global stages separately, and better utilizes the domain
knowledge from the separate states, actions and rewards in
different stages.

Function process: In each episode, the initial state s0
u

will be observed by the UL Actor, which will output the
selected action au. Then, the current UL transmission can be
accomplished with the selected au, and the environment will
provide a feedback reward Ru for the action au and the DL
state sd at the current stage. Following the UL transmission,
the DL Actor will generate the power allocation ad in the
DL stage upon observing sd. The ad will be acted on the
environment to accomplish the DL transmission task, and
obtain the DL reward Rd for the choice of ad, and global

reward Rg for the whole iteration. These rewards (Ru, Rd, Rg)
will be used to generate the advantages (Au, Ad, Ag) by
GAE [39] for updating the Actors, and the state-values for
UL, DL, global and loss functions of Critic will be calculated.
This process repeats until the end of an episode. The above-
mentioned process is illustrated in Fig. 4. Next, we will explain
the mechanisms of how Actors and Critic update, respectively.

Asynchronous Actors: In AAHC, there are two Actors,
one is responsible for making decisions on computation of-
floading and arranging channel resources in the UL stage, and
the other is responsible for allocating transmission power in
the DL stage. Apart from their asymmetric task, the action
space types for both UL and DL agents, and hence policy
parameterizations, are dissimilar. Thus, we adopt the action
space methods proposed by Sutton [40]. We compute learned
probabilities for each of the many actions for the Actor in the
UL transmission stage, and learn the probability distribution of
the policy for the Actor in DL transmission stage. In practice,
continuous action values are chosen from a normal (Gaussian)
distribution.

Each agent attempts to achieve its own role-specific and
global objectives. However, both agents are designed to not
have the ability to observe the other’s role-specific objective
as the success of the other agent’s objectives is not within an
agent’s control. An example would be that Agent1 is rewarded
for having an overall short UL transmission time, while the
UL transmission time is not within Agent2’s control (which is
DL power selection). In this case, allowing Agent2 to receive
rewards based on Agent1’s control can be “confusing” and
even “conflicting” to Agent2’s policy training.

In Eq. (29), we established the policy gradient for PPO
Actor, and in AAHC we have the gradients ∆θ1, ∆θ2 of
Agent1 and Agent2 as:

∆θ1 = E(stu,a
t
u)∼πθ1′ [∇θ1f t(θ1, (A

t
u +Atg)], (32)

∆θ2 = E(std,a
t
d)∼πθ2′ [∇θ2f t(θ2, (A

t
d +Atg)], (33)

where stu, std denote the states at time step t in UL and DL
stages, respectively. Au, Ad, Ag are the UL, DL and global
advantage functions.

In terms of the advantage function, most techniques
compute it with a learned state-value function V (s), and
generalized advantage estimation (GAE) [39] is undoubtedly
one of the most renowned methods. Running the policy for
T̄ time steps and using them to update is a widely accepted
method popularized in [43]. Following their paradigm, we use
the truncated version of GAE as:

Atu = δtu + (γλ)δt+1
u + ...+ (γλ)T̄−1δt+T̄−1

u , (34)

where δtu = Rtu + γVφ′(st+1
u)− Vφ′(stu). (35)

and Ad, Ag are as the same. T̄ specifies the length of given
trajectory segment, and γ specifies the discount factor, and λ
denotes the GAE parameter.

Hybrid Critic: In our problem, the objectives of each agent
are very different, while there remains an overall arching
unified goal. Thus, we propose the Hybrid Critic to aid the
estimation of the value function in the hybrid reward problem.

11

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

Actor
DL

Environment Critic

Actor
UL

Calculate Advantage

GAEGAE
Calculate Advantage

GAE

Update with

Update with

Update

Actor UL is for optimizing
DCOs and channel access

Actor DL is for optimizing
downlink power allocation

Weighted Sum

Sum

Sum

Calculate Advantage

GAEGAE
Calculate Advantage

GAE

Calculate
Critic Loss
Calculate
Critic Loss

…

…

…

…

…

… ……

Hybrid CriticActor Up Actor Down

tanh

sigmoid

action_log_stdCategorical

* d(x) means the dimension of x; h is the hidden layer size; in x out is the input-output dimensions of the Linear layer.
 In practice, the input a is batch size x dimension of a, and all layers are linear.

tanh tanh

tanh

softmax

Concat

tanhtanh

......

......

tanhtanh

Fig. 3: Asynchronous Actor Hybrid Critic (AAHC) structure. Top of the figure illustrates the architecture of AAHC. Below
are the networks of the Uplink Actor, Downlink Actor, and Hybrid Critic, respectively.

