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Abstract— Unlike active array antennas, intelligent reflecting
surfaces (IRSs) are efficiently implemented at large dimensions.
This allows for traceable realizations of large-scale IRS-aided

MIMO systems in which not necessarily the array antennas, but
the passive IRSs are large. It is widely believed that large IRS-
aided MIMO settings maintain the fundamental features of mas-
sive MIMO systems, and hence they are the implementationally
feasible technology for establishing the performance of large-
scale MIMO settings. This work gives a rigorous proof to this
belief. We show that using a large passive IRS, the end-to-end
MIMO channel between the transmitter and the receiver always
hardens, even if the IRS elements are strongly correlated.

For the fading direct and reflection links between the trans-
mitter and the receiver, our derivations demonstrate that as the
number of IRS elements grows large, the capacity of end-to-end
channel converges in distribution to a real-valued Gaussian ran-
dom variable whose variance goes to zero. The order of this drop
depends on how the physical dimensions of the IRS grow. We
derive this order explicitly. Numerical experiments depict that
the analytical asymptotic distribution almost perfectly matches
the histogram of the capacity, even in practical scenarios.

As a sample application of the results, we use the asymptotic
characterization to study the dimensional trade-off between the
transmitter and the IRS. The result is intuitive: For a given target
performance, the larger the IRS is, the less transmit antennas
are required to achieve the target. For an arbitrary ergodic and
outage performance, we characterize this trade-off analytically.
Our investigations demonstrate that using a practical IRS size,
the target performance can be achieved with significantly small
end-to-end MIMO dimensions.

Index Terms—Reconfigurable intelligent surface, asymptotic
channel hardening, large-system analysis, ergodic capacity, out-
age probability.

I. INTRODUCTION

Channel hardening is a property of massive multiple-input

multiple-output (MIMO) systems indicating that the random

fading process in a MIMO channel becomes a deterministic

effective path-loss, as the dimensions of the MIMO channel

grow large at least at one side; see for instance [1]–[3]. From

the information-theoretic point of view, this is the key property

of massive MIMO systems which leads to their significant per-

formance gains in various aspects. These gains are rather well-

studied in the literature; e.g., [4]–[6].
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Despite the promising performance, massive MIMO systems

are still considered to be implementationally intractable. This

follows from the fact that deploying large active antenna arrays

imposes high hardware cost and energy consumption, as well

as unrealistic design requirements [7]–[9]. The issue becomes

more crucial in practice, since several recent studies show that

the fundamental features of massive MIMO systems1 do not

hold with practical dimensions in several settings, e.g., MIMO

systems with highly-correlated channels, scenarios with small

scattering angular spread and cell-free networks; some detailed

studies can be found in [10] and [11].

Intelligent reflecting surface (IRS)-aided MIMO communi-

cation has been recently proposed as an implementationally-

tractable solution to realize large-dimensional MIMO systems

[12]–[14]. An IRS is a two-dimensional surface, with a large

number of reconfigurable passive reflective elements. These

elements are capable of tuning the wireless propagation dy-

namically to achieve various design objectives: For instance, in

indoor millimeter-wave applications, by installing IRSs out of

the transmission site, e.g., on interior walls or room ceilings,

the blockage issue of the millimeter-wave communication can

be reduced significantly, due to the link established between

the transmitter and the users through the IRSs [15]. As other

examples of design targets which are achieved by employing

IRSs in the system, we can name spatial interference suppres-

sion, accurate three-dimensional beamforming, and providing

a more favorable propagation environment [16]–[19].

As mentioned, unlike classical large-scale MIMO technolo-

gies which require large active arrays of antennas, large IRS-

aided MIMO systems, i.e., MIMO settings with large reflecting

surfaces, are implementationally feasible. This follows the fact

that IRSs passively reflect the incoming signals and do not

employ radio frequency chains. As a result, the hardware cost

and energy consumption at large scale decrease notably [20],

[21]. Inspired by this appealing advantages, IRSs are employed

to a develop practically-tractable alternative designs for several

large-scale MIMO technologies, such as massive MIMO [22],

[23], cognitive radio [24], [25], non-orthogonal multiple access

(NOMA) [26], [27] and simultaneous wireless information and

power transform systems [28], [29]. The key motivation behind

these designs comes from this widely-accepted belief: The key

features of a large-scale MIMO technology can be achieved

via a small-dimension MIMO setting assisted by large IRSs.

Although under idealistic assumptions this belief seems to be

intuitive, it is not easy to conclude its validity in practical IRS-

1These features are mainly described by the channel hardening.
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aided settings with highly-correlated IRS elements and multi-

ple propagation links between the transmitter and the receiver.

This work aims to give a rigorous proof for this believe by

considering the fundamental channel hardening property in a

practical IRS-aided multi-antenna setting.

A. Main Objective and Contributions

This work gives an answer to this intriguing question: How

does the end-to-end channel in IRS-aided multi-antenna sys-

tems harden, when only the IRS size grows large? We answer

this question by deriving the asymptotic distribution of the

channel capacity expression in an IRS-aided fading multiple-

input single-output (MISO) system1 whose number of transmit

antennas is fixed and rather small, when the number of IRS

elements grow asymptotically large. Our derivations demon-

strate that for any IRS covariance matrix, the channel capacity

converges in distribution to a real-valued Gaussian distribution

whose mean increases unboundedly large, and whose variance

tends to zero, as the IRS size grows asymptotically large.

The analytical derivations of this study gives the following

answer to our target question: Even with a strongly-correlated

IRS, the end-to-end channel hardens regardless of the transmit

array size2. Interestingly, this property is achieved without any

need for frequent tuning of IRS elements.

In addition to the main results, this study has several other

contributions which are briefly highlighted below:

• We characterize the distribution of the channel capacity

for a generic IRS-aided fading MISO setting in which

both direct and reflecting links are available between the

transmitter and receiver. We further take into account the

impact of line-of-sight channels and consider an arbitrary

scaling of the IRS area and a general correlation among

the reflecting elements. To the best of our knowledge, the

characterization of channel hardening for such setting has

been left open in the literature; see for instance the recent

studies in [30] and [31].

• For a given IRS and transmit array architecture, we de-

termine the exact distribution of the end-to-end signal-to-

noise ratio (SNR) for an arbitrary choice of phase-shifts

at the IRS. We give a universal upper-bound for the mean

and variance of this distribution, and propose an effective

choice of IRS phase-shifts that guarantees the end-to-end

channel hardening.

• We validate our analytical derivations through numerical

experiments. Our investigations show that the asymptotic

distribution fits almost perfectly the histogram of channel

capacity for practical IRS sizes3. We further conduct sev-

eral numerical experiments to investigate channel harden-

ing for classical and extreme IRS correlation scenarios.

• To characterize the speed of channel hardening, we derive

a lower-bound on the mean and a uniform upper-bound on

the variance of the channel capacity. Invoking the bounds,

1It is worth mentioning that the results readily extend to cases with multiple
receive antennas. A MISO setting is assumed mainly to keep the derivations
tractable. This assumption however impacts neither the analytical approach
nor the final conclusions of this study.

2In fact, it hardens asymptotically with only a single transmit antenna.
3And even much smaller sizes of IRS.

we show that for any covariance matrix at the IRS whose

largest eigenvalue grows sub-linearly4 with the IRS size,

the limit of the variance, when the IRS size grows large, is

zero. Using extreme-case investigations, we demonstrate

that this conclusion is further extended to most extreme

scenarios with the largest eigenvalue growing linearly and

the physical dimension of IRS being fixed.

• As a sample application, we use the main results to inves-

tigate the dimensional trade-off between the transmitter

and the IRS. The result is intuitive: By increasing the IRS

size, the transmit array size required to achieve a given

target performance reduces. We derive the trade-off curve

analytically two performance metrics, namely the ergodic

capacity and outage probability.

B. Related Work

Channel hardening in IRS-aided MIMO systems is studied

in the literature for some restricted settings: In [32], channel

hardening is discussed in an isotropic scattering environment

considering an IRS-aided setting with a single-antenna trans-

mitter and receiver, i.e., a single-input single-output (SISO)

setting. The analysis is extended to scenarios with multiple

IRSs and uncorrelated Rician fading in [33]. The concept of

channel hardening is further addressed in an alternative way

in [34], where the authors show that in an IRS-aided SISO

system with generic Nakagami-m fading channels, the end-

to-end channel between the transmitter and the receiver, in

the presence of a direct link, becomes nearly deterministic.

The results of this study further demonstrate that increasing

the number of IRS elements, as well as reducing the fading

severity, enhances the channel hardening property.

In addition to classical point-to-point settings, channel hard-

ening has been further discussed in alternative scenarios. For

instance, channel hardening is investigated in [35] for an IRS-

aided SISO NOMA system, where the IRS is assumed to be

realized by the intelligent omni-surfaces technology, and the

reflecting elements are considered to be correlated in general.

