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Abstract—We propose a frame slotted ALOHA (FSA)-based
protocol for a random access network where sources transmit
status updates to their intended destinations. We evaluate the
effect of such a protocol on the network’s timeliness performance
using the Age of Information (AoI) metric. Specifically, we
leverage tools from stochastic geometry to model the spatial
positions of the source-destination pairs and capture the entan-
glement amongst the nodes’ spatial-temporal attributes through
the interference they caused to each other. We derive analytical
expressions for the average and variance of AoI over a typical
transmission link in Poisson bipolar and cellular networks, re-
spectively. Our analysis shows that in densely deployed networks,
the FSA-based status updating protocol can significantly decrease
the average AoI and in addition, stabilizes the age performance
by substantially reducing the variance of AoI. Furthermore,
under the same updating frequency, converting a slotted ALOHA
protocol into an FSA-based one always leads to a reduction in the
average AoI. Moreover, implementing FSA in conjunction with
power control can further benefit the AoI performance, although
the particular values of framesize and power control factor must
be adequately tuned to achieve the optimal gain.

Index Terms—Age of information, wireless network, interfer-
ence, frame slotted ALOHA, stochastic geometry.

I. INTRODUCTION

Ultra-reliable and low-latency communication (URLLC)
[1], [2] is an important technology originated from the inter-
section of the Internet of Things (IoT) and the tactile Internet,
promoting a broad range of real-time applications, such as
healthcare [3], autonomous vehicles [4], remote sensing and
control [5]. These applications have stringent requirements
on the timeliness of information delivery because outdated
information can result in wrong decisions and lead to severe
consequences [6]. In supporting delay-sensitive URLLC ser-
vices as above, Age of Information (AoI) is proposed as an
effective and tractable metric to quantify the timeliness [7].
Unlike conventional metrics such as delay and throughput,
AoI is assessed from the receiver’s perspective, measuring
the time elapsed since the latest received information up-
date was generated. Since AoI can capture the timeliness of
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information deliveries where traditional metrics cannot, the
AoI-oriented network designs often generate unconventional
(and sometimes counter-intuitive) insights as well as solutions.
Consequently, AoI has attracted considerable attention to the
research of the information update and transmission timeliness
in the next generation URLLC system.

Early studies of AoI primarily focused on point-to-point
scenarios [8]–[10] and found that the corresponding AoI-
oriented optimization design is different from that for conven-
tional metrics. Specifically, [8] provided a general method for
calculating the average AoI, and found that the conventionally
update policy, namely the zero-wait policy that maximizes
throughput or minimizes latency, does not always lead to an
optimal AoI. And it observed that in fact, contrary to intuition,
it is more desirable in many cases to wait for a certain
amount of time at the transmitter side from an AoI optimum
perspective. [9] developed and compared the AoI performance
under three different packet management schemes. It is dis-
covered that the one with the replacement protocol is the
best among them. Considering that real-world applications
have different sensitivity toward information staleness, the
performance under nonlinear evolution of AoI was studied in
[10].

In practice, information systems often consist of a large
number of entities communicating via a shared spectrum. Due
to the broadcast nature of the wireless medium, simultaneous
transmissions from different nodes can interfere with each
other. Interference often incurs transmission collisions and
failure deliveries, which can significantly impede the com-
munication quality. In response, a line of works introduced
protocol models (a.k.a. conflict graphs) to characterize the
phenomenon of transmission collisions caused by interference.
These models assume that within a certain geographic region,
as long as there are source nodes transmitting simultaneously it
will lead to failure. Based on this model, several strategies are
proposed to select active links for channel access, aiming to
control the network interference and reduce the information
age. [11] obtained the optimal, as well as suboptimal (but
low-complexity) scheduling strategies for minimizing both
average AoI and peak age under different source models. In
[12], authors proposed four different scheduling strategies,
including Greedy, Randomized, Max-Weight and Whittle’s
Index policies, to optimize the performance of AoI, and they
derived performance guarantees for these strategies. How-
ever, these centralized scheduling methods generally require
unified coordination and decisions, which are not applicable
to scenarios where there exist massive end-user devices or
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applications in which traffic is highly bursty [13]. Therefore,
distributed random access protocols, such as slotted ALOHA
(SA) and carrier-sense multiple access (CSMA), attract consid-
erable attention. [14] provided closed-form expressions for the
average AoI and average peak AoI under two different packet
management schemes with and without preemption. As the
low-cost devices have low overhead budget and may not have
carrier sensing capability, in which case SA-type protocol is
preferable. In [15], the optimization of AoI using SA channel
access strategy was studied, showing that its performance
is inferior to that of round robin policy. In view of this,
some studies have modified SA, the work in [16] proposed a
deformation called Threshold ALOHA, by which only when a
source node’s AoI exceeds a certain threshold will it be active
and generate new information with a given probability. This
channel access protocol can reduce the competition among
sources to a certain extent, so as to improve the stale sources’
probability of successful transmission and reduce the waste of
transmission power. In [17], an index was introduced to reflect
the urgency of update, and the nodes were selected to access
the wireless channel according to their index.

However, the conflict graph model oversimplifies the phys-
ical layer features by resorting to a binary judgment of the
existence/non-existence of interference. In addition, it does
not capture the critical attributes of a wireless system such as
fading, path loss, power control, and co-channel interference.
As such, adopting the signal-to-interference-plus-noise ratio
(SINR) or signal-to-interference ratio (SIR) model to charac-
terize interference in the network becomes a more appealing
method [18]. Based on this model, another line of work em-
ploy stochastic geometry as a tool to model the node position
distribution as a point process, in order to account for those
intricate effects from interference incurred by simultaneous
transmissions. In [19], the authors derived the upper and lower
bounds of the cumulative distribution function (CDF) for the
average AoI in the network by taking nodes’ positions and
their mutual interference into consideration. [20] improved the
bound on the spatial distribution of peak AoI and offered
an exact bound on the successful transmission probability.
The work in [21] presented a stochastic geometric analysis
of throughput and AoI in a cellular IoT network considering
the spatial disparity in the AoI performance. The authors in
[22] provided expressions for AoI by using meta distribution,
and their simulation results showed that the AoI performance
is highly dependent on the spatial location, traffic load, and
decoding threshold. [23] established a theoretical framework
to analyze the impact of spatially interacting queues on AoI,
which facilitates understanding network parameters’ effect on
the age performance. And [24] extended the AoI analysis
to networks where source nodes have unit-size buffers and
operate under the last-come first-serve with replacement pro-
tocol, which is generally AoI-optimal. On the basis of such
spatiotemporal models, a series of studies have been carried
out to design schemes for performance optimization. In [25],
a decentralized channel access strategy was developed. Under
this strategy, each node makes the AoI-optimal transmission
decision according to the observation of its ambient commu-
nication environment. An equation related to the surrounding

parameters of each point was given in [26]. By solving this
equation, one can obtain each source’s optimal status updating
rate, adapting to its local transmission condition. Additionally,
utilizing the source nodes’ local observation, [27] designed
a decentralized power control strategy by which nodes can
adjust their transmit power individually to optimize the AoI
performance.

Although these existing works have analyzed, as well as op-
timized, the AoI from various aspects, their designs are mainly
pertaining to time slot-based system dynamics. In contrast,
the effect of frame slotted ALOHA (FSA), an emerging tech-
nology that regularizes transmissions in the temporal domain
and is now prevailing to IoT applications [28], such as coor-
dinating massive access in machine to machine (M2M) data
collection networks [29] and communications between readers
and tags in radio frequency identification (RFID) systems
[30], on information freshness remains largely unexplored.
Capitalized on the philosophy of FSA, this paper presents a
new status updating protocol that improves age performance in
a wireless network. Specifically, we organize a fixed number
of consecutive time slots into a frame, and the source nodes
determine to activate in each frame (or not) independently
with a certain probability. If a source node decides to activate
in a frame, it selects one time slot in the frame uniformly at
random; upon the selected time slot, the source node generates
a new update of status and immediately sends this information
to its destination. We develop a theoretical framework that
characterizes the performance of the proposed protocol. In
particular, we model the spatial positions of the source and
destination nodes as an ergodic and stationary point process.
The sources update status information to their destinations
using the FSA-based protocol. We consider an interference-
limited scenario in which transmissions over a wireless link
succeeds only if the SIR received at the destination exceeds
a decoding threshold. We derive expressions for the average
and quadratic AoI of a typical node by conditioning on the
network topology. Since the interference is affected by the
spatial distribution of transmission links, we employ stochastic
geometry to average the potential geographical patterns of the
nodes, and derive closed-form expressions for the average and
variance of AoI under two commonly used network models,
i.e., the Poisson bipolar network and Poisson cellular network.
Leaning on the analytical results, we find that FSA provides
a way to distribute sources into different time slots for update
transmissions, thereby it can reduce the competition among
sources in the network. We show that FSA can always achieve
a smaller average AoI than SA. In addition, in the time
slot of each frame after the update, since the source has
no chance to transmit again, it will sleep to reduce power
consumption. During the period of preparing this paper, we
found a very recent work that also studied the average AoI
under FSA-based protocol [31]. Nonetheless, there are marked
distinctions between our work and [31]. Specifically, [31]
considered a single cell case in which multiple users transmit
to a common access point. And it adopted a protocol model
to characterize the competition among users. The authors of
[31] only analyzed the average AoI and gave a few elementary
insights into the FSA status updating protocol. In contrast, we
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consider a multi-cell setting, which is more practical, and use
two specific network models that have been verified to well
suit real-world scenarios [32], [33]. Moreover, we apply the
SINR model, capturing more intricate features from a wireless
system. We derive not only the average, but also variance of
AoI, and the analysis can be extended to higher order moments
or the Cost of Update Delay (CoUD) [34]. In addition, we
have conducted a more comprehensive analysis by exploring
network’s age performance in various special-case scenarios,
facilitating a thorough understanding to the impact of FSA
updating protocol on AoI. Our main contributions are sum-
marized below.

