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Abstract—Semantic communications can reduce the resource
consumption by transmitting task-related semantic information
extracted from source messages. However, when the source
messages are utilized for various tasks, e.g., wireless sensing data
for localization and activities detection, semantic communication
technique is difficult to be implemented because of the increased
processing complexity. In this paper, we propose the inverse se-
mantic communications as a new paradigm. Instead of extracting
semantic information from messages, we aim to encode the task-
related source messages into a hyper-source message for data
transmission or storage. Following this paradigm, we design an
inverse semantic-aware wireless sensing framework with three
algorithms for data sampling, reconfigurable intelligent surface
(RIS)-aided encoding, and self-supervised decoding, respectively.
Specifically, on the one hand, we propose a novel RIS hardware
design for encoding several signal spectrums into one MetaSpec-
trum. To select the task-related signal spectrums for achieving
efficient encoding, a semantic hash sampling method is intro-
duced. On the other hand, we propose a self-supervised learning
method for decoding the MetaSpectrums to obtain the original
signal spectrums. Using the sensing data collected from real-
world, we show that our framework can reduce the data volume
by 95% compared to that before encoding, without affecting the
accomplishment of sensing tasks. Moreover, compared with the
typically used uniform sampling scheme, the proposed semantic
hash sampling scheme can achieve 67% lower mean squared error
in recovering the sensing parameters. In addition, experiment
results demonstrate that the amplitude response matrix of the
RIS enables the encryption of the sensing data.

Index Terms—Semantic communications, reconfigurable intel-
ligent surface, wireless sensing, self-supervised learning

I. INTRODUCTION

With the evolution of the next-generation Internet and the
proliferation of wireless applications, the demand of network
resources for data transmission, storage, and computation has
been increasing rapidly. Specifically, the advancement of tech-
nologies like extended reality and digital twins is driving the
development of the Metaverse and Web 3.0 concepts [1]. As a
result, there is an increasing demand for robust communication
and computing support. To address the strict requirements of
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next-generation Internet applications, such as low latency, high
reliability, and immersive experiences, semantic communica-
tion has been proposed as a key approach in the context of
sixth-generation wireless communications [2]. By transmitting
only task-related semantic information extracted from source
messages, semantic communications are believed to extend
the conventional Shannon communication paradigm and bring
higher quality of experience to users [3]], [4].

While semantic communication techniques have demon-
strated their significant effectiveness in processing source data
across multiple modalities [5]], such as audio [6], image [7],
video [8]], and text [9], the application of semantic communica-
tions to wireless sensing data processing remains a promising
area with limited exploration thus far [4]. The sensing data
is important because that wireless signals are ubiquitous in
our daily life, and can be used to accomplish various tasks
requested by service providers. Specifically, wireless signals
not only help users access the Internet more efficiently, e.g.,
Metaverse, but also enable indoor positioning and activities
detection more effectively. The wireless sensing data also
facilitates the construction of virtual worlds such as digital
twins. Unlike on-body sensor-based solutions [10]], wireless
sensing does not require the user to carry any devices and
equipment, which is more practical and convenient. Addition-
ally, the wireless sensing method is more robust than camera-
based methods particularly in cases of occlusion or inadequate
illumination, while causing fewer privacy issues.

However, the wireless sensing technique has one major
limitation. The transmission and storage of the sensing data,
such as signal amplitude and phase spectrums, consumes a
large number of resources [11]. In particular, the develop-
ment of communication technologies such as multiple-input
multiple-output and orthogonal frequency-division multiplex-
ing (OFDM) improve the sensing resolution in the spatial and
time-frequency domains, which, however, further increases the
sensing data volume. Therefore, the semantic communica-
tion technique is expected to achieve efficient sensing data
transmission or storage while achieving sensing tasks. This
vision is more meaningful for applications that require long-
term storage of sensing data, such as incremental learning
for recognition [12]], healthcare services [[13] and Internet-of-
Things (IoT) systems and applications [14]. The reason that
semantic communications can “exceed” the Shannon limit is
the “impairment” of the transmitted data, i.e., an effective
semantic encoder extracts only task-independent semantic
information from the source messages. However, a potential
pitfall here is that the well-trained semantic encoding and
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Fig. 1. The ideas of conventional, semantic, and inverse semantic communications. Motivated by the inverse semantic-aware communication, we propose an
inverse semantic-aware encoding and decoding framework and show the results. Specifically, we select 10 original signal amplitude/phase spectrum (Part I) by
using our proposed Algorithm [2| and encode them into one MetaSpectrum by using the RIS and Algorithm EI After wireless transmission, the reconstruction
results (Part II) are obtained by decoding the MetaSpectrum using Algorithm [3] The sensing data is collected by real experiments with an IEEE 802.11ax

based test platform [T3].

decoding models for one specific task may fail when the source
messages are needed to accomplish several different tasks. As
shown at the top of Fig.[I] instead of transmitting an image, the
semantic encoder can extract sentences describing the content
of the image. This greatly reduces the number of bits that are
required to be transmitted. However, semantic communications
would not work well when the task is not only to know the
type and number of fruits in the images, but also to know
the spatial location. In this case, updated semantic models are
required to be re-trained. In a word, semantic communications
achieve efficiency transmission while introducing limitations.
For the wireless sensing data, if we extract only the semantic
information used for localization, the gesture detection task
might not be accomplished.

To fill this gap in semantic communications, we propose
an inverse semantic-aware approach by treating the source
messages as semantic information of a hyper-source message.
As shown in Fig.[T] the “inverse” means that the processing of
source messages is no longer to extract semantic information,

but to combine multiple source messages (Part I) into one
hyper-source message (Part III) for transmission or storage.
Subsequently, by decoding, the semantic information of the
hyper-source message (Part II), i.e., source messages, can be
obtained to support multiple different tasks. Using the inverse
semantic-aware approach, we reduce the data volume for trans-
mission or storage, while avoiding the task limitations brought
by semantic communications. For the wireless sensing, the
source messages are signal amplitude and phase spectrums,
and we call the hyper-source messages as amplitude and phase
MetaSpectrums, respectively. We use the reconfigurable intel-
ligent surface (RIS) to ensure efficient inverse semantic-aware
encoding and decodingﬂ With the RIS’s superior ability to
modulate signals, our scheme can be implemented effectively
by modifying a small number of elements on the RIS without
affecting the RIS-aided communications. Unlike most RIS

'Our scheme can alternatively be achieved by using active antennas and
processors to simulate the same signal processing as the RIS. However,
higher hardware costs are introduced compared to the scheme using RIS.



research works that consider only the phase response matrix
of RIS, to the best of our knowledge, this is the first paper to
make full use of the amplitude response matrix of RIS to help
the system design for wireless sensing. The amplitude response
matrix is not only used to reduce the sensing data volume
significantly, but also to encrypt the sensing data because
the amplitude response matrix is inevitable in the decoding
process. Visual representation of the contributions of this paper
is shown in Fig. |1} which are summarized as follows:

e We propose a novel RIS hardware design following
the paradigm of inverse semantic communications. The
design features L-shaped active sensors placed behind
transmissive elements in RIS, enabling inverse semantic-
aware wireless sensing that significantly reduces the
sensing data volume to 5% of the original data volume,
leading to improved efficiency and resource utilization.

o« We develop the inverse semantic-aware encoding and
decoding methods that leverage the amplitude response
matrix of the RIS to embed prior knowledge in the sens-
ing signals. The self-supervised learning-based decoding
method requires no pre-training resource consumption
and allows for the recovery of source messages to sup-
port multiple different tasks, overcoming the limitations
encountered in semantic communications.

o We introduce an effective semantic hash sampling algo-
rithm for selecting task-related sensing signal spectrums
for decoding. Our approach achieves a mean squared
error (MSE) between the ground truth and the 2D angles-
of-arrival (AoA) estimation results that is 67% lower
than that of typically used uniform sampling schemes,
and enhances security by utilizing the amplitude response
matrix of the RIS for data encryption.

o We build an IEEE 802.11ax based test platform [15] to
collect real-world sensing data and perform experiments
to demonstrate the effectiveness of our proposed frame-
work.

