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Abstract—End-to-end semantic communications (ESC) rely on
deep neural networks (DNN) to boost communication efficiency
by only transmitting the semantics of data, showing great poten-
tial for high-demand mobile applications. We argue that central
to the success of ESC is the robust interpretation of conveyed
semantics at the receiver side, especially for security-critical
applications such as automatic driving and smart healthcare.
However, robustifying semantic interpretation is challenging as
ESC is extremely vulnerable to physical-layer adversarial attacks
due to the openness of wireless channels and the fragileness
of neural models. Toward ESC robustness in practice, we ask
the following two questions: Q1: For attacks, is it possible
to generate semantic-oriented physical-layer adversarial attacks
that are imperceptible, input-agnostic and controllable? Q2: Can
we develop a defense strategy against such semantic distortions
and previously proposed adversaries? To this end, we first present
MobileSC, a novel semantic communication framework that
considers the computation and memory efficiency in wireless en-
vironments. Equipped with this framework, we propose SemAdv,
a physical-layer adversarial perturbation generator that aims to
craft semantic adversaries over the air with the abovementioned
criteria, thus answering the Q1. To better characterize the real-
world effects for robust training and evaluation, we further
introduce a novel adversarial training method SemMixed to
harden the ESC against SemAdv attacks and existing strong
threats, thus answering the Q2. Extensive experiments on three
public benchmarks verify the effectiveness of our proposed
methods against various physical adversarial attacks. We also
show some interesting findings, e.g., our MobileSC can even be
more robust than classical block-wise communication systems in
the low SNR regime.

Index Terms—Deep Learning, Semantic Communications,
Physical-layer Attacks, Adversarial Robustness, End-to-end
Communication systems.

I. INTRODUCTION

A. Background

ITU reported that the mobile traffic would grow at an annual
rate of around 55% in 2020-2030 [1] due to a huge amount of
data generated by newly emerging mobile applications such
as Internet of Things (IoT), VR/AR, and machine-to-machine
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(M2M) networks. On this basis, many studies on wireless com-
munication [2]–[4] and privacy protection [5]–[7] have been
conducted. The remarkable trend [1], [8]–[10] indicates that
these applications require interpretations of the information
more intelligently on the receiver side, and the increasing
popularity of such applications puts unprecedented pressure
on both network capacities and intelligence capabilities of
conventional wireless communication systems, and motivates
the community to develop a more efficient and smart way of
information transmission in future wireless networks.

Recently proposed end-to-end semantic communications
(ESC) [11], [12], as a revolutionary wireless communication
paradigm, holds great potential to meet the requirements
of high-demand applications. Specifically, ESC merges all
physical layer blocks in traditional communication systems
and replaces the block-wise structures as end-to-end neural
networks, facilitating joint transceiver optimization. Thereby,
ESC can inherently rely on deep neural networks (DNN) [13]
to boost communication efficiency by learning to transmit only
the semantics of the data rather than the whole. The concept of
such semantic communications [14], [15] has been discussed
for a long history and can be dated from the open question
raised by Weaver [14]: “How precisely do the transmitted
symbols convey the desired meaning” in 1949. Towards this
direction, a line of DNN-based ESC systems [11], [16], [17]
have been proposed recently, which employ an autoencoder-
like neural architecture [18] to extract semantic representations
with a semantic encoder at the sender side and then reconstruct
the information with a decoder at the receiver side.

B. Motivation

As highlighted in prior efforts [12], [19], the goal of ESC
is not often to fully recover the underlying message delivered,
but to empower the receiver to make the correct understanding
or to take the proper actions in the right context. Thereby, we
argue that central to the success of semantic communication
systems is the robust interpretation of semantics conveyed
at the receiver side. However, ensuring robust semantic in-
terpretation is challenging as ESC is extremely susceptible
to physical adversarial attacks [20] due to the openness of
wireless channels and the fragileness of DNNs.

For DNN, small perturbations added to the input can mis-
lead the model to make arbitrarily incorrect results, causing
significant security concerns for safety-critical tasks such
as automatic driving, unmanned aerial vehicle, and smart
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healthcare. In computer vision and machine learning, there
are plenty of works for adversarial training [21]–[25]. The
success of these approaches provides insightful ideas for the
robustness of DNN-based semantic communication. However,
directly adapting these methods to ESC is challenging as a
communication system needs to take the time-varying wireless
channels into consideration. Another difference is that these
prior effects focus more on producing adversaries based on
input data. While in ESC, the threats are more likely to be
added to signals in wireless channels rather than the input at
the transmitter side.

Early adversarial robustness methods [26] proposed for the
end-to-end communication system generate universal perturba-
tions [21] for physical adversarial training. As the bits/symbols
are treated equally on these systems, such content-oriented
attacks are not applicable to semantic communications. We
will also empirically show that these adversarial robustness
approaches can be easily broken with crafted semantic attacks
(see details in Section IV-E). A very recent work [27] considers
adversarial examples for semantic communications. However,
this work is limited to the semantic noise injected in input data
at the transmitter side, and such data-specific attacks may not
be practical in real-world communication scenarios. To the best
of our knowledge, the physical-layer adversarial robustness of
DNN-based semantic communications, although non-trivial to
robust semantic interpretation for safety-critical applications
in practice, is still largely underexplored.