• We propose an FSA-based protocol for a set of source
nodes to update their status information toward the in-
tended destinations in a random access network. We
develop a mathematical framework to evaluate the age
performance of transmitters under such a protocol. Our
model encompasses several key features of a wireless
system, including channel fading, path loss, and inter-
ference. By fixing the network topology, we derive the
(conditional) first and second moments of time-averaged
AoI of a typical node, and verify the accuracy via
simulations.

• When the nodes form a Poisson bipolar network, we
obtain closed-form expressions for the average and vari-
ance of AoI of a typical node under the FSA-based
status updating protocol. We compare the nodes’ age
performance under FSA to those under the SA protocol
and identify conditions under which FSA is instrumental
in reducing the AoI. We also find that under the same up-
dating frequency, converting an SA protocol into an FSA
one always benefits the average AoI. Besides, the FSA-
based protocol also avails the transmitters in reducing the
transmission power consumption.

• In the setting of a Poisson cellular network, we derive
analytical expressions for the average and variance of AoI
over a typical transmission link by accounting for effects
of transmission protocol and power control strategy. The
analysis allows us to quantify the control factors from
signal power domain and interference domain, and their
joint influence on the age performance. We also carry out
several special case studies to garner useful insights.

• Numerical results reveal that: i) the FSA-based status up-
dating protocol is beneficial when the spatial contention
among transmitters is intense, i.e., the wireless links are
frequently activated and densely deployed in space. In
this situation, an optimal framesize exists that minimizes
the average (or variance of) AoI; ii) the gain of FSA is
particularly pronounced when the network is densified.
Specifically, when the deployment density increase by
five folds, an FSA-based protocol can reduce the aver-
age and variance of AoI by two orders of magnitude
compared to those under conventional SA-based protocol;
and iii) implementing FSA in conjunction with power
control strategy can further benefit the network’s age
performance, although the values of framesize and power
control factor must be adequately tuned to achieve the

TABLE I
NOTATION SUMMARY

Notation Definition
Φs; λs Stationary and ergodic point process modeling

the locations of sources; source spatial deploy-
ment density

Φd; λd Stationary and ergodic point process modeling
the locations of destinations; destination spatial
deployment density

Φ; λ Superposition of stationary and ergodic point
processes Φs and Φd, i.e., Φ , Φs∪Φd; super-
position of spatial deployment density λs and λd

in Poisson bipolar network, i.e., λ = λs = λd

Pi; ε Transmit power of source node i; power control
factor

η; F Packet update rate; framesize, i.e., the number
of time slots contained in each frame

xi Position of source i
Ri; Di Distance between source i and its associated re-

ceiver; distance between source i and the typical
receiver

r; α Distance of the typical transmitter-receiver pair;
path loss exponent

νi; hi State indicator of source i; channel fading from
transmitter i to the typical receiver

θ SINR decoding threshold
µΦ

0 Transmission success probability of link 0, con-
ditioned on the point process Φ

∆̄0; σ2
∆0

Average AoI over the typical link; variance of
AoI over the typical link

optimal gain.
The remainder of this paper is organized as follows. Sec-

tion II lays down the general system model and status up-
dating protocol for this work. By conditioning on the spatial
layout, Section III shows the preliminary analysis framework.
Simulations are also provided to validate the accuracy of
our results. In Section IV, we analyze the impact of FSA-
based status updating protocol on the AoI performance in
Poisson bipolar networks. We derive closed-form expressions
for the average and variance of AoI, and provide a series
of discussions for insights. Similarly, Section V explores the
nodes’ age performance in a Poisson cellular network. We
also discuss the interplay between status updating protocol
and power control policy in this section. Finally, we conclude
the paper in Section VI.

II. SYSTEM MODEL

In this section, we detail the setup of our network and
the status updating protocol. We also define the average and
variance of AoI over a typical link. The main notations used
throughout this paper are listed in the Table I.

A. Network Structure

1) Spatial Configuration: We consider a wireless network
deployed on the Euclidean plane, consisting of source and
destination nodes. The spatial positions of the sources and
their destinations are modeled by stationary and ergodic point
processes, denoted by Φs and Φd, respectively. Each source
monitors an external process and transmits status updates to
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Fig. 1. An example of AoI evolution over the typical link under the FSA
status updating protocol. The framesize is set as F = 3.

its intended destination. The status update of each source is
encapsulated into information packets and transmitted over
a shared spectrum. Source node i transmits an information
packet with power Pi. We assume that the communication
channel between any pair of nodes is narrowband, and it is
affected by two attenuation components, i.e., the small-scale
fading and large-scale path-loss, where the channel fading
varies independently across time and space [35].

2) Temporal Attribute: We consider a discrete-time system
where the time is slotted into equal durations. We assume the
network is synchronized. We consider the updates of every
source node are generated at the beginning of a time slot,
whereas the transmission of an information packet takes up
one time slot to finish. Furthermore, we package a fixed
number of consecutive time slots into a frame, and the size of
the frame is denoted by F . Since the time scale of fading and
packet transmission is much smaller than that of the spatial
dynamics, we assume the network topology is static, i.e., an
arbitrary but fixed point pattern is realized at the beginning
and remains unchanged in the subsequent time slots.

3) Transmission Protocol: Sources adopt an FSA-based
transmission strategy synchronically. Specifically, at the be-
ginning of each frame, every source independently decides
whether it will update in this frame or not, with probability η;
if a source decides to update in this frame, it randomly selects
a time slot according to a uniform distribution. Then, upon
the transmission time slot, the source node generates a new
update and immediately transmits the information packet to the
destination. If the SIR at the destination exceeds a decoding
threshold, the packet is successfully received; otherwise, the
transmission fails. By virtue of low-cost implementation, we
do not employ a MAC protocol for the re-transmission and/or
acknowledgment of a reception. As such, every source will
only send out an updated sample once.

B. Performance Metrics

Without loss of generality, we randomly select one transmis-
sion link in the network to be our typical link, and denote the
receiver’s location as the origin. Note that the performance

of this link is statistically identical to the other links in the
network, hence, it can serve as a representative one.

We consider AoI which captures the “freshness” of infor-
mation received at destinations. AoI measures the time elapsed
since the latest received data at a destination that is generated
at the corresponding source. A formal definition of this metric
is expressed as follows:

∆0(t) = t−G0(t), (1)

where G0(t) indicates the time-stamp of the most recently
update received by the typical destination at time t. An
example of AoI evolution under the proposed transmission
protocol is illustrated in Fig. 1.

We employ the most representative metric, i.e., the average
AoI over the typical link, to quantitatively evaluate the timeli-
ness of information delivered in this network, which is defined
as follows:

∆̄0 = lim
T→∞

1

T

T∑
t=1

∆0(t). (2)

In addition, we assess the variance of AoI 1 to investigate the
reliability of network age performance. This metric is formally
defined as follows:

σ2
∆0

= lim
T→∞

1

T

T∑
t=1

(∆0(t))
2 −

(
lim
T→∞

1

T

T∑
t=1

∆0(t)

)2

. (3)

III. PRELIMINARY RESULTS

In this section, we derive analytical expressions for the first
and second moments of AoI by fixing the network topology.
We verify these results by simulations.

A. Conditional AoI Statistics

1) SIR and Conditional Transmission Success Probability:
We consider an interference-limited scenario and adopt SIR
to evaluate the transmission quality of wireless links. If the
typical transmitter, situating at x0, transmits a packet to its
intended receiver at a time slot t, the received SIR can be
written as:

SIR0,t =
P0h0,tL(r)−1∑

i 6=0 Pihi,tνi,tL(‖xi‖)−1
, (4)

where xi represents the position of transmitter i, r = ‖x0‖ is
the distance between the typical source-destination pair, hi,t
denotes the channel fading from transmitter i to the typical
receiver, νi,t ∈ {0, 1} represents the state of transmitter i,
where νi,t = 1 if transmitter i is active and νi,t = 0 otherwise,
and L : R+ → R+ is a monotonically non-decreasing function
that characterizes the large-scale path loss.

Owing to the uncertainty in node positions, channel fading,
and the activity of source nodes, the SIR is a random vari-
able. A commonly used notion to characterize the statistical
behavior of such a quantity is the conditional transmission

1It is noteworthy that the framework developed in this paper can be
extended to study the network’s age performance under more general cost
functions by using similar approaches in [34].
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success probability [36]. Formally, given a point process
Φ , Φs∪Φd, the conditional transmission success probability
over the typical link is defined as:2

µΦ
0 = P(SIR0 > θ | Φ), (5)

where θ is the decoding threshold.
2) Conditional AoI: By fixing the spatial topology Φ,

dynamics of packet delivery over each wireless link can be
regarded as a Bernoulli process that varies on a frame basis,
where the active probability and transmission success proba-
bility are η and µΦ

0 , respectively. Based on this abstraction,
we derive the conditional average AoI in the following.