The results show that for such settings, the average achievable

rate converges asymptotically to that of uncorrelated channels,

when the number of IRS elements goes to infinity. Another

example is a MIMO setting with a fully stand-alone IRS-based

transmitter. For such settings, the authors of [30] show that

by growing the size of the transmitter unit, the user channels

become deterministic and mutually orthogonal.

Despite connections to the above literature, the most related

lines of work to our study are those given in [23], [36] and

[31]: Starting with the study in [36], the authors show that

the conventional form of channel hardening is not valid for an

IRS-aided MIMO setting. The result depicts that by increasing

the number of transmit antennas, while keeping the number

of IRS elements fixed, the hardening property does not hold.

This finding follows from the fact that the channel between

the IRS and transmitter is identical for all receivers. As a

result, by growth of transmit array size, the randomness of the

fading process grows large, and hence the effective end-to-end

4The definition of sub-linear growth becomes clear in the forthcoming
sections.
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channel does not converge to a deterministic channel. In their

following work, i.e., [23], the authors invoke the Lindeberg-

Feller central theorem [37] to demonstrate that the channel

hardening in IRS-aided systems occurs when the number of

IRS elements grows large1.

The study in [31] derives the distribution of the input-output

mutual information for an IRS-aided MIMO setting in which

the communication is carried out only through the IRS, i.e.,

there is no direct link between the transmitter and receiver.

The analysis invokes random matrix theory to characterize the

setting in an asymptotic regime, in which both the numbers of

IRS elements and transmit antennas grow large with a fixed-

ratio. The authors further utilize the results to derive a closed-

form expression for the outage probability and the optimal

values of IRS phase-shifts.

Although the studies in [23], [31] extend earlier results on

channel hardening to a wider scope of settings, they consider

several simplifying assumptions which impact the validity of

the final conclusions in practical scenarios. For instance, they

consider the channel coefficients of reflecting elements to be

uncorrelated and ignore the line-of-sight between the IRS and

other terminals in the network. These assumptions are rather

unrealistic, as in many use-cases of IRS-aided systems, the

reflecting elements are assumed to be closely packed on the

IRS, and the end-nodes are located in the line-of-sight of the

IRS [38]. Moreover, [31] assumes the complete blockage of

the direct path between the transmitter and the receiver which

despite its validity in some use-cases, restricts the applicability

of the results and makes the comparison between a large IRS-

aided MIMO system and a massive MIMO system unfair. The

asymptotic regime considered in [31] is further impractical,

as we are often interested in IRS-aided MIMO settings with

large IRS dimensions, but rather small arrays at the transmitter

and receiver sides. In this work, we deviate from these sim-

plifying assumptions and characterize the asymptotic channel

hardening principle for a generic IRS-aided scenario.

C. Notation and Organization

Scalars, vectors and matrices are shown by non-bold, bold

lower-case, and bold upper-case letters, respectively. The no-

tation HH indicates the transposed conjugate of H. An N×N
identity matrix is denoted by IN and 1N is an N ×N matrix

of all-ones. We use the notation [H]nm to refer to the entry of

H at the n-th row and m-th column. The function Q(x) is

the standard Q-function, i.e.,

Q(x) =
1√
2π

∫ +∞

x

e−
u2

2 du. (1)

The mathematical expectation is denoted by E [·], and the nota-

tion CN
(

η, σ2
)

represents the complex Gaussian distribution

with mean η and variance σ2.

The rest of the manuscript is organized as follows: Section II

describes the system model and formulates the problem. The

main analytical results along with several numerical inves-

tigations are then presented in Section III. The dimensional

trade-off between the transmitter and the IRS is investigated

1The difference of [23] to this work is illustrated shortly after.

in Section IV. Section V provides the detailed derivations of

the main results. Finally, Section VI concludes the manuscript.

II. PROBLEM FORMULATION

Consider a MISO system in which a base station (BS) with

an array-antenna of size M transmits data to a single-antenna

user. An IRS with N reflecting elements is further employed

to modify the propagation environment between the BS and

the user: Each element of the IRS reflects its received signal

after applying a phase-shift. The signal received by the user is

then the superposition of two components: One that is received

through the direct path between the BS and the user, and one

that is reflected by the IRS.

A. System Model

As suggested by the literature [18], [32], we assume that the

BS and the IRS are equipped with planar arrays. Namely, we

assume the antenna-array at the BS and the array of reflecting

elements on the IRS are rectangular planar arrays with Mx and

Nx horizontal elements and My and Ny vertical elements,

respectively, such that M = MxMy and N = NxNy. The

antenna elements at the BS are assumed to be distanced with

ℓx and ℓy on the horizontal and vertical axes, respectively. The

horizontal and vertical distances at the IRS are further denoted

by dx and dy, respectively.

To model the direct path2, we consider a classical scenario

in which the line of sight (LoS) link is blocked via obstacles or

mobility of the user. It is further assumed that ℓx and ℓy are set

large enough, such that the spatial correlation can be ignored3.

We therefore adopt the Rayleigh fading model in which the

channel coefficient of the direct path between antenna element

m at the BS and the user is modeled as

hd,m =
√

αdAM h̃d,m. (2)

Here, αd is a distance-dependent path-loss, AM denotes the

area of a single element on the planar antenna array at the

BS, i.e., AM = ℓxℓy, and h̃d,m follows a circularly-symmetric

complex Gaussian distribution with zero mean and unit vari-

ance, i.e., h̃d,m ∼ CN (0, 1). For sake of brevity, we define

the direct channel vector as hd = [hd,1, · · · , hd,M ]T.

Due to the flexibility in deploying the IRS, it is reasonable to

assume that the link between the BS and the IRS is dominated

by a LoS component. We denote the channel spanning from the

BS to the IRS with T ∈ CN×M where tnm = [T]nm denotes

the channel coefficient between the m-th transmit antenna and

the n-th IRS element. In particular, tmn is given by

tnm =
√

αsAN t̄nm, (3)

where αs represents the distance-dependent path-loss, AN is

the area of a single reflecting element, i.e., AN = dxdy, and

t̄nm denotes the LoS components.

Unlike the direct and the BS-to-IRS links, the link between

the user and the IRS has often both LoS and non-line of sight

(NLoS) components. Moreover, the reflecting elements at the

2Note that the direct path is different from the line of sight.
3This is a rational assumption, as we do not assume M to be large.
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IRS are often closely distanced, such that the given area of

the IRS is filled with a large number of elements. As a result,

the spatial correlation in this channel cannot be ignored. We

hence use the Rician fading model with spatial correlation

to model this channel: Let hr,n denote the coefficient of the

channel between the n-th reflecting element and the user. This

coefficient is modeled as

hr,n =
√

αrAN

(√

κr

κr + 1
h̄r,n +

√

1

κr + 1
h̃r,n

)

, (4)

where αr and κr are the distance-dependent path-loss and the

Rician factor1, respectively. The coefficient h̄r,n represents the

LoS, and h̃r,n models the small-scale fading process in the

NLoS link. To capture the spatial correlation among the IRS

elements, we consider a general covariance matrix R ∈ CN×N

for the vector h̃r = [h̃r,1, · · · , h̃r,N ]T which depends on dx
and dy, distribution of scatterers, and the radiation pattern. For

the case with isotropic scattering in front of the IRS, one can

determine R explicitly from [32, Proposition 1]. Consequently,

h̃r is modeled as a zero-mean complex Gaussian vector with

covariance R, i.e., h̃r ∼ CN (0,R). Note that due to power

normalization, we assume that [R]nn = 1 for n ∈ [N ].

Remark 1. In general, the effective area of a single element

on an array depends on the wave-length, and hence the given

expressions for the array areas, i.e., AN = dxdy and AM =
ℓxℓy, are not exact if the elements are distances longer than

a half wave-length. Nevertheless, we assume the neighboring

elements on the transmit array and the IRS to be distanced

less than a half wave-length, i.e., dx, dy, ℓx, ℓy ≤ λ/2.

The LoS components are described by the array responses:

Let λ be the wavelength and define the following operators

iM (m) = (m− 1) mod Mx, (5a)

iN (n) = (n− 1) mod Nx, (5b)

where x mod L determines x modulo L. Moreover, let

jM (m) =

⌊

m− 1

Mx

⌋

, (6a)

jN (n) =

⌊

n− 1

Nx

⌋

. (6b)

We now define an exponent function at azimuth angle ϕ and

elevation angle θ for a given element m on the BS array and

element n on the IRS array, respectively, as follows:

Φm (ϕ, θ) = iM (m) ℓx cos θ sinϕ+ jM (m) ℓy sin θ, (7a)

Πn (ϕ, θ) = iN (n) dx cos θ sinϕ+ jN (n) dy sin θ, (7b)

Consequently, the transmit and IRS array responses are given

at (ϕ, θ) respectively by [32]

aM (ϕ, θ) =

[

e
2πj
λ Φ1(ϕ,θ), · · · , e

2πj
λ ΦM (ϕ,θ)

]T

, (8a)

aN (ϕ, θ) =

[

e
2πj
λ Π1(ϕ,θ), · · · , e

2πj
λ ΠN (ϕ,θ)

]T

. (8b)

1In general, larger κr means that the channel is more deterministic.