C. Our Method
To fill the aforementioned gap, this paper studies semantic

adversarial robustness that augments the training procedure
with carefully-crafted perturbation signals over the wireless
channel. Central to this approach is the generation of physical
adversarial distortions, aiming to mislead semantic interpre-
tations at the receiver side. In order to characterize the real-
world effect for robust training and evaluation, we consider
perturbation signals that attack an ESC system to meet the
following criteria:
• Semantic-oriented: The perturbation signals can be tai-

lored to focus on attacking the targeting semantic ob-
jects, such as cars and signposts for automatic driving
while securing the interpretation of others’ semantics.
Such semantic-specific adversarial attacks are much more
destructive than existing attacks crafted for conventional
end-to-end communication systems. Our framework has
two optional settings, i.e., reconstructing images based on
semantics for the applications, and directly interpreting
semantic information for goal-oriented communications.

• Imperceptibility: The perturbations added to the signals
will be considered as the natural noise in the wireless
channel and cannot be detected by the receiver, fooling
a semantic communication system into making incorrect
decisions. This is practical in real-world cases.

• Input-agnostic: In reality, an attacker doesn’t have any
knowledge of the input data when generating the pertur-
bation signals in the test stage.

• Controllability: An attacker may manipulate the commu-
nication system by misleading the model to interpret the

semantics as expected results. Such attacks may cause
severe accidents in safe-critical applications. Defense
against such attacks will be non-trivial for semantic
communication systems.

Keeping the above goals in mind, we first introduce
a deep learning-based semantic communication framework
MobileSC that considers the memory and computation con-
straints in a wireless environment. The framework consists
of four modules including a semantic encoder, an Orthog-
onal Frequency Division Multiplexing (OFDM)-transmitter,
an OFDM receiver, and a semantic decoder. We addition-
ally develop a classifier to interpret the semantics from the
reconstructed images by the semantic decoder. Inspired by
MobileNet V2 [28], we introduce SemBlock, which is a more
lightweight structure for semantic encoder and decoder. Our
SemBlock uses depth-wise separable convolutions to build
lightweight DNN [28]. Based on this framework, we then
present a novel perturbation generator SemAdv, which aims
to learn to craft physical adversarial distortions based on a
semantic loss. In the following parts, we will outline how
our perturbation generation procedure meets the four criteria
mentioned above.

For the semantic-oriented goal, our proposed perturbation
generator crafts distortions that aim to attack certain semantics
over the air by introducing awards and penalties in an objective
function. For imperceptibility, we propose a regularizer to
encourage the variation of the generated perturbations, as well
as a normalization operation with a power constraint to adjust
the distribution of the distortions. For the input-agnostic goal,
our generator only relies on a random value without any
knowledge of signals. For the last goal, we simply replace the
labels in the objective function to mislead the model to make
expected decisions with a manipulated semantic interpretation.

Based on SemAdv, we then introduce an adversarial train-
ing method SemMixed, a novel AT method that is capable
of defending against both SemAdv and PGM attacks, to
improve the robustness of our MobileSC against physical-
layer adversaries. Our SemMixed is able to mislead clas-
sifiers by distorting target semantics. Experiments on three
popular benchmarks show the effectiveness of our proposed
approaches. Our MobileSC is also compatible with other
downstream applications that require an understanding of
semantics to take the right actions on the receiver side.

D. Main Contributions

The main contributions of this paper are four-fold:

• We present MobileSC, a novel ESC framework for
image transmission. The proposed MobileSC takes the
computation and memory efficiency in wireless envi-
ronments into account. Our semantic encoder/decoder
SemBlock, the key component of MobileSC, needs
nearly 40% and 64% fewer parameters respectively than
the popular MobileNet V2 [28] and JSCC [29].

• Equipped with MobileSC, we introduce a novel ap-
proach SemAdv that aims to learn to generate per-
turbations for physical-layer adversarial attacks to the
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semantic communication system. To be practical in real-
world scenarios, our attacks meet four criteria including
semantic-oriented, imperceptibility, input-agnostic, and
controllability. This is the key contribution of this paper.

• We propose an adversarial training method SemMixed
that is able to harden the interpretation of the semantic
communication system against multiple physical adver-
sarial perturbations, including SemAdv attacks, as well
as some other destructive attacks such as PGM [26].

• We conduct extensive experiments to show the effec-
tiveness of our proposed SemAdv attacks and defense
strategy SemMixed for MobileSC. To evaluate the
“controllability” and “imperceptibility” of our semantic
attacks, we also introduce a novel performance metric
besides traditional accuracy, Peak signal-to-noise ratio
(PSNR), and Structural similarity index measure (SSIM).
Some insights are also given in discussions and case
studies.