This Hybrid Critic has three heads and the value is divided into
three parts V uφ , V

d
φ , V

g
φ . The value function can be estimated

by the three-head value network Vφ as shown below:

V uφ = Vφ(su), (36)

V dφ = Vφ(sd), (37)

V gφ = Vφ({su; sd}). (38)

Then, we calculate the three losses Lu(φ), Ld(φ), Lg(φ) with
the advantages and values, and sum the weighted losses of
each head according to Eq. (30) and Eq. (31) as the loss
function of the Hybrid Critic:

Lu(φ) = (Vφ(stu)−Atu − γVφ′(stu))2, (39)

Ld(φ) = (Vφ(std)−Atd − γVφ′(std))
2, (40)

Lg(φ) = (Vφ({stu; std})−Atg − γVφ′({stu; std}))2, (41)

L(φ) = wu × Lu(φ) + wd × Ld(φ) + wg × Lg(φ), (42)

where φ, φ′ are the weights of the network and the target
network, and wu, wd, wg are the weights of each head’s loss
that are all set as 1 in the experiments. We update the Hybrid
Critic through Eq. (42) to improve the estimate of the hybrid

value function. The intricacies of our algorithm are illustrated
in Fig. 4. And the algorithm flow is in Algorithm. 1.

VI. EXPERIMENTS

In this section, we conduct several experiments to highlight
the outstanding performance achieved by our proposed AAHC
algorithm. We compare our algorithm performance against
baseline models: (i) iterative independent RL [19], (ii) and
iterative CTRL framework, based on commonly adopted met-
rics. The numerical settings and extensive experimental results
are illustrated as well.

A. Baseline

To demonstrate the superiority of our proposed algorithm,
we adopt commonly used baseline models. All baseline models
are similar to our proposed model in that they contain two
separate agents which work asynchronously, and that they are
fitted with the PPO algorithm as their backbone.

iteRL. The most intuitive way of using RL in such a
cooperative interactive environment is to implement two single
standard iterative RL (iteRL) agents, similar to [19]. However,

12

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

Algorithm 1 Our proposed Asynchronous Actors Hybrid
Critic (AAHC) algorithm.

Initiate: uplink Actor parameter θ1, downlink Actor param-
eter θ2, Critic parameter φ and target network φ′, initial
state s0

u, stu ← s0
u;

1: for iteration = 1, 2... do
2: Agent1 execute action according to πθ′1(atu|stu);
3: Get reward Rtu and next downlink state st+1

d ;
4: Agent2 execute action according to πθ′2(atd|std);
5: Get reward Rtd, R

t
g and next uplink state st+1

u ;
6: if iteration ≥ 2 then
7: Sample (stu, a

t
u, R

t
u, s

t+1
u , std, a

t
d, R

t
d, R

t
g, s

t+1
d) itera-

tively;
8: end if
9: std ← st+1

d , stu ← st+1
u ;

10: Compute advantages {Atu, Atd, Atg} and target values
{V tu,targ, V td,targ, V tg,targ} using current Hybrid Critic;

11: for k = 1, 2, . . . ,K do
12: Shuffle the data’s order, set batch size bs;
13: for j = 0, 1, . . . , trajectory length

bs − 1 do
14: Compute gradient for uplink, downlink Actors by

Eq. (32) and (33);
15: Update Actors by gradient ascent;
16: Update Critic with MSE loss using Eq. (42);
17: end for
18: Assign target network parameters φ′ ← φ for every

C steps;
19: end for
20: end for

in [19] they use two iterative deep Q networks, while we use
two more advanced PPO networks for this baseline. In terms
of the reward, we give the UL agent RtU = Rtu +Rtg , and the
DL agent RtD = Rtd + Rtg . In other words, these two agents
are not entirely separated but are still affiliated through the
global reward. This baseline is to testify the performance if
we apply no modification to the structure.

CTRL. The widely used, standard Centralized Training
with Decentralized Execution (CTDE) based algorithms like
MAPPO [28] cannot be used right out-of-the-box for our
scenario in the execution stage, as the agents in our scenario
are required to select actions asynchronously rather than at the
same time. In order to compare our proposed methods with
the CTDE-based MAPPO, we adapt the Centralized training
reinforcement learning (CTRL) algorithm for comparison. We
use a centralized Critic with two Actors, and in this baseline,
we use the sum of rewards R = Rtu +Rtd +Rtg as the reward
received by the Critic, instead of computing three different
losses and using the sum-loss for updating the Critic. This
baseline is to examine the performance if no hybrid reward
structure is embedded in the Critic.

Random Allocation. In addition to the above-mentioned
algorithms, we implement an algorithm that assigns both
UL and DL random channel allocation and power selection,
respectively. The random channel assignment and power se-

Actor

UL

Actor

DL

Critic

UL

Critic

DL

Environment

Actor

UL

Actor

DL

CriticEnvironment

Update

Update

Update

Update

Iterative RL (IteRL) Centralized Training RL (CTRL)

Fig. 4: Illustrations of iteRL and CTRL. iteRL uses two
separate DRL agents with the UL agent taking in Rtu + Rtg ,
and the DL agent using Rtd + Rtg to update the networks.
CTRL only has one critic, which takes in the Rtu +Rtd +Rtg
for updating the networks.

lection algorithm will serve as an intuitive baseline.

B. Metrics (KPIs)

To fairly compare the performance of the algorithms tack-
ling our proposed scenario, we introduce several commonly-
adopted metrics as key performance indicators (KPIs).