Let T̄ ∈ CN×M be the matrix of LoS channel coefficients

between the BS and the IRS whose entry (n,m) is t̄nm. Define

further the LoS channel vector between the IRS and the user

as h̄r = [h̄r,1, · · · , h̄r,N ]T. We can hence write

T̄ = aN (ϕr1, θr1)aM (ϕt2, θt2)
H
, (9a)

h̄r = aN (ϕt1, θt1) , (9b)

where (ϕr1, θr1) is the angle-of-arrival (AoA) at the IRS, the

pair (ϕt1, θt1) denotes the angle-of-departure (AoD) from the

IRS, and (ϕt2, θt2) is the AoD from the BS.

The signal received by the user is given by

y =
M
∑

m=1

hmxm + z, (10)

where z is zero-mean and unit-variance complex Gaussian

noise, and xm denotes the symbol sent by the m-th antenna

element at the BS. The transmitted symbols satisfy

M
∑

m=1

E
[

|xm|2
]

≤ ρ, (11)

for some total transmit power ρ. The coefficient hm in (10)

defines for the end-to-end effective channel between the m-th

BS antenna and the user which is given by

hm = hd,m +

N
∑

n=1

e−jβnhr,ntnm, (12)

where βn denotes the phase-shift with element n at the IRS.

B. Asymptotic Scaling of IRS

We intend to characterize the IRS-aided setting in a large-

system limit in which the transmit-array size M remains fixed

and the number of reflecting elements at the IRS grows large.

In general, the growth in the number of reflecting elements can

impact the physical dimension of the IRS in various forms. To

illustrate this point, let AIRS denote the total area of the IRS.

Assuming the reflecting elements to be symmetrically inserted

on the surface, we can write

AIRS = NAN . (13)

The scaling of AIRS in terms of N is illustrated at best by

considering the two most extreme scenarios.

• One extreme case is to assume that the number of IRS ele-

ments grows large and the distances between neighboring

elements on the IRS are kept fixed and large enough, e.g.,

dx = dy = λ/2. In this case, AN is fixed, and therefore

the total area of the IRS grows linearly in N . Depending

on the wave-length, this scaling can lead to unrealistic

physical dimensions of IRS for large choices of N .

• Another extreme case is when we set the total area of

the IRS fixed, and reduce the distance between the neigh-

boring elements by the growth of N . In this case. AIRS

does not scale in N , and AN shrinks reverse-linearly with

N . In practice, however, the physical dimensions of a

typical reflecting element cannot be set below a certain

threshold. Hence, for a very large choice of N , assuming

this extreme case can also be unrealistic.
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In practice, with larger numbers of elements on the IRS, the

distance among neighboring elements is reduced. This leads to

a smaller effective area for a reflecting element and therewith

to a higher spatial correlation. The distance can however be

reduced down to a certain level. We can hence conclude that

the scaling of the IRS area is in general neither linear nor fixed,

but of some intermediate order; see some related discussions

in [39], [40]. To take this point into account, we consider a

basic scaling model for the IRS area. Namely, we assume that

the area of each IRS element scales with N as

AN =
A0

N q
(14)

for some constant A0 and 0 ≤ q ≤ 1. Consequently, the total

area of the IRS scales with N as

AIRS = A0N
1−q. (15)

This basic scaling addresses the limiting scenarios in between

the two extreme cases.

• q = 0 is the idealistic case which corresponds to the first

extreme case, i.e., the case in which the distances between

neighboring elements are kept fixed.

• q = 1 addresses the latter case in which the total area of

the IRS is fixed.

By setting 0 < q < 1, an intermediate scaling is considered

in which the IRS surface grows sub-linearly by N .

It is worth mentioning that for q 6= 1, this scaling model

implies that by sending N → ∞, the area of IRS also grows

asymptotically large. This observation can lead to this conclu-

sion that with q 6= 1, the far-field derivation for the IRS array

response is no longer valid in the large-system limit. To avoid

such inconsistency, let dmin denotes the minimum distance

between two terminals in the network, i.e., the minimum of the

BS-to-user, BS-to-IRS and IRS-to-user distances. We assume

that dmin is bounded uniformly from below as

dmin > D0N
γ/2, (16)

for some D0 and γ > 1− q. By considering this assumption,

we guarantee that the far-field derivations are valid through

the asymptotic analyses. From the implementational point of

view, this is a realistic assumption, as the distances are often in

orders of tens or hundreds of meters while the IRS dimensions

are often a finite multiple of the wave-length.

C. Input-Output Mutual Information

Let h = [h1, · · · , hM ]T denote the end-to-end channel vec-

tor. Considering Gaussian signaling, the mutual information

between the input and output of the end-to-end channel, for a

given realization of h, is given by

I (h, ρQ) = log2
(

1 + ρhHQh
)

, (17)

where Q ∈ CM×M is the transmit covariance matrix. From

the power constraint, we know that Q satisfies tr {Q} = 1.

In this channel, the optimal covariance matrix which max-

imizes the mutual information is given by maximum ratio

transmission (MRT) [41], [42]. We hence focus on the optimal

case which determines the capacity of the end-to-end channel.

To this end, we define the maximum mutual information1 as

C = log2 (1 + ρMΓ) , (18)

which determines the end-to-end channel capacity. Here, Γ is

given by

Γ =
‖h‖2
M

. (19)

In the sequel, we refer to Γ as the end-to-end SNR gain per

transmit antenna. Due to fading, Γ and C are random. Our main

goal is to characterize the statistics of these random variables

analytically, when N is asymptotically large.

III. ASYMPTOTIC CHANNEL HARDENING

Intuitively, channel hardening in massive MIMO systems

refers to the following phenomenon: A fading MIMO channel

behaves almost deterministically, as the number of antennas at

one end grows large2. This fundamental property is character-

ized in the seminal work [1] in which a tight approximation

for the distribution of the input-output mutual information is

determined. The result shows that the variance of the mutual

information shrinks rapidly while its mean grows large.

Invoking the literature, it can be straightforwardly shown

that the end-to-end channel h hardens, as the number of trans-

mit antennas M grows unboundedly large. We are however

interested in a different asymptotic regime; namely, a scenario

with finite transmit antennas but unboundedly large number

of IRS elements, i.e., fixed M and N → ∞. Our main result

shows that in this alternative asymptotic regime, the channel

still hardens, under a very mild constraint on the correlation

among the IRS elements.

Proposition 1. Let the area of the IRS scale with N as AIRS =
A0N

1−q for some fixed A0 and 0 ≤ q < 1, and the phase-

shifts be set to

β⋆
n =

2π

λ
(Πn (ϕr1, θr1) + Πn (ϕt1, θt1)) . (20)

Assume the maximum eigenvalue of the IRS covariance matrix

R, denoted by λmax, grows with N sub-linearly, i.e.,

lim
N→∞

λmax

N
= 0, (21)

and satisfies

lim
N→∞

1

λmaxAIRS
= 0. (22)

Then, the maximum mutual information C is well approximated

by a real Gaussian random variable whose mean and stan-

dard deviation are given by

µC = log2 (1 + ρMµ) (23a)

σC =
ρM log2 e

1 + ρMµ

√

ωη + η +
M − 1

M
αdAM (23b)

1We show it by C, as it determines the end-to-end capacity.
2In general, it is enough to have a large antenna array at one end.
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respectively, for

µ = αdAM + κrᾱNN2 + ᾱN h̄H

r Rh̄r, (24a)

η =
αdAM

M
+ ᾱN h̄H

r Rh̄r, (24b)

ω = 2κrᾱNN2 + ᾱN h̄H

r Rh̄r, (24c)

and ᾱN being defined as

ᾱN =
αrαs

1 + κr
A2

N . (25)

Proof. The proof is given in Section V-C.

Proposition 1 considers three main constraints on the system

setting; namely, it restricts the scaling order of the IRS area,

assumes sub-linearly growing λmax and the constraint in (22).

In this respect, it is worth mentioning few remarks.

• Proposition 1 excludes the limiting case of q = 1, for an-

alytical rigor. Nevertheless, as we see in the forthcoming

section, the analytical expressions are still rather accurate

for q = 1.

• Constraining the growth rate of the maximum eigenvalue

λmax to be sub-linear can be interpreted as follows: λmax

is uniformly bounded from above as λmax ≤ aNu for

some real scalars a and 0 ≤ u < 1. This is in general not

a strong constraint, as we can write

λmax ≤ tr {R} = N. (26)

As we illustrate later on, the exponent u is mutually cou-

pled with q. This is seen by considering the two extreme

cases of q. For q = 0, it is feasible to have R = IN , and

hence λmax = 1 meaning that u = 0. The other extreme

case is q → 1 in which R tends to a rank-one matrix.

In this case λmax = N , and hence the uniform upper-

bound is valid with1 a = u = 1. For less rank-deficient

covariance matrices, u can be something in [0, 1]. Similar

to the constraint on the physical dimension of the IRS, we

show later that despite assuming 0 ≤ u < 1, Proposition 1

is still valid for the extreme case of u = 1.