Theorem 1: Conditioned on the spatial topology Φ, the
average AoI over the typical link is given as:

E [∆0|Φ] =
F 2 − 1

12F
× ηµΦ

0 +
F

ηµΦ
0

+
1− F

2
. (6)

Proof: Please see Appendix A.
Similarly, we can calculate the conditional quadratic AoI

and it is provided by the next theorem.
Theorem 2: Conditioned on the spatial topology Φ, the

average quadratic AoI over the typical link is given as:

E
[
∆2

0|Φ
]

=
2F 2

(ηµΦ
0 )2
− F (2F−1)

ηµΦ
0

+
F 2−1

12F
ηµΦ

0 +
F (F−1)

2
.

(7)
Proof: Please see Appendix B.

Notably, F not only affects AoI in an explicit manner, as
we can see directly from expressions (6) and (7), but also
implicitly affects the change of AoI through influencing µΦ

0 .
As such, the average and variance of AoI can be obtained
by deconditioning (6) and (7) with respect to point process Φ,
respectively, where different distributions of Φ lead to different
results. In the sequel, we will present two types of wireless
network models, i.e., the Poisson bipolar network and Poisson
cellular network, to examine the effect of FSA on the AoI
performance. Before proceeding with a more detailed analysis,
we will validate these theoretical results via simulations.

B. Analysis Validation
The simulations conducted in this part are dedicated to

verifying the above analysis. Specifically, we consider a
source-destination pair and fix the conditional transmission
probability. We set F = 3 and run the simulation over 4×106

time slots. We collect the AoI statistics and average them to
obtain the final results.

In Fig. 2, we plot the average AoI and quadratic AoI as a
function of update rate3, by fixing the values of conditional
transmission success probabilities. This figure shows that the
simulations and analytical results are almost indistinguishable,
which verifies our theoretical derivations. We also observe
that an increase in the (conditional) transmission success
probability enhances the performance of the average AoI and
average quadratic AoI.

2Since the point process is stationary and the sources activate independently
from each other under the FSA-based protocol, the interference nodes also
form a stationary point process. As such, we drop the time index t from the
subscript in the sequel.

3In this work, the update rate is equivalent to the update probability or the
sampling probability.
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Fig. 2. Simulations versus analysis: (a) conditional average AoI and (b)
conditional quadratic AoI, in which we vary the conditional transmission
probability as µΦ

0 = 0.4, 0.6, and 0.8.

IV. POISSON BIPOLAR NETWORKS

In this section, we analyze the effect of FSA on the AoI
performance in a Poisson bipolar network. Such a model is
motivated by the emerging interest in applications like Device-
to-Device (D2D) networking, mobile crowd sourcing, and the
Internet-of-Things (IoT), which do not require a centralized
infrastructure, e.g., base stations or access points.

A. Setting

In a Poisson bipolar network, transmitters form a homo-
geneous Poisson point process (PPP) Φs of intensity λ. Each
transmitter has a dedicated receiver in a random orientation of
a constant distance r. According to the displacement theorem
[37], the spatial layout of receivers Φd is also a homogeneous
PPP of intensity λ.
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Fig. 3. A snapshot of the employed Poisson bipolar network, where the
squares represent the sources, continuously sampling a sequence of status
information and sending it to the destinations denoted by the circles. The
solid black line is the typical link, the solid red lines represent other active
links, and the dashed blue lines are inactive links.

We assume that every source node transmits at a constant
power Ptx. We also assume that the signal propagation is
subjected to small-scale Rayleigh fading and standard path
loss. As such, SIR at the typical receiver can be written as:

SIRB
0 =

Ptxh0r
−α∑

i 6=0 Ptxhiνi‖xi‖−α
, (8)

where α is the path-loss exponent.
Based on (8), we analyze the AoI performance under FSA

and explore the interplay among the AoI metric and different
network parameters in the following.

B. Analysis

Similarly to [38], we commence the AoI analysis by aver-
aging out the effect of channel fading, which brings us to the
following expression for the conditional transmission success
probability.

Lemma 1: Given point process Φ, the conditional trans-
mission success probability over the typical link is:

µΦ
0 =

∏
i6=0

(
1− η/F

1 + ‖xi‖α/θrα

)
. (9)

Proof: Please see Appendix C.
Using this result, we can decondition µΦ

0 in (6) and obtain
the analytical expression for the average AoI.

Theorem 3: In a Poisson bipolar network, the average AoI
of the typical link under FSA updating protocol is given by

∆̄B
0 =

F

η
exp
(Cη
F

(
1−η
F

)δ−1
)

+
(F 2−1)η

12F
exp
(
−Cη
F

)
+

1−F
2
,

(10)

where δ = 2/α and C = λπr2θδΓ(1− δ)Γ(1 + δ), with Γ(·)
being the Gamma function [38].

Proof: Please see Appendix D.
This theorem provides a closed-form expression that ac-

counts for several key factors of a wireless system, i.e., the
network topology, transmission protocol, and interference, on
the average AoI. The following observations can be readily
made from (10).

1) When F = 1: The result in (10) reduces to the classical
average AoI under the SA protocol, given by

∆̄SA
0 = E

[
1

ηµΦ
0

]
=

1

η
exp

(
Cη(1− η)δ−1

)
. (11)

Note that the path loss exponent α generally satisfies α > 2
in practice, and consequently we have δ < 1. Then, following
(11), we can see that the average AoI is unbounded in regimes
where the sources are generating updates in either extremely
lazy (i.e., η → 0) or excessively aggressive (i.e., η → 1)
manner. The former mainly ascribes to the absence of new
updates at the sources; the latter due to potential interferers
located in geographical proximity to the typical receiver, which
impedes the transmissions and hinders any possible packet
delivery. In contrast, (10) indicates that incorporating FSA to
the status updating protocol can effectively abbreviate such
severe interference issue (note that for F > 1, the average
AoI is always bounded when η → 1).

2) When F > 1: In this case, let us set β = η
F and term it

as the effective updating rate under FSA. Then, we can rewrite
(10) as follows:

∆̄B
0 = ∆̄SA

0 (β) +
F 2 − 1

12
β exp

(
− Cβ

)
+

1− F
2︸ ︷︷ ︸

Q1

, (12)

where ∆̄SA
0 (β) = 1

β exp (Cβ(1− β)δ−1) denotes the average
AoI of the typical link under SA with updating rate β. From
(12), we note that if Q1 is non-negative, introducing frame
structures into SA is not indispensable since one can always
obtain a smaller average AoI without FSA by adjusting the
update rate β under SA. Therefore, FSA-based protocol is
instrumental in reducing AoI only when Q1 < 0.

An interesting observation is that regardless of the interfer-
ence level, imposing a frame structure on the SA protocol
always improves the network age performance. Below we
present two approaches to bridge the SA and FSA protocols.
To facilitate exposition, we use ηSA to denote the state update
rate under SA protocol and ηFSA to denote that under FSA.
We can convert any SA at ηSA to:

a) FSA with ηFSA = 2ηSA, F = 2. Note that in this
scenario, the effective updating rate of the FSA protocol is
β = ηSA, which is identical to that of SA. Consequently, we
can compute Q1 as follows:

Q1 =
ηFSA

8
exp

(
− C ηFSA

2

)
− 1

2
<
ηFSA

8
− 1

2
< 0. (13)

b) FSA with ηFSA = 1, F = 1
ηSA

, if 1
ηSA

is an integer. In
this scenario, β = 1

F , which is also identical to that of SA.
To demonstrate that FSA outperforms SA, we rewrite Q1 by
the following:

Q1 =
F 2−1

12F
exp

(
−C
F

)
+

1−F
2

<
F 2−1

12F
+

1−F
2

= − (5F − 1)(F − 1)

12F
< 0. (14)

Both of the above designs can transform the commonly used
SA updating protocol into an FSA protocol and achieve better
AoI performance. This is because FSA not only decreases mu-
tual interference amongst the transmitters, but also equalizes
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Fig. 4. A plot of function y(F ) verse framesize under different spatial
deployment parameters, in which we set α = 3.5, η = 0.8, θ = 0 dB,
and vary λ as λ = 2× 10−2, λ = 1× 10−2 m−2, r as r = 10, r = 15 m.

the updating intervals of each source node, thereby reducing
the AoI [7].

3) The optimal F : By applying the inequality of arithmetic
and geometric means to (10), we can derive a lower bound to
the average AoI over the typical link as:

∆̄0 ≥ 2

√
(F 2 − 1)ηµΦ

0

12F
× F

ηµΦ
0

+
1− F

2

= 2

√
F 2 − 1

12
+

1− F
2

. (15)

This inequality indicates that merely increasing F does
not always benefit the AoI performance. In consequence, we
shall adequately choose the framesize in accordance with the
network parameters to achieve the optimal operation regime.