E. Related Work

1) Semantic Communication System: Deep learning has
been widely used in wireless communication to refine the
traditional block-structure systems with end-to-end ones [29]–
[32], [32]–[36], showing impressive improvement by jointly
optimizing the processing blocks. Towards this direction, many
deep learning-based semantic communication systems have
been proposed, including DeepSC [11] [19] for textual data,
UDSem [37] for texts and images, DVST for video transmis-
sion [38], SCS [39] [40] for speech signals, MU-DeepSC [41]
for question answering applications, and L-DeepSC [42] for
text and speech over IoT. Different from the above previous
works, our proposed MobileSC considers the memory and
computation constraints of mobile devices for image-based
semantic communications. Compared with the most relevant
end-to-end communication systems that are based on JSCC
[29] and MobileNet V2 [28], our MobileSC is much more
lightweight, with much fewer parameters and processing time.

2) Robustness of Semantic Communication System: Deep
learning models are susceptible to attacks [43] [44]. The idea
of attacking deep neural networks was first introduced in [45].
In recent years there have been plenty of works along this
line [20], [22]–[25], [46] [47], which aim to develop various
defense strategies for model robustness. Among these works,
the most relevant ones to this paper are [27] and [26]. The
very recent work [27] is limited to injecting semantic noise
into input data, which may not be practical over wireless
communication systems. PGM [27], which was proposed for
content-level communications, generates universal perturba-
tions [21] for end-to-end systems. The two key differences
between our work and the previous ones are: 1) Our pro-
posed attacks consider the cases of semantic communications
in real-world scenarios, and the physical adversarial attacks
generated by our proposed SemAdv are semantic-oriented,
imperceptible, input-agnostic, and controllable. Such attacks
are specifically tailored for semantic communication systems
to distort the receiver to make incorrect decisions, while the
PGM is proposed for content-oriented communications. 2) Our

TABLE I: Definitions of Notations

Notation Definition

x,x′ ∈ Rc×w×h input image, recovered image
c, h, w num of channel, height and weight of image x and x′

Eψ , Dπ semantic encoder, semantic decoder
Sθ , Mω MobileSC, image classifier
Gη , Gpgm% perturbation generator, PGM attacks generator
R regularizer of perturbations
Lsys, Lrec, Lcls system loss, reconstruction loss, classification loss
λr , λc weights of reconstruction and classification loss
Ncp, Nc length of cyclic prefix, num of OFDM subcarriers
Np, Nd num of pilot symbols, num of information symbols
X ∈ Rd contextualized representation of the image x

X̃ ∈ R(Np+Nd)×Nc×2 complex OFDM symbols over the air
H, Hes channel gain, channel estimation
Xr ∈ Rd received latent representations of the image x
∆trg , ∆ino target set and innocent set in a mini-batch

SemMixed is capable of defending against both SemAdv
attacks and PGM attacks, while the existing efforts proposed
for end-to-end communications only consider a single attack,
such as the fast gradient method (FGM) attack [20] and the
PGM [26] attack.

3) Other Research of Semantic Communications: There is
a line of works that apply semantic communications to various
scenarios. Semantic communication systems may suffer some
privacy issues as it is learned from a large volume of data,
and hence privacy-preserving is discussed in the previous work
[48] [49]. The authors also rely on semantic communication to
facilitate wireless cognition [50], energy saving [51], mobile
edge computing [52], image transmission [53] [54] and MIMO
communication [55]. However, these systems don’t consider
the robustness of semantic communications and hence are
fragile to various attacks.

F. Paper Organization and Notations

The remainder of the paper is organized as follows. Section
II describes our proposed framework for deep learning-based
semantic communication systems. Section III presents the
proposed perturbation method and the adversarial training
approach. Section IV shows the experiments and discusses
attacks and defense strategies. Section V gives some insightful
discussions, as well as a case study. Finally, conclusions are
drawn in Section VI. Table I lists the notations used in this
paper.

II. SYSTEM MODEL

Figure 1 shows the architecture of our proposed semantic
communication framework MobileSC, which consists of five
modules including a semantic encoder, an OFDM transmitter,
an OFDM receiver, an optional semantic decoder, and a
classifier. Next, we detail how each module works.

A. Semantic Encoder

Recently proposed semantic neural encoders [11], [29],
which are based on Transformer [56] and ResNet [57], re-
quire high computational resources beyond the capabilities
of mobile devices, which may not be practical in real-world
scenarios. To bridge this gap, the goal of our semantic encoder
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Fig. 1: System model of our proposed MobileSC.

is to generate symbols for input data in a timely and memory-
efficient fashion. We propose a novel semantic encoder that is
specifically tailored for resource-constrained wireless environ-
ments. The two key ingredients are listed as follows.