• Considering the scaling order of the IRS area AIRS and

maximum eigenvalue λmax, the constraint in (22) restricts

u and q to satisfy u ≥ q. One may find this constraint

intuitively valid following from the above discussions on

the coupling of u and q. We later on show that this is

in fact the case for the covariance matrix derived for the

standard Rayleigh model in [32].

A. Numerical Investigations

Before starting with derivations, let us confirm the accuracy

of Proposition 1 for practical system dimensions through some

numerical experiments. To this end, we consider a basic sce-

nario in which the BS is equipped with a 2×2 planar array and

the IRS surface consists of N = 256 reflecting elements which

are aligned on a rectangular surface with Nx = 8 horizontal

elements and Ny = 32 vertical elements. The elements at both

BS and IRS are distanced with ℓx = dx = ℓy = dy = λ/2.

1Similar to q, we exclude the linear case, i.e., u = 1 for analytical rigor.
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Fig. 1: Histogram of the mutual information and the fitted Gaussian
distribution for the covariance matrix R given in (27).

For sake of brevity, we set αdAM = αrAN = αsAN = 1,

and log κr = 0 dB. For the covariance matrix R, we consider

a Rayleigh fading model and invoke [32, Proposition 1]. The

entry (n, n′) of R is hence given by

[R]nn′ = sinc

(

2

λ

√

D2
x +D2

y

)

(27)

with Dx and Dy being

Dx = dx [iN (n)− iN (n′)] , (28a)

Dy = dy [jN (n)− jN (n′)] . (28b)

The AoA and AoDs are further set to (ϕr1, θr1) = (π/6, π/3),
(ϕt1, θt1) = (π/8, 2π/3) and (ϕt2, θt2) = (π/7, π/5). The

power constraint is set to ρ = 1.

For this setting, we collect 105 realizations of the channel

and determine the input-output mutual information for every

realization. The histogram of the collected samples is shown in

Fig. 1. As the figure shows, the histogram closely matches the

Gaussian distribution. We now plot the analytical distribution

given by Proposition 1 and compare it to the Gaussian distri-

bution fitted to the histogram. The result is shown in Fig. 2. As

the figure demonstrates, the analytical result of Proposition 1

matches almost perfectly to the empirical density.

We now conduct a new experiment. We consider the same

setting and let the IRS size to vary as N = N2
x while changing

from Nx = 8 to Nx = 36, gradually. Note that in this setting,

the area of the IRS grows linearly2 in N , i.e., t = 0, and hence

the limit in (22) is satisfied. For each choice of N , we collect

500 samples, determine numerically the mean and variance of

C and plot it against N in Figs. 3 and 4.

The numerical results in Figs. 3 and 4 are compared with the

closed-form expressions given in Proposition 1. As the figures

show, the analytical expressions closely track the numerical

results. The figures further demonstrate the hardening of the

channel in terms of the IRS size. As N grows large, the mean

mutual information grow large, while the variance drops.

2Such scaling is not realistic for very large IRSs. We discuss more realistic
scaling scenarios in the forthcoming parts of this section.
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Fig. 2: Probability density of the maximum mutual information and
the Gaussian distribution fitted to the numerical simulations.
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Proposition 1

Fig. 3: Numerical simulations and the analytic expression for the
mean mutual information against N .

B. Channel Hardening Order

The numerical experiments in the previous section consider

the case of q = 0, i.e., when the IRS area grows linearly in N .

Although this can be considered feasible for a small or mod-

erate number of reflecting elements, it is not a realistic scaling

for asymptotically large IRSs. In fact, in such scenarios, the

total area of the IRS is limited, and hence, the area grows

sub-linearly, i.e., q > 0. We address this point by investigating

the speed of channel hardening in this section. We are mainly

interested to find out how fast the channel hardens with respect

to N for a given scaling of the IRS area. In general, the speed

depends on the correlation among the reflecting elements, and

therefore the physical dimensions of the IRS. This argument

is analytically characterized in Proposition 2.

Proposition 2. Let the sub-linearly growing maximum eigen-

value of R be uniformly bounded from above as

λmax ≤ aNu, (29)

for some non-negative real a and 0 ≤ u < 1. Then, there exists

an integer N0, such that for N ≥ N0 the mean and variance

100 500 900 1300

10−1

10−2

N

σ
2 C

Simulation

Proposition 1

Fig. 4: Numerical simulations and the analytic expression for the
variance of the mutual information against N .

of the maximum mutual information is bounded uniformly as

µC ≥ b + (1− q) log2 N (30a)

σ2
C ≤ c

N1−u
, (30b)

for some non-negative real scalars b and c.

Proof. We start the proof by noting that

ᾱN =
αrαs

1 + κr
A2

N (31a)

=
αrαs

1 + κr

A2
IRS

N2
=

αrαs

1 + κr

A2
0

N2q
. (31b)

From Proposition 1, since µ ≥ ᾱNκrN
2, we have

µC ≥ log2
(

ρMκrᾱNN2
)

. (32)

Using (31b), we can hence conclude that

µC = log2

(

αrαs

1 + κr
ρMκrA

2
0

)

+ log2 N
2−2q. (33)

Noting that the first term on the right hand side does not grow

in N , we conclude that

µC ≥ b+ (1− q) log2 N, (34)

by setting b to

b = log2

(

αrαs

1 + κr
ρMκrA

2
0

)

. (35)

To further bound the variance, we note that
∥

∥h̄r

∥

∥

2
= N . As

a result, h̄H
r Rh̄r/N determines the Rayleigh quotient of R at

h̄r which is bounded from above by the maximum eigenvalue

of R [43]. We hence have

ᾱN h̄H

r Rh̄r ≤ ᾱNλmaxN. (36)

Let λmax be bounded uniformly from above by aNu for some

0 ≤ u < 1. This concludes that µ, η and ω in Proposition 1

are uniformly bounded from above respectively by

µU (N) = O
(

N2−2q
)

(37a)

ηU (N) = O
(

N1+u−2q
)

(37b)

ωU (N) = O
(

N2−2q
)

. (37c)
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We now start with bounding σC . Since 1 + ρMµ > ρMµ,

we can initially bound the variance as

σC <
log2 e

µ

√

ωη + η +
M − 1

M
αdAM = ΞN

√

η

µ
(38)

where ΞN is given by

ΞN =

√

1

µη

(

ωη + η +
M − 1

M
αdAM

)

log2 e (39)

The term ΞN is uniformly bounded from above by a constant.

We can hence conclude that there exists an integer N1 and a

non-negative real c0, such that for N ≥ N1, we have

σC ≤ c0

√

η

µ
(40)

Noting that µ ≥ κrᾱNN2, we can further bound the above

upper-bound as

σC ≤ c1

√
η

N1−q
(41)

where c1 being defined as

c1 =

√

c0 (1 + κr)

αrαsκr
. (42)

Since η is uniformly bounded with ηU (N), we conclude

that there exists an integer N2 ≥ N1 and a non-negative real

c2, such that for N ≥ N2, we have

η

N2−2q
≤ c2

N1−u
. (43)

The proof is finally completed by setting c = c21c2 and N0 to

be N0 = N2.

Proposition 2 formulates an intuitive behavior. The higher

the correlation among the IRS elements is, i.e., larger u, the

slower the end-to-end channel hardens. It further indicates that

the fastest hardening is achieved by u = q = 0. This corre-

sponds to reflecting arrays whose number of strongly corre-

lated elements does not scale with N while the area of the

IRS grows linearly in N . From implementation viewpoint, this

means that the neighboring reflecting elements on the IRS are

well-distanced, and the physical dimensions of the IRS grow

with the number of reflecting elements, such that the distance

between two neighboring elements remains constant.

We now validate Proposition 2 through a numerical ex-

periment. We consider the covariance matrix derived in [32,

Proposition 1] for a planar IRS whose elements are spaced

with λ/2 in both directions, i.e., dx = dy = λ/2. This means

that for this array q = 0. The covariance matrix in this case is

specified via (27). We consider a square array, i.e., Nx = Ny

and let N grow gradually from N = 64 to N = 1296. For this

sequence of covariance matrices, λmax is plotted against N in

Fig. 5. We further use the curve fitting toolbox of MATLAB,

i.e., cftool [44], to fit the collected data to a curve of form

λmax = aNu. The result is shown with a dashed line in the

figure for which a = 0.83 and u = 0.25.

Given the results in Fig. 5, Proposition 2 suggests that the

variance of the mutual information in this case is uniformly

100 500 900 1300

3

4

5

N

λ
m
a
x

Fig. 5: λmax against N for the classic IRS covariance matrix derived
in [32, Proposition 1]. The dashed line shows the fitted curve which

reads λmax ≈ 0.83
4
√
N , i.e., u = 0.25.
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1.9N−0.75

Fig. 6: Comparing the channel hardening speed to the uniform upper
bound suggested by Proposition 2.

bounded from above by cN−0.75 for some c. This is shown

in Fig. 6, where we compare σ2
C against the upper bound with

c = 1.9. The numerical results show consistency with Proposi-

tion 2. Interestingly, the suggested upper bound gives a pes-

simistic approximation of the hardening speed. In fact the true

variance, drops much faster than the order of the upper bound.

