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Abstract—Joint source and channel coding (JSCC) for image
transmission has attracted increasing attention due to its ro-
bustness and high efficiency. However, the existing deep JSCC
research mainly focuses on minimizing the distortion between the
transmitted and received information under a fixed number of
available channels. Therefore, the transmitted rate may be far
more than its required minimum value. In this paper, an adaptive
information bottleneck (IB) guided joint source and channel
coding (AIB-JSCC) method is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while
improving the image reconstruction quality. In particular, a new
IB objective for image transmission is proposed so as to minimize
the distortion and the transmission rate. A mathematically
tractable lower bound on the proposed objective is derived, and
then, adopted as the loss function of AIB-JSCC. To trade off
compression and reconstruction quality, an adaptive algorithm
is proposed to adjust the hyperparameter of the proposed
loss function dynamically according to the distortion during
the training. Experimental results show that AIB-JSCC can
significantly reduce the required amount of transmitted data
and improve the reconstruction quality and downstream task
accuracy.

Index Terms—Information bottleneck, joint source and channel
coding, image transmission.

I. INTRODUCTION

Shannon’s information theory has laid the foundations of
modern communication systems. In particular, according to
Shannon’s information theory, separate source and channel
coding (SSCC) is optimal for a memoryless source and
channel when the latency, complexity, and code length are
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not constrained [1]. However, SSCC has several practical
limitations. First, the theory is based on the assumption of
potentially infinite code lengths, which are impossible in
practice, and SSCC is suboptimal for finite code lengths.
Also, to achieve theoretically optimal performance, maximum
likelihood detection methods must be used, which can be, in
general, NP-hard [2], thus introducing very high computational
complexity and leading to unacceptable latency. Furthermore,
the envisioned sixth generation (6G) of wireless networks are
expected to connect trillion-level devices and require 10 to
1000 times higher rates [3]. In addition, it is thought that 6G
will support a wide range of services and applications [4], such
as ugmented reality, medical imaging and autonomous vehi-
cles [5], [6], which have strict latency requirement [7]–[10].
Therefore, SSCC may not be able to meet the requirements of
6G.

To address the above-mentioned challenges, joint source and
channel coding (JSCC) has attracted increasing attention as a
means to achieve reliable data transmission. Existing studies
of JSCC can be classified into two types: traditional research
based on mathematical models [11]–[14] and deep learning
(DL)-based research [15]–[19]. Traditional JSCC research
mainly relies on traditional source coding and channel coding
theory while focusing on performance analysis under ideal
channel or source assumptions [11], [12]. Coding schemes,
such as bit allocation algorithm [13], robust nonlinear block
coding [14] have also been studied. However, these hand-
crafted coding schemes may require additional tuning. Moti-
vated by the impressive performance of DL in many domains
such as computer vision [20], image compression [21], and
natural language processing [22], DL-based JSCC has been
extensively studied [15]–[19], which can potentially support
future semantic communications [23], [24]. Specifically, since
images have larger dimensions than speech and text data, there
is more information redundancy in images, and transmitting
image data requires higher rate than transmitting speech and
text data. Therefore, it is more challenging to design a DL-
based JSCC system for image transmission.

A. Related Works and Challenges

The existing works on DL-based JSCC for image trans-
mission model the communication system as a deep neural
network (DNN)-based autoencoder [15]–[19]. The main goal
is jointly training the encoder and decoder to preserve infor-
mation and improve the reconstruction quality. Minimizing
the mean-squared error (MSE) between the input images

ar
X

iv
:2

20
3.

06
49

2v
2 

 [
cs

.I
T

] 
 2

9 
M

ay
 2

02
3



2

and output reconstructions [15]–[17] is commonly used to
achieve this goal. In particular, the authors in [15] proposed
an autoencoder-based JSCC architecture called deep JSCC
that minimizes the MSE between the original images and
the recovered images. Deep JSCC outperforms SSCC that
combines JPEG or JPEG2000 with capacity-achieving channel
codes. In [16], the authors incorporated the channel output
feedback into the transmission system and further improved
the reconstruction quality of Deep JSCC. To address the vari-
ations of signal-to-noise ratios (SNRs) during transmission,
the work in [17] designed a novel JSCC scheme, which uses
a channel-wise soft attention network to adapt automatically
to various channel conditions. These existing works [15]–[17]
that use MSE as the distortion function to recover each pixel
equally in image transmission may lose the information of
important pixels thus reducing image reconstruction quality. In
contrast, mutual information measures the distortion in terms
of the distribution of images, which can emphasize key pixels
and has stronger generalization ability. In [18], a discrete
variational autoencoder model is designed to maximize the
mutual information between the source and noisy codewords.
The authors in [19] developed a JSCC model to maximize the
mutual information between the codewords and input image.
Overall, the existing works on DL-based JSCC for image
transmission aim at minimizing the distortion between the
transmitted and received images by utilizing various distortion
metrics such as MSE and mutual information as loss functions
under a fixed number of achievable channels. While the
works in [15]–[19] are interesting, the theoretical minimum
description length (or transmission rate) of the codewords to
express source is neglected in the loss function. Therefore,
the transmission rate may be much larger than the minimum
required rate. A new form of loss function for JSCC, that
simultaneously minimizes the transmission rate and the dis-
tortion deserves investigation.

Recently, the authors in [25] proposed an information-
theoretic principle, termed information bottleneck (IB) to
compress information and improve data fitting performance
simultaneously by using mutual information between the code-
words and the labels of the inputs as distortion. IB principle
has been extensively applied in many domains including im-
proving the performance of generalization and robustness [26],
suppressing irrelevant features [27], and dealing with domain
shift [28]. Since IB inherits the properties of RD theory,
it can characterize the maximal compression ratio and the
optimal features in theory [29], [30]. Therefore, we propose
a novel IB-guided JSCC that can reduce the transmission rate
for a given reconstruction quality. Here, we need to note
that it is challenging to apply the IB principle in JSCC for
image transmission since standard IB is particularly designed
for supervised tasks, while a JSCC-based image transmission
system can be viewed as an unsupervised data reconstruction
task. Meanwhile, in an image transmission JSCC system, the
distribution of the input images is usually unknown, and the
dimension of the extracted codewords is large. Thus, the
mutual information used in IB is intractable. Therefore, to
apply the IB principle to JSCC for image transmission, two
main challenges must be addressed:

• How to design a proper form of IB for an image trans-
mission JSCC system, which is unsupervised.

• How to calculate the mutual information used in IB and
obtain a tractable and differentiable IB objective.

B. Contributions

The main contribution of this paper is an adaptive IB-guided
JSCC (AIB-JSCC) scheme for image transmission to address
the above issues. The major contributions of the paper can be
summarized as follows:

• We design a new form of IB objective that aims at
simultaneously maximizing the mutual information be-
tween the received noisy codewords and the input images,
and minimizing the mutual information between the
transmitted codewords and the input images. Thus, the
new IB objective enables the image transmission JSCC
system to reduce the transmission rate while guaranteeing
the reconstruction quality. To the best of the authors’
knowledge, this is the first work that applies the IB
principle to image transmission JSCC and provides a
theoretically maximal compression ratio guidance for
neural networks.

• As the mutual information in the proposed IB objective
is intractable for DNNs with high-dimensional features,
we develop a new mathematically tractable and differ-
entiable lower bound on the proposed IB objective via
a variational lower bound and contrastive log-ratio upper
bound (CLUB) on mutual information. The derived lower
bound is used as the loss function of AIB-JSCC.

• We propose an adaptive algorithm, which can adjust the
hyperparameter of the proposed IB objective to balance
the reconstruction distortion and the required transmis-
sion rate. In particular, we first develop an algorithm to
adjust the hyperparameter value dynamically by exploit-
ing reconstruction error. Then, we derive an upper bound
on the hyperparameter, which can prevent excessive in-
formation discarding in the transmitted codewords.

We compare AIB-JSCC with traditional SSCC and state-
of-the-art JSCC methods and quantify the performance gain
via extensive experiments. Simulation results show that AIB-
JSCC significantly reduces the required storage space and the
amount of transmitted image data.