The remainder of the paper is organized as follows. In
Section we review the related work in the literature.
Section [[II| introduces the system model, which contains the
novel RIS hardware and the sensing signal model. The inverse
semantic-aware encoding and decoding methods are proposed
in Section [TV]and Section [V] respectively. Section [VI| presents
the experiment results. In Section we present the conclu-
sion and discuss some potential research directions.

II. RELATED WORK

In this section, we provide a brief review of three related
techniques, i.e., wireless sensing, RIS, and spectral snapshot
compressive imaging.

A. Wireless Sensing

Wireless signals, such as WiFi [17], have been widely used
for sensing tasks ranging from large-scale intrusion detection
to small-scale gesture recognition and breathing monitoring.
With the rapid advancement of wireless sensing techniques,
next-generation internet service providers can construct digital

models of the physical world (for digital twin service) or con-
duct analysis of users’ behaviors (for Metaverse services) [|13]],
[18]], [19]. Wireless IoT devices collect the sensing data and
use channel state information (CSI), which can be obtained
as a sampled channel frequency response (CFR), for sensing
tasks such as human activities detection [20] and passive
localization [21]. The CFR can be expressed as a complex
matrix and decomposed into an amplitude spectrum and a
phase spectrum for easy transmission and storage. With a
three-dimensional multiple signal classification (3D-MUSIC)
algorithm, the 3D spectrum can be obtained using the ampli-
tude and phase spectra, which contain the time of flight (ToF)
information. The obtained 3D spectrum can achieve several
purposes, such as user localization [22[] or activity detection
in the physical world. A challenge in this process is that the
storage or transmission can cause excessive network resource
consumption due to a large amount of sensing data.

B. Reconfigurable Intelligent Surface

Significant developments in RIS-aided wireless commu-
nications have been witnessed over the past 3 years, from
hardware and algorithms design to deep integration with
various technologies [23], [24]. One of the most important
application scenarios is to enhance wireless sensing [25]], such
as indoor localization [26]] and direction-of-arrival estimation
[27]. However, the existing methods typically aim to improve
the sensing accuracy through signal enhancement by the RIS.
The signal control capability of the RIS is not fully utilized,
and most literature is limited in the study of reflective RIS
that cannot achieve complete coverage. As our understanding
of reconfigurable intelligent surface (RIS) hardware deepens,
there has been a growing focus on transmissive and refrac-
tive RISs in the research community [28[]-[30]. Recently,
novel RIS architectures such as simultaneously transmitting
and reflecting (STAR) RIS [29] and intelligent omni-surface
(I0S) [30] have been proposed to facilitate full-dimensional
communications. We believe that the implementation of STAR
RIS or IOS has the potential to significantly enhance wireless
sensing capabilities. In addition to the direct benefit of im-
proving sensing performance through signal enhancement, the
ability to adjust the amplitude of transmissive signals can be
leveraged as prior knowledge for the efficient compression of
wireless sensing data. This paper will delve further into this
concept and its implications for the field of wireless sensing.

C. Spectral Snapshot Compressive Imaging

Capturing high dimension (HD) data is a long-term chal-
lenge in signal processing and related fields [31]]. With theo-
retical guarantees, snapshot compressed imaging (SCI) uses
two-dimensional (2D) detectors to capture HD, e.g., 3D,
data in snapshot measurements using novel optical design.
Then, reconstruction algorithms are applied to obtain the
required HD data cubes [32], [33[]. SCI has been used in
many fields such as hyper-spectral imaging, video, holography,
tomography, focal depth imaging, polarization imaging, and
microscopy [34]. However, there is no prior work discussing
how to apply SCI to compressed sensing signals in the time
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Fig. 2. The framework of the proposed inverse semantic-aware wireless
sensing system.

dimension. The reason is that the highly dynamic nature of
sensing signals brings difficulties to detector hardware design,
coded aperture structure, and decompression algorithms. To
fill this gap, in Section we use the novel RIS hardware
to perform one kind of special SCI to the sensing data. Using
our proposed inverse semantic-aware encoding and decoding
methods, the compression and self-supervised decompression
of the sensing data can be achieved on time scale. Note that
our design is different from compressive sensing (CS) methods
in wireless sensing, and in fact can be used to further improve
the performance of wireless CS systems.

One primary objective of this study is to solve an important
problem of overwhelming storage or transmission resources
consumption in the wireless sensing. Inspired by the SCI
system, we propose an encoding and decoding framework
using the RIS to achieve inverse semantic-aware sensing,
which significantly reduces the data volume and does not affect
the accomplishment of various sensing tasks.

III. SYSTEM MODELS

Wireless signals contain user information such as activities
and walking trajectories, and can preserve user privacy better
than camera-based methods. Thus, mobile application SPs
can use wireless signals to provide better services to users.
For example, healthcare SPs can provide medical advice by
analyzing the user’s sleeping postures, and Metaverse SPs can
customize virtual traveling scenes by positioning the users.
To meet the needs of ubiquitous sensing data collection, we
consider a 3D wireless indoor communications scenario as
an example. As shown in Fig. 2] (Part I), a multi-antenna

transmitter, e.g., IoT devices or WiFi router, transmits signals
to multiple users with the help of an RIS. Different from
the conventional scheme that uses RIS to improve sensing
accuracy by enhancing signal strength, in this section, we
propose a novel RIS hardware design to enable RIS with
wireless sensing capability. Then, we analyze the mathematical
formulas of the received sensing signals.

A. Novel Hardware of Reconfigurable Intelligent Surface

To enable RIS to sense the environment, a widely used solu-
tion is to replace some reflecting elements on the RIS with ac-
tive sensors, e.g., for channel estimation using CS [35[. Thus,
a part of the RIS elements can switch between two operation
modes, i.e., i) channel sensing mode that is used to estimate the
channels, ii) reflection mode that reflects the signal. However,
we can see that the RIS cannot assist communications in
mode 1. We do not adopt directly the aforementioned solution
since our goal is not merely to estimate the channel, but
also constantly to sense the environment for the purposes
of localizing and detecting user activities. To facilitate the
sensing capabilities of the RIS without compromising its
auxiliary communication functions, we initially integrate the
RIS with a limited number of simultaneous transmitting and
reflecting patches [29]], which are called transmissive elements
in this paper for convenience. Specifically, as shown in Fig. 2]
(Part II), the RIS is equipped with L-shaped (M + N + 1)
transmissive elements, and active sensors are strategically
positioned behind them to receive signals modulated by the
RIS.