Given that we are using an RL approach to tackle our
proposed problem, the most obvious performance metric
would be the rewards. The objective of DRL algorithms is
to obtain as high accumulated rewards in one episode as
possible, and the rewards are directly related to multiple
objectives, which reflect the algorithms’ abilities to handle the
proposed problem. Therefore, the training rewards can well
serve as an intuitive and overall performance of the algorithms.
Specifically, there are three main rewards in our proposed
scenario: (i) Uplink reward, which stands for the uplink
efficiency penalty, (ii) Downlink reward, which encapsulates
the downlink efficiency and energy expenditure penalty, (iii)
Global reward, which encompasses the total delay and re-
transmission penalty. Aside from the rewards, the training
efficiency of an algorithm is another important metric. It
reflects on an algorithm’s ability to learn optimal policies
quickly. Therefore, we illustrate the (iv) Training time of
different methods.

In our proposed scenario, we consider the (v) Total la-
tency taken to complete the digital twinning task as the
most important objective. Hence, it makes complete sense
to include the total time taken including the latency caused
by re-transmissions. (vi) Re-transmission percentage (re-
transmission times divided by the number of total transmission
iterations) reflects the reliability of the system and directly
impacts the total time taken for UL and DL transmissions. To
satisfy the “Green Metaverse” requirement, we are concerned
with (vii) the Energy consumption. Additionally, we use (viii)
the Maximum uplink rate of all XUs in one iteration to
testify if the UL agent can handle the channel access task and
be influenced by the DL transmission.

Note that we log the number of transmission iterations
(UL and DL) during training instead of the total time (in
milliseconds) as it is more clear and more intuitive.

13

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

C. Experimental settings

For our experiments, the bandwidth Wm for every channel
is simulated to be 10 Ghz [10], and all the Gaussian noise
power spectral densities are simulated to be −174 dBm/Hz.
To simplify the simulation, we set the data augmentation
function fn(·) as a proportional function with slope ctn (i.e.,
D′

t
n = ctn × Dt

n), where ctn is sampled from a uniform
distribution [5,15] in this paper. The domain of ctn is referenced
from the experimental results from demos of NeuralRecon [5]
and Monster Mash [9], which are two impressive 3D recon-
struction techniques that are abreast of the times. The initial
buffer sizes B0

n and uplink transmission power of each XU
are uniformly selected from [10, 20] Megabits (Mb) and [3, 10]
Watts, respectively. The XUs and MC are uniformly located
in a 100 × 100 m2 indoor space. To ensure the adaptability
of our method, these variables vary in every episode, and
the solutions in each episode are not the same. The DTTI
limit and UTTI in each iteration are simulated to 1.5ms and
0.5ms [44], respectively. And the minimum and maximum
downlink transmission powers p′max are 0 and 20 Watt,
respectively. The max training steps (iterations) in one episode
are 100, and the total training steps are 2 million steps1. As the
random values influence the experiment outcome to a certain
degree, we conducted each experiment using global random
seeds from 0 to 10 to ascertain a consistent and reliable
study. We then draw the error bands to better quantify the
performance of each algorithm. The detailed implementation
and hyper-parameters are explained in Appendix A.

In terms of channel gain, Ibrahim et al. [45] studied the
model of 6G indoor reconfigurable intelligent surface (RIS).
Similar to them, we use the Rician fading as the small-scale
fading. It is given by:

hti,m =
√
βtng

t
i,m, (43)

where

βtn = β0(Ltn)−α, (44)

gti,m =

√
K

K + 1
ḡ +

√
1

K + 1
g̃, (45)

Ln =
√

(Xn −XMC)2 + (Yn − YMC)2 +H2. (46)

(Xn, Yn) is the location of XU n, and H is the height. Ltn
represents the distance between XU n and the MC, and βtn
represents the large-scale channel gain of XU n at iteration
t. ḡ and g̃ stand for the Line-Of-Sight (LOS) component
and the Non-LOS (NLOS) component, respectively. Here, g̃
follows the standard complex normal distribution CN (0, 1)
distribution. β0 denotes the channel gain at the reference
distance L0 = 1m, and α denotes the path-loss exponent which
is simulated as 2. The Rician factor K is simulated as 3.

Here, we use the notation m− n to denote the scenario
where there are m channels and n extended reality users

1As PPO is an on-policy algorithm that only uses the latest trajectories
sampled from the current stochastic policy, it will fill the trajectory buffer
first and use it for training, then empty the buffer and refill. Therefore, the
training steps here are not the actual training times, but the sample times. And
the training times should be equal to training steps divided by buffer capacity
(trajectory length).

(XUs). In conducting our experiments, we fix the number of
channels at 3 and vary the number of XUs across 4 to 8, for
comparison.

D. Results

In this part, we first choose to only display the experiment
results of the most complex scenario: the 3−8 configuration, to
show the model convergence and characteristics. The complete
set of experiments which include all other configurations are
shown in Appendix B. Then, the metrics (KPIs) across dif-
ferent configurations are evaluated and discussed. The overall
numerical results are shown in Table II.