The rest of this paper is organized as follows. In Section
II, the system model is described. The proposed IB objective
is presented in Section III. The adaptive IB algorithm is
introduced in Section IV. In Section V, we provide extensive
experimental results to verify the effectiveness of AIB-JSCC.
Finally, the conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we first describe the studied JSCC system
model for image transmission. Then, we discuss the motivation
for our work as well as the IB principle.

A. System Model

As shown in Fig. 1, we consider a point-to-point image
transmission system [15]–[19]. An input image with size H
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TABLE I
LIST OF NOTATION.

Notation Definition Notation Definition

N The size of the images M The length of codewords

B The sample number in a batch P The number of parallel channels

MSE [w] The MSE between the inputs and the reconstruc-
tions at the w-th epoch

ηε (·) Th transition function of BSC with error proba-
bility ε

φ The parameters of the encoder neural network θ The parameters of the decoder neural network

ε The error probability of the channel εk The error probability of the k-th subchannel

x The input images x(i) The i-th input image

x̂ The recovered images x̂(i) The i-th recovered image

x
(i)
j The j-th pixel in the i-th input image x̂

(i)
j The j-th pixel in the i-th recovered image

y The codewords to be transmitted y(i) The codewords extracted from x(i)

ym The m-th element in y y
(i)
m The m-th element in y(i)

ŷ The noisy codewords received by decoder ŷ(i) The noisy codewords extracted from x(i)

ŷm The m-th element in ŷ ŷ
(i)
m The m-th element in ŷ(i)

ychk The subcodewords to be transmitted across the
k-th subchannel

ŷchk The noisy subcodewords received across the k-
th subchannel

fφ (·) The output of the encoder neural network Eφ (·) The encoding process from x to y

gθ (·) The output of the decoder neural network Dθ (·) The decoding process from ŷ to x̂

β The hyperparameter of the proposed IB objective βadp The value of β calculated by the adaptive IB
algorithm

βmax The upper bound on β βmin The minimum value of β

(Height) × W (Width) × C (Channel) is represented as a
vector x ∈ RN , where R represents the set of real numbers
and N = H×W×C. The encoder encodes the image x into a
binary codeword y ∈ {0, 1}M , where M represents the length
of the codeword y to be transmitted. The encoding function
Eφ : RN → {0, 1}M is parameterized by an encoder neural
network with parameters φ, and the encoding process can be
expressed as

y = Eφ (x) , (1)

where y is the JSCC codeword generated by encoding the
source information and adding redundancy for error protection
jointly. y is then transmitted across a noisy channel. To
simplify the analysis, we do not consider concrete modula-
tion, detection and decision schemes, and only consider the
transmission of the codeword through a channel with a certain
error probability, i.e., memoryless binary symmetric channel
(BSC)1. Here, we consider a BSC with error probability
0 ≤ ε ≤ 0.5, denoted by ηε : {0, 1}M → {0, 1}M . The
channel output noisy codeword ŷ ∈ {0, 1}M received by the
decoder is expressed as

ŷ = ηε (y) = y ⊕ z, (2)

where z ∼ Bern (ε) represents the Bernoulli distributed
noise of the considered channel, and ⊕ represents modulo-

1The BSC is a well-established and widely-used model in communication
theory and information theory [1], [31], [32] since it is a simple and tractable
model for theoretical analysis.

Fig. 1. An illustration of the JSCC system.

2 addition [33]–[35]. The channel capacity of the BSC with
error probability ε is

CBSC (ε) = 1− h (ε) , (3)

where h (ε) = −ε log ε − (1− ε) log (1− ε) is the binary
entropy function, and log (x)

∆
= log2 (x).

The decoder decodes the noisy codeword ŷ into recon-
structed image x̂ ∈ RN . The decoding function is parame-
terized by the decoder neural network parameters θ, and the
decoding process is expressed as Dθ : {0, 1}M → RN . The
reconstructed image x̂ is

x̂ = Dθ (ŷ) = Dθ (ηε (Eφ (x))) . (4)

The goal of the considered system is to determine the
encoder and decoder parameters that minimize the average
reconstruction error between x and x̂ while keeping the
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Fig. 2. An illustration of our proposed AIB-JSCC. Top: JSCC system with the proposed IB objective. Bottom: adaptive IB algorithm. First, we train the
JSCC system which consists of an autoencoder, by optimizing the proposed IB objective. Then, we adjust β according to the proposed algorithm. Finally, we
alternately change β and train the network.

minimum description length (or transmission rate) of y to
express x short.

B. Motivation

Existing deep JSCC solutions for image transmission [15]–
[19] aim to minimize the distortion given a fixed number
of available channels. However, they ignore the minimum
description length (or transmission rate) of y to express x,
i.e., I (x;y) in the loss function. This motivates us to design a
new loss function that can optimize both the distortion d (x, x̂)
and the transmission rate I (x;y) simultaneously. We resort
to the IB principle. To extract the contained information of a
target random variable t (e.g. label) in input x, the authors in
[25] used the mutual information between y and t, I (y; t)
as distortion measurement and proposed IB principle. The
objective of IB is

max
p(y|x)

[I (y; t)− βI (x;y)] . (5)

The first term I (y; t) in (5) encourages y to predict t, and
the second term I (x;y) in (5) encourages y to compress the
information related to x. According to (5), the system can
obtain the optimal y that is maximally compressed with a
certain distortion [30]. (5) is typically used as the loss function
of supervised artificial intelligence tasks [26], [27], where x
is the input image, y is the codeword, and t is the label of x.

Even though the IB principle provides a new form of
mutual information distortion, and can be used to guide
the generation of the optimal features, the IB form in (5)
is designed for supervised learning, and a label variable t
is needed. Therefore, (5) cannot be applied to JSCC for
image transmission directly, since image transmission is an

unsupervised task. Moreover, the value of hyperparameter β
in (5) needs to be carefully designed to balance prediction
and compression. To solve these problems, we propose a new
form of the IB objective that can minimize both the distortion
and transmission rate for image transmission JSCC. We derive
a tractable and differentiable lower bound on the proposed
objective and use the bound as the loss function of AIB-JSCC
for image transmission. An adaptive algorithm is also designed
to dynamically adjust the hyperparameter β, so as to balance
the compression and reconstruction quality.

III. PROPOSED IB OBJECTIVE FOR JSCC SYSTEM

This section first introduces the proposed IB objective for
image transmission JSCC system. To obtain a tractable and
differentiable form of the proposed IB objective, we then
derive the lower bound of the proposed IB objective according
to the variational lower bound and the upper bound of the
mutual information.

A. Proposed IB Objective

The considered JSCC system is shown in Fig. 2, and it
mainly consists of an encoder Eφ (·) block, a decoder block
Dθ (·), a channel block, and an adaptive IB algorithm block.
In the considered system, IB principle is adopted to guide
JSCC to achieve theoretically minimal transmission rate with
a certain tasks distortion. However, the standard form of the
IB principle shown as (5) is not applicable to the considered
system, since image transmission is an unsupervised task
without label. To overcome this problem, we propose a new
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Fig. 3. An illustration of the parallel-channel case with 4 subchannels. The
codeword y is first equally divided into 4 subcodewords, ych1, ych2, ych3
and ych4. These subcodewords are transmitted through their corresponding
subchannel. At the receiver, the noisy subcodewords ŷch1, ŷch2, ŷch3 and
ŷch4 are concatenated in order to obtain the noisy codeword ŷ.

form of the IB objective for image transmission JSCC as
follows:

max
φ,θ

[I (x; ŷ)− βI (x;y)] . (6)

In the proposed IB objective, we use I (x; ŷ) to capture the
reconstruction distortion between x and x̂. By maximizing
I (x; ŷ), we can ensure that ŷ can capture the most useful
information from x. Hence, we can maximize I (x; x̂), which
is intractable due to unknown conditional probability p (x|x̂),
via maximizing I (x; ŷ) since x̂ is reconstructed from ŷ. How-
ever, since I (x; ŷ) ≤ I (x;y), solely maximizing I (x; ŷ)
may result in severe information redundancy in y, which
implies that the system requires much higher transmission
rate to transmit y. Thus, we use the second term, which
is the transmission rate over the channel, to compress the
information in y. We minimize I (x;y) so that the minimum
description length (or transmission rate) of y to express x
can be reduced. Although the sizes of x and y are fixed, the
probability distribution of y can be optimized to minimize
the minimum description length (or transmission rate) of
y that is used to represent x. We treat the proposed loss
function as a joint optimization problem that integrates both
reconstruction distortion minimization and transmission rate
minimization. Utilizing (6) as the loss function, the JSCC
system can accurately transmit images while minimizing the
required transmission rate.