With this understanding, we fix other parameters and ex-
plore the optimal F that minimizes the average AoI. Specifi-
cally, we relax the constraint of F being an integer, take the
derivative of ∆̄B

0 with respect to F , and assign d∆̄B
0

dF = 0.
Then, we can obtain the theoretical optimal F (denoted by
F ∗) by solving y(F ) = 0, where y(F ) is expressed as:

y(F ) =

[
1

η
+
C(1−ηF )δ−2

F 2
(ηδ − F )

]
exp
(Cη
F

(
1−η
F

)δ−1
)

+
(F 2+1)F + (F 2−1)Cη

12F 3
η exp

(
−Cη
F

)
− 1

2
. (16)

Note that the root of this function can be attained efficiently
by popular software such as Matlab. Based on the parameter
setting as per Section IV-C, we give a plot in Fig. 4 on
what y(F ) looks like. This figure shows that y(F ) increases
monotonically, and if the solution to y(F ) = 0 exists, it must
be unique. Moreover, we shall assign the optimal framesize
F as the one between dF ∗e and bF ∗c that makes the ∆̄0

smaller, where d·e and b·c denote the ceil and floor functions,
respectively. On the other hand, if y(F ) = 0 does not have a
solution, we set F ∗ = 1.

4) Spatial throughput: Another commonly used metric in
the optimization of network deployment is spatial throughput,
given by [39]:

Θ ,
η

F
P(SIR0 > θ) log(1 + θ)

=
η

F
E[µΦ

0 ] log(1 + θ)

=
η

F
exp

(
−Cη
F

)
log(1 + θ), (17)

where E[µΦ
0 ] = exp(−C η

F ) follows from (55). This quantity
measures the average rate of successful information delivery
over the typical link. It is natural to infer that maximizing
spatial throughput also optimizes AoI, because a high through-
put enables packets to be delivered swiftly, giving “fresher”
information at the receiver. However, comparing (10) and (17),
we can see that jointly tuning the update rate η and frame
size F to obtain a higher throughput, i.e., making the term
η
F exp

(
−CηF

)
as large as possible, does not necessarily lead

to a smaller AoI.
5) Transmission power consumption: According to some

recent studies on energy efficiency, sleep-scheduling strate-
gies can effectively reduce power consumption and optimize
AoI performance [40], [41]. Considering that FSA also has
an implicit “sleep scheduling” characteristic, we investigated
the effectiveness of FSA in promoting energy efficiency in
addition to optimizing AoI performance. More specifically,
conditioned on the spatial topology Φ, in each frame, let us
denote by U (resp. Ū ) the event that the typical transmitter
does (resp. does not) generate a new update, and S (resp.
S̄) that the typical receiver does (resp. does not) receive a
successful update. Moreover, we denote E0(w) as the energy
consumed by the typical source node since the (w − 1)-th
successful transmission to the w-th one. Then, we can compute
the transmission power consumption over the typical link as:

E[P0|Φ] = lim
W→∞

∑W
w=1E0(w)∑W
w=1 Iw

=
P(U |S̄)(E[X]− 1) + 1

E[I]
Ptx =

ηPtx

F
, (18)

where I is the interval between two consecutive updates
received, P(S̄) = 1 − E[µΦ

0 ], and P(U) = η. Following (18),
we can clearly see that merging time slots into frames is
capable of reducing the transmission power consumption.

In addition to computing the average AoI, we can also
derive the analytical expression for the variance of AoI by
deconditioning µΦ

0 in (7) to obtain E[∆2
0] and then following

similar calculations as the above.
Theorem 4: In a Poisson bipolar network, the variance of

AoI over the typical link under FSA updating protocol can be
expressed as (19) at the top of this page.

Proof: Please see Appendix E.
When F = 1, this result reduces to the variance of AoI

under the SA protocol. We provide it in the following as a
complement to the current studies of AoI in random access
networks.
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σ2
∆B

0
=

2F 2

η2
exp

(
−C

∞∑
k=1

(k + 1)

(
δ − 1

k − 1

)(
− η

F

)k)− F 2

η2
exp

(
2Cη

F

(
1− η

F

)δ−1
)
− (F 2 − 1)2η2

144F 2
exp

(
−2Cη

F

)
− F 2 − 1

6
exp

(
Cη

F

((
1− η

F

)δ−1 − 1
))
− F 2

η
exp

(
Cη

F

(
1− η

F

)δ−1
)

+
(F 2 − 1)η

12
exp

(
−Cη
F

)
+
F 2 + 2F − 3

4
(19)

Corollary 1: In a Poisson bipolar network, the variance of
AoI over the typical link under SA updating protocol is given
by

σ2
∆SA

0
= E

[
2

(ηµΦ
0 )2
− 1

ηµΦ
0

]
− E

([
1

ηµΦ
0

])2

=
2

η2
exp

(
−C

∞∑
k=1

(k + 1)

(
δ − 1

k − 1

)
(−η)k

)
− 1

η2
exp

(
2Cη(1− η)δ−1

)
− 1

η
exp

(
Cη(1− η)δ−1

)
. (20)

When F > 1, we follow a similar analysis method to the
average AoI and rewrite (19) in terms of effective update rate,
as follows:

σ2
∆B

0
= σ2

∆SA
0

(β)

−
(
F 2−1

12β
e−

C
β −F

2

)2

−F
2−1

6
e
Cη
F

((
1−ηF
)δ−1
−1

)
+

2F 2+2F−3

4︸ ︷︷ ︸
Q2

,

(21)

where σ2
∆SA

0
(β) denotes the variance of AoI over the typical

link under SA protocol with update rate β. According to this
result, we note that the FSA protocol is preferable to SA only
when Q2 < 0.

C. Numerical Results

Based on the analytical results, this part shows the AoI per-
formance under different network operation regimes. Unless
otherwise specified, we use the following parameters: α = 3.5,
θ = 0 dB.

Fig. 5 illustrates the average, as well as variance, of AoI
as a function of the status updating rate, respectively, under
different framesizes F . From Fig. 5(a), we observe that for
the considered situations, there exists an optimal update rate
that minimizes the average AoI. This mainly arises from the
tradeoff between generating fresh information at the sources
and maintaining interference at a relatively low level across
the network. Moreover, we notice that when η is relatively
low, SA attains a smaller average AoI than FSA. Because,
in this case, the interference is mild, and the sources shall
not wait for the entire frame to generate a new update.
However, when η increases, the average AoI under SA (i.e.,
F = 1) grows rapidly. In comparison, those under FSA with
F ≥ 2 remain at relatively small values for a wide range
of η. The reason attributes to the fact that increasing the
update rate can activate more transmission links. As a result,
interference among source nodes becomes destructive, leading
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Fig. 5. AoI performance versus the update rate under different framesizes F :
(a) average AoI and (b) variance of AoI, in which we set λ = 1×10−2 m−2,
r = 10 m, and vary the framesize as F = 1 (i.e. SA), 3, 5, and 7.

to the consequence of many transmission failures. In contrast,
FSA implicitly regularizes the nodes’ transmission patterns by
imposing a frame structure on their active periods. Notably,
even if two sources are situated at close proximity in space,
choosing a frame with size F ≥ 2 can dramatically decrease
the chance that these nodes select the same time slot for
sending out the update information and result in the collision
of their transmitted packets. Consequently, we can see that
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Fig. 6. AoI performance versus framesize under different deployment
densities λ: (a) average AoI and (b) variance of AoI, in which we set η = 0.8,
r = 10 m, and vary the deployment densities as λ = 2× 10−2, 1× 10−2,
5× 10−3, and 5× 10−5 m−2.

when F is relatively large (i.e., F = 7), the average AoI
declines steadily as we increase the update rate. Because when
F is large, the nodes have more opportunities to pick different
time slots for generating updates (and transmitting them). As
such, the transmission benefits from low interference; hence,
the more frequent the generation of the updates, the fresher
the received information. We observe similar phenomena from
Fig. 5(b), except that (i) the variance of AoI is more sensitive
to the change of update rates; and (ii) therefore, the optimal η
that minimizes the variance of AoI is different from that of the
minimum average AoI. Nonetheless, it is noteworthy that using
FSA for status updating in a large-scale wireless network not
only reduces the average AoI but, more importantly, flats out
the variations in the variance of AoI, which is crucial for
stabilizing the network operation.

Recognizing that the frame size of FSA has a remarkable
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Fig. 7. Comparison of AoI performance for deployment density variation
under SA and FSA strategies. First, we fixed η = 0.8 in SA and (η, F ) =
(0.8, 3) in FSA, then plot: (a) average AoI and (b) variance of AoI.

influence on the AoI performance, we plot the average and
variance of AoI as functions of F in Fig. 6. The figure
unveils that depending on the network configuration, there
may (or may not) exist an optimal F that minimizes the
average/variance of AoI. This is because, while enlarging
F can mitigate the conflicts among nodes’ transmissions,
which in turn increases the transmission success probability,
it also prolongs the duration that each source generates a new
update. To this end, we can see that the framesize strikes
a delicate balance between the information freshness at the
sources and the interference level across the network. In
addition, we note that although increasing the deployment
density will inevitably raise up the average and variance of
AoI, adopting FSA alleviates such deterioration by effectually
dwindling the transmission collisions. Furthermore, we notice
that as λ increases, the optimal F goes up correspondingly,
entailing more stringent regularization to curb competition
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among the transmitting nodes. On the other hand, when the
spatial deployment is sparse (e.g., λ = 2× 10−2 in this case),
interference is mild, and the FSA protocol loses its efficacy.
Actually, it may perform worse than the SA protocol under
such a circumstance.