1) Train-time model performance in 3-8 configuration:
For ease of discussion, we compared the performance of our
proposed method against other algorithms in the most complex
setting: the 3− 8 configuration. Although the action space in
this configuration is extremely huge, AAHC has demonstrated
superior performance in handling the task when compared to
the iteRL and CTRL baseline models.

In terms of rewards, AAHC has achieved the highest uplink,
downlink, and global reward across the training episodes,
when compared to the baselines. The global reward encom-
passes the total delay and re-transmission penalty. Despite
having gradually increasing global rewards, the maximum
uplink transmission rate of XUs is not increasing steadily
across the training episodes. We observe from Fig. 5(b) and
Fig. 5(f) that the maximum uplink rate reaches a peak at
about 1.5 million training steps and then decreases sharply.
Then, it increases slowly from thereon, while the global reward
increases almost steadily (Fig. 5(a)) in this stage. We can
speculate that although the UL agent is able to achieve a
higher max uplink rate, it may bring about higher transmission
failure (re-transmission) counts, which can result in lower
rewards. Therefore, AAHC learns to slowly decrease the max
uplink rate after 1.5 million steps to avoid unacceptable re-
transmissions.

The MC DL transmission energy consumption initially
increases in the early training episodes, and subsequently
decreases in the later training episodes. We believe that the
agent attempts to maximize reward by minimizing transmis-
sion failure (and hence the overall total time taken), through
increasing DL transmission power output and lowering re-
transmission counts. However, this is at the expense of having
a higher energy consumption which negatively impacts the
global reward. Subsequently, it is likely that the agent learns
to control the MC DL power output, using significantly lower
power while maintaining re-transmission counts at a decently
low rate. Overall, this improves the downlink reward and
demonstrates the prowess of our proposed model in handling
the complex scenario and reward structure.

Across the different performance metrics, iteRL performs
the worst. The improvement in reward attainment of the UL
agent across the training episodes is at the expense of the
DL agent’s performance. This poorer DL agent performance
is reflected in its increasing DL transmission energy consump-
tion, while the improving UL agent’s performance is reflected
in its overall decreasing re-transmission percentage, across

14

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

175

150

125

100

75

50

25

Gl
ob

al
 re

wa
rd

AAHC
iteRL
CTRL
random

(a) 3-8 global reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

100

80

60

40

20

Up
lin

k
re

wa
rd

AAHC
iteRL
CTRL
random

(b) 3-8 uplink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

60

50

40

30

20

10

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

(c) 3-8 downlink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

(d) 3-8 number of iterations.

0.00

0.05

0.10

(e) 3-8 re-transmission percentage.

0.2

0.4

0.6

0.8

(f) 3-8 max uplink rate per step.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0.2

0.4

0.6

0.8

1.0

1.2

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

(g) 3-8 energy consumption.

0

5

10

Tr
ai

n
tim

e
(m

s)

AAHC
iteRL
CTRL

3-4 3-5 3-6 3-7 3-80.0

0.2

0.4

Ex
ec

ut
e

tim
e

(m
s)

AAHC
iteRL
CTRL

(h) Train time & Execute time.

Fig. 5: Training in 3-8 scenarios. Considering the randomly evolving environment, all experiments are conducted with global
random seeds from 0-10, and the error bands are drawn.

the training. Although the global reward increases slightly
across the training episodes, it achieves a much lower reward
when compared to our proposed AAHC and CTRL algorithms.
From the above observations, this signifies that the agents in
the iteRL are non-cooperative and do not achieve an overall
good channel arrangement and downlink power selection when
compared to the AAHC and CTRL algorithms in this scenario.
Nevertheless, the iteRL algorithm still achieves relatively good
performance in less complex configurations such as 3 − 4 in
Fig. 9.

The CTRL algorithm fails to find an optimal solution in the
complex 3 − 8 configuration as the UL agent chose to keep
the UL transmission rates at a low value so that the DL re-
transmission percentage, and hence re-transmission percentage
and energy consumption stays low. This sub-par performance
is reflected in its considerably low eventual uplink reward and
consistently high downlink reward. This problem likely results
from the ability of the UL agent to perceive and consider the
DL agent’s reward and objective. In such a case, the UL agent
is partially rewarded based on the DL agent’s actions and it is
unable to decipher how its action influences its own objectives.
Hence, it could have fallen into a local optimal when it finds
that decreasing the uplink rate can lead to a relatively higher
overall reward because of the lower re-transmission counts and
energy consumption.