However, (6) still cannot be applied to the JSCC systems,
since the mutual information terms I (x; ŷ) and I (x;y) in (6)
are mathematically intractable due to the unknown p (x,y),
p (x, ŷ), p (x), p (y) and p (ŷ). To circumvent this challenge,
we next derive the variational lower bound on I (x; ŷ) and
estimate the upper bound on I (x;y).

B. Variational Lower Bound on I (x; ŷ)

Instead of maximizing the true value of I (x; ŷ), we maxi-
mize its lower bound. We utilize the variational lower bound

on I (x; ŷ), which is obtained by [36]

I (x; ŷ) = H (x)︸ ︷︷ ︸
constant

+Ep(x,ŷ) log

[
p (x|ŷ)
q (x|ŷ)

]
︸ ︷︷ ︸
DKL(p(x|ŷ)||q(x|ŷ))≥0

+ Ex∼p(x)Eŷ∼p(ŷ|x) log [q (x|ŷ)]︸ ︷︷ ︸
IVL(x;ŷ)

.

(7)

In (7), q (x|ŷ) is the variational approximation of the true
posterior p (x|ŷ). The first term, H (x) is the entropy of the
input images, which is a constant and cannot be optimized by
neural networks. The second term is the Kullback-Leibler (KL)
divergence between p (x|ŷ) and q (x|ŷ), which is positive.
Since H (x) ≥ 0 and DKL (p (x|ŷ)||q (x|ŷ)) ≥ 0, the
variational lower bound on I (x; ŷ) is IVL (x; ŷ), as defined
in (7). The approximation error will be smaller if q (x|ŷ) is
closer to p (x|ŷ),

Since the conditional probability of ŷ given x depends
on φ and ε, we represent it as p (ŷ|x;φ, ε). Denote the
conditional probability of x̂ given ŷ as pθ (x̂|ŷ), which is
parameterized by the decoder neural network. We use pθ (x̂|ŷ)
as the variational approximation of the true posterior p (x|ŷ).
Since the BSC is discrete, p (ŷ|x;φ, ε) is non-differentiable
for φ. Therefore, we sample K noisy codewords ŷ for each
input image x and use variational inference for Monte Carlo
objectives (VIMCO) [37] to estimate IVL (x; ŷ) with low-
variance gradients. The estimation ÎVL (x, ŷ;φ,θ, ε) can be
expressed as [18], [19]

ÎVL (x, ŷ;φ,θ, ε) =

Ep(x)Ep(ŷ(1):(K)|x;φ,ε)

[
log

1

K

K∑
i=1

pθ

(
x̂|ŷ(i)

)]
,

(8)

where ŷ(i) represents the i-th sample among K samples.
To calculate (8), we need to know p (ŷ|x;φ, ε) and

pθ (x̂|ŷ) first. According to (1), (2), and (4), a Markov chain,
x → y → ŷ → x̂ exists in the JSCC system. Thus, the joint
probability p (x, x̂,y, ŷ) can be modelled as

p (x, x̂,y, ŷ) = p (x) pφ (y|x) pε (ŷ|y) pθ (x̂|ŷ) , (9)

where pφ (y|x) is the conditional probability of y given x,
which is parameterized by the encoder neural network, and
pε (ŷ|y) is the channel transition probability for BSC. Here,
we consider the following two types of BSC:

• Single-channel: When the system utilizes single-carrier
modulation such as binary phase shift keying (BPSK),
the error probability of different bands is the same. This
scenario is referred to as a single-channel scenario.

• Parallel-channel: When the system utilizes multicarrier
modulation, e.g., orthogonal frequency division multi-
plexing (OFDM) to resist channel fading, the total avail-
able bandwidth is divided into non-overlapping bands,
and the transmitted data stream will be divided into
substreams and sent via parallel bands. In this case, each
of the parallel bands has a different error probability. This
scenario is referred to as a parallel-channel scenario. For
instance, a parallel-channel scenario with 4 subchannels
is shown in Fig. 3.
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We assume that the system has P parallel subchannels with
equal bandwidth M

P , where P ∈ N+ and M is the length of y.
Note that P = 1 represents the single-channel case. Denote the
error probabilities of different bands as ε = {ε1, ε2, . . . , εP },
the channel transition probability is

pε (ŷ|y) =
P∏

k=1

M
P k∏

m=M
P (k−1)+1

εk
ym⊕ŷm(1− εk)

ym⊕ŷm⊕1
,

(10)
where ŷm represents the m-th element of ŷ. Note that the
proposed AIB-JSCC is also applicable to JSCC systems with
arbitrary discrete memoryless channels (DMCs).

Let fφ (x) denote the output of the encoder neural network
when the input is x. Since y is a binary codeword, we use the
Bernoulli distribution to parameterize pφ(y|x). To reduce the
redundancy between any two elements of y, we assume that
the elements in y are independent of each other, and fφ (x)
is treated as the parameters of this Bernoulli distribution, i.e.,
y = Eφ (x) ∼ Bern (fφ (x)). Then, pφ (y|x) is

pφ (y|x) =
M∏

m=1

pφ (ym|x)

=

M∏
m=1

(fφ (x))
ym(1− fφ (x))

1−ym ,

(11)

where ym represents the m-th element of y. The channel state
information (CSI) is assumed to be perfectly estimated. Hence,
both the encoder and the decoder know the accurate ε. We can
compute p (ŷ|x;φ, ε) by marginalizing over y as

p (ŷ|x;φ, ε) =
∑

y∈{0,1}M

pφ (y|x) pε (ŷ|y). (12)

Then, p (ŷ|x;φ, ε) is formulated as:

p (ŷ|x;φ, ε) =
P∏

k=1

M
P k∏

m=M
P (k−1)+1

(ξk (x))
ŷm(1− ξk (x))

1−ŷm ,

(13)
where ξk (x) = fφ (x) − 2fφ (x) εk + εk. From (13), we
can observe that p (ŷ|x;φ, ε) follows multivariate independent
Bernoulli distribution with parameters ξk (x).

Since x can be normalized to a real-value vector where each
element value is within 0 and 1, we use a Gaussian distribution
to model pθ(x̂|ŷ) such that pθ(x̂|ŷ) is differential with respect
to θ. Let gθ (ŷ) represent the output of the decoder neural
network when the input of the decoder is ŷ. We assume that
the average of pθ(x̂|ŷ) is gθ (ŷ) [18], [19], i.e., x̂ = Dθ (ŷ) ∼
N (gθ (ŷ) , I), where N represents the Gaussian distribution.
Then, we have

pθ (x̂|ŷ) =
N∏
i=1

1√
2π

exp

(
x̂i − gθ(ŷ)i

2

)
, (14)

where x̂i is the i-th pixel of x̂, and gθ(ŷ)i is the corresponding
pixel in gθ (ŷ). Then ÎVL (x, ŷ;φ,θ, ε) can be calculated by
introducing (13) and (14) into (8).

C. Upper Bound on I (x;y)

Next, we derive the applicable form of I (x;y) in the con-
sidered system. Since I (x;y) is mathematically intractable,
we minimize its upper bound instead. However, since we do
not constrain the distribution of y, the popular variational
upper bound (VUB) [26], KL (p (y|x) |r (y)), cannot be used,
where r (y) is an approximation of p (y). Therefore, we
exploit another upper bound on mutual information called
CLUB as [38]

ICLUB (x,y;φ) = Ep(x,y) [log pφ (y|x)]
− Ep(x)Ep(y) [log pφ (y|x)] .