• Our encoder adapts DWConvolution block in MobileNet
V2 [28] and relies on SemBlock for non-linear transfor-
mation and lightweight depthwise convolution. The pro-
posed structure simplifies inverted residual structure [28]
and uses shortcuts connections between thin bottleneck
layers to improve the expressiveness of the feature repre-
sentations, where the thin bottleneck layers indicate the
ones with a much less number of channels. By doing so,
our encoder is able to generate semantic representations
for the input data with much fewer parameters.

• Our semantic encoder jointly considers the source en-
coding and channel encoding in the above single neural
networks to reduce the network complexity and facilitate
the end-to-end optimization during the training procedure.

We show the formulations as follows. We say x ∈ Rc×h×w
is an input image, where c, h and w are the numbers of
channels, height, and width of the image, respectively. We feed
image x to our semantic encoder Eφ to obtain the contextu-
alized semantic representations X ∈ Rd, where φ and d are
the trainable parameters of the encoder and the dimension of
the representation, respectively Our semantic encoder consists
of multiple convolution layers and SemBlocks. The number
of these sub-modules can be flexibly configured based on the
customized requirements of various wireless applications, as
well as the capacities of different mobile devices. We give the
detailed implementations in Section IV-B.

B. OFDM Transmitter

For the input image x, so far we have symbols X generated
by the semantic encoder. To make efficient use of the spectrum
and reduce the computational overhead, we employ OFDM
[58] as our wireless transmission scheme, which is able to
encode X into multiple carrier frequencies without inter-
symbol interference (ISI). Noted the transmitter also supports
the single-carrier OFDM mode with configurable parameters.
We reshape the symbols X ∈ Rd to X ∈ Rd/2×2 to facilitate
the following computations that are based on the complex
symbol stream.

1) Performing IFFT and Adding CP: Specifically, we first
perform Inverse Fast Fourier Transform (IFFT) on X.Then we
add a cyclic prefix (CP) Xcp ∈ RNcp×2 to X to secure the
reliability of OFDM signal and overcome the negative impact
of ISI, i.e.,

X̂ = [IFFT(X);Xcp], (1)

where the dimension of the updated X̂ is (d/2 + Ncp) × 2
and Ncp indicates the number of CP that is truncated from X.
Generally, we select the last Ncp symbols out of d/2 ones in
X ∈ Rd/2×2.

2) Clipping Signal: One of the disadvantages of OFDM
is the high peak-to-average power ratio (PAPR), which is
caused by the linear combination of Quadrature Amplitude
Modulation (QAM) symbols in the IFFT operation, leading
to excessive power assumption at the power amplifier [59].
To mitigate this issue, we refer to previous signal clipping
techniques [29], [59] to reduce PAPR by introducing an
additional non-linear activation function to the time domain
OFDM signal X̂.

3) Adding Pilot: Pilot signals in OFDM can be used for
measurement of the channel conditions, describing how a
signal propagates from the transmitter to the receiver such
as fading and power decay. Such a way makes it possible
to adapt transmissions to current channel conditions. We say
Nc is the number of subcarriers, and then data symbols can
be derived as Nd = d (d/2+Ncp)

Nc
e. Hence output symbols

X̂ ∈ R(d/2+Ncp)×2 can be reshaped as X̂ ∈ RNd×Nc×2.
We denote the number of pilot symbols as Np. The pilot
symbols can be transmitted on a part of the OFDM subcarriers
of all subcarriers. We choose the latter for simplicity and
denote the pilot symbols as Xpt ∈ RNc×2. The output
complex stream of the OFDM transmitter can be expressed
as X̃ ∈ R(Np+Nd)×Nc×2. Although pilot-assisted channel
estimation benefits reliable wireless transmission, the main
drawback lies in the reduction of the transmission rate when
inserting a large number of pilot symbols. We need to carefully
select Np for a better trade-off between the cost and benefit.

In briefly, for the input symbols X ∈ Rd, the output
X̃ ∈ R(Np+Nd)×Nc×2 of OFDM transmitter OFDMT can be
expressed as

X̃ = OFDMT(X). (2)
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C. Wireless Channel

Without loss of generality, for X̃, we denote the received
signal at the receiver as Y ∈ R(Np+Nd)×Nc×2, which can be
expressed as

Y = HX̃ + N, (3)

where H refers to channel gain and N ∼ CN (0, σ2
n) represents

the additive Gaussian noise. As discussed in previous works
[32], [33], [35], deep neural networks are able to model the
wireless physical channels, including additive white Gaussian
noise (AWGN), the erasure channel, and the Rayleigh fading
channel. In this paper, we mainly consider the Rayleigh
fading channel as it better models the effect of a propagation
environment for semantic communication systems. We use
Rayleigh fading channel H ∼ CN (0, σ2).