Remark 1. The reason for using the L-shaped array is that
such a structure has more accurate 2D AoA estimation results
than other structures, e.g., cross, linear, and rectangular
arrays. This conclusion can be obtained by comparing the
Cramer-Rao Bound metrics of different structures [36)], [37)].

Accordingly, the signal incident on the ¢*" transmissive
element can be transmitted and reflected as [29]

ﬁi,lep(j(Si’q), 1€ {T7 R} ) (1)

where ¢ = T is for transmission coefficients and ¢+ = R is
for reflection coefficients. Note that, for each element, the
responses of the RIS for transmission and reflection modes
can be designed independently from each other [38]. In the
following, we focus on the sensing function that only uses the
transmitted signals. The reflection coefficients can be designed
independently, which is outside the scope of this paper. Thus,
after one path signal penetrates the ¢*" transmissive element
on the RIS, the amplitude of the signal is multiplied by Sr 4,
and the phase is added by d7 4.

A common assumption in much of the existing literature is
that the amplitude and phase response of each element on the
RIS remains constant throughout the signal bandwidth [39],
[40]. While this assumption is generally acceptable for narrow
bandwidths, it may become less accurate when dealing with
multiple sub-carriers at varying frequencies within a broader
range [39]], [41]. In our system model, we consider that the
transmitter sends the wireless signals modulated by OFDM



technology into K sub-carriersﬂ Because that K might be
large, e.g., 2048 OFDM sub-carriers are used to transmit data
in the IEEE 802.11ax protocol, we consider the practical case
in which the element on the RIS has different responses to
signals with different frequencies. Thus, the amplitude and
phase response matrices of the L-shaped transmissive elements
to K sub-carriers at time ¢ can be expressed as

ﬂ[l 0] BM 0] 5[0 0] 5[0 a ﬂ[ozv
a0 =| SO C)
ﬁj[},o} ) ﬁ (M,0] 5[0 0] 5[0 a] ﬁ[o N]
K
and
[1,0] [M,0] [0,0] [0,1] [0,N]
6f1 ’ 5f1 5f1 §f1 5f1
=l o L0
[1,0] [M,0] [0,0] [0,1] [0,N]
Sy e Oy Sp S
respectively, where f; denotes the frequency of the i*" sub-

carrier, and [z, y| denotes the location of the activate element.
As shown in Fig. ] (Part I), 0 < 2 < M and 0 < y < N
indicate the locations of transmissive elements that are in the
X -direction and Y -direction of the L-shape array, respectively.

In the following, we analyze the sensing signal model, and
propose the amplitude and phase response matrices design
scheme.

B. Sensing Signal Model

To better understand the phase differences of the incident
signals from different directions, we analyze the signals that
impact the transmissive elements at different positions sepa-
rately, i.e., the origin, the X-direction, and the Y -direction
elements. At time ¢, the CFR of the multipath signals cor-
responding to the k-th OFDM sub-carrier obtained by the
transmissive element located at the origin of the L-shaped
array, can be expressed as

T
WO (8 = 3 alt ez, )
i=1

where [0, 0] represents the origin point, «; and 7; are the
complex signal amplitude attenuation and time delay of the
i-th propagation path, respectively, fj is the frequency of the
k-th sub-carrier, and [ is the total number of multipaths. Since
different elements are placed at different positions in L-shaped
array, the signal needs to travel different distances to arrive
each transmissive element. Taking h[(L’O] as a reference, there-
fore, the CFR obtained by the m-th X-direction transmissive

element can be expressed as

1 —jonf Ti+mdcos(9izsin(¢i)

() = 3 ool )

=1

)

where agm] is the signal amplitude attenuation, d is the antenna

spacing equals half wave length, 6; and ¢; represent the

>The OFDM is a widely used modulation method, which makes our analysis
general. Moreover, OFDM can provide multi-carriers information, which is
useful for signal parameters estimation.

elevation angle and azimuth angle of the incident signal,
respectively, as shown in Fig. [2| (Part 1), and c is the signal
propagation speed in the air. Similarly, we can obtain the CFR
of the n-th Y-direction transmissive element as
I . dsin(Gi)sin(q)i)
0, 0,n] —I27fk| Titn—————=
1) = 3 e )
i=1
Therefore, at time ¢, the overall CFR obtained by the L-shaped
transmissive element array on the RIS can be expressed as a
CFR matrix as follows:

1) _ t (t) t
HY) = [H;>HO H )}

(6)
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Note that H. g,)y is the original sensing data that can support
various sensing tasks. Because of the high available sampling
frequency of the sensing device, e.g., 300 times in one
second [[19]], and novel services that require long-term sensing,
a large amount of Hg,)y would be collected. To reduce the
resources costed to store and transmit Hl(.f,)y, we propose the
inverse semantic-aware encoding and decoding methods in the
following sections, respectively.

IV. INVERSE SEMANTIC-AWARE ENCODING

In this section, we introduce the inverse semantic-aware
RIS-aided encoding method to compress multiple signal spec-
trums into one. Two steps, i.e., differential encoding and
shifting addition compression, are discussed. Moreover, we
propose a semantic hash sampling method to select the task-
related signal spectrum to record.

A. Encoding Method

One can observe from that every element in the CFR
matrix is a complex number, which denotes the amplitude and
phase of the CFR. Taking H(It) as an example, it can be further
decomposed into the amplitude and phase spectrums as

HO > (a0 10)

[1,0] [M,0] , M,
A R A | 2SR
o T T £ I S
1,0 M,0 [0,1] [M,0]
[t o] [np o znl
amplitude matrix phase matrix

where - — - denotes the amplitude and phase extraction oper-
ation, {-} represents the set of matrices, ||| is the Euclidean
norm operator, and Ah %) denotes the signal phase of h m,0]
Through the same Way, Hy and H, can be expressed as
amplitude and phase spectrums, respectively. Hence, the CFR
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extracted from the L-shaped transmissive element array on the
RIS can be expressed as

cht) _ [H(zt) H(()t) Hy(Jt)} s {H%),Hg)}, 9)

oy
where H'} = [H,, Ho, H,,] and HY = [H,, Ho, H,,]
denote the overall amplitude and phase at time ¢, respectively.
As shown in Fig. 3] (Parts I and II), after being modulated
by the transmissive elements, we can express 71 received
amplitude and phase spectrums by the L-shaped active sensor
array in two sets as

va={m 8y,  HP s}, (0
and
YP:{ng@gx...,ﬂgﬂwg}, (11)

respectively, where o is the Hadamard product calculator,
a.k.a., element-wise product. In the following, we encode the
3D data Y4 and Yp onto 2D measurements, respectively.
The encoding idea is inspired by the SCI system that com-
presses several optical spectrums of an object over multiple
wavelengths into one spectrum, or several frames of a high-
speed video into one frame. Specifically, the 3D data is first
modulated by a coded aperture, and then spectrally dispersed
by the dispersing element, and finally integrated across the
spectral dimension to a 2D measurement. For the 3D sensing
data Y4 and Yp, although the spectral dispersion process can
be performed by low-power computing elements, there are
several difficulties in adopting the compression scheme as in
the SCI system:

D1) The fixed coded aperture in the SCI system is hard to
be used in encoding signal spectrums that change dra-
matically on the time scale. However, the time-varying
coded aperture scheme [42] increases the hardware cost
and consume more storage space to record the patterns.
It is difficult for system designers to strike the balance
between decoding performance and resource consump-

D2)

tion. The inverse decoding problem is hard to be solved
by traditional methods. The deep learning approach,
such as convolutional neural networks, necessitates the
use of extensive, well-labeled datasets and prolonged
training periods [43]], which restricts the frequency of
aperture pattern updates.