Fig. 7 depicts the AoI statistics, i.e., the average and vari-
ance, as functions of the deployment density. In this example,
we fix the framesize and update rate as F = 3 and η = 0.8,
respectively. By comparing the AoI performance under SA
and FSA, we find that networks under FSA protocol attain
a remarkable reduction in the average and variance of AoI
as the infrastructure is densified. More concretely, it can be
seen from Fig. 7(a) that under a moderate source-destination
distance r = 10, when the spatial density increases by five
folds, the average AoI under SA goes up by more than two
orders of magnitude; in comparison, the increase in the average
AoI under FSA is almost unnoticeable. Such a difference
becomes more prominent when r increases from 10 to 15,
where the average AoI under SA surges (almost) without limit,
while that under FSA only rises fractionally. On the other
hand, Fig. 7(b) demonstrates that FSA is also effective in
decreasing the variance of AoI–with a more pronounced gain
than the average AoI. These phenomena are in line with our
previous analysis, that when the source nodes update fast and
are densely distributed, FSA protocol performs better than SA
(it corresponds to that Q1 from (13) and Q2 from (22) are
both negative). Under this circumstance, increasing λ and r
enlarges C, leading to increases in the absolute values of Q1

and Q2, which widen the gap between SA and FSA.

V. POISSON CELLULAR NETWORKS

This section explores the age performance in the setting of
cellular networks. Under this model, multiple source nodes
transmit status update information to a common destination.
We derive analytical expressions for the considered AoI met-
rics, and investigate the interplay between FSA protocol and
the intra-cell spectral competition, inter-cell interference, and
the power control on the AoI performance.

A. Setting

We consider the uplink of a Poisson cellular network, as
depicted in Fig. 8, where spatially distributed sensors need
to update status information to their targeted data fusing
centers. The data fusing centers are deployed according to a
homogeneous PPP Φd with spatial density λd. The sensors are
scattered as an independent homogeneous PPP Φs of intensity
λs. Every sensor associates with the closest data fusing center
in geographical space.

In the context of cellular networks, distances between
different transmitter-receiver pairs vary significantly, leading
to a crucial impact from path loss on the signal attenuation.
In view of this challenge, we consider each sensor adopts a
power control strategy for its transmission. Specifically, we
denote by ε ∈ [0, 1] and Ri the power control factor and the
distance between the i-th sensor located at xi to its associated
data fusing center, respectively; then, the transmit power of
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Fig. 8. An example of the Poisson cellular network, where the sources and
destinations are denoted by the squares and circles, respectively. The solid
black line is the typical link, the solid red lines represent other active links,
and the solid blue circles are inactive sources with no connection.

sensor i is PtxR
αε
i . Accordingly, the SIR of the typical receiver

can be written as:

SIRC
0 =

Ptxh0r
α(ε−1)∑

i6=0 PtxhiνiRαεi ‖xi‖−α
. (22)

Using this expression, we will analyze the average and
variance of AoI under FSA in the following section and
investigate the AoI performance under different power control
strategies.

B. Analysis

Similar to the previous section, we commence our analysis
with deriving an initial expression for the conditional trans-
mission success probability. Specifically, by substituting (22)
into (5) and averaging out the randomness from channel fading
and interferers’ active states, we have:

µΦ
0 = P

(
SIRC

0 > θ|Φ
)

=
∏
i 6=0

1− η/F

1 + ‖xi‖α
θRαεi rα(1−ε)

 .

(23)

Based on this result, we can decondition µΦ
0 in (6) and

obtain the expression of the average AoI over the typical
link. However, owing to effects of power control, the spa-
tial locations of interference nodes is a non-stationary point
process where the intensity depends on the distance between
an interferor to the typical data fusing center, hindering the
derivation of an exact analysis. In light of this, we adopt the
approximations developed in [42] for the probability density
function (pdf). According to [42], the pdf of the distance, Ri,
between a generic sensor i and its associated data fusing center
can be approximated as

fr(u) =
5

2
λdπu exp

(
−5

4
λdπu

2

)
. (24)

The distance between sensor i and the typical data fusing
center, which located at the origin, is given by

fx(u) = 2πλdu exp (−λdπu
2). (25)

Due to the association policy, we know that Ri and Di

are not independent. In fact, Ri cannot be larger than Di,
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since otherwise sensor i will associate to another data fusing
center. We formalize this correlation by using the conditional
distribution function given by:

fr(u|Di) =
5
2λdπu exp (− 5

4λdπu
2)

1− exp (− 5
4λdπD2

i )
. (26)

Armed with the above preparation, we are now ready to
present the analytical expression for the average AoI.

Theorem 5: In a Poisson cellular network, the average AoI
over the typical link under FSA updating protocol is given by

∆̄C
0 =

∫ ∞
0

e−z

(
F 2−1

12F
η exp

(
− λs

λd

η

F
gθ(1, z;α, ε)

)
+
F

η
exp

( λs

λd

η

F
gθ(1−

η

F
, z;α, ε)

))
dz +

1−F
2

, (27)

where gθ(m, z;α, ε) is given as:

gθ(m, z;α, ε)=
4

5
z2

∫ ∞
0

∫ 1

0

q exp (−zqs)dsdq
(m+ qα(1−ε)/2

θsαε/2 )(1− e−zq)
. (28)

Proof: Please see Appendix F.
The theorem above captures the interplay amongst the

update rate, power control, and interferes’ spatial dependen-
cies, as well as their composite effects on the average AoI.
The resultant expression is, nevertheless, a bit involved. By
assuming the positions of interference sensors being i.i.d. and
constitutes a Poisson marked process [43], we can obtain a
tight approximation to it.

Corollary 2: Under the setting of a cellular network with
power control, the average AoI over the typical link under
FSA updating protocol can be approximated by the following:

∆̄C
0

≈ F 2−1

12F
η

∫ ∞
0

e−z−C1z
1−ε

dz+
F

η

∫ ∞
e−z+C2z

1−ε
dz+

1−F
2

=
1−F

2
+

∞∑
n=0

Γ
(
1+(1−ε)n

)
n!

(
F 2−1

12F
η(−C1)n+

F

η
C2

n

)
,

(29)

where C1 = λs

λd

η
F θ

δΓ(1 − δ)Γ(1 + δ)Γ(1 + ε) and C2 =
λs

λd

η
F

(
1− η

F

)
θδΓ(1− δ)Γ(1 + δ)Γ(1 + ε).

Proof: Please see Appendix G.
In order to garner more insights from Theorem 5, we resort

to the following special cases.
1) When F = 1: The average AoI given in (27) reduces to

that under SA protocol, which can be expressed as:

∆̄SA
0 = E

[
1

ηµΦ
0

]
=

1

η

∫ ∞
0

exp

(
−z +

λs

λd
ηgθ(1−η, z;α, ε)

)
dz. (30)

This result accounts for the effect of power control on the
AoI performance in a Poisson cellular network, which com-
plements the current development of AoI analysis in wireless
networks.

2) When F > 1: Similar to the scenario under the Poisson
bipolar network, we can rewrite (27) as follows:

∆̄C
0 = ∆̄SA

0 (β)

+
F 2 − 1

12
β

∫ ∞
0

exp
(
− z − λs

λd
βgθ(1, z;α, ε)

)
dz+

1−F
2︸ ︷︷ ︸

Q2

,

(31)

where ∆̄SA
0 (β) denotes the average AoI under the SA update

protocol when the update rate is β. From (31) we can see
that FSA is not effectual in reducing average AoI unless Q2

is negative. Such a condition can be formally rewritten as the
following:∫ ∞

0

exp
(
− z − λs

2λd
ηgθ(1, z;α, ε)

)
dz <

4

η
. (32)

As power control plays a critical role in the AoI perfor-
mance, we investigate the average AoI under three specific
cases.

3) No power control: In this case, ε = 0, each sensor
transmits information with the same power. Correspondingly,
we can derive the average AoI over the typical link as follows:

∆̄C,N
0 =

∞, if λs
λd

Ωδ
η
F (1−ηF )δ−1 ≥ 1,

F
η

1−λsλdΩδ
η
F (1−ηF )δ−1

+
F2−1
12F ×η

1+ λs
λd

η
F Ωδ

+ 1−F
2 , otherwise,

(33)

where Ωδ = θδΓ(1− δ)Γ(1+ δ). The result in (33) provides a
closed-form expression that explicitly illustrates the influence
of spatial contention on the average AoI, from which we can
see that increasing the density of sensors degrades the average
AoI reciprocally, as they need to vie for the ratio resources to
transmit information packets.

4) Full path inversion: In this case, ε = 1, and the impact
of path loss on the useful signal power can be alleviated
by power control. Nonetheless, interference may also go up
as other transmitters are also raising their transmit power.
Consequently, we can derive the average AoI over the typical
link under FSA protocol as follows:

∆̄C,F
0 =

F 2−1

12F
η · exp

(
4

5

λs

λd

η

F

∫ ∞
0

∫ 1

0

ze−zsdsdz

(1 + sδ

θ )(1−e−z)

)

+
F

η
exp

(
4

5

λs

λd

η

F

∫ ∞
0

∫ 1

0

ze−zsdsdz

(1−ηF + sδ

θ )(1−e−z)

)
+

1−F
2

.