(15)

Let B denote the number of independent sample pairs{(
x(i),y(i)

)}B
i=1

, where x(i) represents the i-th image,
and y(i) represents the corresponding i-th codeword. Then
ICLUB (x,y;φ) can be estimated by the Monte Carlo method
as:

ÎCLUB (x,y;φ) =
1

B

B∑
i=1

log pφ

(
y(j)|x(i)

)
− 1

B2

B∑
i=1

B∑
j=1

log pφ

(
y(j)|x(i)

)
.

(16)

Since pφ (y|x) is the probability of a Bernoulli distribu-
tion, ÎCLUB (x,y;φ) is tractable and differentiable. Thus,
instead of minimizing the true value of I (x; ŷ), we minimize
ÎCLUB (x,y;φ).

Overall, by replacing I (x; ŷ) and I (x;y) in (6) with
ÎVL (x, ŷ;φ,θ, ε) in (8) and ÎCLUB (x,y;φ) in (16), respec-
tively, we can obtain a tractable and differential form of IB
objective for the JSCC system as:

max
φ,θ

[
ÎVL (x, ŷ;φ,θ, ε)− βÎCLUB (x,y;φ)

]
. (17)

Even though (17) can be used for training, the value of β
needs to be carefully optimized, which controls the trade-off
between the compression level and the reconstruction quality.
Therefore, in Section IV, we further propose an adaptive IB
algorithm to determine the appropriate value of β.

IV. ADAPTIVE IB ALGORITHM

This section first proposes an adaptive IB algorithm to
select appropriate value of β according to the distortion of
reconstruction during the training process. We then describe
the whole training process of AIB-JSCC which combines the
proposed IB objective and the adaptive IB algorithm.

A. Adaptive IB Algorithm

Since the values of I (x; ŷ) and I (x;y) change during the
training process, it is necessary to alter β accordingly so as
to balance I (x; ŷ) and I (x;y). To adaptively determine the
value of β in each epoch, we propose a proportional-integral-
differential (PID) control based algorithm, which determines
the current value of β by analyzing the past errors and
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predicting future errors. The discrete form of PID controller
can be expressed as [39]

β [w] = Kpe [w]−Ki

w−1∑
k=0

e [k]−Kd (e [w]− e [w − 1]) ,

(18)
where β [w] is the output of the controller at time w. Kp,
Ki, Kd and error e [w] are the proportional gain, the integral
gain, the differential gain and the difference between the
actual value and the desired value at time w, respectively. In
addition, Kpe [w] is the proportional (P) term, which responds
to the change of error quickly and provides a global control

proportional to the error; Ki

w−1∑
k=0

is the integral (I) term, which

continues to increase as long as the error is greater than 0 and
is used to eliminate steady-state errors; Kd (e [w]− e [w − 1])
is the differential (D) term, which can reduce the overshoot
and improve the system’s stability and transient response [39].
The PID controller continuously calculates error e [w] and
the weighted sum of these three terms, and then applies a
correction on the system to reduce the error e [w]. We employ
(18) to adjust β at the end of each epoch.

However, before applying (18) to the AIB-JSCC system,
an upper bound of β must to derived. This is because if β
is excessively large, I (x;y) will dominate the loss function,
and y will aggressively discard information of x, leading to
the loss of useful information. Considering an extreme case
when β approaches positive infinity, I (x;y) will approach 0,
and in this case, the global optimal encoder distribution may
be pφ (y|x) = p (y). That means y becomes independent
of x. In this case, y and ŷ contain no information about x,
i.e. I (x; ŷ) = I (x;y) = 0, and reconstructing x from ŷ
becomes infeasible. Therefore, it is necessary to limit β below
an upper bound before applying PID controller, as shown in
the following lemma.

Lemma 1. The condition that pφ (y|x) = p (y) is not a local
optimum for the IB objective is [40]

β < βmax = sup
x→y→ŷ

I (x; ŷ)

I (x;y)
. (19)

Proof. See Appendix.

According to Lemma 1, we derive the estimated upper
bound on β of the proposed AIB-JSCC in the following
theorem.

Theorem 1. For B pairs
{(

x(i),y(i), ŷ(i), x̂(i)
)}B

i=1
, the

estimated upper bound on β is

βmax =
Îx,ŷ

Îx,y
, (20)

where

Îx,y =

M∑
m=1

H

(
1

B

B∑
i=1

p
(
y(i)m |x(i)

))

− 1

B

M∑
m=1

B∑
i=1

H
(
p
(
y(i)m |x(i)

))
,

(21)

and

Îx,ŷ =

M∑
m=1

H

(
1

B

B∑
i=1

p
(
ŷ(i)m |x(i)

))

− 1

B

M∑
m=1

B∑
i=1

H
(
p
(
ŷ(i)m |x(i)

))
.

(22)

Proof. At the end of each epoch, I (x; ŷ) and I (x;y) are
fixed since neural networks of the encoder and decoder are
fixed. Therefore, according to Lemma 1, βmax = I(x;ŷ)

I(x;y) . We
then estimate I (x; ŷ) and I (x;y) according to the definition
of the mutual information, i.e., I (x; ŷ) = H (ŷ) −H (ŷ|x),
and I (x;y) = H (y) − H (y|x). We estimate H (y) and
H (y|x) separately. To obtain H (y), we calculate the proba-
bility of the m-th element of y, p (ym), by,

p (ym) =
1

B

B∑
i=1

p
(
y(i)m |x(i)

)
, (23)

where y
(i)
m represents the m-th element of the codeword of the

i-th input image x(i). Since the elements in y are assumed to
be independent, the entropy of y is equal to the sum of the
entropies of all elements. Besides, we assume p (x) = 1

B , and
we have

H (y) =

M∑
m=1

H (ym) ≈ Ĥ (y)

=

M∑
m=1

H

(
1

B

B∑
i=1

p
(
y(i)m |x(i)

))
.

(24)

Substituting (11) into (24), H (y) can be calculated. To
calculate H (y|x), we use the assumption p (x) = 1

B again,
and we have

H (y|x) ≈ Ĥ (y|x)

=
1

B

M∑
m=1

B∑
i=1

H
(
p
(
y(i)m |x(i)

))
.

(25)

Therefore, by exploiting I (x;y) = H (y)−H (y|x), we have

I (x;y) ≈ Îx,y = Ĥ (y)− Ĥ (y|x) . (26)

Similar to (24), (25). and (26), we can estimate I (x; ŷ) as

I (x; ŷ) ≈ Îx,ŷ = Ĥ (ŷ)− Ĥ (ŷ|x) . (27)

Given (26) and (27) we can obtain the upper bound as (20).
This completes the proof.

From Theorem 1, we can observe that both p (y|x) and
p (ŷ|x) affect βmax, which can be calculated via (11) and
(13) in our designed system.

To ensure the relevance between the source x and the
codeword y, we further add the approximated upper bound
on β, βmax [w] on the basis of PID algorithm to constrain the
range of β. Note that the optimal value of β to minimize MSE
may not be 0 since we jointly optimize the transmission rate
and the distortion of JSCC. In the ideal case, the transmission
distortion can be reduced close to 0 under a certain compres-
sion ratio. Therefore, we treat the MSE between the original
image in the validation set and the corresponding reconstructed
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Algorithm 1 Adaptive IB Algorithm
Input: Encoder pφ (y|x); Decoder pθ (x̂|ŷ); MSE at (w−1)-

th epoch and w-th epoch: MSE[w] and MSE[w−1], Coef-
ficients Kp, Ki and Kd; Minimal value of hyperparameter
β : βmin.

Output: The hyperparameter used in w-th epoch: β [w].
Initialization: I [0] = 0; MSE [0] = 0.