Complexity analysis. We also analyze the computational
complexity with the aid of real training and execution time
illustrations. Let (Lu, Ld, Lc), (X l

u, X
l
d, X

l
c) be the total num-

ber of layers, and the number of neurons in layer l’s of the
three networks: UL Actor, DL Actor, and hybrid Critic. Let
d(s) for state s be the input dimension, which is proportional
to the state dimension described in Section IV-A. Then we
have stu and std for UL Actor and DL Actor respectively in

the tth training step. Here we first analyze the complexity in a
single training step. In AAHC, one training step involves the
updates of two Actors and the update of one Critic, and the
hybrid Critic has three input-output branches. Therefore, the
complexity of the tth training step can be derived as:

O(B{d(stu)X1
u + d(std)X

1
d + [d(stu) + d(std) + d(stu; std)]X

1
c

+

Lu−1∑
l=1

X l
uX

l+1
u +

Ld−1∑
l=1

X l
dX

l+1
d + 3

Lc−1∑
l=1

X l
cX

l+1
c }),

where B is the batch size decided in experiments. Accord-
ing to [46], the total computation complexity should be the
complexity in one training step multiplied by the total steps
used for convergence, which is hard to quantify. To better
show the complexity, we illustrate the training times in one
step and execution time (both agents in one iteration) of
different algorithms under different scenarios in Fig. 5(h).
We can observe from it that AAHC, iteRL, and CTRL all
have similar training time and execution time in a single
step. Although the hybrid Critic in AAHC needs to take in
three different states and calculate three values, it needs only
one back-propagation with the summed losses, while iteRL
needs two back-propagation for two separate Critics. CTRL is
slightly faster during training, but the difference is not obvious.
As the execution stage is not related to the Critics, they are
expected to have similar time in a single execution (evaluate)
step. In practice, the training stage with huge computational
complexity can be performed offline on the MC first. The
training and execution are all conducted on a GTX 2080 Ti.

2) Metric performance across different configurations: As
our model performance results are taken from a constantly
improving RL model, we take the performance results of each
RL model by evaluating the trained model on a new but

15

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

Fig. 6: Metrics with different numbers of XUs.

identical environment and averaging the results. The results
are shown in Fig 6.

In general, the total delay, re-transmission times, and energy
consumption all increase with the rise in the number of users.
Nevertheless, as compared to the other baseline RL models,
AAHC displays greater capability in finding a near-optimal
solution in more complicated scenarios (i.e., configuration 3−
8). This capability can be seen in the much slower increment
in total delay and re-transmission counts for the AAHC, as
the number of users increases, when compared to the iteRL
and CTRL methods.

Nevertheless, as the number of XU rises, the training
complexity of the problem rises precipitously. When compared
to AAHC, CTRL and iteRL methods fail to find satisfactory
solutions in the 3−7, 3−8 scenarios as the total delays are 2
or 3 times that of AAHC. Furthermore, according to the error
bars drawn in Fig. 6, AAHC also has the lowest variance
under different random seeds. Therefore, we infer from the
results that AAHC is more efficient and stable than CTRL and

(a) 3-8 heat map after 50000 training steps with AAHC.

(b) 3-8 heat map after 2 million training steps with AAHC.

Fig. 7: 3-8 heat maps with AAHC.

iteRL, especially in more complicated scenarios. AAHC learns
a conservative policy of restraining the UL rate to avoid re-
transmission, reducing the total time delay. This demonstrates
that our proposed methods enable the agents to have a global
view through the shared losses, instead of directly sharing the
extra state or action information from each other. This is not
unexpected because in such a hybrid-reward scenario, giving
the agent extra information from the other agent is not always
advisable. In this scenario, the energy consumption in each DL
can just be influenced by the actions of the downlink agent,
and it is not related to UL agent. Thus, the information of DL
energy consumption is redundant to UL agent, and it will even
impinge on the action evaluation of UL agent.

To better visualize the improvement during training, we
sample trajectories from 1 evaluation episode from each of two
pre-trained AAHC models with identical initial settings. The
two AAHC models differ in that one of the pre-trained models
has been pre-trained for 2 million iterations, while the other
has undergone disrupted training in the early iterations. As

16

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

TABLE II: Overall results

Scenario Number of
iterations

Total
delay (ms)

Re-trans
rate (%)

Max uplink
rate (Gbps)

Energy
cost (J)

AAHC
3-4 3.5 3.7 0.52 17.08 0.07
3-5 2.9 3.2 0.13 18.33 0.03
3-6 12.1 11.8 1.43 7.63 0.08
3-7 14.3 16.1 1.01 6.95 0.17
3-8 31.1 34.9 1.86 3.23 0.19

iteRL
3-4 11.9 11.5 1.91 8.36 0.09
3-5 21.9 23.9 4.30 12.46 0.14
3-6 23.2 30.1 4.44 2.75 0.12
3-7 42.8 54.3 8.49 1.94 0.23
3-8 83.9 101.1 20.26 0.52 0.44

CTRL
3-4 9.9 12.0 2.11 8.77 0.04
3-5 25.2 29.0 3.92 5.73 0.14
3-6 29.2 33.6 3.55 2.38 0.15
3-7 38.7 43.9 2.21 1.88 0.11
3-8 69.2 86.7 4.54 0.44 0.20

random
3-4 73.5 114.9 29.32 3.71 0.22
3-5 81.4 129.2 32.94 4.32 0.28
3-6 92.6 176.0 40.13 1.96 0.42
3-7 94.7 183.7 44.23 1.01 0.57
3-8 97.2 180.1 49.33 0.32 1.09

shown in Fig. 7, the y-axis channel-user denotes the allocation
of users to the channel, with a sizeable node referring that a
particular user having been assigned to the specified channel.
Nodes with larger sizes and deeper colors denote that the DL
agent allocates more power for the DL transmission to the
specified user in a particular channel. The x-axis indicates the
number of training iterations.