(34)

Additionally, in view of the accurate expression being
complicated, we adopt Corollary 2 to get an approximated
result as follows:

∆̄C,F
0 ≈ F 2−1

12F
η exp

(
−2ηλs

Fλd
Ωδ

)
+
F

η
exp

(
2ηλs

Fλd
Ωδ

(
1− η

F

)δ−1
)

+
1−F

2
. (35)
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σ2
∆C

0
=

∫ ∞
0

e−z

[
2F 2

η2
exp

(
λs

λd

2η

F
Gθ((1−

η

F
,2,2,1−η

F
,1,
η

F
), z;α, ε)

)
− F 2

η2
exp

(
−z+

λs

λd

2η

F
Gθ((1−

η

F
,1,0,0,0,0), z;α, ε)

)
− (F 2−1)2η2

144F 2
exp

(
−z− λs

λd

2η

F
Gθ((1,1,0,0,0,0), z;α, ε)

)
− F 2−1

6
exp

(
−z+

λs

λd
(
η

F
)2[Gθ((1−

η

F
,1,1,1,−1,0), z;α, ε)

)
− F 2

η
exp

(
λs

λd

η

F
Gθ((1−

η

F
,1,0,0,0,0), z;α, ε)

)
+

(F 2 − 1)η

12
exp

(
λs

λd

η

F
Gθ((1,1,0,0,0,0), z;α, ε)

)]
dz +

F 2 + 2F − 3

4

(40)

5) Maximum power constraint: In practice, transmission
power is often limited to a maximum value. Therefore, in this
part, we consider a maximum power constraint model, which
is described as follows:

Pi =

{
PtxR

αε
i , Ri < p

1
αε ,

Pmax, Ri ≥ p
1
αε ,

(36)

where Pmax indicates the maximum transmission power, and
p = Pmax

Ptx
. In this case, we can derive the average AoI over

the typical link as follows:

∆̄C,M
0 =

1−F
2

+

F 2−1

12
η

[∫ Cε

0

exp
(
−z+gCεθ ((1,0),z;α,ε)+gCεθ,1((1,

ε

δ
,1),z;α,ε)

)
dz

+

∫ ∞
Cε

exp
(
−z+gCεθ ((1,

ε

δ
),z;α,ε)+gCεθ,−1((1,0,1),z;α,ε)

)
dz

]

+
F

η

[∫ Cε

0

exp
(
−z+gCεθ ((0,0),z;α,ε)+gCεθ,1((0,

ε

δ
,−1),z;α,ε)

)
dz

+

∫ ∞
Cε

exp
(
−z+gCεθ ((0,

ε

δ
),z;α,ε)+gCεθ,−1((1,0,−1),z;α,ε)

)
dz

]
,

(37)

where Cε = 5
4λdπp

δ
ε , while gCεθ ((m,a),z;α,ε) and

gCεθ,n((m,a,b),z;α,ε) are respectively given as

gCεθ ((m,a),z;α,ε)=
4

5
z2

∫ ∞
0

∫ 1

0

qe−zqs(1−e− 48
25 zq)dsdq

(m+ q
α(1−ε)

2

θs
αε
2

(Cεz )a)(1−e−zq)
,

(38)

gCεθ,n((m,a,b),z;α,ε)=
4

5
z2

∫ ∞
Cεzn

∫ 1

Cεzn

qe−zqs(1−e− 48
25 zq)

1− e−zq[
1(

m+θq−
α
2 (Cεz )a

)b − 1(
m+θs

αε
2 q

α(ε−1)
2 (Cεz )a−

ε
δ

)b ]dsdq.
(39)

Similarly, we can also obtain the analytical expression for
the variance of AoI by deconditioning µΦ

0 in (7) and taking
the second moment of µΦ

0 minus the square of the average.

Theorem 6: In a Poisson cellular network, the variance of
AoI over the typical link under the FSA updating protocol can
be expressed as (40) at the top of this page, where

Gθ((a,b,c,d,l,%),z;α,ε)

=
4

5
z2

∫ ∞
0

∫ 1

0

q exp (−zqs)dsdq
(a+ qα(1−ε)/2

θsαε/2
)b

c(d+ qα(1−ε)/2

θsαε/2
)l+%

(1− e−zq)
. (41)

Proof: Similar to the derivation in (61), we can calculate
the second moment of 1

µΦ
0

as follows:

E
[

1

(µΦ
0 )2

]
= E

∏
i6=0

(
1 +

η/F

1− η
F +

Dαi
θRαεi rα(1−ε)

)2


=E

[∏
i6=0

∫ Di

0

(
1+

η/F

1−ηF+
Dαi u

−αε

θrα(1−ε)

)2 5
2λdπu exp (−5

4λdπu
2)du

1−exp (−5
4λdπD2

i )

]

=E

[
exp

(
2πλs

∫ ∞
0

∫ κ

0

(
2+

η/F

1− η
F +

Dαi u
−αε

θrα(1−ε)

)
×

η
F ·

5
2λdπu exp (− 5

4λdπu
2)duκdκ

(1− η
F + καu−αε

θrα(1−ε) )(1−exp (− 5
4λdπκ2))

)]

=

∫ ∞
0

exp

(
−z+4

5

λs

λd
z2

∫ ∞
0

∫ 1

0

η
F qe
−zsq(2−ηF+2q

α(1−ε)
2

θs
αε
2

)
dsdq(

1−ηF + q
α(1−ε)

2

θs
αε
2

)2(
1−e−zq

)
)

dz.

(42)

Substituting the expressions for the first moment of µΦ
0 as per

(61), while the first and the second moment of 1
µΦ

0
given in

(62) and (42) respectively, into the expression for the variance
of AoI after deconditioning µΦ

0 (57), we can obtain the result
in this theorem.

When F = 1, this result also reduces to the variance of AoI
under SA protocol, given as the following.

Corollary 3: In a Poisson cellular network, the variance of
AoI over the typical link SA protocol is given by

σ2
∆SA

0
=

∫ ∞
0

e−z

[
2

η2
exp

(
2
λs

λd
ηgθ((1−η,2,2,1−η,1,η), z;α, ε)

)
− 1

η2
exp

(
−z+2

λs

λd
ηgθ((1−η,1,0,0,0,0), z;α, ε)

)
− 1

η
exp

(
λs

λd
ηgθ((1−η,1,0,0,0,0), z;α, ε)

)]
dz. (43)
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Fig. 9. Average AoI versus update rate under different framesizes F and
different power control strategies: (a) no power control (ε = 0) and (b) full
path inversion (ε = 1), in which we set λs

λd
= 5, and vary the framesize as

F = 1 (i.e. slotted ALOHA), 3, 5, and 7.

Remark 1: Given the specific values of the parameters,
integrals given above can be numerically evaluated via using
two integral functions, namely integral and integral2, in
Matlab. The infinite upper limits can be expressed by inf or
replaced by a large and appropriate finite value according to
the required accuracy.

C. Numerical Results

In this section, we utilize the developed theoretical expres-
sions to numerically evaluate and investigate the effect of FSA
on the average AoI in a cellular network. Unless otherwise
specified, we use the same set of parameters as in Section
IV-C.

Fig. 9 illustrates the relationship between the average AoI
and update rate under different framesizes. In this figure,
we compare the AoI performance under two different power
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Fig. 10. AoI performance verse the power control factor ε: (a) average AoI
and (b) variance of AoI, in which we set η = 0.4, λs

λd
= 5, and vary the

framesize as F = 1 (i.e. slotted ALOHA), 3, 5, and 7.

control policies, namely, the unified transmit power and full
path inversion. The figure reveals a similar phenomenon as
that in the bipolar network, i.e., there exists an optimal η
that minimizes the average AoI, and as η increases, the FSA
updating protocol outperforms the traditional SA protocol.
Such an observation validates the importance of adopting
frame structure in the status updating protocol. Besides, by
comparing Fig. 9(a) and Fig. 9(b), we see that using power
control strategy can substantially reduce the average AoI, espe-
cially when there is no frame and/or η is large. Specifically, in
Fig. 9(a), the average AoI under SA protocol increases sharply
when η is still small. As F increases, AoI can maintain a
lower value in a wider range of η. In Fig. 9(b), after the
implementation of power control, the change of the average
AoI becomes slower, especially the performance of SA is
obviously better.
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In Fig. 10, we plot the average and variance of AoI as a
function of power control factor ε under different framesizes.
From this figure, we immediately notice that power control has
a direct influence on the performance of AoI, whereas for a
varying value of F , there exists an optimal ε that minimizes the
average or variance of AoI. Moreover, the optimal ε is closely
related to the particular value of F . To be more precise, when
F = 1, i.e., the updating protocol is SA, there are no frame
to regularize the potential collisions amongst the transmitters.
Since the typical source node could locate in a long distance
to the data fussing center, the power attenuation caused by
path loss, together with the deterioration from interference, can
lead to a significant degradation to the average and variance of
AoI. Therefore, one shall increase the power control factor to
compensate the path loss. Nonetheless, increasing the source
nodes’ transmit power not only strengthens their signal power,
especially for those located remotely to the receivers, but
also enlarges the accumulated interference. Hence, the power
control factor needs to be adequately tuned so as to optimize
the age performance. In contrast, under the FSA protocol
(with F ≥ 2), the adoption of frame reduces the competition
between nodes and reducing the requirement of power control.
As such, the optimal ε in FSA will be smaller than that under
SA. Additionally, we note that although a larger framesize
provides more possibility of small interference transmission
environment for remote sources, improves the probability of
successful transmission, so that the network still maintains
well performance, merely increasing F does not always benefit
the AoI.