D. OFDM Receiver

The OFDM receiver takes received symbols Y as the input
and performs inverse operations that have been done in the
OFDM transmitter. As we have already detailed the intuition
of each module in the transmitter, here we only briefly outline
the procedure. We first separate pilot symbols X′pt ∈ RNc×2

and information symbols X̂′ ∈ RNd×Nc×2 from Y. Then we
remove the cyclic prefix for both symbols and perform Fast
Fourier Transform (FFT) to obtain X′′pt ∈ RNc×2 and X̂′′ ∈
Rd/2×2. We follow the previous work [29] to perform the
channel estimation and equalization by exploring channel state
information based on X′′pt and X̂′′, i.e.,

Xr = EQ(CE(X′′pt), X̂
′′), (4)

where CE and EQ represent channel estimation and equal-
ization, respectively, and Xr ∈ Rd indicates the received
symbols. In briefly, our OFDM receiver OFDMr can be
formulated as

Xr = OFDMr(Y). (5)

E. Semantic Decoder

Here we detail how the receiver reconstructs the image with
the decoder. Noted that such a decoder is optional in our
framework. Now we have received symbols Xr, which can
be considered as the latent representations of image x after
transmission. To build small and efficient neural networks at
the receiver side, we mainly use SemBlocks and the convo-
lution layer in our semantic decoder Dπ , where π denotes
the trainable parameters of the decoder. The decoder jointly
considers the channel and source decoding. We feed semantic
representation Xr to Dπ to reconstruct image x′ ∈ Rc×h×w,
which can be expressed as

x′ = Dπ(Xr). (6)

Our semantic decoder can also be flexibly configured with
different numbers of the SemBlock and convolution layers to
meet mobile and resource-constrained environments. Detailed
implementations are available in Section IV-B.

Based on the recovered x′, we are able to measure the se-
mantic loss with widely used image quality metrics including

PSNR and SSIM. For some popular downstream applications
in the real world, such as image recognition and classification,
we need to further evaluate semantic interpretations based on
a classification loss with trainable neural networks. In the
following, we will show such a classification module.

F. Classifier

So far we have got the reconstructed image x′ from the
semantic decoder. We consider real cases that need to interpret
the semantics by categorizing the image into a class type, such
as dog, car, and airplane. For example, the remote operating
system that supports automatic driving cars [7] uses the
recovered image to make decisions. Compared with PSNR and
SSIM which focus more on visual quality and image quality,
measuring the semantic loss by recognition/classification loss
for the above applications is non-trivial for the practical
deployment of the communication system. We introduce a
simple classifier to predict the category of x′ based on the
semantic interpretation. Here we use ResNet-preact [57] to
compute the probability for each class type t, i.e.,

p(t|x′) =Mω(x′), (7)

where ω is the trainable parameters of the classifier. The
prediction class t∗ of the image x′ can be expressed as

t∗ = argmax
t

p(t|x′). (8)

While the model is specifically designed for recognition and
classification applications, our conceptual ideas underlying the
design are general for semantic communications. As illustrated
in Figure 1, our MobileSC is compatible with other applica-
tions, such as downstream applications A and B, that require
accurate semantic interpretations to make the right inference
or to take the right actions at the receiver side.

G. Objective Function

To train our semantic communication system, we consider
a multi-task learning procedure composed of a reconstruction
loss and a semantic loss. The reconstruction loss Lrec is
expressed by the cross-entropy between the recovered image x′

and the original one x, and the semantic loss is described as the
classification loss Lcls. The total loss Lsys can be formulated
as the weighted sum of the above two losses, which can be
expressed as

Lsys = λrLrec + λcLcls, (9)

where λr and λc are two weights to configure the importance
of each loss.

H. SemBlock

Our semantic encoder/decoder is comprised of convolution
layers and SemBlocks. As shown in figure 2, to reduce the
neural parameters, our SemBlock splits the 3x3 convolution
kernel to 1x3 and 3x1 and then adds an additional attention
layer and an SANET structure [60] to improve the model’s
capability in capturing the meaningful semantics. Each block
contains a much less number of parameters than popular
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Fig. 2: Structure of our proposed SemBlock.

ResNet [57], taking account of the computation and energy
efficiency in wireless environments, and thus can be practically
deployed on mobile devices.

III. SEMANTIC ADVERSARIAL ROBUSTNESS

This Section shows how we generate physical-layer adver-
sarial attacks for the ESC and how we harden the system
against the attacks. Specifically, we first outline the high-
level design of our semantic adversarial attack in Section
III-A, and then Section III-B delves into the details of the
proposed perturbation generator SemAdv that aims to craft
semantic adversarial distortions over the air. Our SemAdv
attacks are semantic-oriented, imperceptible, input-agnostic,
and controllable. Section III-C shows the general idea of
adversarial training, and finally Section III-D presents our
adversarial training method SemMixed that is able to harden
the semantic communication system against multiple physical
adversarial perturbations.

A. Overview of Physical-layer Adversarial Attacks

Figure 3 demonstrates how we train a perturbation generator
to produce adversarial attacks that meet the four criteria men-
tioned at the beginning. Our goal here is to attack MobileSC
over a wireless channel to fool the classifier to make incorrect
decisions. Such a procedure is described as follows.
• The transmitter sends OFDM symbols that contain se-

mantics of the images to a wireless channel, where each
image contains one class such as airplane, dog, ship, and
car, as shown in Figure 3.