In the initial stages of training (i.e., 50000 iterations), as
illustrated in Fig. 7(a), the policy is poorly trained and is
unable to select good actions under states. It is unsurprising,
as agents lack exploration in the early stages of training.
Coupled with being faced with a complex scenario, the agent
struggles to make optimal decisions under various states. As a
consequence, the actions chosen by the agent lacked pliability
and variability when faced with different states. Evidently, the
lack of variability in chosen actions by the agent is inconsistent
with the fact that the environment is constantly evolving, in
which channel gains and XUs’ locations are changing in each
time step. Furthermore, the 50,000 iterations pre-trained model
exhibit in-efficiency by continuously allocating power to XUs
that are arranged with no channel (channel 0). The 2 million
iterations pre-trained model performed much better, as shown
in Fig. 7(b). The user-channel arrangement is much more
dispersive, and the decision-makings by the two agents exhibit
much more variability in response to granular changes in the
state. Compared to the 50,000 iterations pre-trained model,
which uses 63 iterations to finish the whole task, the 2 million
iterations pre-trained model needs only 25 iterations.

VII. CONCLUSION

In this work, we have investigated an asynchronous hybrid-
reward joint optimization problem, the real-time 3D recon-
struction in xURLLC over wireless communication with mul-
tiple XR users, where the uplink and downlink are considered
in tandem. We formulate the problem as an asynchronous
multi-agent reinforcement learning task and propose the novel

AAHC algorithm. Multiple KPIs such as the total delay, en-
ergy consumption, and re-transmission percentage are studied
to fulfill the reliability and low latency of our communication
system. And extensive experiments demonstrate that AAHC
has more granular views on each agent and performs better
in asynchronous and hybrid tasks with a preferable training
time. We hope this work can provide more insights into
the asynchronous cooperative tasks, as they are common
in communication problems, and important to guarantee the
reliability of the whole system.

REFERENCES
[1] G. S. Research, “Framing the future of Web 3.0: Metaverse edition,”

Dec 2021. [Online]. Available: https://www.goldmansachs.com/insights/
pages/framing-the-future-of-web-3.0-metaverse-edition.html

[2] M. M. David Grider, “The Metaverse: Web 3.0 virtual cloud economies.”
[Online]. Available: https://grayscale.com/wp-content/uploads/2021/11/
Grayscale Metaverse Report Nov2021.pdf

[3] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,
C. Bermejo, and P. Hui, “All one needs to know about Metaverse:
A complete survey on technological singularity, virtual ecosystem, and
research agenda,” arXiv preprint arXiv:2110.05352, 2021.

[4] X.-F. Han, H. Laga, and M. Bennamoun, “Image-based 3D object re-
construction: State-of-the-art and trends in the deep learning era,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 5, pp. 1578–1604, 2019.

[5] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao, “Neuralrecon: Real-time
coherent 3D reconstruction from monocular video,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 15 598–15 607.

[6] Z. Meng, C. She, G. Zhao, and D. De Martini, “Sampling, communica-
tion, and prediction co-design for synchronizing the real-world device
and digital model in Metaverse,” IEEE Journal on Selected Areas in
Communications, vol. 41, no. 1, pp. 288–300, 2022.

[7] “Meta quest 2: Our most advanced new all-in-one VR headset.”
[Online]. Available: https://store.facebook.com/quest/products/quest-2/

[8] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proceedings of the IEEE, 2019.

[9] M. Dvorožňák, D. Sỳkora, C. Curtis, B. Curless, O. Sorkine-Hornung,
and D. Salesin, “Monster Mash: a single-view approach to casual 3D
modeling and animation,” ACM Transactions on Graphics (TOG), 2020.

[10] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications:
Vision and potential techniques,” IEEE Network, 2019.

[11] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[13] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: AI empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[14] I. F. Akyildiz and H. Guo, “Wireless extended reality (XR): Challenges
and new research directions,” ITU J. Future Evol. Technol, vol. 3, pp.
1–15, 2022.

[15] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5G: RAN, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, 2018.

[16] S. Zhang, W. Y. B. Lim, W. C. Ng, Z. Xiong, D. Niyato, X. S. Shen,
and C. Miao, “Towards Green Metaverse Networking: Technologies,
Advancements and Future Directions,” IEEE Network, 2023.

[17] J. G. Andrews, “Interference cancellation for cellular systems: a con-
temporary overview,” IEEE Wireless Communications, 2005.

[18] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive
learning-based task offloading for vehicular edge computing systems,”
IEEE Transactions on vehicular technology, 2019.

[19] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in wireless
systems via asynchronous multiuser deep reinforcement learning,” IEEE
Internet of Things Journal, 2018.

[20] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited commu-
nication capability,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 2, pp. 624–634, 2020.

[21] Z. Xiao, X. Dai, H. Jiang, D. Wang, H. Chen, L. Yang, and F. Zeng,
“Vehicular task offloading via heat-aware mec cooperation using game-
theoretic method,” IEEE Internet of Things Journal, 2019.