In Fig. 11, we depict the network average AoI as a function
of F , under different deployment densities. Unlike the bipolar
network, cellular network deployment affects AoI only in
terms of the density ratio of sources and destination nodes
λs

λd
, that is, the average number of sensors connected to each

data fusing center. First, we observe a phenomenon similar to
Fig. 6, that is, depending on the network spacial deployment,
there may be an optimal F , and increasing λs

λd
will definitely

deteriorate AoI performance, but employing FSA protocol can
alleviate this deterioration. Second, we observe that the evolu-
tion trend of the average AoI with F is different under different
power control strategies. Specifically, Fig. 11(a) shows that
without power control, the average AoI under SA protocol has
reached a very large value even when λs

λd
is still very small

(e.g., λs

λd
= 2). However, the implementation of FSA strategy

can obtain a relatively good performance, and with the increase
of the ratio, we need a larger frame to maintain the average AoI
performance in a better state. In Fig. 11(b), the power control
strategy can increase the competitiveness of effective signals
and then improve the performance of AoI. In this case, when
λs

λd
is relatively small, FSA does not play a significant role, and

even worse than the performance of AoI under SA protocol. As
the ratio increases, namely the competition between sources
increases, FSA will show its advantage.

VI. CONCLUSION

In this paper, we undertook an analytical study toward
understanding the effect of FSA-like status updating protocol
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Fig. 11. AoI performance versus framesize with different deployment
densities λs

λd
and different power control strategies: (a) no power control

(ε = 0) and (b) full path inversion (ε = 1), in which we set η = 0.4, and
vary the average number of sources that each data fusing center can contact
as λs

λd
= 2, 4, 6, and 8.

on the AoI performance in wireless networks. We adopted a
general model that accounts for channel fading, path loss, and
interference. We derived closed-form expressions for the aver-
age and its variance in Poisson bipolar and cellular networks,
respectively. Based on the analysis, we identified the operating
regime under which FSA is instrumental in reducing AoI. We
also provided the optimal framesize that minimizes the average
AoI for a given configuration of network parameters. The
numerical results confirmed that when interference is severe,
i.e., if the network is densely deployed and/or the source
nodes are updating status information aggressively, employing
FSA in the transmission protocol can substantially reduce the
average and variance of AoI. In contrast, such a scheme is
ineffective for AoI reduction in a sparsely deployed network,
as interference is mild in this scenario, and the nodes should
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update more frequently to attain a small AoI. Our numerical
results also showed that implementing FSA jointly with power
control can further benefit the age performance in a wireless
system, while the particular values of framesize and power
control factor need to be adequately tuned to achieve the
optimal gain.

The mathematical framework presented in this paper lays
the foundation for analyzing large-scale wireless networks
with frame-based traffic patterns. The model can be extended
to study the effects of FSA-based status updating protocols
on the age performance under non-linear cost functions. Ad-
ditionally, studying the optimal design of frame structure with
a variable size adapted to each transmitter’s local geometry is
another promising future research that can be extended from
the fixed frame size setting and results shown in this paper.

APPENDIX

A. Proof of Theorem 1

We adopt a graphical method to calculate the average AoI.
Specifically, we denote by X the number of frames between
two successfully received updates, I the interval between two
consecutive updates received, A the area between the two
successful updates as illustrated in Figure 1, and use the
subscript w to represent the value of the w-th corresponding
variable (e.g. define Iw as the time elapsed since the (w− 1)-
th acceptance to the update before a new update is received
again). Thus, the time average AoI can be expressed as
follows:

∆̄0 = lim
W→∞

∑W
w=1Aw∑W
w=1 Iw

=
E[
∑I
i=1 i]

E[I]
=

1

2
+

E[I2]

E[I]
, (44)

in which Iw is given by:

Iw = FXw + (Nw −Nw−1), (45)

numbering time slots in the frame, Nw ∈ {1, 2, ..., F} rep-
resents the index of the time slot that is an update received
for the w time (e.g., in Figure 1, Nw−1 = 3 and Nw = 2).
Note that X obeys a geometric distribution with parameter
ηµΦ

0 , therefore, E[X] = 1
ηµΦ

0
; Nw−1 and Nw have the same

distribution, being a discrete uniform distribution independent
of X in the range of {1, ...F}. By denoting E[N ] = E[Nw],
we have:

E[I] = FE[X], (46)

E[I2] = F 2E[X] + 2(E[N2]− E[N ]2). (47)

On the other hand, E[N ] and E[N2] can be respectively
computed as follows:

E[N ] =

F∑
n=1

nP[N = n] =
1

F

F∑
d=1

d =
F + 1

2
, (48)

E[N2] =

F∑
n=1

n2P[N = n] =
1

F

F∑
d=1

d2 =
(F + 1)(2F + 1)

6
.

(49)

Combining the above fragments, we can obtain the conditional
average AoI.

B. Proof of Theorem 2

The similar graphical method is applied to Theorem 2, we
can express the average quadratic AoI as follows:

∆̄2
0 =

E[
∑I
i=1 i

2]

E[I]
=

2E[I3] + 3E[I2] + E[I]

6E[I]
. (50)

According to the expression for Iw in (45), we can obtain:

E[I3] = F 3E[X3] + 6F (E[N2]− E[N ]2)E[X]. (51)

Since X obeys a geometric distribution with parameter ηµΦ
0 ,

we can carry out the following calculation:

E[X3] =

∞∑
k=1

k3P(X = k) =

∞∑
k=1

k3ηµΦ
0 (1− ηµΦ

0 )k−1

= −ηµΦ
0

d
∑∞
k=1 k

2(1− ηµΦ
0 )k

d(ηµΦ
0 )

= −ηµΦ
0

d(1− ηµΦ
0 )E[X2]/(ηµΦ

0 )

d(ηµΦ
0 )

=
(ηµΦ

0 )2 − 6ηµΦ
0 + 6

(ηµΦ
0 )3

. (52)

Then, combining the above results, we get the result.

C. Proof of Lemma 1

According to the transmission protocol, we note that every
source decides whether it will update in a typical frame
independently with probability η, and if a source decides to
update in this frame, it randomly selects a time slot according
to a uniform distribution. Consequently, at any given time slot,
a source activates with probability η/F , i.e., P(νi = 1) = η

F .
As such, we can substitute (8) into (5) and get the following:

µΦ
0 = P

(
Ptxh0r

−α∑
i 6=0 Ptxhiνi ‖xi‖−α

> θ
∣∣∣Φ)

= P

h0 > θrα
∑
i 6=0

hiνi ‖xi‖−α
∣∣∣Φ


= E

∏
i 6=0

exp
(
−θrαhiνi ‖xi‖−α

) ∣∣∣Φ


(a)
= E

∏
i 6=0

1

1 + θrανi ‖xi‖−α


(b)
=
∏
i6=0

(
η/F

1 + θrα ‖xi‖−α
+ 1− η

F

)
, (53)

where (a) follows since {hi}∞i=1 are i.i.d. random variables
following the exponential distribution with unit mean, and (b)
follows as {νi}∞i=1 are independent of each other. Then, after
a further simplification, we obtain the result shown in Lemma
1.
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D. Proof of Theorem 3

Deconditioning µΦ
0 in (6), we can get the expression of

average AoI as:

∆̄0 =
F 2 − 1

12F
ηE[µΦ

0 ] +
F

η
E
[

1

µΦ
0

]
+

1− F
2

. (54)

Using Lemma 1, we can compute the mean of µΦ
0 as follows:

E[µΦ
0 ] = E

[∏
i 6=0

(
1− η/F

1 + ‖xi‖α/θrα

)]

= E

[
exp

(
−
∑
i 6=0

− log

(
1− η/F

1 + ‖xi‖α/θrα

))]
(a)
= exp

(
−λ
∫
x∈R2

[
1−

(
1− η/F

1 + ‖x‖α/θrα

)]
dx

)
(b)
= exp

(
− λπδ

∫ ∞
0

η/F

1 + u/θrα
uδ−1du

)
(c)
= exp

(
− λπr2θδΓ(1− δ)Γ(1 + δ)

η

F

)
, (55)

where (a) follows by using the probability generating func-
tional (PGFL) of PPP [24], (b) changes variables from rectan-
gular to polar coordinates and sets u = ‖x‖α, and (c) is due
to the result

∫∞
0

uδ−1du
u+m = mδ−1 π

sin (πδ) [38]. Similarly, we
can calculate E[ 1

µΦ
0

] as follows:

E
[

1

µΦ
0

]
= E

[∏
i 6=0

(
1− η/F

1 + ‖xi‖α/θrα

)−1
]

= exp

(
− λ
∫
x∈R2

[
1−

(
1− η/F

1 + ‖x‖α/θrα

)−1
]

dx

)

= exp

(
− λ
∫
x∈R2

η/F

1− η
F + ‖x‖α

θrα

dx

)

= exp

(
λπδ

∫ ∞
0

η/F

1− η
F + u

θrα
uδ−1du

)

= exp

(
λπr2θδΓ(1− δ)Γ(1 + δ)

η

F

(
1−η
F

)δ−1
)
.