1: P [w]← KpMSE [w];
2: I [w]← I [w − 1] +KiMSE [w];
3: D [w]← Kd (MSE [w]−MSE [w − 1]);
4: Calculate βmax [w] according to (20);
5: βadp [w]← βmax[w] + P [w]− I [w]−D [w];
6: β [w]← clamp (βadp [w] , βmin, βmax [w]);

image at the w-th epoch as e [w]. Then, by applying the PID
algorithm, β will change in the direction of reducing MSE.
The proposed formula of adaptive β at the w-th epoch is

βadp [w] =βmax [w] +KpMSE [w]−Ki

w−1∑
k=0

MSE [k]

−Kd (MSE [w]−MSE [w − 1]) ,

(28)

where βmax [w] =
Îx,ŷ [w]

Îx,y [w]
, Îx,y [w] and Îx,ŷ [w] are Îx,y and

Îx,ŷ at the w-th epoch, respectively, MSE [w] is the average
MSE at the w-th epoch and it is expressed as

MSE [w] =
1

V

1

N

V∑
i=1

N∑
j=1

(
x
(i)
j [w]− x̂

(i)
j [w]

)2
, (29)

with V being the number of the images in the validation set,
x
(i)
j [k] being the j-th pixel in the i-th transmitted image x(i)

recovered at the k-th epoch, and x̂
(i)
j [k] being the correspond-

ing pixel in the corresponding reconstructed image x̂(i) at the
w-th epoch.

After training, I (x; ŷ) and I (x;y) slightly fluctuates in a
small range, and the balance between them is nearly fixed.
β should converge to a certain minimal value. In general, the
minimal value of β is larger than 0 since β = 0 means ignoring
the compression term I (x;y). Therefore, we constrain β
larger than a minimum value, βmin (> 0). Then, β at w-th
epoch can be expressed as:

β [w] = clamp (βadp [w] , βmin, βmax [w]) , (30)

where clamp (x,min,max) represents clamping x between
min and max (min ≤ max).

From (6), the importance of I (x;y) in the loss function de-
creases as β increases. At the beginning, y contains abundant
redundancy due to imperfect map from the source information
to the transmitted codewords. Therefore, in the initial stages,
we must set a relatively large β to squeeze more redundant
information in y. As the training processes, the value of β
should decrease since the corresponding redundancy informa-
tion in y gradually decreases. The value of β will finally
converge to a constant when the proposed AIB-JSCC achieves
the optimal trade-off between the reconstruction quality and
the compression ratio. Therefore, we adjust the coefficients

Algorithm 2 AIB-JSCC
Input: Dataset(X ) to be compressed; Channel error probabil-

ity ε; Hyperparameter β.
Output: Learned encoder pφ (y|x) and decoder pθ (x̂|ŷ).

1: Initialize the parameters of encoder pφ (y|x), the param-
eters of decoder pθ (x̂|ŷ); i = 1.

2: while not converge do
3: Sample B samples from Dataset: x ∼ p (x);
4: Sample a codeword y ∼ pφ (y|x) for each x;
5: Sample K noisy codewords ŷ ∼ p (ŷ|x;φ, ε) for each

x;
6: Calculate ÎVL (x, ŷ;φ,θ, ε) according to (8);
7: Calculate ÎCLUB (x,y;φ) according to (16);
8: Update φ and θ according to (17);
9: if an epoch of training finishes then

10: Calculate MSE [i] according to (29);
11: Update β [i] according to Algorithm 1;
12: end if
13: i← i+ 1;
14: end while

Kp, Ki and Kd to let β gradually decrease from its upper
bound as the training processes. The adaptive IB algorithm is
summarized in Algorithm 1.

B. Training Process of AIB-JSCC

The architecture of the AIB-JSCC system is shown in Fig. 2.
The encoder first extracts the information of the input image as
a feature map according to a feature extractor which consists of
convolutional neural networks (CNN) or fully connected (FC)
layer. Then, to control the length of y, an FC layer is used
to turn the feature map into a M -dimensional vector fφ (x).
The codeword y is sampled according to y ∼ Bern (fφ (x)).
At the receiver, the noisy codeword ŷ is first passed into an
FC layer and then reshaped into a feature map. The feature
map is upsampled to the same dimension as x to obtain
gθ (ŷ). The recovered image x̂ is generated according to
x̂ ∼ N (gθ (ŷ) , I). At the output layer of the decoder, an
activation function is used to transform the pixel values in x̂
to [0, 1]. We then multiply x̂ by 255 and round the resulting
values to ensure that the pixel values are discrete and fall
between [0, 255]. (17) is used as the loss function to train the
encoder and the decoder for image transmission jointly. We
use the mini-batch gradient descent method [41] to optimize
the parameters. To guarantee that each image in the batch
has an equal probability of being selected for updating the
parameters, we have p (x) = 1

B . Then, the distribution of
y can be obtained shown in (11), and the distribution of ŷ
can be obtained shown in (13). We sample one codeword y

for each x, and have B pairs
{(

x(i),y(i)
)}B

i=1
. Then, the

transmission rate, ÎCLUB (x,y;φ) is calculated based on (16).
To calculate ÎVL (x, ŷ;φ,θ, ε), we further sample K noisy
codewords ŷ for each x, and the total number of ŷ is B×K.
According to (8), the distortion term ÎVL (x, ŷ;φ,θ, ε) can
be calculated. Finally, φ and θ are updated according to (17).
At the end of each epoch, Algorithm 1 is applied to update
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TABLE II
SYSTEM PARAMETERS.

Parameters Value
Datasets MNIST CIFAR10 SVHN Omniglot

Codewords

length M
100

400,450,

500,550,600
500 200

Channel error

probability ε

Single-channel: 0.1, 0.2, 0.3, 0.4

Parallel-channel: shown as (32)

Subchannel

number P
2, 4, 5

β ( βmin ) 0.01 0.001

Kp 0.001

Ki −0.001 −0.0001

Kd −0.001

Batchisize B 300

Training Epoch 500

Learning Rate 0.001

Regularization
coefficient

0.0001

TABLE III
PSNR OF NECST VS. IABF VS. IB-JSCC VS. AIB-JSCC.

Datasets Methods
PSNR under different

error probabilities
0.1 0.2 0.3 0.4

MNIST

NECST 17.348 15.411 13.581 12.104

IABF 17.721 15.513 13.735 12.264

IB-JSCC 17.801 15.724 13.741 12.408

AIB-JSCC 17.837 15.725 13.751 12.411

Omniglot

NECST 15.017 13.955 12.959 12.1409

IABF 15.117 13.928 13.039 12.166

IB-JSCC 15.158 14.015 13.04 12.203

AIB-JSCC 15.161 14.03 13.052 12.213

CIFAR10

NECST 16.864 16.158 15.35 14.163

IABF 17.442 16.391 15.673 14.219

IB-JSCC 17.455 16.68 15.792 14.247

AIB-JSCC 17.513 16.748 15.809 14.282

β. The coefficients Kp, Ki, and Kd are adjusted to obtain
proper β. The updated β is then used in the loss function of
the next epoch. The model with the lowest average MSE on
valid dataset during training is stored. After training, the AIB-
JSCC system can reduce the transmitted data by minimizing
ÎCLUB (x,y;φ) while improving the reconstruction quality by
maximizing ÎVL (x, ŷ;φ,θ, ε). The whole training procedure
of the proposed AIB-JSCC is summarized in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we provide extensive experiments to validate
our designed system. The experiments are carried on the
following datasets: MNIST [42], Omniglot [43], CIFAR10
[44] and street view housing numbers tsiscon (SVHN) [45] to
account for different image sizes and colors. For comparison
purposes, we choose IABF and NECST in [19] and [18]

Fig. 4. Visual comparison between IABF and IB-JSCC.

and classical SSCC schemes as baselines. Specifically, for
SSCC schemes, we employ three industry-standard source
encoders: JPEG [46], JPEG2000 [47] and WebP [48], and BPG
[49], combined with an ideal capacity-achieving channel code
(marked as “JPEG + Capacity”, “JPEG2000 + Capacity” and
“WebP + Capacity”, and “BPG + Capacity”, respectively). We
do not compare with LDPC coding as we are often unable
to obtain valid image files after LDPC decoding. To make
a fair comparison, the settings and structure of the encoder
and decoder neural networks used in AIB-JSCC are the same
as those used in IABF. The system parameters are shown
in Table II. In line with the baseline and references [18],
[19], we choose similar parameters of the neural network and
the optimizer. For Monte Carlo estimation of IVL (x; ŷ), we
utilize 5 samples [18] [19]. The Monte Carlo estimates of
ÎCLUB (x,y;φ), H(y), H(y|x) and H(ŷ) use 300 samples
per batch. We choose the best Kp and Kd from the set{
10−2, 10−3, 10−4, 10−5

}
that provide the best performance.