• Then the additive white Gaussian noise and adversarial
perturbations are added to the signal, where the former
can be considered as natural noise and the latter pertur-
bations aim to attack the semantics that is related to cars.
To be more practical, the perturbations produced by the
generator are input-agnostic.

• The receiver directly feeds signals to the classifier or re-
constructs all images and then feeds them to the classifier
to output the predictions based on semantic information.
Since we have injected semantic-oriented (car) adversar-
ial perturbations into the signals, the recovered image
with targeting semantics will deceive the system to make
incorrect predictions. As demonstrated in the bottom right
of Figure 3, the image of a “car” may be misclassified as
the “bird” category under the adversarial attacks. Such
prediction results may be pipelined to systems such as

automobiles and smart health, which may cause serious
accidents for these security-crucial applications.

Next, we will go into the detailed procedure for the generation
of the above adversarial perturbations.

Generally, the physical adversarial perturbations δ for the
input can be derived by the following optimization problem:

argmin
δ
‖δ‖2

s.t. ∀x : Sθ(x, δ) 6= Sθ(x),
(10)

The goal of the above formulation is to generate destruc-
tive adversarial perturbations that can mislead the semantic
communication systems to make incorrect interpretations, and
the constraint indicates that such perturbations should be
imperceptible so that they can not be easily detected, meeting
the criteria that we discussed in the Section I.C.

However, directly solving (10) is very challenging as the
structure of MobileSC is not convex. A common approach
is to employ Gradient-based approximations to obtain δ, such
as the fast gradient method (FGM) [20] and projected gradi-
ent descent (PGD) [46]. One drawback of such approaches
is the high computational cost for training and inference.
Another main issue is that the formulation in (10) aims to
attack a content-oriented wireless network and does not take
the semantic attack into consideration, where the semantics
rather than content are used by the receiver to make the
right inference or to take the right actions. Therefore, we
introduce our proposed attack generation method for semantic
communications as follows.

B. Attacks Generation
Figure 4 presents the architecture of our adversarial pertur-

bation generator, which is an MLP neural network with multi-
ple computation blocks. Each block consists of a linear layer
and LeakyReLU [61] for nonlinear transformation. Algorithm
1 shows the process of perturbation generation in two steps.

1) We train our deep learning-based MobileSC system
Sθ on the dataset Ω in an end-to-end manner, where θ
indicates the learnable parameters of the system. Then
we save the model to facilitate the training of our
perturbation generator in the next step.

2) Our perturbation generator learns to produce adversarial
distortions for symbols over the air by attacking the pre-
trained MobileSC.

As we discussed at the beginning, the physical adversarial
attacks crafted by our SemAdv are expected to meet four
criteria including semantic-oriented, imperceptibility, input-
agnostic, and controllability. Next, we show how our approach
achieves the above goals.

We quantify the complexity of the Algorithm. 1 in terms
of complexity and space complexity. The time complexity of
Algorithm 1 can be expressed as O(n2). We denote the number
of samples as N and the number of mini-batches as i. Hence,
the number of images in each mini-batch can be expressed as
N/i. The complexity of replacing labels can be expressed as
T ∗ (N/i) ∗ i, i.e., T ∗N . Hence, the time complexity of the
algorithm can be expressed as:

T (n) = O(n2), (11)
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Algorithm 1 The generation process of physical adversarial
attacks.

Input: Pre-trained MobileSC Sθ
Training Dataset Ω
Distance Regularization Function R(·)

Output: Semantic Perturbation Generator Gη(·)
for t← 1 to T do

for each mini-batch Ωi in Ω do
for each sampleij in Ωi do

if sampleij .label == targetlabel then
sampleij .label ← random other label

end
end
L =

∑
xj∈Ωi

Lcls(Sθ(xj ,Gη(z)))−R(Gη(z))
Update Gη to minimize L

end
end
return Gη

For space complexity, we use arrays to store labels of all
N images in the dataset. It needs T ∗ N storage units for T
epochs. Hence, the space complexity can be expressed as:

S(n) = O(n2), (12)

1) Semantic-oriented: We categorize training examples in
a mini-batch into two sets based on their semantics, i.e., the

targeting set and the innocent set. We denote the indices of all
b examples in two sets as ∆trg and ∆ino, respectively. Our
aim is to attack the examples in ∆trg to mislead the system to
make incorrect semantic interpretations, while at the same time
securing the interpretations of the innocent ones in ∆ino under
the same attacks. We denote our training examples in a mini-
batch as {xi, yi}i∈∆trg

and {xj , yj}j∈∆ino
. We say Gη(zi) is

our proposed perturbation generator, where η is trainable neu-
ral parameters and zi, zj ∼ U(0, 1) refers to two random seeds
that follow uniform distributions. The optimization problem
for generating the adversarial perturbations for the MobileSC
can be expressed as

maximize
Gη(z)⊂Λp,ε

{
∑

i∈∆trg,j∈∆ino

{Ltrg(Sθ(xi,Gη(zi)), yi)