Signal spectrums are more sensitive than spectral images
or video frames. We find from the experiments that the
decoded sensing signal spectrums may lead to errors
when performing some sensing tasks that are sensitive
to the deviations in signal phase values, e.g., localization.

D3)

To overcome the aforementioned difficulties, we rethink the
SCI system from hardware design to software algorithms. For
(D1) and (D2), we can observe from that the amplitude
response matrix of the RIS has potential to perform a similar
function as the coded aperture in the SCI system. It has been
shown that the reconfiguration time for the RIS to change the
response matrix is around 33 ns [44]. Therefore, by changing
the response matrix over time, the low-cost transmissive ele-
ments on the RIS can encode the sensing signals. In addition,
the response values can be obtained from the hardware design
parameters. This saves the storage resources to record a large
number of original response values. Moreover, the amplitude
and phase response values are discrete numbers, which can
be determined by the number of coding bits. For example,
4-bit coding bringse 16 different available response values.
Following that, we propose a self-supervision decoding algo-
rithm for arbitrary RIS response matrices, which is discussed
in Section [V] Error negligible decoding results are achieved
without pre-training resource consumption.

To solve (D3), we compress the differential matrices of
the amplitude and phase spectrums instead of the original
spectrums to ensure the sensing performance. Unlike channel
estimation, which focuses on accurately obtaining the CSI to
better perform channel equalization, wireless sensing focuses
on extracting information describing the physical environment
from the CSI, e.g., 2D AoA and time of flight. This informa-
tion is hidden in the value difference of amplitude and phase
spectrums obtained by the sensors at different locations. For
example, the phase difference between active sensors supports
the signal AoA estimation. Another advantage to encode the
differential spectrum is that the differential spectrum tends to
be smoother than the original spectrum, due to the existence
of correlation. This results in improved decoding performance.
We show that real images can also benefit from the differential
encoding in Fig. [I0] using the dataset [45]].

The differential encoding and shifting addition compression
methods are presented in the following.

1) Differential Encoding: We first focus on the amplitude
spectrum set Y. Let Y4 {i} denote the i*" matrix in Y.
Each column in Y}y {i} represents the amplitude values of
received signals at different frequencies by an active sensor,
after amplitude modulation by the transmissive element on
the RIS. Let Y4/ {i} denote the Y, {i} after the differential
encoding. Specifically, we let the j*® column in Y4 {3} store
the difference values of the j*"' column and (5 — 1)th column



in Y {i} as
Yar{it o] = Ya{i} [j::] = Ya{i} [ - 1.2,

where j = 2,..., L. The first columns in Y/ {i} and Y4 {i}
are the same. Then, we have

Ya {i}[1,:] =Ya{e}[1,:].

Similar differential encoding method can be used for the
received phase spectrum set Yp. For the i*" matrix in Yp, i.e.,
Yp {i}, we obtain the differential encoded matrix Yp: {i} by

Yp: {Z} [j’ :} =Yp {Z} [.77 :] -Yp {7’} [.7 -1, :]a (14)

where j = 2, ..., L. Considering that the phase response value
of the RIS is added to the signal phase value, we let the first
column in Yp {i} be the first column in Yp {i} minus the
phase response of the first transmissive element as

Yp {i}[1,:] = Yp {i}[1,] — @V [1,].

To use the amplitude response matrix of the RIS as the prior
knowledge, we multiply the amplitude response matrix of the
RIS at the i*" moment and Yz {i} by elements as

Yp {i} = Yp/ {i} o &1, (16)
In addition to the steps of (12), (13), (14), (15), and (16,

the transmissive elements on the RIS should be designed by
following Remark ] to make the amplitude response matrix
of the RIS available as a special coded aperture, i.e., prior
knowledge used in decoding.

(12)

13)

5)

Remark 2. To achieve differential encoding, we should let
every transmissive element on the RIS have the same hardware
structure. Thus, different transmissive elements have the same
amplitude and phase response to the signals with the same
frequency, as shown in Fig. 3] (Part I). Specifically, every
column in @) and @) is the same. This ensures that each
column of Y {i} can be represented as the signal amplitude
difference values multiplied by the amplitude response values
of the RIS as in (T7).

Then, we can express Y {i} and Yp, {i} as

Y {it=H 03, (17)
and ‘ ‘
Ye {i} = HY 0 ), (18)

where HS,) and HI(;/) are the ' differential encoded am-
plitude and phase spectrums, respectively, and @X)
regarded as the corresponding codebook.

2) Shifting Addition: To replace the spatial shifting opera-
tion to the object spectrum that is performed by a dispersing
lens in the SCI system, we perform zero compensation pro-

cessing to the amplitude and phase spectrums as follows:

can be

Q1 (1) Q1 (7) Q1 (T)
x4 =4y (] vy @ e | Y ag
Q- (1) Q2 (i) Q- (T)

where Qq (i) € RU-VDXL Q, (i) € RI-IPXL X, ¢
RPT-D+E)xL every elements in both @, and Q3 is zero,

Algorithm 1 The algorithm for inverse semantic-aware encod-
ing.
Input: The received amplitude and phase spectrums in the active
sensors: Y4 and Yp
Output: The amplitude and phase MetaSpectrums: Z4 and Zp
1: ## Achieve differential encoding
: for Every Y4 {i} in Y4 do
Obtain Y/ {4} according to and
: for Every Yp {i} in Yp do
Obtain Yp/ {i} according to (14), (I3), and (16)
. ## Achieve shifting addition compression
Use Y4/ to obtain X 4 according to
Use Yp/ to obtain X p according to (22)
: Obtain amplitude MetaSpectrum Z,4 according to
: Obtain phase MetaSpectrum Zp according to 1)
: return Z4 and Zp

— OOV XN LA WN

—_

and D is the unit displacement step.
Thus, the amplitude MetaSpectrum, Z 4, can be obtained
by

T
Za=Y Xali}, (20)
i=1

where Z, € REH(T-1D)XL can be transmitted or stored.
Similarly, the phase MetaSpectrum, Zp, can be expressed as

T
Zp =Y Xp{i}, (21)
where
Qi (1) Q1 (4) Q. (T)
Xp = |Yp {1}, | Yoo {i} |-, | Yo {T} (22)
Q2 (1) Q2 (i) Q2 (7)

The overall RIS-aided encoding method is in Algorithm [1}
which has polynomial complexity. After the RIS-aided encod-
ing, we observe that the sensing data volume is significantly
reduced. To demonstrate the efficiency of the inverse semantic
communications approach, we define the data compression
ratio, i.e., p, as the ratio between the number of elements in
the received amplitude and phase spectrums and the number of
elements in the coded MetaSpectrums. We provide the analysis
of p in Proposition [1]

Proposition 1. The data compression ratio p of our proposed
inverse semantic-aware coding method is approximately 1/T.