C. Scaling of IRS Area and Covariance Matrix

As indicated earlier, u and q are mutually coupled. This is

easily seen by sending q → 1. In this case, the total area of

the IRS is constant. This means that in the limit N → ∞, the

covariance matrix converges to a rank-one matrix and hence

λmax = tr {R} = N, (44)

or equivalently u → 1; see also [32]. To understand this mutual

coupling analytically and find out how realistic the condition

(22) is, i.e., u ≥ q, we conduct a numerical experiment. For a

given q, we repeat the previous experiment. This means that

we consider square IRSs of size N , i.e., Nx = Ny =
√
N ,

and let N grow gradually from N = 64 to N = 1296. The
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u

Fig. 7: Eigenvalue order exponent u against the area order exponent
q. The gray area is the feasible region u ≥ q where (22) is satisfied.

distance between two neighboring elements on the IRS in this

case is

dx = dy =
λ

2N q/2
. (45)

Invoking the least-squares method, we numerically find u such

that λmax ≤ aNu for some real a. We then change q from

q = 0 to q = 1 and plot u against it. The result is shown in

Fig. 7 along with the region u ≥ q which corresponds to the

constraint given by (22).

As the figure suggests, for the covariance matrix, derived

for the Rayleigh fading model, u ≥ q. This is intuitive, since

in both extreme cases of q = 0 and q → 1, this constraint is

satisfied. The result further show a linear growth of u in q.

This observation further suggests that Propositions 1 and 2 are

further valid approximations in the limits q → 1 and u → 1.

We confirm this intuition through numerical analysis of this

limiting case in the sequel.

D. The Extreme Case of Rank-One Covariance

As mentioned, the sub-linearity constraint in Propositions 1

and 2 is not a strong constraint. In fact, noting that λmax ≤ N ,

one can conclude that the sub-linearity constraint is satisfied in

all settings, but the extreme case with a finite-rank covariance

matrix whose rank does not grow with N , and therefore λmax

scales linearly in N . From the mutual coupling between u and

q, in this case we further have q = 1 which corresponds to an

IRS whose total area is kept fixed.

Inspired by our observation in Section III-B, we conjecture

that Propositions 1 and 2 give accurate characterizations, even

in an extreme case with a linearly growing λmax. To confirm

this conjecture, we run simulations for the same setting con-

sidered in Section III-A while replacing the covariance matrix

with R = 1N , i.e., the matrix of all ones, and correspondingly

setting q = 1, i.e., assuming

AN =
A0

N
. (46)
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Fig. 8: Histogram and the fitted Gaussian density of C for the extreme
case of R = 1N . The scaled version of the analytical density function
given by Proposition 1 is further plotted with a solid line.

for some real A0. To achieve this scaling, we set the distance

between two neighboring IRS elements to be

dx = dy =
λ

2
√
N

(47)

which means that A0 = λ2/4. We further set αr = αs = 1/A0

to make the comparison to the first experiment in Section III-A

fair. The remaining parameters are the same as those consid-

ered in Section III-A.

The matrix R = 1N is a rank one matrix whose maximum

eigenvalue reads λmax = N , and thus scales linearly with N .

One can observe this case, as an extreme case of the covariance

matrix in (27), in which the distance between the most outer

two elements of the IRS is still significantly smaller than the

wavelength1.

Fig. 8 shows the numerically-evaluated histogram of C, as

well as the properly scaled version of the fitted Gaussian prob-

ability density and the distribution suggested by Proposition 1.

The histogram is evaluated for 105 channel realizations. As

the figure shows, the histogram in this case is rather loosely

approximated by the distribution given in Proposition 1, and

compared to the almost-perfect match in Figs. 1 and 2, it shows

some approximation error. This approximation error follows

from the lower speed of channel hardening in this case. In

fact, from Proposition 2, we know that by sending q, u → 1,

the mean and variance of C scale with O (1) in N , and hence,

the approximation in Proposition 1 becomes inaccurate2.

Although the approximation by Proposition 1 is inaccurate,

the histogram in Fig. 8 shows a rather small standard deviation

for C. This is an interesting observation confirming our earlier

finding in Section III-B which indicates that the upper bound

given by Proposition 2 is rather pessimistic.This finding can be

analytically supported as follows: The sub-linearity constraint

in Propositions 1 and 2 comes from utilizing the inequality

h̄H

r Rh̄r ≤ λmaxN to bound the variance σ2
C . Nevertheless, for

1In other words, an IRS whose physical dimensions are significantly smaller
than the wavelength.

2This is the main reason that Proposition 1 excludes the case q = u = 1.
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Fig. 9: Histogram and the fitted Gaussian density of C for the extreme
case of R = 1N . The scaled version of the density functions given
by Pseudo-Proposition 1 and Proposition 1 are plotted with solid and
dotted lines, respectively.

rank-deficient covariance matrices, this bound is often asymp-

totically very loose. This means that despite the inaccuracy of

Proposition 1 for exactly linear scaling, i.e., q = u = 1, the

channel hardening still occurs in this case.

We now invoke the above heuristic conclusion to further

modify Proposition 1 for linearly scaling AIRS and λmax.

In fact, assuming that C is still Gaussian in this case, we

can conclude that the approximation error in this case comes

from the inaccuracy of the variance in Proposition 1 for cases

with linear scaling. The following pseudo-proposition gives

a modified approximation for the distribution of C which is

also accurate for linearly scaling scenarios. Interestingly, by

assuming sub-linear scaling, the approximation reduces to the

limiting distribution given by Proposition 1.

Pseudo-Proposition 1. For linearly scaling AIRS and λmax,

i.e., cases with q = u = 1, the maximum mutual information

C is well approximated by a real Gaussian random variable

whose mean is µC and whose variance is

σ̂2
C =

κr

κr + ϑ
σ2
C , (48)

where µC and σ2
C are given in Proposition 1, and

ϑ =
αdAM

2ᾱNN2
(49)

Proof. The proof is given in Section V-D.

For the numerical experiment of Fig. 8, we further plot the

approximation by Pseudo-Proposition 1 in Fig. 9. As the figure

demonstrates, the proposed approximated density tracks the

empirically-evaluated histogram more closely1 compared with

the limiting result given by Proposition 1.

IV. IRS-TRANSMITTER DIMENSIONAL TRADE-OFF

The analytical results of this study enable us to address var-

ious design challenges in IRS-aided systems. In this section,

1The interested reader can check that for u, q < 1, we have σ̂2
C
→ σ2

C
, as

we set N → ∞.

we focus on a particular application: We employ the results to

investigate the dimensional trade-off between the BS and the

IRS. More precisely, we try to answer this fundamental ques-

tion: How does the transmit array dimension, i.e., M , change,

when we employ an IRS to enhance the communication link?

A. Dimensional Trade-Off for Ergodic Capacity

We start our investigations by considering cases in which

the NLoS links experience a fast fading process. This means

that the channel varies from a short block of symbol transmit

intervals to another. In this case, the performance is best de-

scribed by the ergodic capacity, defined as

C̄ = E [C] . (50)

For a target ergodic capacity, the BS needs to be equipped

with a certain number of transmit antennas, i.e., M . Intuitively,

this number of required antennas is expected to reduce, as we

increase the IRS dimension. This draw a dimensional trade-off

between N and M : With a larger IRS, the minimum number

of required BS antennas to achieve a given target performance

decreases. Proposition 1 enables us to quantitatively formulate

this dimensional trade-off. To this end, we first use Proposi-

tion 1 and derive the ergodic capacity for a given N and M
in a closed form as follows:

C̄ = log2
(

1 + ρM
[

αdAM + κrᾱNN2 + ᾱN h̄H

r Rh̄r

])

. (51)

It is hence readily concluded that for a given N and the target

ergodic capacity C̄, M needs to satisfy

M ≥ 2C̄ − 1

ρ
(

αdAM + κrᾱNN2 + ᾱN h̄H
r Rh̄r

) . (52)

The inequality in (52) formulates the trade-off between N
and M : By increasing the physical dimensions of the IRS,

a smaller array is required at the BS. It further specifies the

speed of this drop, i.e., M drops proportional to N2q−2.

We now conduct some experiments to investigate this trade-

off numerically. To this end, a setting is considered in which an

IRS is distanced from the BS with Ds = 25 m. The receiver

is further located at a random point at which its distances

from the BS and the IRS are Dd = 20 m and Dd = 15 m,

respectively. We further set the AoA and AoDs to be the same

as those considered in Section III-A, and assume that ρ = 1.

The large-scale fading coefficients are generated as

αi =
αref

Dεi
i

(53)

for i ∈ {s, d, r}, where εi is the path-loss exponent of link i
and αref is the reference path-loss. For numerical simulations,

we set logαref = 10 dB, εd = 3.5 and εs = εr = 2.3.