− Lino(Sθ(xj ,Gη(zj)), yj)−R(Gη(z))}},
(13)

where z = {zi : i ∈ [1, b]}, Ltrg and Lino refer to the losses
for the examples with target semantics and the ones for the in-
nocent examples, and Λp,ε is an `p ball around the unperturbed
example, defined as Λp,ε = {Gη(xi) : ∀i, ‖Gη(xi)‖ ≤ ε} for
certain norm p and radius ε. For simplicity, we replace the
label in ∆ino as a random category y′i ∈ C\yi, where C
refers to the set of pre-defined class labels. Then (13) can be
reformulated as

maximize
Gη(z)⊂Λp,ε

{
∑

i∈∆trg,j∈∆ino

{Ltrg(Sθ(xi,Gη(zi)), yi)

− Lino(Sθ(xj ,Gη(zj)), y
′
j)−R(Gη(z))}}.

(14)

Such an objective function awards the generator to craft
perturbations that can only distort certain semantics in signals.

2) Imperceptibility: For imperceptibility, we introduce a
regularizer R(·) to encourage the variation of generated per-
turbations, making it hard for detection at the receiver side.
The regularizer R(·) can be formulated as follows.

R(Gη(z)) =

∑
i∈[1,k],j∈[i+1,k] ‖Gη(zi)− Gη(zj)‖

1
2k(k − 1)

. (15)
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The above formulation is able to calculate the average dis-
tance of generated perturbations. Our generation process also
preserves the power constraints with an upper bound pmax
to further improve the imperceptibility of the perturbations.
We adjust the perturbations by normalizing every value in the
vector to a Gaussian distribution if the power is larger than
pmax, such that the mean of all of the values is 0 and the
standard deviation is 1. We show the formulations as follows.

Gη(zi) =


Gη(zi) ‖Gη(zi)‖22 ≤ pmax,
√
pmax

Gη(zi)− Gη(z)

σ(p)
‖Gη(zi)‖22 > pmax,

(16)
where zi ∈ z. Equipped with the above operations, our
perturbation can be more imperceptible and can be disguised
as natural noise.

3) Input-agnostic: During the training phase, our generator
Gη learns to craft the adversarial distortions by attacking pre-
trained MobileSC model. The input of the generator is a
random value zi ∈ z that follows a uniform distribution.
During the testing stage, the attacker generates perturbations
to distort targeting semantics without any knowledge of the
input data and signals over the air.

4) Controllability: Our generator can also manipulate the
receiver to take some actions by controlling the semantic
interpretation. To achieve this goal, we can simply replace
the labels in ∆trg in (14) as the given one, i.e., y0, so that the
generator can learn to craft the adversarial examples that can
mislead target semantics to y0. In other words, the attacker can
control the semantic communication system to make expected
decisions, where the triggers are the targeting semantics.

We have described how we attack MobileSC by learning
to generate adversarial examples. Next, we show how our
proposed adversarial training approach defends against such
physical-layer semantic attacks, as well as strong adversarial
attacks that are crafted for end-to-end communication systems.

Algorithm 2 Our proposed adversarial training method
SemMixed.

Input: Training Dataset Ω
Two attackers our Gη and PGM Gpgm%

Perturbation set P
Output: Robust semantic communication system S∗θ
Initialize: mini-batch size ← d

P ← b zero vectors
P0 ← b zero vectors

for epoch← 1 to T do
for each mini-batch Ωi in Ω do

if i%2 == 0 then
P ← P0

else
P ← Gη(Ωi) or Gpgm% (Ωi)

end
L =

∑
xj∈Ωi

Lsys(Sθ(xj ,P), yj)
Update θ to minimize L

end
end

C. Overview of Adversarial Training

Adversarial training (AT) is a popular defense strategy
against attacks by augmenting the training data with adversar-
ial examples. Without loss of generality, the adversarial train-
ing for our mobile system Sθ can be formulated as minimizing
the worst-case loss with `p norm-bounded perturbations with
radius ε. Such a formulation can be expressed as

min
θ

n∑
i

max
δ∈Λp,ε

Lsys(Sθ(xi, δ), yi), (17)

where Λp,ε = {δ : ‖δ‖p} is the `p norm ball with the radius ε
centered around the symbols X̃, representing the perturbation
magnitude. The above training procedure is capable of as-
suring the system’s worse-case performance against possible
adversaries. The inner optimization hopes the model can be
spoofed by the optimal perturbation δ. The typical solutions
such as Fast Gradient Method (FSM) [20] and PGD are
computationally expensive and we have shown our solution
in the (13) of Section III-B. The outer minimization step
learns to update the neural parameters θ under the adversarial
loss constructed at the maximization step. We will discuss the
details of our proposed AT method in the following parts.