Proof: The total number of elements in the T recorded
signal amplitude and phase spectrum is 2K LT. Mean-
while, the total number of elements in Zs and Zp is
2(K 4+ (T —1)D) x L. As a result, p can be calculated as:

,_AEA(T-)D)xL =;+(11)D

OKLT T) K (23)

Given that D is generally small compared to K, for instance,
D =1in [33|]] and K = 2048 in the IEEE 802.11ax protocol,
the term (1 — %) % in can be negligible. Consequently,
the value of p is approximately 1/T, which completes the
proof. ]

Note that in the above discussion, we encode 1" amplitude or
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Fig. 4. The process of generating the resized matrices from the amplitude
and phase spectrums, and then obtaining the semantic hash fingerprint.

phase spectrums into one spectrum. However, the T" spectrums
does not need and should not be sensed continuously in time.
The reason is that the wireless channel remains stable during
the channel coherence time. Specifically, as the moving or
action speed of people is limited, the CSI within the channel
coherence time can be considered as constant without loss
of precision [46]. Considering that the available maximal
sensing frequency of the active sensors is much higher than
the required frequency, we next propose a sampling scheme
that selects the most relevant spectrum for the completion of
sensing tasks over the channel coherence time for recording
and encoding.

B. Semantic Hash Sampling

We divide the time into segments. Without loss of generality,
we consider that the active sensors can perform T times
sensing in one time segment. From each time segment, one
pair of amplitude and phase spectrums is selected to record. In
the i*? time segment, we express Ty received amplitude and
TN phase spectrums as two sets, i.e., Sa, = {Hffi) o tI)ffi)}

(k=1,...,Ty) and Sp, = {H,‘,’:) o <I>§fi)}, respectively. The
recorded amplitude and phase spectrums that are selected from
the i*® time segment are Y {i} (i=1,...,7) and Yp{i},
respectively.

To remove information that is not relevant to the task, the
traditional method is uniform sampling that selects the first
pair of amplitude and phase spectrums in each time segment
to record. However, we cannot guarantee that the first pair in

every segment is always the most informative pair. Therefore,
a better solution is to use one indicator to judge the semantic
information richness of the pair of spectrums. As we discussed
in Section [[V-A] the information related to sensing tasks is
contained in the changes of amplitude and phase spectrums.
Therefore, we can select the pair of spectrums that has the
largest change compared to the previous signal spectrums in
each time segment. Note that the mean square error (MSE)
is not recommended to be used as the indicator to compare
the difference between spectrums. The reasons are given as
follows:

o The MSE is calculated using the absolute values of the
signal amplitude. However, the absolute values are not
important for sensing tasks. The critical information is
in the changing process of the signal amplitude over
time [17].

o The results of MSE may be affected by several outliers,
i.e., signal amplitude fluctuation at a certain time caused
by the interference.

o Because the number of elements in the signal spectrum
is large, calculating MSE brings large resource consump-
tion.

Therefore, we have to propose a new indicator to characterize
the semantic information richness in signal spectrums. Consid-
ering the success of the perceptual image hashing method
in the field of image retrieval, we aim to use a string of
characters, i.e., fingerprints, to characterize the amplitude and
phase spectrums. Perceptual image hashing is a family
of algorithms that generate content-based image hash finger-
prints. Then, the Hamming distance between two fingerprints
can be used to quantify the similarity of two images. The larger
the Hamming distance is, the smaller the similarity of the
images have. Although the hash fingerprints can be calculated
efficiently with low energy cost, it cannot be applied directly
to the similarity detection of sensing data. The reason is that,
at each moment, we have one amplitude spectrum and one
phase spectrum as shown in Fig. ] which are both required
to achieve sensing tasks. Thus, we propose a novel four-level
semantic hash sampling method in Algorithm 2]to select task-
related signals spectrums for encoding, which is used before
Algorithm [1]

As shown in Algorithm to obtain the semantic hash
matrices, the first step is to resize the Tk amplitude and phase
spectrums. The purpose is to produce a small data size, which
hastens the processing time and preserves the features
of the spectrums. Similar to the image pHash method [49],
we calculate the average values of the resized amplitude and
phase matrices. Different from the conventional hash method,
we define four values, i.e., 0, 1, 2, and 3, as values in the
hash fingerprints. Thus, we perform the operations as shown
in lines 8 — 15 of Algorithm [2| to convert the spectrums
to semantic hash fingerprints in polynomial complexity. For
the k' pair of amplitude and phase spectrums, we use the
Hamming distance, which measures the number of different
values, between the k' hash fingerprint and the (k — 1)th
one to indicate the semantic information richness of the k'"
spectrums. Therefore, we can record the pair of spectrums



that have the largest Hamming distance to the previous pair
of spectrums. The complexity analysis for each step in our
proposed algorithm is as follows:

e Obtaining the semantic hash matrix set: The resizing
operation [49] has a complexity of O(R,R,,) per matrix.
Therefore, the complexity of obtaining the semantic hash
matrix set for Tk spectrums is O(Tx R, Ry).

o Calculating the Hamming distance: The complexity con-
sists of O(1) for creating the vector D, O(Tk) for the
outer loop iterating through #;, and O(R.R,) for the
inner loop iterating through H;{k}. This results in a total
complexity of O(Tx Rz Ry).

o Selecting the spectrum and recording the information
richness: The complexity is dominated by the linear
search to find kpax, which maximizes D(k). As the
vector is unsorted, the complexity is O(Tk).

These steps are performed sequentially, leading to the total
complexity of O (Tx (2R, R, + 1)). Since the constant terms
do not significantly affect the growth rate, the total complexity
of Algorithm [2] simplifies to O(Tk R, R,).

V. INVERSE SEMANTIC-AWARE DECODING

In this section, we propose the inverse semantic-aware self-
supervised decoding method. We also introduce how to use the
recovered signal spectrums for 2D AoA and ToF estimation,
which supports various sensing tasks.

A. Objective Function

We first rewrite the amplitude and phase MetaSpectrums Z 4
and Zp in the vectorized formulations, respectively. Let vec (-)
denote the matrix vectorization operation that concatenates
columns into one vector, and diag (a) denote the operation
of converting the vector a into a diagonal matrix where
the diagonal element is a. As such, we rewrite the matrix
formulations and as

ZpN = @XA, (24)
and

zp = ®xp, (25)
respectively, where z4 = vec(Z4), zp = vec(Zp), z4

and ZPGR(K“'(T*l)D)LXl’ TraA = [:l}’lI‘Aw;I‘A
[T T T 1T _ 7 (i) _
Tp = [ml_’P--~:ci1P~-~:cT7P} ,:I:LA—VeC<HA, , T p =

vec (HS,)), x4 and zp € RTKLXL

‘93%14] >

Qs (1) Qs (1) Q3 (T)
o= g ¢y S R
Q4(1) Q4 (1) Q4 (T)