We use widely-used image quality metrics, MSE and peak
signal-to-noise ratio (PSNR), to measure the performance of
AIB-JSCC and IABF [19]. In the single-channel scenario, we
compare the reconstruction and compression ability of AIB-
JSCC with baselines, and the robustness and complexity of
AIB-JSCC are also discussed. In the parallel-channel scenario,
we present the results of the reconstruction error, the distri-
bution of neuron weights and the visual reconstructions to
illustrate that AIB-JSCC can adaptively allocate elements to
parallel channels according to their channel state information.
The above experiments are implemented for the BSC. We
also compare the reconstruction error of AIB-JSCC and IABF
when the channel is the high-order DMC to demonstrate the
effectiveness of AIB-JSCC.

A. Single-channel Scenario

1) Reconstruction capabilitiy: Table III shows the PSNR
of different schemes on various datasets under different error
probabilities, where IB-JSCC stands for the degenerate AIB-
JSCC with fixed β. The definition of PSNR is

PSNR = 10log10

(
(2n − 1)

2

mse (x, x̂)

)
, (31)

where n is the number of bits that each image pixel uses,
mse (x, x̂) is MSE between x and x̂. In particular, we fix the
length of y and calculate the average MSE and PSNR over
the test sets. From Table III, we can observe that AIB-JSCC
is always superior to IB-JSCC and IABF in terms of MSE
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TABLE IV
CLASSIFICATION ACCURACY OF IMAGES RECOVERED BY IABF AND

AIB-JSCC

Classifiers Methods
Acc under different
error probabilities

0.1 0.2 0.3 0.4

MLP
IABF 0.932 0.817 0.637 0.331

AIB-JSCC 0.937 0.881 0.692 0.386

SVM
IABF 0.932 0.821 0.619 0.312

AIB-JSCC 0.942 0.884 0.694 0.358

DT
IABF 0.51 0.391 0.297 0.177

AIB-JSCC 0.564 0.469 0.347 0.2

RF
IABF 0.673 0.522 0.288 0.176

AIB-JSCC 0.708 0.549 0.308 0.181

Fig. 5. The value of hyperparameter β [w] with respect to training epoch.

and PSNR, which validates the effectiveness of the proposed
IB objective and the adaptive IB algorithm. From Table III,
we can also observe that AIB-JSCC and IB-JSCC can reduce
MSE and increase PSNR more on the RGB dataset CIFAR10
than on the greyscale datasets MNIST and Omniglot. This
is because AIB-JSCC can extract information more precisely
with the guidance of the proposed IB objective, thus recovering
complex images better.

Figure 4 shows the visual reconstructions of AIB-JSCC and
IABF on the SVHN dataset where ε= 0.1 and M = 500.
From Fig. 4, we can observe that images recovered by AIB-
JSCC are closer to original ones than those recovered by
IABF, and the numbers in images recovered by AIB-JSCC
can be distinguished more easily than IABF. For example, the
first image recovered by AIB-JSCC can be clearly recognized
as 5 while the one recovered by IABF may be incorrectly
recognized as 9 or 4. This implies that AIB-JSCC can preserve
more semantic information than IABF. This is due to the
fact that compared with IABF, AIB-JSCC can preserve useful
information as well as discard useless information which may
lead to semantic mistakes. In consequence, AIB-JSCC has
better visual reconstruction quality.

Fig. 6. MSE of IABF and AIB-JSCC with different M .

Fig. 7. The additional number of bits need by SSCC.

Table IV shows the classification accuracy (Acc) of the
images reconstructed by IABF and AIB-JSCC with respect
to different error probabilities. In particular, 4 different classi-
fiers, multilayer perceptron (MLP), support vector machines
(SVM), decision trees (DT) and random forests (RF) are
trained with the raw MNIST train set, and tested with
the images reconstructed by IABF and AIB-JSCC from the
MNIST test set where ε= 0.1. From Table IV, we can observe
that the classification accuracy of the images recovered by
AIB-JSCC is always higher than IABF over different error
probabilities. This implies that AIB-JSCC can preserve more
semantic information useful for downstream task. This is
because the proposed IB objective preserves information as
well as discards information. Hence, AIB-JSCC can extract
information more precisely.

Figure 5 shows the trend of AIB-JSCC’s hyperparameter
β [w] with respect to training epoch on CIFAR10 dataset under
different error probabilities. From Fig. 5, we can observe
that β [w] gradually decreases to a minimal value βmin when
training processes. This is due to the fact that when the training
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Fig. 8. The PSNR of AIB-JSCC with various train and test error probabilities.

TABLE V
THE NUMBER OF NETWORK PARAMETERS AND THE INFERENCE TIME OF

IABF AND AIB-JSCC.

Datasets Methods parameters
number (×105)

Inference
time (ms)

MNIST
IABF 11.86 0.4

AIB-JSCC 11.345 0.4

Omniglot
IABF 13.36 0.743

AIB-JSCC 12.345 0.372

CIFAR10
IABF 5.679 1

AIB-JSCC 3.164 0.8

processes, I (x; ŷ) increases and I (x;y) decreases, and to
keep balance between I (x; ŷ) and I (x;y), the proposed
adaptive IB algorithm decreases β [w] to reduce the proportion
of I (x; ŷ) in the loss function. From Fig. 5, we can also
observe that the value of β [w] reduces as the error probability
increases. This is because when the channel error probability
increases, we need to add more redundancy to the transmitted
codeword y. In AIB-JSCC, this is achieved by increasing
the distortion term I (x; ŷ). Since there is a Markov chain
relationship x → y → ŷ → x̂, I (x; ŷ) ≤ I (x;y) ≤ H (y),
and so maximizing I (x; ŷ) can essentially increase I (x;y)
and H (y), thus increasing the redundancy in y. This implies
that the proposed adaptive IB algorithm is able to adjust β [w]
according to I (x; ŷ), I (x;y) and the error probability.

2) Compression Capability: In this section, we denote
the length of y, M , used by AIB-JSCC as the number of
bits in order to compare the compression capability with
other baselines. Note that M bits is an upper bound on the
transmission rate I (x;y). Figure 6 shows the reconstruction
MSE of IABF and AIB-JSCC with different M on CIFAR10
under different error probabilities. In particular, to guarantee
fairness, we use the results of IABF present in [19] in order
to prevent the performance reduction caused by improper
hyperparameter selection. From Fig. 6, we can observe that
to obtain similar MSE, AIB-JSCC requires 15, 100, 70, 20
fewer bits than IABF when ε = 0.1, 0.2, 0.3, 0.4. This implies

TABLE VI
THE INFERENCE TIME OF AIB-JSCC AND SSCC.

Methods AIB-JSCC BPG WebP JPEG2000 JPEG
Inference
time (ms) 0.8 109 1.632 1.387 0.911

TABLE VII
MSE OF AIB-JSCC UNDER DIFFERENT PARALLEL-CHANNEL SCENARIOS

Scenario
Average of ε

Datasets
MNIST Omniglot CIFAR10

2− ch 0.051 9.616 23.538 45.069
4− ch 0.138 12.398 27.599 52.834

5− ch 0.213 14.075 28.927 54.021

single-channel
0.1 12.902 23.89 54.464

0.2 20.784 31.092 64.969

that AIB-JSCC can reduce more than 20% transmission rate
compared with IABF. The 20% gain stems from the fact that
AIB-JSCC simultaneously minimizes the distortion and the
transmission rate thus reducing the transmission rate to achieve
a similar reconstruction error.