17

https://www.goldmansachs.com/insights/pages/framing-the-future-of-web-3.0-metaverse-edition.html
https://www.goldmansachs.com/insights/pages/framing-the-future-of-web-3.0-metaverse-edition.html
https://grayscale.com/wp-content/uploads/2021/11/Grayscale_Metaverse_Report_Nov2021.pdf
https://grayscale.com/wp-content/uploads/2021/11/Grayscale_Metaverse_Report_Nov2021.pdf
http://arxiv.org/abs/2110.05352
https://store.facebook.com/quest/products/quest-2/
http://arxiv.org/abs/1707.06347

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

[22] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on sarsa,” IEEE Access, 2020.

[23] L. Qian, P. Yang, M. Xiao, O. A. Dobre, M. Di Renzo, J. Li, Z. Han,
Q. Yi, and J. Zhao, “Distributed learning for wireless communications:
Methods, applications and challenges,” IEEE Journal of Selected Topics
in Signal Processing, vol. 16, no. 3, pp. 326–342, 2022.

[24] M. Merluzzi, P. Di Lorenzo, S. Barbarossa, and V. Frascolla, “Dynamic
computation offloading in multi-access edge computing via ultra-reliable
and low-latency communications,” IEEE Transactions on Signal and
Information Processing over Networks, 2020.

[25] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, 2019.

[26] D. Guo, L. Tang, X. Zhang, and Y.-C. Liang, “Joint optimization
of handover control and power allocation based on multi-agent deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
2020.

[27] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel
assignment for noma with deep reinforcement learning,” IEEE Journal
on Selected Areas in Communications, 2019.

[28] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in Neural Information Processing Systems, 2017.

[29] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2018, pp. 4295–4304.

[30] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[31] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[32] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2014.

[33] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 10, pp. 2181–2195, 2017.

[34] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of
non-orthogonal multiple access for 5G,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018.

[35] L. Liberti, “Undecidability and hardness in mixed-integer nonlinear
programming,” RAIRO-Operations Research, 2019.

[36] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning for
video game playing,” IEEE Transactions on Games, 2020.

[37] X. Li, Q. Wang, J. Liu, and W. Zhang, “Trajectory design and generaliza-
tion for uav enabled networks: A deep reinforcement learning approach,”
in IEEE Wireless Communications and Networking Conference, 2020.

[38] A. Owen and Y. Zhou, “Safe and effective importance sampling,”
Journal of the American Statistical Association, 2000.

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[40] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, 1999.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning.
PMLR, 2016, pp. 1928–1937.

[44] C. She, C. Yang, and T. Q. Quek, “Joint uplink and downlink resource
configuration for ultra-reliable and low-latency communications,” IEEE
Transactions on Communications, vol. 66, no. 5, pp. 2266–2280, 2018.

[45] I. Yildirim, A. Uyrus, and E. Basar, “Modeling and analysis of reconfig-
urable intelligent surfaces for indoor and outdoor applications in future
wireless networks,” IEEE Transactions on Communications, vol. 69,
no. 2, pp. 1290–1301, 2021.

[46] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning prov-
ably efficient?” Advances in Neural Information Processing Systems,
vol. 31, 2018.

APPENDIX A
IMPLEMENTATION DETAILS

For all these experiments, Adam is used as the optimization
algorithm. The discount factor γ and GAE factor λ are fixed
at 0.99 and 0.95. The batch size is set to 64. The learning
rates for uplink Actor, downlink Actor, and hybrid Critic are
10−4, 10−4, 5× 10−5, respectively. The entropy coefficient is
set as 10−3. As the essential objective of RL is to maximize the
expected return (reward), the reward setting is always crucial.
We highly recommend standardizing the values across kinds
of rewards, or the parameter tuning will become a daunting
task, and the large losses will make it slow to converge.

In terms of the activation functions, we recommend trying
to use tanh instead of ReLU first, especially in the simpler
network (in fact, networks in this kind of scenario where there
is only deep neural network (DNN) but not convolutional
neural network (CNN) are always much simpler than those
in computer vision domains). Because tanh is zero-centered.
Hence we can easily map the output values as strongly
negative, neutral, or strongly positive. In other words, this
reduces the difficulty of reward settings. However, tanh in
hidden layers faces the problem of vanishing gradient. Thus,
we should be careful when using this.

APPENDIX B
ADDITIONAL EXPERIMENTS

We have provided selected experimental results (metrics
under the 3-8 scenario during training) in Section VI-D.
Additional experimental results are presented in Figure 8
below and in Figure 9 on the next page.

Random

0.28

0.30

0.32

3-4 re-transmission percentage.

Random

0.30

0.32

0.34

3-5 re-transmission percentage.

Random

0.38

0.40

0.42

3-6 re-transmission percentage.

0.00

0.02

0.04

3-7 re-transmission percentage.

Fig. 8: Re-transmission percentage in 3-4 to 3-7 scenarios.