Qs (1) e RU-DPLXEL ", (1) ¢ RT-DDPLXKL every ele-
ment in both Q3 and Qy is zero, qSX) = diag (Vec (.@S)))’
d’(j) € RELXKL and @ € RUKHT-1)D)LXTKL,

Note that ® can be obtained using (26) and the prior
knowledge, i.e., the amplitude response matrices of the RIS,
and z4 and zp are the known vectorized amplitude and phase

Algorithm 2 The algorithm for semantic hash sampling
Input:
o The received amplitude and phase spectrums sets in the ‘"
segment: S4, and Sp,
o The dimensions of the resized matrices: R, and R,

time

Output: The selected amplitude and phase spectrums: Ya{:} and
Yr{i}

1: ## Obtain the semantic hash matrix set

2: Create an empty matrix set H; € RT=*Fv*Tk to record the
semantic hash values

3: for Every S, {k} in S4, do

: Obtain amplitude and phase spectrums H ffi) and H g:) with

the prior knowledge <I>(/f> and CI’gQ, respectively

5: Resize H( ,) and H(
and h(k) € RR’” xRy respectlvely

into small matrices h( ) € Rfte xRy

6: Calculate the average values of h<k) and hgf), denoted as
h(kv) and hgf), respectively

7 for Every element pair in hfq) and h(k) do

8: if h{) [2,9] > K} and h“) [z,y] > h{) then

9: Let Hi{k} [z, y] < 3

10: else if h(k) [z,y] > h(k? and h(k) [z,y] < h%? then

11: Let’i-t{k}[x y}<—2

12: else if h(k) [z,y] < h(kA) and h(k) [x,y] > hgfi) then

13: Let ’H {k}[z,y] + 1

14: else

15: Let Hi{k}[z,y] < O

16: ## Calculate the Hamming distance

17: Create an empty vector D € R 7K to record the Hamming
distance values

18: for Every H;{k} in H; do

19: Create a temporary variable d

20: for Every element in H;{k} do

21: if The element value is different from the element value
in the same position in H;{k — 1} then

22: d<+d+1

23: D (k) «+ d.

24: ## Select the spectrum and record the information richness
25: Find kmax that maximizes D (k), i.e., D (kmax) = max {D}
26: Record the value of D (kmax)

27: Let © = kmax

28: return Y {:} and Yp{i}

MetaSpectrums, respectively. Our goal is to decode x4 and xp
from z 4 and zp, respectively. Although this problem is related
to CS, most theories that are developed for CS cannot be used
because that the matrix ® follows a very specific structure
as (26). Fortunately, solid theoretical proof has shown that
both x4 in (24) and xp in (23) can be recovered even when
T > 1 [50].

The decoding objective function can be formulated as

min ayl|za—®xa|® +azl|zp—Pxp|?, 27)

TA, TP

where a3 and a9 are the balance parameters that can be
selected according to the specific wireless sensing task. For
example, heartbeat and breath detection requires higher accu-
racy for the phase spectrum [[19], and the amplitude spectrum
is more significant in sensing tasks such as intrusion or fall
detection [[18]]. We propose the algorithm for solving as
follows.



B. Self-supervised Decoding Method

To solve (27)), although different hand-crafted priors, e.g.,
total variation and sparsity, can be added as the regularization
term to improve the decoding performance, it is hard to choose
a suitable prior that fits the differential encoded amplitude and
phase spectrums x4 and x p. Motivated by the success of deep
convolutional neural networks (ConvNets) in inverse problems
such as single-image super-resolution [51] and denoising [|52]],
we use the implicit prior captured by the ConvNets, e.g., deep
image prior 53], [54]], to achieve self-supervised decodinﬂ

By considering that the unknown amplitude and phase
spectrums are the outputs of neural networks, i.e., T ,(€)
and Te,(e), respectively, the decoding problem can be
re-written as

min  ayl|za—®Te,(€)|*+azllzp—®To ()|,
©4,0p

st. &a=Toe,le),
Tp= T@P(e)7

(28)
where ® 4 and ®p are the parameters of networks to be
learned, and e is a random vector. Since the training of © 4
and Op is part of the decoding process, this procedure is
self-supervised and no pre-training process is required.

To solve the problem , we introduce two auxiliary
variables t; and t; € RTKL  and corresponding weight
parameters 31 and (5. Then, the constraints can be turned into
penalty terms using the augmented Lagrangian method [55] as

Fi1(Oa, ) +F2(Op,xzp),

min
®4,0p,za,zp

(29)
where

Fi=au(|za-8To,(e)|"+Billza—To.le)-till’), (30)
and

Fo=as(||zp -~ To(e) >+ Bollwr—Tole)-t:]). (3D

With the help of the alternating direction method of mul-
tipliers (ADMM) [56], the problem (29) can be solved by a
sequential update of the six variables, i.e., @ 4, Op, x4, Tp,
tl, and tg.

1) The update of © 5 while fixing other variables:

in |za—®To,(e)|*+Aillza—To.le)-t:l°, (32

which can be solved using the steepest descent and
back-propagation optimization methods [53]. Note that
Billza—Te(e)—t1 | in (32) can be regarded as the denois-
ing of « 4—t;, which also serves as a proximity regularization
that forces Te ,(€) to be close to 4 —t;. This second term
provides additional stabilizing and robustifying effect to the
back-propagation method.
2) The update of x 4o while fixing other variables:

nq}iAn lza—Teo(e)—ta”, (33)

3 Another solution is to design a suitable explicit regularization term for
decoding sensing signal spectrums and use the explicit and implicit priors
jointly [54]. This is left for the future work.

which can be regarded as a denoising problem for Tg ,(€)+t;.
Thus, we have

2y =D (Teue) +t), 34)

where D (-) represents the denoising operator that could
be well-studied plug-and-play algorithms [57] or a simpler
steepest-descent (SD) operator. We present the update equation
for SD method as

oI = g0 g (a:g) —Te.e) - t1> S CA)

where s is the steepest-descent step size, and j is the inner
loop iteration number.

3) The update of t, while fixing other variables: Because t;
can be regarded as the Lagrange multipliers vector, £; can be
updated according to the augmented Lagrangian method [55]]
as

Rl — (0 Toule) - xF), (36)

where k£ denotes the outer loop iteration number.

4) The update of © p while fixing other variables: Because
the network with parameter ® p is trained independently, we
can update ® p by solving

min lzp —®To ()" +52lxp —Tonle)—ta|*,  (37)

with the same method as in (32).

5) The update of xp while fixing other variables: To
minimize the difference between xp and T e ,(e) + t1, we
can update xp as

Xxp=D (T@P(e) + tg) .

where D is the same kind of denoising operator as (34).