The IRS is considered to be a square planar array, i.e., Nx =
Ny, whose elements are distanced with a half wavelength. This

means that q = 0. The covariance matrix of the NLoS link is

further set to be the Rayleigh covariance matrix, i.e., (27).

We assume that the phase-shifts of the reflecting elements are

set according to Proposition 1; hence, the configuration of the

transmit array is not required to be taken into account.

To investigate the dimensional trade-off between M and N ,

we let the ergodic capacity to be set to a given target value C̄.
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Fig. 10: IRS-transmitter dimensional trade-off for target ergodic
capacity C̄: The minimum required number of transmit antennas
Mmin is determined by quantizing MErg to the next larger integer.

The number of reflecting elements is then increased gradually

starting from N = 64 and ending at N = 1296. For each N ,

we determine the real-valued lower bound on the minimum

required M , denoted by MErg, from (52), i.e.,

MErg =
2C̄ − 1

ρ
(

αdAM + κrᾱNN2 + ᾱN h̄H
r Rh̄r

) . (54)

Fig. 10 plots MErg against the IRS size N , for three various

choices of C̄. The minimum required BS array size, denoted

by Mmin, is then determined by quantizing MErg to the next

larger integer. As the figure shows, for rather large choices of

N , the target ergodic capacity with only one antenna at the

transmitter. Our further numerical investigations confirm the

consistency of the result with simulations.

B. Dimensional Trade-Off for Outage Probability

With a slow fading process, the channel remains fixed within

a long sequence of symbol intervals. The appropriate metric

for performance evaluation in this case is therefore the outage

probability which is defined for a given target rate R as [45]

Pout (R) = Pr {C < R} . (55)

The dimensional trade-off can be also studied for this metric

using the analytical results of Section III. From Proposition 1,

we can determine the outage probability as

Pout (R) = Q

(

µC −R
σC

)

, (56)

with Q(·) being the standard Q-function. To guarantee achiev-

ing Pout (R) ≤ pout for a given target rate R, we need to have

µC −R
σC

≥ Q−1 (pout) , (57)

where Q−1 (·) is the inverse of the Q-function with respect to

composition, i.e., Q−1
(

Q−1 (pout)
)

= pout.
For a given reflecting array and rate R, it is readily shown,

after few lines of calculations, that the target outage is achieved
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Fig. 11: IRS-transmitter dimensional trade-off for various target
outages: Here, the target rate is set to R = 3.

if M ≥ MOut, where MOut a positive real-valued solution to

the following fixed-point equation in x:

R+
C

1 + ρµx

√

Bx2 + ωαdAMx = log2 (1 + ρµx) . (58)

Here, µ and ω are defined for the given IRS as in Proposition 1.

Moreover, C and B are given by

C = ρQ−1 (pout) log2 e, (59a)

B = (ω + 1) h̄H

r Rh̄r + αdAM . (59b)

Fig. 11 demonstrates the IRS-BS dimensional trade-off with

respect to the outage probability for various target outages.

Here, the setting is set to be the same as the one considered

in Fig. 10. The target rate is moreover set to R = 3. For

50% outage, the trade-off curve recovers the one given in

Fig. 10 for C̄ = 3. This follows from the symmetry of the

Gaussian density which leads to this property that the median

coincides with the mean. We further observe that by reducing

the outage probability, the trade-off figure shifts upward. This

is intuitive, as for lower-outages, we require a better end-to-

end link. These upward shifts are however not significant and

rather negligible for large choices of N . This is a direct result

of the channel hardening: With large N , the capacity term C
is almost deterministic, and hence the outage probability tends

to a step function in R.

V. DERIVATION OF THE MAIN RESULT

This section proves the asymptotic result given in Proposi-

tion 1. The derivation follows three main steps:

• First, we derive the distribution of the end-to-end SNR

gain Γ for an arbitrary M and N .

• We then bound the mean and variance of the SNR gain

in terms of the spectrum of the covariance matrix R.

• Finally, we send N → ∞ and show that the maximum

mutual information converges in distribution to a Gaus-

sian random variable, if the maximum eigenvalue of R

grows sub-linearly in N .
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A. Distribution of End-to-End SNR

Theorem 1 determines the statistics of the end-to-end SNR

gain Γ for an arbitrary choice of system dimensions.

Theorem 1. Let the vector of phase-shifts at the IRS be set

to β = [β1, . . . , βN ]T. Define E (·) as

E (β) = ᾱN ḡT

r Φ (β)RΦH (β) ḡ∗
r , (60)

for matrix Φ (β) = diag
{

e−jβ1 , . . . , e−jβN

}

, ᾱN given in

(25) and ḡr = aN (ϕr1, θr1). Let Fζ (β) and Λ (β) be

Fζ (β) = ᾱNκr

∣

∣ḡT

r Φ (β) h̄r

∣

∣

2
+ ζE (β) (61a)

Λ (β) =
αdAM

M
+ E (β) . (61b)

Then, the end-to-end SNR gain Γ is distributed with a gener-

alized chi-square distribution of order 2M whose density is

given by

fΓ (γ) =
τM

Λ (β)

∫ +∞

−∞

f1

(

γ − v

Λ (β)

)

f0 (τMv) dv, (62)

for τM = M/αdAM and the density functions

f0 (v) =
vM−2

(M − 2)!
e−v, (63a)

f1 (v) = e−v−λ(β)I0

(

2
√

λ (β) v
)

, (63b)

with λ (β) = F0 (β)/Λ (β), and denoting the modified Bessel

function of the first kind and order zero. Moreover, the mean

and variance of Γ are given by

µΓ (β) = αdAM + F1 (β) , (64)

and (65), given on the top of the next page, respectively.

Proof. Let β = [β1, . . . , βN ]T. For a given index m ∈ [M ],
define gm (β) be defined as

gm (β) =

N
∑

n=1

e−jβnhr,ntnm. (66)

Here, βn and tnm are deterministic scalars, and hr,n are jointly

Gaussian for n ∈ [N ]. We can hence conclude that gm (β) is

distributed Gaussian with mean and variance

µm (β) =
µ0 (β)√

M
e−jΦm(ϕt2,θt2), (67a)

σ̃2 (β) = ᾱN ḡT

r Φ (β)RΦH (β) ḡ∗
r , (67b)

respectively, where ḡr = aN (ϕr1, θr1), ᾱN is defined in (25),

µ0 (β) =
√

MκrᾱN ḡT

r Φ (β) h̄r, (68)

and Φ (β) = diag
{

e−jβ1 , . . . , e−jβN

}

.

As hm for m ∈ [M ] have common term gm (β), the entries

of h are correlated. We hence determine the covariance of h.

To this end, we first note that

µ (β) = [µ1 (β) , . . . , µM (β)]
T
= µ0 (β)v

∗ (69)

where v = aM (ϕt2, θt2) /
√
M . As the result, the covariance

matrix is given by

C = E
[

(h− µ0 (β)v
∗)

(

hH − µ∗
0 (β)v

T
)]

, (70a)

= αdAMIM +Mσ̃2 (β)v∗vT = C2
0, (70b)

where C0 =
√
αdAM IM +̟ (β)v∗vT with ̟ being

̟ (β) =
√

αdAM +Mσ̃2 (β)−
√

αdAM . (71)

We now represent the end-to-end channel h as h = C0h0,

where h0 ∼ CN
(

C−1
0 µ (β) , IM

)

. Consequently, we have

Γ =
1

M
hH

0Ch0. (72)

To determine this weighted norm, we use the eigenvalue de-

composition of C to write C = V∗ΣVT, where V ∈ CM×M

is a unitary matrix whose last column is v and Σ is an M×M
diagonal matrix defined as

Σ = diag
{

αdAM , . . . , αdAM , αdAM +Mσ̃2 (β)
}

. (73)

By replacing into (72), we have

Γ =
αdAM

M

M−1
∑

m=1

|rm|2 + αdAM +Mσ̃2 (β)

M
|rM |2 (74)

where rm is the m-th entry of r = VTh0. Noting that VT is

unitary, we conclude that r ∼ CN (µr (β) , IM ), where

µr (β) = VTC−1
0 µ (β) . (75)

Since C = C2
0, the matrix C−1

0 is decomposed as

C−1
0 = V∗

√
Σ

−1
VT, (76)

where
√
Σ is a diagonal matrix whose first M − 1 diagonal

entries is
√
αdAM and the last one is

√
αdAM+̟ (β). Hence,

we can write

µr (β) = VTV∗
√
Σ

−1
VTµ (β) (77a)

= µ0 (β)
√
Σ

−1
VTv∗. (77b)

Noting that v is the last column of the unitary matrix V, we

conclude that VTv∗ is a standard base vector with the first

M − 1 being zero and the last entry being 1. This concludes

that µr,m (β) = 0 for m ∈ [M − 1] and

µr,M (β) =
µ0 (β)√

αdAM +̟ (β)
(78a)

=
µ0 (β)

√

αdAM +Mσ̃2 (β)
(78b)

We now define independent random variables

V0 =
M−1
∑

m=1

|rm|2 , (79a)

V1 = |rM |2 . (79b)

By definition, V0 is distributed chi-square with 2M−2 degrees

for freedom whose mean and variance are M − 1 and whose

density function is given by (63a). The random variable V1 is

further distributed non-central chi-square with two degrees of

freedom and non-centrality parameter

λ (β) = |µr,M (β)|2 . (80)

Consequently, the mean and variance of V1 are 1+ λ (β) and

1 + 2λ (β), respectively, and its probability density is given

by (63b) in Theorem 1.
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σ2
Γ (β) =

αdAM

M
[2F1 (β) + αdAM ] + E (β) [F0 (β) + F1 (β)] . (65)

The SNR gain Γ is determined in terms of V0 and V1 as

Γ =
αdAM

M
V0 +

αdAM +Mσ̃2 (β)

M
V1. (81)

Noting that V0 and V1 are independent, the proof of Theorem 1

is concluded after defining the functions E (β) = σ̃2 (β) and

Fζ (β) = |µ0 (β)|2 /M + ζE (β).