18

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1509.02971

This paper appears in IEEE Journal on Selected Areas in Communications (JSAC), 2023.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

0

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

3-4 total iterations.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

3-5 total iterations.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

3-6 total iterations.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

3-7 total iterations.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

20

40

60

80

100

Nu
m

be
r o

f i
te

ra
tio

ns

AAHC
iteRL
CTRL
random

3-8 total iterations.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

100

80

60

40

20

0

Gl
ob

al
 re

wa
rd AAHC

iteRL
CTRL
random

3-4 global reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

120

100

80

60

40

20

0

Gl
ob

al
 re

wa
rd AAHC

iteRL
CTRL
random

3-5 global reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

100

80

60

40

20

0

Gl
ob

al
 re

wa
rd

AAHC
iteRL
CTRL
random

3-6 global reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

120

100

80

60

40

20

Gl
ob

al
 re

wa
rd AAHC

iteRL
CTRL
random

3-7 global reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

175

150

125

100

75

50

25

Gl
ob

al
 re

wa
rd

AAHC
iteRL
CTRL
random

3-8 global reward.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

0

5

10

15

20

25

30

35

M
ax

 u
pl

in
k

ra
te

 p
er

 st
ep

 (G
bp

s) AAHC
iteRL
CTRL
random

3-4 max uplink rate.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0

5

10

15

20

25

30

35

M
ax

 u
pl

in
k

ra
te

 p
er

 st
ep

 (G
bp

s) AAHC
iteRL
CTRL
random

3-5 max uplink rate.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0

5

10

15

20

M
ax

 u
pl

in
k

ra
te

 p
er

 st
ep

 (G
bp

s) AAHC
iteRL
CTRL
random

3-6 max uplink rate.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0

2

4

6

8

10

M
ax

 u
pl

in
k

ra
te

 p
er

 st
ep

 (G
bp

s) AAHC
iteRL
CTRL
random

3-7 max uplink rate.

0.2

0.4

0.6

0.8

3-8 max uplink rate.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

0.05

0.10

0.15

0.20

0.25

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

3-4 energy consumption.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0.05

0.10

0.15

0.20

0.25

0.30

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

3-5 energy consumption.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0.1

0.2

0.3

0.4

0.5

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

3-6 energy consumption.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0.1

0.2

0.3

0.4

0.5

0.6

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

3-7 energy consumption.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

0.2

0.4

0.6

0.8

1.0

1.2

En
er

gy
 c

on
su

m
pt

io
n

(J)

AAHC
iteRL
CTRL
random

3-8 energy consumption.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

80

60

40

20

0

Up
lin

k
re

wa
rd AAHC

iteRL
CTRL
random

3-4 uplink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

80

60

40

20

0

Up
lin

k
re

wa
rd AAHC

iteRL
CTRL
random

3-5 uplink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

100

80

60

40

20

0

Up
lin

k
re

wa
rd AAHC

iteRL
CTRL
random

3-6 uplink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

100

80

60

40

20

Up
lin

k
re

wa
rd AAHC

iteRL
CTRL
random

3-7 uplink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

100

80

60

40

20

Up
lin

k
re

wa
rd

AAHC
iteRL
CTRL
random

3-8 uplink reward.

0.0 0.2 0.4 0.6 0.8 1.0
Train steps (x1e6)

50

40

30

20

10

0

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

3-4 downlink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

40

30

20

10

0

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

3-5 downlink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

50

40

30

20

10

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

3-6 downlink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

40

35

30

25

20

15

10

5

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

3-7 downlink reward.

0.0 0.5 1.0 1.5 2.0
Train steps (x1e6)

60

50

40

30

20

10

Do
wn

lin
k

re
wa

rd

AAHC
iteRL
CTRL
random

3-8 downlink reward.

Fig. 9: Total iterations, rewards, UL rate, energy consumption in 3-4 to 3-8 scenarios during training.

19

	I Introduction
	I-A Background
	I-B Scenario
	I-C Methodology
	I-D Challenges and motivation

	II Related Work
	II-A Mobile edge ultra-reliable and low latency communication
	II-B Joint optimization with reinforcement learning
	II-C Multi-agent reinforcement learning
	II-D Hybrid reward reinforcement learning

	III Problem Formulation
	III-A System Model
	III-B Communication system
	III-C Uplink
	III-D Downlink
	III-E Overall

	IV Reinforcement Learning Setting
	IV-A State
	IV-A1 Uplink State sut
	IV-A2 Downlink State sdt

	IV-B Action
	IV-B1 Uplink Action aut
	IV-B2 Downlink Action

	IV-C Reward
	IV-C1 Uplink Reward
	IV-C2 Downlink Reward
	IV-C3 Global Reward

	V Methodology
	V-A Inspiration
	V-B Preliminary: Proximal Policy Optimization (PPO)
	V-C Asynchronous Actors Hybrid Critic (AAHC)

	VI Experiments
	VI-A Baseline
	VI-B Metrics (KPIs)
	VI-C Experimental settings
	VI-D Results
	VI-D1 Train-time model performance in 3-8 configuration
	VI-D2 Metric performance across different configurations

	VII Conclusion
	 [-20pt]References-5pt
	Appendix A: Implementation details
	Appendix B: Additional Experiments