6) The update of to while fixing other variables: According
to the augmented Lagrangian method [55]], £5 can be updated
as

(38)

tékH) _ ték) + T@}’“)(e) — ng). (39

Algorithm [3| summarizes the steps to perform the afore-
mentioned decoding methods, and then recover the original
amplitude and phase spectrums. Specifically, after decoding,
we obtain the estimated H 4/ {i} and Hp: {i}. Let the first
column in Hy4 {i} and Hp {i} be the same as that of H 4/ {i}
and Hp {i} as

H{i}[1,:] = H) {i}[1,4], (40)
and
Hp (i} (1] = Hp (i} 1.9 @
For the second to the last columns (j = 2,..., L), we have
Hu{i}[5,:] = Ha {i} [j - L+ Ha {i} 5,1, (42)
and
Hp{i}[j,:] = Hp {i} [j —1,: ]+ Hp {i} [5,:] . (43)

Note that because of the independent iterative training of the
two networks and the use of the ADMM method, «; and s
have no effect on the objective function. The running time
is mainly taken in updating ®,4 and ®p since the inner
denoising operators work efficiently. In Section we set



Algorithm 3 The algorithm for inverse semantic-aware decod-
ing
Input:
o The weight parameters: 51 and (s
o The number of inner iterations of the denoising operator for
updating x4 and xp: N
o The steepest-descent parameters for updating @4 and Op,
respectively

Output: The original amplitude and phase spectrums, i.e., HX) and
HY (i=1,...,T)

1: ## Reconstruction of the x4 and xp

2: Initialize the iteration number k£ = 0

3: Set ® 4 and © p randomly

4: while Not converged do

5 Update © 4 by solving using steepest descent and back-

propagation methods

6:  Update ¢4 according to
7:  Update t; according to (36)

8: Update © p by solving using steepest descent and back-
propagation methods

9: Update xp according to

10 Update t2 according to (39)

11: Letk<+k+1

12: Record 4 and xp after converged

13: ## Differential decoding

14: Recover H4/{i} and Hp/{i} (i =1,...,T) according to the
definition of x4 and xp, ie., and

15: for Every H4/{i} and Hp/{i} do

16: Create empty Ha {i} and Hp {i} to record the decoded
results

17: Obtain H4 {i} and Hp {i} according to {@0), @I), {@2),
and (@3)

18: return Hs{i} and Hp{i} (i =1,...,T)

the inner iteration numbers of the denoising operators for
updating €4 and xzp to be both 600, and the outer loop
maximal iteration number is 18, i.e., 18 ADMM iterations. The
average running time for decoding one MetaSpectrum, which
is obtained by encoding 20 original amplitude spectrums, is
about 1 minute with the experiment setting in Section
While the self-supervised decoding approach may not be
optimal for high real-time decoding of sensing signal data, our
proposed method can be effectively applied to sensing tasks
that require large amounts of historical data storage for analy-
sis, such as healthcare monitoring, sleeping position detection,
and historical intrusion or walking behavior analysis.

With the decoded Ha{i} and Hp{i} (i=1,...,T), the
original signal at each moment can be recovered to the form of
complex matrices. Then, the 2D AoA and ToF can be jointly
estimated [36], which can be used to complete a series of
sensing tasks. Thus, the steering matrices of L-shaped array
in the x and y directions, which describe how the sensor array
uses each individual element to select a spatial path for the
transmission, can be expressed as

1 .. 1
67j27rfk.dcos(91) sin(e1) ... e—J2nfrd cos(071) sin(pr)
A= . . . )
e—jZﬂj'kmdc.os(Gl) sin(p1) | . e—J2nfrmd <;os(91) sin(¢r)

(44)

and
1 e 1
efj27rfkdsin(01) sin(p1) ... eijﬂfkdsin(GI) sin(¢r)
Ay == . . . )
e—J27fend s.in(01) sin(p1) | . e~ J27fend s.in(01) sin(er)
(45)
respectively. Inspired by [58]], here, we take multiple subcarri-
ers into consideration and extend the 2D AoA estimation into

three dimensions, to acheive joint 2D AoA and ToF estimation
via the following Proposition

Proposition 2. The signal 2D AoA and ToF at time t can be
estimated using

1
Ey () EY (t) Agary’

PSD (979077—7 t) :AH

Oz'y

(40)

where Psp describes the signal magnitude for a given set of
(0, ¢, T), the superscript H is the conjugate transpose oper-
ator, Ep (t) is the noise subspace obtained by decomposing
the auto-correlation matrix of the smoothed original signal
at time t [58], Aoy, is the steering matrix that is obtained

using @4) and @3) as

Aoy = [AoAs A, "
1 e*j27rf1dcos(9) sin(p) €7j27rf1dsin(0) sin(p)
:1 efj27rfk/d(':os(0) sin(p) efj27rfk/d'sin(9) sin(y)

i e—j27rf1(m/— 1) dcos(0)sin(p) e—j27rf1(n/— 1) dsin(0)sin(p)

e—j27rfk/(m/— 1) dcos(0)sin(p) e—jQﬂfk/(’rL'— 1) dsin(0)sin(yp)

Ao A A

x y

“7)
0<k'<K 0<m' <M, and 0 <n' < N.

Thus, we complete all the processes of the inverse semantic-
aware wireless sensing framework. Specifically, we use Algo-
rithm [2| to sample the task-related signal spectrums. With the
RIS, Algorithm [1] can encode the sensing data, thus greatly
reducing the data volume to be stored or transmitted. We
use the self-supervised decoding Algorithm [3]to recover the
original sensing data. Finally, with the help of Proposition [2]
various sensing tasks can be performed. For example, intrusion
detection can be achieved by detecting the change of estimated
2D AoA, and the human walking trajectory can be tracked by
estimating the 2D AoA and the ToF of the signals.

VI. EXPERIMENTS RESULTS

Since the key contribution of this paper is to achieve the
inverse semantic-aware encoding and decoding of the sensing
data with the help of RIS, we aim to answer the following
research questions via experiments:
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Q1) Can the proposed self-supervised decoding scheme re-
cover the original signal spectrums and ensure the ac-
complishment of sensing tasks?

Q2) Can the amplitude response matrix of RIS, i.e., code-
book, encrypt the sensing data?

Q3) Compared with the existing uniform sampling method,
can the proposed semantic hash sampling method help to
achieve more accurate completions of the sensing tasks?

We first present the experimental platform and the parameter

setting of our proposed algorithms, and then answer the above

questions through experimental evaluations.

A. Experiments Setting

To collect sensing data from the real-world scenario, we use
three access points (APs) based on the IEEE 802.11ax protocol
to build a test platform [15]. The collected sensing data is
used to conduct a comprehensive evaluation of our proposed
algorithms. The specific experimental scenario and hardware
equipment are shown in Fig.[5] Specifically, the test scenario is
a conference room with tables and chairs. Inside the room, one
AP acts as a transmitter to send OFDM wireless signals with
the total bandwidth of 160 MHz and 2048 sub-carriers. The
center frequency of the sub-carriers is 5.805 GHz. As shown
in Fig. [5] (Part II), the other two APs form an receiver with
L-shaped active sensor array via a power splitter to receive
signals. Since the investigation of STAR-RIS hardware is still
at a very early stage, we simulate the amplitude and phase
response matrices of the transmissive elements using a signal
processor [28], [29], [38]]. During the experiment, the data
packet transmission rate, i.e., transmission frequency, is 100
Hz, which means 100 packets are transmitted per second. The
human target walks along the preset trajectory to complete the
data collection.