Figure 7 shows the additional number of bits that SSCC
schemes need to achieve similar MSE on SVHN, compared
with AIB-JSCC. From Fig. 7, we can observe that SSCC
schemes need more bits than AIB-JSCC at all datasets and
error probabilities. We can also observe that although BPG +
Capacity needs fewer bits than the other three SSCC schemes,
BPG + Capacity still needs more bits than AIB-JSCC for all
datasets and error probabilities. When the error probability ε
increases, the additional required number of bits will increase.
When ε = 0.4, AIB-JSCC only needs around 4% JPEG
needs. The 4% gains stem from the fact that SSCC schemes
are designed to be optimized for squared error with hand-
selected constraints [21], [50], [51] while AIB-JSCC jointly
trains the encoder and decoder by maximizing I (x; ŷ) and
minimizing I (x,y) thus preserving information precisely with
lower transmission rate.

3) Complexity and robustness: The most computation-
ally costly operations in the network are the convolu-
tions/deconvolutions and the FC layers, as they involve mul-
tiplications and additions. The computational cost of a single
convolutional layer is H ×W × K × K × Ci × Co, where
K is the filter size, Co is the number of output channels,
Ci is the number of input channels and H ×W is the size
of the feature map. The computational cost of an FC layer
is (2I − 1)O, where I is the input vector dimension and O
is the output vector dimension. Only the width and height of
the feature map and the vector dimension depend on the image
dimensions, and all other factors are constant and independent
of the image size. Thus, the computational complexity of the
proposed scheme is O(IH × IW ), where IH and IW are the
width and height of the input image.

Table V shows the number of encoder and decoder network
parameters and the inference time of IABF and AIB-JSCC.
From Table V, we can observe that AIB-JSCC has fewer
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(a) ε = 0.1. (b) ε = 0.2.

(c) ε = 0.3. (d) ε = 0.4.

Fig. 9. MSE of IABF and AIB-JSCC on MNIST dataset. The error is calculated on validation set during training.

parameters and needs less inference time. Specifically, AIB-
JSCC can reduce 45% parameters on CIFAR10 and 50%
inference time on Omniglot. These gains stem from the simple
network structure of AIB-JSCC, which makes the computa-
tional complexity of AIB-JSCC lower than that of IABF.

Table VI shows the inference time of AIB-JSCC, JPEG,
JPEG2000, WebP and BPG on SVHN. From Table VI, we can
observe that AIB-JSCC achieves lower inference time com-
pared to all considered source coding schemes. Furthermore,
it is worth noting that SSCC necessitates iterative channel
decoding to attain optimal error correction capability [52]–
[54]. As a result, the time required by SSCC is significantly
higher than that of source coding. Consequently, in comparison
to practical SSCC, AIB-JSCC is expected to yield superior
time savings, which are not entirely reflected in Table VI.

Figure 8 shows the PSNR of AIB-JSCC on CIFAR10 when
there is an estimation error on the channel error probability.
From Fig. 8, we can observe that when εtest drops below
εtrain, the performance does not saturate immediately. When

εtest increases beyond εtrain, AIB-JSCC exhibits a graceful
degradation of the reconstruction quality. This is because AIB-
JSCC uses the channel conditions in the loss function and
enables the learned codewords to resist channel interference.
Hence, the codewords extracted by AIB-JSCC is robust to
different error probabilities.

Figure 9 shows the changes of validation reconstruction
MSE with respect to training time steps for IABF and AIB-
JSCC. From Fig. 9, we can observe that the trends of IABF
and AIB-JSCC are similar when error probability ε is 0.1 and
0.2. As the error probability gets larger, AIB-JSCC converges
more stably than IABF. For example, in Fig. 9(d), when ε
is 0.4, there is severe overfitting in IABF while AIB-JSCC
still converges stably. This is because AIB-JSCC avoids over-
fitting according to minimizing I (x;y) by neural network.
Therefore, AIB-JSCC is more robust than IABF.

Figure 10 shows the 2-dimensional projections of the noisy
codewords extracted from MNIST with different test error
probabilities, and each color represents a number, i.e. a type
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(a) εtest = 0.1. (b) εtest = 0.2.

(c) εtest = 0.3. (d) εtest = 0.4.

Fig. 10. t-SNE visualization of codewords extracted by AIB-JSCC for test set of MNIST dataset. The network is trained with error probability ε = 0.1 and
tested with different test error probabilities εtest. Each color represents a different class.

in MNIST dataset. In particular, we inject noise with differ-
ent error probabilities into the learned codewords extracted
from MNIST and utilize t-Distributed Stochastic Neighbor
Embedding (t-SNE) [55] to project the noisy codewords into
a 2-dimensional space. From Fig. 10, we can observe that
noisy codewords with the same color are close to each other
and well separated with other colors, and the distributions of
codewords are similar under different εtest. This is because
AIB-JSCC uses the channel conditions in the loss function
and enables the learned codewords to resist the channel
interference. Therefore, the codewords extracted by AIB-JSCC
can preserve semantic information and is robust to different
error probabilities.

B. Parallel-channel Scenario

This subsection evaluates the performance of AIB-JSCC in
the parallel-channel scenario. The following three cases with
different numbers of subchannels and error probabilities are

considered:

ε =

 {0.001, 0.1} 2− ch
{0.001, 0.1, 0.2, 0.25} 4− ch
{0.001, 0.1, 0.2, 0.25, 0.3} 5− ch

, (32)

where P − ch represents parallel-channel scenario with P
subchannels. Here, the total bandwidth is equally divided into
P subchannels.

Table. VII illustrates the reconstruction MSE over test sets.
From Table VII, we can observe that AIB-JSCC can achieve
better performance in parallel-channel scenarios than that in
single-channel scenarios even with smaller error probabil-
ity. For instance, in the 4 − ch scenario, the average error
probability of four subchannels is 0.138, and the reconstruc-
tion error on MNIST and CIFAR are 12.398 and 52.834.
In contrast, as shown in Table. VII, in the single-channel
with smaller error probability, e.g. ε= 0.1, the reconstruction
error on MNIST and CIFAR are 12.902 and 54.464. This is
because in the parallel-channel scenarios, AIB-JSCC utilizes
the channel state information in the loss function and is
able to transmit important elements over the subchannel with
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(a) 2− ch. (b) 4− ch. (c) 5− ch.

Fig. 11. Distributions of ai,m of different elements in ŷ at the decoder under different parallel-channel scenarios.

(a) 2− ch. (b) 4− ch. (c) 5− ch.

Fig. 12. ηm of different elements in ŷ at the decoder under different parallel-channel scenarios.

small error probability. Therefore, AIB-JSCC can dynamically
allocate elements according to the error probabilities of the
subchannels thus improving the reconstruction quality.

Figure 11 shows the distributions of |ai,m|, where ai,m
represents the weight of the i-th neuron of the first FC layer
of the decoder at the m-th element. From Fig. 11, we can
observe that in the subchannel with small error probability,
|ai,m| randomly appears in the range of 0 to 0.9. In contrast, in
the subchannel with large error probability, |ai,m| concentrates
around 0. For example, in Fig. 11(a), in the subchannels with
small error probability (m ≤ 50), |ai,m| mostly appears in
the range of 0 to 0.2, and occasionally appears in the range
of 0.2 to 0.5. In contrast, in the subchannels with large error
probability (m > 50), |ai,m| mostly appears in the range of 0
to 0.05 and occasionally appears in the range of 0.05 to 0.1.
This implies that the output of the decoder is mainly calculated
according to the elements transmitted through subchannel with
small error probability, and the elements transmitted through
subchannel with large error probability have little effect on the
output of the decoder. This is because AIB-JSCC utilizes the
channel condition in the loss function and learns to transmit
elements important for reconstruction through the subchannel
with small error probability to reduce the loss function.

Figure 12 shows the average of |ai,m|, ηm, which is
calculated by

ηm =
1

L

L∑
i=1

|ai,m|, (33)

where L represents the number of neurons in the first FC
layer of the decoder. From Fig. 12, we can observe that the

elements transmitted through the same subchannel have similar
ηm, and the elements transmitted through the subchannel
with small error probability have large ηm. For example, in
Fig. 12(a), in the subchannels with small error probability
(m ≤ 50), ηm is in the range of 0.1 to 0.2. In contrast, in
the subchannels with large error probability (m > 50), ηm
is in the range of 0 to 0.05, which is much smaller than
0.1. As analyzed before, this is because AIB-JSCC utilizes
the channel condition during training and is able to allocate
elements important for reconstruction to subchannel with small
error probability.