B. Maximum Average End-to-End SNR

Using IRSs in the system, we are often interested in tuning

the IRS phase-shifts, such that the average end-to-end SNR

is maximized, i.e., µΓ (β) is maximized over β. Considering

Theorem 1, the maximum mean SNR is not necessarily found

in a closed-form. Nevertheless, closed-form lower and upper

bounds can be derived in terms of the spectrum of R.

Theorem 2. Let the phase-shifts at the IRS be set to the vector

β⋆ = [β⋆
1 , . . . , β

⋆
N ]T with β⋆

n being specified in (20). Then, the

average end-to-end SNR gain is bounded as

µΓ (β
⋆) ≤ ξmax (N) + κrᾱNN2, (82a)

µΓ (β
⋆) ≥ ξmin (N) + κrᾱNN2 (82b)

where ξi (N) for i ∈ {min,max} is defined as

ξi (N) = αdAM + ᾱNλiN (83)

with ᾱN being given in (25), and λmin and λmax denoting the

minimum and maximum eigenvalue of R, respectively. The

variance of Γ is further bounded as

Pmin (N) ≤ σ2
Γ (β

⋆) ≤ Pmax (N) , (84)

where Pi (N) is given for i ∈ {min,max} in (85) at the top

of the next page.

Proof. We start the proof by stating the following lemma:

Lemma 1. For the function F0 (β) defined in (61a), we have

max
β1,...,βN

F0 (β) = κrᾱNN2, (86)

being obtained by setting βn = β⋆
n given in (20) for n ∈ [N ].

Proof. The proof is given in the Appendix A.

By setting βn = β⋆
n in Theorem 1, the mean and variance

of the SNR gain reduce to

µΓ (β⋆) = αdAM + E (β⋆) + κrᾱNN2, (87)

and the expression given in (88) at the top of the next page,

respectively. The mean can hence be bounded as

Emin + κrᾱNN2 ≤ µΓ (β⋆) ≤ Emax + κrᾱNN2, (90)

and the variance reads

σ2
Γ,min ≤ σ2

Γ (β
⋆) ≤ σ2

Γ,max, (91)

with σ2
Γ,i being defined in (89) at the top of the next page for

i ∈ {min,max}. Here,

Emax = αdAM + max
β∈RN

E (β) (92)

Emin = αdAM + min
β∈RN

E (β) (93)

whose values are given by the following lemma:

Lemma 2. For the function E (β) defined in (60), we have

ξmin (N) ≤ αdAM + E (β) ≤ ξmax (N) (94)

for any β ∈ RN , where the function ξi (N) is defined in (83)

for i ∈ {min,max}.

Proof. The proof is given in the Appendix B.

By substituting the results of Lemma 2 into the bounds in

(91) and (90), the proof is concluded.

Remark 2. From the proof, it is straightforward to conclude

that the upper-bounds given in Lemma 2 are in general valid

for any choice of IRS phase-shifts. This means that, for any

β ∈ RN , we have

µΓ (β) ≤ ξmax (N) + κrᾱNN2, (95a)

σ2
Γ (β) ≤ Pmax (N) . (95b)

Remark 3. Lemma 1 explains the logic behind the choice of

IRS phase-shifts in Proposition 1. It is worth noting that the

proposed phase-shifts in (20) do not necessarily maximize

the average end-to-end SNR. Nevertheless, they are still good

enough to guarantee the end-to-end channel hardening.

C. Proof of Proposition 1

The proof of Proposition 1 follows readily from Theorems 1

and 2: Using Theorem 1, we represent the end-to-end SNR

gain as Γ = µΓ (β
⋆)+σΓ (β

⋆) Γ̃, where Γ̃ is a zero-mean and

unit-variance generalized chi-square random variable denoting

the centralized and normalized version of Γ. We now replace

it in (18) and use the Taylor series of the logarithm to write

C = log2

(

1 + ρMµΓ (β
⋆) + ρMσΓ (β

⋆) Γ̃
)

, (96a)

= log2 (1 + ρMµΓ (β
⋆)) + log2

(

1 + ςN Γ̃
)

(96b)

= log2 (1 + ρMµΓ (β
⋆)) + ςN log2 e Γ̃ + ǫN , (96c)

where ςN is defined as1

ςN =
ρMσΓ (β

⋆)

1 + ρMµΓ (β
⋆)
, (97)

and ǫN is a polynomial in ςN Γ̃ satisfying

ǫN = O
(

ς2N Γ̃2
)

. (98)

1We use subscript N to indicate its dependency on dimension N .
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Pi (N) =
αdAM

M
+

2αdAMλi

M
ᾱNN +

(

2αdAMκr

M
ᾱN + ᾱ2

Nλ2
i

)

N2 + 2λiκrᾱ
2
NN3 (85)

σ2
Γ (β⋆) =

αdAM

M

[

2κrᾱNN2 + 2E (β⋆) + αdAM

]

+ E (β⋆)
[

E (β⋆) + 2κrᾱNN2
]

, (88)

σ2
Γ,i =

αdAM

M

(

2κrᾱNN2 + 2Ei − αdAM

)

+ (Ei − αdAM )
(

Ei + 2κrᾱNN2 − αdAM

)

, (89)

Invoking Theorem 2, we can bound ςN from above as

ςN ≤ ρM
√

Pmax (N)

1 + ρM (ξmin (N) + κrᾱNN2)
(99a)

†

≤ ρM
√

Pmax (N)

1 + ρM (αdAM + κrᾱNN2)
(99b)

where † follows from ξmin (N) ≥ αdAM .

We now focus on scaling with N . Since λmax grows sub-

linearly in N , we can conclude that there exist real scalars λ0

and 0 ≤ u < 1, such that λmax is uniformly bounded by

λU (N) = λ0N
u, (100)

From the constraint AIRS = A0N
1−q , we can further conclude

that

AN =
A0

N q
, (101)

for some real A0 and 0 ≤ q < 1, where the constraint in (22)

guarantees that u ≥ q. As a result, Pmax (N) is uniformly

bounded from above by

PU (N) = bN3+u−4q. (102)

These upper-bounds lead to this conclusion that ςN is bounded

as ςN ≤ ςUN for some ςUN satisfying

ςUN = O
(

N
u−1
2

)

. (103)

We now note that Γ̃ is zero-mean and unit-variance, and 0 ≤
u < 1. Thus, ǫN → 0 as N grows large, and hence C is well

approximated by the first two terms in (96c).

We now use the following lemma:

Lemma 3. Let F0 (β) /Λ (β) and σ2
Γ (β) grow large. Then,

we have

Γ− µΓ (β)

σΓ (β)

d−→ N (0, 1) . (104)

Proof. The proof is given in the Appendix C.

We first note that σ2
Γ (β⋆) grows large with N . Moreover,

F0 (β
⋆) = ᾱNκrN

2 and Λ (β⋆) is uniformly bounded from

above with O
(

N1+u−2q
)

for some 0 ≤ u < 1. This concludes

that F0 (β
⋆) /Λ (β⋆) grows large as N increases. We hence

use Lemma 3 and conclude that Γ̃ converges in distribution to

a zero-mean and unit-variance Gaussian random variable, as

N grows asymptotically large.

Finally by noting that ḡT

r Φ (β⋆) = h̄H

r , we can write

E (β⋆) = ᾱN h̄H

r Rh̄r. (105)

Substituting into (96c), Proposition 1 is concluded after few

lines of standard calculations.

D. Derivation of Pseudo-Proposition 1

From our numerical validations in Section III-D we heuristi-

cally conclude that C is still well-approximated by a Gaussian

random variable in the linearly scaling settings. Nevertheless,

the variance of C in this case is not tightly approximated by

Proposition 1. From the proof of Proposition 1, the inaccuracy

comes from the fact that the necessary condition for Lemma 3

is not satisfied and hence, Γ̃ does not converge in distribution

to a zero-mean and unit-variance Gaussian random variable1.