The experimental platform for running our proposed algo-
rithms is built on a generic Ubuntu 20.04 system with an
AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU and
an NVIDIA RTX A5000 GPU. In the self-supervised decoding
Algorithm 3] two U-net without the skip connections [53]]
are used as the self-supervised neural networks, i.e., Te ,(€)

and Te,(e). The input to the network, i.e., e, is a random
vector that has the same size as x4 and xp to be recovered.
During the decoding of one MetaSpectrum, e is fixed in each
ADMM iteration. In addition, to avoid the local minimum that
the networks stuck in the last iteration, ® 4 and © p are set to
zero when each ADMM iteration is finished. In other words,
both ® 4 and ®p are re-trained in each iteration.

B. Experiments Performance Analysis

1) Effectiveness and Efficiency of the proposed inverse se-
mantic decoding method (Q1): We first set the data compres-
sion ratio as 10%. As shown in Fig. [I| (Part I), starting from 3
seconds, we select one pair of amplitude and phase spectrums
in each 0.1 second time segment by using Algorithm 2]
for RIS-aided encoding. Using the encoding Algorithm [I]
presented in Section [[V-A] we can obtain one amplitude
MetaSpectrum and one phase MetaSpectrum as shown in
Fig. [T] (Part III) for every 10 pairs of signal spectrums. The
decoded results after 15 iterations of the outer loop are shown
in Fig. [T] (Part II). For both amplitude and phase spectrums,
we observe that the difference between the decoded and
the original spectrums is basically negligible. We present a
detailed comparison of the decoded and the original amplitude
spectrums in Fig. [T| (Part IV). This proves the effectiveness of
our encoding and decoding methods.

In addition to the visual contrast, we show in Fig. |§| how
the proposed semantic hash matrix changes with the number of
outer loop decoding iterations. We set the data compression
ratio as 5%. We observe that, as the number of outer loop
iterations increases, both the decoded amplitude and phase
spectrums at time 4.5 seconds are gradually close to the ground
truth spectrums. Moreover, the Hamming distance between the
semantic hash matrices of the decoded pair of amplitude and
phase spectrums and that of the original signal spectrums is
gradually reducing. Specifically, we can see that 12 iterations
can make the Hamming distance only 2, which takes about
40 seconds on average. Furthermore, the estimated 2D AoA
values using the decoded spectrum after 12 iterations are very
close to the true values, which basically has no effect on
the practical sensing tasks. This proves the efficiency of our
encoding and decoding methods.

2) Effectiveness of using the amplitude response matrix of
the RIS as the codebook (Q2): Figure [/| depicts the aver-
age peak signal-to-noise ratio (PSNR) values 10 experiments
versus the number of outer loop decoding iterations, with
or without the codebook @fj). If the codebook is available,
we observe that the PSNR values of both the amplitude
and phase spectrums are increasing as the number of iter-
ations increases, and gradually reach a plateau after about
10 iterations. Although minor fluctuations occur at higher
iteration steps because of the dynamic nature of the decoding
process, the overall trend demonstrates the effectiveness of
our self-supervised decoding scheme in recovering the original
signal spectrums. However, if no codebook is available or the
codebook is wrong, the PSNR values decrease as the number
of iterations increases. The reason is that the parameters of two
decoding network, i.e., ® 4 and © p, are learned according to
a wrong objective function.
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3) Effectiveness of the proposed semantic hash sampling
method (Q3): Based on the sensing data extracted via two
different sampling methods, i.e., red line for the uniform
sampling and blue line for the semantic hash sampling meth-
ods, Fig. [§] displays estimated elevation and azimuth AoA
changes over time. Note that the estimation results under two
sampling schemes are obtained using the decoded amplitude
and phase spectrums with the data compression ratio as 5%.
First, we observe that the both elevation and azimuth AoA at
every moment can be accurately estimated using the decoded
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Fig. 8. Comparison between different sampling methods and ground truth in
terms of 2D AoA changes with movement of human.

data. This further validates the effectiveness of our proposed
encoding and decoding algorithms (for Q1). Furthermore, by
comparing the blue and red lines, it can be seen that the
proposed semantic hash sampling method is more efficient
and effective than uniform sampling in describing the details of
A0A changes, as shown in the enlarged part in Fig. [8] Because
these changes are typically more informative, this shows the
effectiveness of our proposed semantic hash sampling method.
To compare the two schemes numerically, we consider the
MSE between the ground truth and the 2D AoA estimation
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Fig. 9. Comparison of azimuth AoA estimation results that are obtained by
using the original and decoded signals, respectively.

results after interpolation. By calculating, we obtain that the
estimation error of the semantic hash sampling is 0.89, which
is 67% lower than that of uniform sampling scheme whose
estimation error is 2.7.

In addition to the walking human, stationary objects such as
tables and chairs in the conference room also reflect wireless
signals. Thus, the information that can be extracted from the
signal spectrums at one certain moment is rich. Taking the
azimuth AoA as an example, Fig. 9] shows the comparison of
the azimuth AoA estimation results that are obtained by using
the original and decoded signals, respectively, with a data
compression ratio of 5%. The results demonstrate that our en-
coding and decoding methods effectively preserve the semantic
information related to the sensing tasks, which is evident from
two aspects: First, the relative magnitude characteristics among
different azimuth AoA estimated from the decoded signals
are consistent with the ground truth, i.e., the azimuth AoA
estimated from the original signals. For instance, the ground
truth indicates that the stronger signals’ azimuth AoA are in
the range of 10° —40° and 110° — 150°, as marked by the red
and blue boxes, respectively. In addition, the signals with AoA
in 40° — 110° are weaker. These features are almost entirely
preserved in the estimation results obtained using the decoded
data. Second, we observe that the AoA estimation results of
the first several strongest signals are almost unchanged before
and after the inverse semantic-aware encoding and decoding,
e.g., the signals marked by the red and blue boxes in Fig. [9}
respectively. This indicates that our proposed algorithms can
effectively preserve the phase characteristics (for Q1).

VII. CONCLUSION AND FUTURE DIRECTIONS

We have designed an inverse semantic-aware wireless sens-
ing framework. The amplitude response matrix of the RIS
can be effectively used to generate the codebook as prior
knowledge for decoding. We have shown that our proposed
RIS-aided encoding method can achieve effective data com-
pression. When selecting the signal spectrums to be encoded,
our proposed semantic hash sampling method is significantly
better than the widely used uniform sampling method. More-
over, the self-supervised decoding method can recover signal
amplitude and phase spectrums to achieve various wireless
sensing tasks without affecting the performance. Since the
decoding method does not require any pre-training, it can
greatly save network resources. As the demand for sensing
data increases, our proposed framework can contribute to
building a resource-friendly next-generation Internet.

There are two potential future research directions.

o Inverse Semantic-aware Transmission of Images. We can
explore the application of inverse semantic-aware encod-
ing and decoding for images or audio. In the context
of surveillance services, for example, a camera captures
a bay to detect boats. The surveillance videos require
significant storage resources. The goal is to compress
multiple video frames, such as the six frames depicted
in Fig. [I0] into a single frame. The original frames can
then be reconstructed using the proposed self-supervised
decoding algorithm.

o Cantor or Szudzik Pairing Compression. In this paper, we
encoded the amplitude and the phase spectrum separately.
A possible improvement is to use the pairing functions,
e.g., cantor [59]] or szudzik [60] pairing functions, to
combine the two spectrum into one. As shown in Fig. [T}
the pairing compression can be used as an operation
after obtaining amplitude and phase spectrums to further
compress the sensing data.
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