Figure 13 shows the visual reconstructions of AIB-JSCC
recovered from noise codewords received from different sub-
channels. In particular, when using the noisy codeword re-
ceived from the i-th subchannel, i.e., ŷchi, to reconstruct the
images, we fix the other elements in ŷ to 0 and feed the
new ŷ into the trained decoder to obtain the reconstructions.
From Fig. 13, we can observe that for both 2 − ch and
5− ch scenarios, the complete noisy codeword ŷ has the best
visual performance, and the images recovered from ŷchi that
is received from the subchannel with smaller error probability,
preserve more semantic information. For instance, the images
in the second row in Fig. 13(b) can be identified easily, while
the images in the third row are difficult to recognize. This is
because AIB-JSCC utilizes the channel condition in the loss
function, and transmitting the elements with more semantic
information through the subchannel with smaller error prob-
ability is helpful for semantic information preservation and
loss reduction. Therefore, AIB-JSCC is able to transmit the
elements with more semantic information for reconstruction
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(a) Original images.

(b) 2− ch scenario.

(c) 5− ch scenario.

Fig. 13. Original image and image recovered in 2−ch and 5−ch scenarios.
For the 2− ch and 5− ch scenarios, the first row is reconstructed from the
complete noisy codeword ŷ. The second and the third rows in 2−ch scenario
is reconstructed from ŷch1 and ŷch2. The second to the sixth rows in 5− ch
scenario is reconstructed from ŷch1 − ŷch5.

through the subchannel with small error probability.

C. High-order Scenario

Table VIII shows the MSE of AIB-JSCC and IABF under
DMCs with various orders and error probabilities. During
training, the orders of the codeword y and the noisy codeword
ŷ are set to be identical. The channel transition probability is

pjl =

{
1− ε j = l

ε
Q−1 j ̸= l

, (34)

where Q is the order of y. From Table VIII, we can observe
that for identical error probability, when the order of y
increases, the MSE of AIB-JSCC increases. For instance,
when the error probability is 0.1, the MSE of AIB-JSCC
is 57.378, 58.149 and 60.712 when the order of y is 3, 5,
7, respectively. This implies that even though using high-
order can improve transmission efficiency, it also diminishes
performance. Moreover, AIB-JSCC has a lower MSE than
IABF under all considered of DMCs and error probabilities.
This is because the proposed IB objective preserves semantic
information and discards redundant information.

VI. CONCLUSION

In this work, we have proposed an AIB-JSCC scheme for
image transmission, which can adaptively minimize the trans-
mission rate and distortion at the same time to achieve better
reconstruction quality, larger compression ratio, and lower

TABLE VIII
MSE OF RECOVERED IMAGES WHEN THE CHANNEL IS DMC

Order Methods
MSE under different

error probabilities
0.1 0.2 0.3 0.4

3
IABF 58.478 65.227 72.543 81.664

AIB-JSCC 57.378 65.054 72.231 79.797

5
IABF 59.028 66.815 74.381 81.92

AIB-JSCC 58.149 65.363 73.015 80.859

7
IABF 61.901 70.097 76.169 85.379

AIB-JSCC 60.712 68.463 75.777 85.175

computational complexity than the state-of-the-art approaches.
Specifically, we first derived a mathematically tractable form
of IB objective for the JSCC system. Then, to appropriately
balance the reconstruction distortion and the transmission
rate, we further proposed an algorithm that can adaptively
adjust hyperparameter β of the loss function according to
the reconstruction error. Experimental results have shown that
with fixed length of codewords, AIB-JSCC always achieved
smaller reconstruction error than IB-JSCC and IABF over
various error probabilities and datasets, which demonstrates
the effectiveness of the proposed IB objective and adaptive
IB algorithm. In addition, the images recovered by AIB-JSCC
had better visual performance and obtained higher accuracy
on downstream classification task than IABF. For a given
reconstruction error, AIB-JSCC always permitted larger com-
pression ratio than SSCC and IABF. In particular, AIB-JSCC
only needed around 4% and 80% as many elements compared
with SSCC and IABF. Moreover, AIB-JSCC also had lower
computational complexity and was more robust than IABF. In
the parallel-channel scenarios, AIB-JSCC was able to transmit
elements important for reconstruction in the subchannel with
small error probability. The overall results showed that the
proposed schemes can significantly reduce the transmission
rate, and improve the reconstruction quality and downstream
task accuracy with lower computational complexity.

APPENDIX
PROOF OF LEMMA 1

Let IBβ (x, y, ŷ) = I (x; ŷ) − βI (x;y). We need to
guarantee that IBβ (x,y, ŷ) is not maximal when x and y are
independent, i.e., p (y|x) = p (y) or p (x|y) = p (x) is not
optimal for maximizing IBβ (x,y, ŷ). Since there is a Markov
chain relationship x → y → ŷ, we have I (x;y) ≥ I (x; ŷ).
When x and y are independent, I (x;y) = I (x; ŷ) = 0
and IBβ (x,y, ŷ) |p(y|x)=p(y) = 0 for any β. Therefore, if
IBβ1 (x,y, ŷ) is not maximal when p (y|x) = p (y), there
must exist (x,y, ŷ) given by p1 (y|x) such that

IBβ1
(x,y, ŷ) |p(y|x)=p1(y|x) > IBβ (x,y, ŷ) |p(y|x)=p(y) = 0.

(35)
If IBβ1 (x,y, ŷ) is not optimal when p (y|x) = p (y), we can
rewrite (35) as

I (x; ŷ)− β1I (x;y) > 0,∃x,y, ŷ. (36)
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According to (36), we have

β1 < β0 = sup
x→y→ŷ

I (x; ŷ)

I (x;y)
. (37)

This completes the proof. □
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[21] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” in Neural Inform.
Process. Syst., vol. 31, Montreal, Canada, Dec. 2018.

[22] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” Available:
https://arxiv.org/abs/physics/1810.04805, 2018.

[23] P. Jiang, C. Wen, S. Jin, and G. Y. Li, “Deep source-channel coding for
sentence semantic transmission with HARQ,” IEEE Trans. Commun.,
vol. 70, no. 8, pp. 5225–5240, Aug. 2022.

[24] Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui,
“Performance optimization for semantic communications: An attention-
based reinforcement learning approach,” IEEE J. Sel. Areas Commun.,
vol. 40, no. 9, pp. 2598–2613, Jul. 2022.

[25] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” Available: https://arxiv.org/abs/physics/0004057, 2000.

[26] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep vari-
ational information bottleneck,” Available: https://arxiv.org/abs/1612.
00410, 2016.

[27] Y. B. Mahabadi, R. Karimi and J. Henderson, “Variational information
bottleneck for effective low-resource fine-tuning,” Available: https://
arxiv.org/abs/2106.05469, 2021.

[28] Y. Du, J. Xu, H. Xiong, Q. Qiu, X. Zhen, C. G. Snoek, and L. Shao,
“Learning to learn with variational information bottleneck for domain
generalization,” in Proc. Eur. Conf. Comput. Vis., Glasgow, UK, Aug.
2020, pp. 200–216.

[29] N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in Proc. IEEE Inf. Theory Worksh., Jerusalem,
Israel, Apr. 2015, pp. 36–58.

[30] J. Lee, J. Choi, J. Mok, and S. Yoon, “Reducing information bottle-
neck for weakly supervised semantic segmentation,” in Neural Inform.
Process. Syst., vol. 34, Virtual, Dec. 2021.

[31] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[32] T. M. Cover, Elements of Information Theory. John Wiley & Sons,
1999.

[33] G. Romano and D. Ciuonzo, “Minimum-variance importance-sampling
bernoulli estimator for fast simulation of linear block codes over binary
symmetric channels,” IEEE Trans. Commun., vol. 13, no. 1, pp. 486–
496, Dec. 2013.
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