(56)

By substituting (55) and (56) into (54), we can obtain the
result shown in Theorem 1.

E. Proof of Theorem 4

Similar to the steps taken in Appendix D, we can calculate
the variance of AoI as follows:

σ2
∆0

= E[∆2
0]− (E[∆0])2

=
2F 2

η2
E
[

1

(µΦ
0 )2

]
− 2F 2−F

η
E
[

1

µΦ
0

]
+

(F 2−1)η

12F
E[µΦ

0 ]+
F 2−F

2

−

[
F 2 − 1

12F
ηE[µΦ

0 ] +
F

η
E
[ 1

µΦ
0

]
+

1− F
2

]2

, (57)

where E[ 1
(µΦ

0 )2 ] can be derived by the following:

E
[

1

(µΦ
0 )2

]
= E

[∏
i 6=0

(
1− η/F

1 + ‖xi‖α/θrα

)−2
]

= exp

(
− λπδ

∫ ∞
0

[
1−

(
1−

η
F θr

α

u+ θrα

)−2]
uδ−1du

)
(a)
= exp

(
− λπδ

∫ ∞
0

[
1−

∞∑
k=0

(k + 1)
( η

F θr
α

u+ θrα

)k]
uδ−1du

)
= exp

(
λπδ

∞∑
k=1

(k + 1)
( η
F
θrα
)k ∫ ∞

0

uδ−1du

(u+ θrα)k

)
(b)
= exp

(
− λπθδr2 πδ

sin (πδ)

∞∑
k=1

(k + 1)
(
− η

F

)k Γ(δ)

Γ(k)Γ(δ−k+1)

)
(c)
= exp

(
− C

∞∑
k=1

(k + 1)

(
δ − 1

k − 1

)(
− η

F

)k)
, (58)

where (a) leverages the relationship that 1
(1+x)2 =

∑∞
k=0(k+

1)(−x)k, for |x| < 1, (b) uses∫ ∞
0

uδ−1du

(u+ θrα)k
= (θrα)δ−k×(−1)k+1π

sin(πδ)
× Γ(δ)

Γ(k)Γ(δ−k+1)
,

and (c) follows from the Odd Element formula Γ(δ)Γ(1 −
δ) = π

sin(πδ) , for 0 < δ < 1 and the recursion of the
Gamma function Γ(1 + δ) = δΓ(δ). Then, by substituting
the expression for E[µΦ

0 ], E[ 1
µΦ

0
] and E[ 1

(µΦ
0 )2 ] into (57), we

get the result.

F. Proof of Theorem 5

Since the sources only communicate with their nearest data
fusing centers, when we condition on the distance between
the user and the nearest center as u, then there is no data
fusion center in area A = 2πu2. Then, we can deduce that the
distance R between users and its dedicated receiver follows a
distribution with the following probability density function:

fR(u) = e−λdπu
2

2πλdu. (59)

Similar to the derivation process of bipolar network, we can
first obtain the conditional transmission success probability as:

µΦ
0 =

∏
i 6=0

1− η/F

1 +
Dαi

θRαεi rα(1−ε)

 . (60)

Next, we can calculate the first moment of µΦ
0 as follows:

E[µΦ
0 ] = E

[∏
i 6=0

(
1−
∫ Di

0

η
F

5
2λdπu exp (−5

4λdπu
2)du(

1+
Dαi u

−αε

θrα(1−ε)

)(
1−exp (−5

4λdπD2
i )
))]

= E

[
exp

(∑
i 6=0

log
(
1−
∫ Di

0

η
F

5
2λdπu exp (−5

4λdπu
2)du(

1+
Dαi u

−αε

θrα(1−ε)

)(
1−e−5

4λdπD2
i

)))]
(a)
= Er

[
exp

(
−2πλs

∫ ∞
0

∫ κ

0

η
F

5
2λdπue

−5
4λdπu

2

duκdκ(
1+ καu−αε

θrα(1−ε)

)(
1−e−5

4λdπκ2
))]

(b)
=

∫ ∞
0

exp

(
−z− 4

5

λs

λd
z2

∫ ∞
0

∫ 1

0

η
F q exp (−zsq)dsdq(

1+ qα(1−ε)/2

θsαε/2

)(
1−e−zq

))dz,

(61)
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where (a) follows from adopting the PGFL of PPP, and (b)
results from the variable substitution: s = u

κ , q = (κr )2 and
z = 5

4λdπr
2. Similarly, we can calculate the expectation of

1
µΦ

0
as follows:

E
[

1

µΦ
0

]
= E

∏
i 6=0

(
1 +

η/F

1− η
F +

Dαi
θRαεi rα(1−ε)

)
=

∫ ∞
0

exp

(
−z+

4

5

λs

λd

∫ ∞
0

∫ 1

0

z2 η
F q exp (−zsq)dsdq(

1− η
F + qα(1−ε)/2

θsαε/2

)(
1−e−zq

))dz.

(62)

Substituting (61) and (62) into (54), we can obtain the average
AoI of the cellular network.

G. Proof of Corollary

We remove the spatial dependency of interference nodes’ lo-
cations and approximate them as a marked PPP {xi,Wxi}∞i=1,
where Wxi = Rαεi [43]. Similar to the derivation process of
Theorem 3, we can first condition on the distance of the typical
transmitter-receiver pair r and calculate the first moment of µΦ

0

as follows:

E[µΦ
0 |r] = E

[∏
i6=0

(
1− η/F

1 +
Dαi

θRαεi rα(1−ε)

)]

≈ E

[
exp

(
−λs

∫
x∈R2

[
1−

(
1− η/F

1 + ‖x‖α
θWxrα(1−ε)

)]
dx

)]

= exp

(
− E

[ ∫
x∈R2

λsη/Fdx

1 + ‖x‖α
θWxrα(1−ε)

])

= exp

(
− λs

η

F
πE
[ ∫ ∞

0

θWxr
α(1−ε) δuδ−1du

u+ θWxrα(1−ε)

])

= exp

(
− λs

η

F
πθδΓ(1− δ)Γ(1 + δ)r2(1−ε)E

[
W δ
x

])
(a)
= exp

(
− λs

η

F
πθδΓ(1− δ)Γ(1 + δ)

Γ(ε+ 1)

(λdπ)ε
r2(1−ε)

)
,

(63)

where (a) results from the following

E
[
W δ
x

]
= E

[
R2ε
i

]
≈
∫ ∞

0

2πλdue
−λdπu

2

u2εdu

=

∫ ∞
0

tε

(λdπ)ε
e−tdt =

Γ(ε+ 1)

(λdπ)ε
. (64)

Then, we decondition (63) on r and get the following:

E[µΦ
0 ] ≈

∫ ∞
0

2πλdre
−λdπr

2

E[µΦ
0 |r]dr

=

∫ ∞
0

exp
(
−z− λs

λd

η

F
θδΓ(1−δ)Γ(1+δ)Γ(1+ε)z1−ε

)
dz.

(65)

The expression above can be equivalently written as follows:

E[µΦ
0 ] ≈ E

[
e−C1Z

1−ε]
(66)

where Z is a random variable that obeys the exponential
distribution with unit mean. Denote by Y = Z1−ε, we can
compute the probability density function (pdf) of Y as follows:

fY (y) =
dP(Y ≤ y)

dy
=

dP
(
Z ≤ y

1
1−ε
)

dy

=
d
(
1− e−

y
1−ε
)

dy
=

1

1− ε
y

1
1−ε−1e−

y
1−ε . (67)

This expression indicates that Y follows a Weibull distribution
with the shape parameter (1 − ε) and unit scale parameter.
Therefore, we can obtain the approximate result as E[µΦ

0 ] ≈
E
[
e−C1Z

1−ε]
=
∑∞
n=0

(−C1)n

n! Γ
(
1 + (1− ε)n

)
.

In the same way, we can calculate E
[

1
µΦ

0
|r
]

as follows:

E
[ 1

µΦ
0

∣∣r] = E

[∏
i 6=0

(
1 +

η/F

1− η
F +

Dαi
θRαεi rα(1−ε)

)]

≈ exp

(
E
[ ∫

x∈R2

λsη/Fdx

1− η
F + ‖x‖α

θWxrα(1−ε)

])

= exp

(
λs
η

F

(
1−η
F

)δ−1

πθδr2(1−ε)Γ(1−δ)Γ(1+δ)
Γ(ε+1)

(λdπ)ε

)
.

(68)

By deconditioning the above with respect to r, we can obtain
E
[

1
µΦ

0

]
as follows:

E
[ 1

µΦ
0

]
≈
∫ ∞

0

exp
(
−z

+
λs

λd

η

F

(
1−η
F

)δ−1

θδΓ(1−δ)Γ(1+δ)Γ(1+ε)z1−ε
)
dz

=

∞∑
n=0

C2
n

n!
Γ
(
1 + (1− ε)n

)
. (69)

Substituting expressions for E[µΦ
0 ] and E

[
1
µΦ

0

]
into (50), we

can get the approximate average AoI.
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