The exact distribution of Γ̃ in this case can be derived ex-

plicitly from Theorem 1. We however follow our heuristic and

approximate it by a zero-mean Gaussian random variable of a

smaller variance. Following the proof of Lemma 3, we show

in Appendix D that Γ̃ can be approximated in this case as

Γ̃ ≈ Γ̃∞ + ǫ̂ (106)

where Γ̃∞ ∼ N
(

0, σ2
∞

)

with

σ2
∞ =

κr

κr + ϑ
(107)

and ϑ being given in (49). The random variable ǫ̂ is further

a centralized2 chi-square residual term. By replacing (106) in

the Taylor expansion (96c) and ignoring the residual term as

well as higher-order terms, the approximation is derived.

VI. CONCLUSIONS

Even with highly correlated reflecting elements, a large IRS

hardens the end-to-end channel of a MIMO system with small

transmit and receive array antennas. This conclusion follows

from the main result of this study which shows that the mutual

information between the input and output signals in an IRS-

aided system is almost perfectly approximated by a Gaussian

random variable, whose mean increases with the IRS size and

whose variance vanishes to zero as the IRS size grows large.

The results of this study indicate that the channel hard-

ening property is rather generic in IRS-aided systems and is

easily achieved by small transmit and receive array antennas.

1This is why Proposition 1 excludes the strictly-linear case.
2That means ǫ̂ is zero-mean.
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More interestingly, the phase-shifts of reflecting elements are

not required to be updated frequently and should only be

appropriately matched with the large-scale statistics of the

wireless channels, i.e., AoAs andAoDs. These findings reveal

this interesting fact: Even with IRSs of moderate size whose

physical dimensions are rather significantly smaller than the

wavelength, we can still harden the end-to-end MIMO channel

between the transmitter and the receiver.

Earlier investigations in the literature have demonstrated the

promising performance of massive MIMO systems in various

respects. Nevertheless, the complexity of implementing such

systems left this technology challenging for commercial uses.

Along with earlier results in the literature, the result of this

study indicate that using IRSs, the key features of the massive

MIMO technology can be achieved with rather small end-to-

end dimensions.

Although this work studies a basic setting, the analytical

results can still be employed to investigate various fundamental

properties of IRS-aided MIMO systems. An example is given

in Section IV, where we demonstrate the dimensional trade-off

between the IRS and the BS: The larger the IRS is, the smaller

the BS needs to be in order to achieve a target performance.

Similar investigations and further extensions of the results to

more advanced settings, and under more realistic assumptions,

are interesting study directions. They are however out of the

scope of this particular paper and are left as potential directions

for future work.

APPENDIX A

PROOF OF LEMMA 1

Considering the definition of F0 (β), one can write

F0 (β) = ᾱNκr

∣

∣

∣

∣

∣

N
∑

n=1

ej(Πn(ϕr1,θr1)+Πn(ϕt1,θt1)−βn)

∣

∣

∣

∣

∣

2

. (108)

The expression on the right hand side includes the amplitude

of a sum whose summands are complex numbers on the unit

circle. As the result, the amplitude of the sum is maximized by

setting all the summands in-phase. This is obtained by setting

βn = β⋆
n for β⋆

n given in (20). In this case, the sum adds to

N and F (β⋆) is given by the expression given in Lemma 1.

APPENDIX B

PROOF OF LEMMA 2

Let ψ (β) = ΦH (β)g∗
r . Hence, E (β) can be written as

E (β) = ᾱN ψH (β)Rψ (β) (109)

Since every entry of ψ (β) lies on the unit circle, we can write

‖ψ (β)‖2 = N for any β ∈ RN . Consequently, the function

Q (β) =
1

N
ψH (β)Rψ (β) (110)

determines the Rayleigh quotient of R at ψ (β). We now use

the fact that the Rayleigh quotient is bounded in terms of the

eigenvalue of R, as follows [43]

λmin ≤ Q (β) ≤ λmax, (111)

where λmin and λmax are the minimum and maximum eigen-

value of R, respectively. Substituting into (109), Lemma 2 is

concluded.

APPENDIX C

PROOF OF LEMMA 3

We start the proof by considering (74). Using the definition

of Λ (β) in Theorem 1, we have

Γ =
αdAM

M

M−1
∑

m=1

|rm|2 + Λ (β) |rM |2 . (112)

Here, rm for m ∈ [M − 1] are independent complex Gaussian

random variables with zero mean and unit variance, and rM
is a complex unit-variance Gaussian random variable indepen-

dent of rm for m ∈ [M − 1]. The mean of rM , i.e., µr,M (β),
is given in (78b). Using the definitions given in Theorem 1, it

can be shown that

|µr,M (β)| =
√

F0 (β)

Λ (β)
. (113)

Let rM = r̃M +µr,M (β) where r̃M is the centralized form

of rM . We can hence write

Γ = T0 + 2Λ (β)ℜ
{

r̃Mµ∗
r,M (β)

}

+ |µr,M (β)|2 (114)

where T0 is defined as

T0 =
αdAM

M

M−1
∑

m=1

|rm|2 + Λ (β) |r̃M |2 . (115)

We now consider the normalized SNR gain, i.e.,

Γ̂ =
Γ

σΓ (β)
(116)

By replacing Γ with the expression in (114), we have

Γ̂ = Γ0 + Γ1 + c (117)

where Γ0 and Γ1 are random expressions defined as

Γ0 =
T0

σΓ (β)
(118a)

Γ1 = 2
Λ (β)

σΓ (β)
ℜ
{

r̃Mµ∗
r,M (β)

}

(118b)

and c is a deterministic constant given by

c =
|µr,M (β)|2
σΓ (β)

. (119)

Despite its complicated form of σ2
Γ (β), we can use the fact

that F0 (β) ≤ F1 (β) in Theorem 1, and bound σ2
Γ (β) as

2Λ (β)F0 (β) ≤ σ2
Γ (β) ≤ 2Λ (β)F1 (β) + α2

dA
2
M . (120)

Noting that α2
dA

2
M is fixed, we can conclude that growth of

σ2
Γ (β) guarantees that Λ (β)F0 (β) grows large.

We use the upper bound to write

Γ0 ≤ T0

2
√

Λ (β)F0 (β)
(121a)

=

αdAM

M−1
∑

m=1

|rm|2

2M
√

Λ (β)F0 (β)
+

√

Λ (β)

F0 (β)
|r̃M |2 . (121b)
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Now, let σ2
Γ (β) and F0 (β) /Λ (β) grow large. We can then

conclude that the upper bound in this case converges to zero in

the mean squared error (MSE). Since Γ0 ≥ 0, we can conclude

that Γ0 converges to zero.

The expression Γ1 is further a real-valued zero-mean Gaus-

sian random variable whose variance is given by

σ2
1 =

2Λ2 (β)

σ2
Γ (β)

|µr,M (β)|2 . (122)

Using the lower and upper bounds on the variance of Γ, we

can bound σ2
1 as

F0 (β)

F1 (β)
≤ σ2

1 ≤ 1. (123)

Noting that

F1 (β) = F0 (β) + Λ (β)− αdAM

M
(124)

we can further write

lim
F0(β)
Λ(β) →∞

F0 (β)

F1 (β)
= 1 (125)

which means that σ2
1 = 1. As a result, by growth of σ2

Γ (β)
and F0 (β) /Λ (β), the normalized SNR gain Γ̂ converges in

distribution to a unit-variance real Gaussian random variable.

Finally, by noting that (Γ− µΓ) /σΓ is the centralized form

of Γ̂, we can conclude that

Γ− µΓ (β)

σΓ (β)

d−→ N (0, 1) . (126)

This concludes the proof.

APPENDIX D

APPROXIMATED SNR FOR LINEAR SCALING

For a linearly scaling IRS area and λmax, the conditions in

Lemma 3 are not satisfied, and hence the given limit is not

valid. Considering the proof in Appendix C, this follows from

the fact that due to linear scaling Γ0 does not converge to zero,

and accordingly the limit of σ2
1 is not one. Considering (117)

in Appendix C, we can write

Γ̃ = Γ̂− µΓ (β)

σΓ (β)
= Γ1 + ǫ̂, (127)

where ǫ̂ is a centralized chi-square random variable1. The ran-

dom variable Γ1 is further zero-mean Gaussian whose variance

is σ2
1 given in (122).

Considering linear scaling, i.e., q = u = 1, R is a rank-one

matrix and hence we can write R = rrH for some r ∈ CN .

As a result,

h̄H

r Rh̄r =
∣

∣hHr
∣

∣

2
. (128)

Noting that entries of hH lie equidistantly on the unit-circle,

one can approximately write h̄H

r Rh̄r ≈ 0 for a typical2 r.

We further note that ᾱNN2 converges to a constant with q =
1. Considering this fact and using the above approximation,

the variance σ2
1 is approximated with σ2

∞ given in (107).

1 ǫ̂ is zero-mean, since Γ̃ is zero-mean
2For instance, for the covariance matrix R = 1N , r is a vector of all-ones,

and hence this approximation is almost exact.
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