D. Mixed Adversarial Training

The goal of our proposed AT is to harden MobileSC
against the aforementioned physical-layer attacks that aim to
mislead the classifier by distorting the targeting semantics.
Additionally, our method is also expected to be robust under
the threats of the state-of-the-art attacker. Towards this goal,
we introduce SemMixed, a novel AT method that is able to
defend against both SemAdv and PGM attacks simultaneously.

Algorithm 2 shows the procedure of our proposed AT
approach. Each step is explained as follows.

1) We first train our MobileSC Sθ without adversarial
examples, as we empirically observed that AT from
scratch with strong adversarial perturbations may not
benefit the system robustness. Furthermore, learning
from scratch is also time-consuming. To generate PGM
attacks for AT in the following steps, we also pre-trained
a PGM generator Gpgm% [26].

2) Equipped with pre-trained Sθ and Gpgm% , we tune Sθ
with SemAdv attacks and PGM attacks for each min-
batch. The two attacks are randomly selected during
the training procedure. More specifically, our SemAdv
attempts to craft physical adversarial perturbations for
targeting semantics in each mini-batch Ωi ∈ Ω. During
AT, the targeting semantics are randomly selected in dif-
ferent mini-batch, such that semantics for each class type
can be properly protected during the evaluation stage
when the system is under different attacks. The PGM
attacks, which are originally proposed for content-level
communications, are added to signal symbols X̃ to fool
the system without taking semantics into consideration.

3) To assure the model’s robustness as well as accuracy, we
also use half of the training instances for clean training
to calibrate our Sθ during AT, as previous studies reveal
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Fig. 5: Detailed modules of our MobileSC.

that there exist trade-offs between robustness and accu-
racy [62]. Here we use P0 to denote the zero vector, and
hence there is no distortion if we add P0 to the signal.
By doing so, we are able to carry out cleaning training
equipped with P0.

IV. EXPERIMENTS AND NUMERICAL RESULTS

A. Datasets

We conduct experiments on MNIST, CIFAR10 [63] and
ImageNet, three popular datasets that are widely used for
training various image processing systems. The MNIST con-
sists of handwritten digits and contains 60, 000 28x28 pixel
grayscale training images and 10, 000 testing images in 10
classes. CIFAR10 includes 60, 000 32x32-pixel color images
in 10 classes, with 6, 000 images per class. The training and
testing image of CIFAR10 are 50, 000 and 10, 000 respectively.
ImageNet contains 27, 0000 256x256 pixel color images in
10 types, with 1, 000 images per class. We have 26, 000 and
10, 000 instances for training and testing, respectively.

B. Implementation Details

1) MobileSC System: We implement our MobileSC
based on PyTorch [64], one of the most popular machine
learning library. Figure 5 demonstrates the architecture of
our semantic encoder, semantic decoder, and classifier.Each
image is firstly normalized within the range of [-1, 1]. Then,
it is passed through a series of down-scaling convolutional
layers and SemBlocks. The structure of the semantic decoder
is almost symmetric (in the reverse order) to the encoder
network, except that the final activation function is set to the
Sigmoid function to enforce a valid dynamic range of image
output pixels. For the two OFDM modules, we adapt the
OFDM-transmitter and OFDM-receiver from the prior work
OFDM-guided JSCC [29]. The OFDM transmitter performs
IFFT transformation on signal, and then adds CP and pilot
frequency. The OFDM receiver removes CP and pilot from the
signal and then performs FFT transformation on the signal.
The receiver optionally feeds latent representations to the
classifier or to the semantic decoder. Exhaustive experiments
are conducted in both two settings. For the classifier, we refer
to the official implementation of ResNet-preact [57] and adapt
it in our case.

TABLE II: Parameters

Category Parameter Value

Input Image

Image shape (MNIST) (1, 28, 28)
Image shape (CIFAR10) (3, 32, 32)
Image shape (ImageNet) (3, 256, 256)
Num of class type (MNIST) 10
Num of class type (CIFAR10) 10
Num of class type (ImageNet) 10
Num of train/test instances (MNIST) 60,000/10,000
Num of train/test instances (CIFAR10) 50,000/10,000
Num of train/test instances (ImageNet) 26,000/10,000

Neural model

Weight of the classification loss λcls 0.5
Weight of the reconstruction loss λrec 0.5
Num of layers in the discriminator 3
Num of SemBlocks 4
Dimension of the representation d 1134

Attacks PSR(dB) -10, -8, -6, -4, -2
p normal 2

Training

Maximum epochs 200
Batch size 256
Learning rate 5.00E-04
Optimizer Adam
Parameter for Adam 0.5

OFDM module

Num of pilot symbols Np 1
Num of subcarriers per symbol Nc 64
Length of Cyclic Prefix Ncp 16
The parameter of Rayleigh channel σ2 1.5
SNR(dB) 3,5,7,9,10,11,13,15

2) Computation platform and Settings: We run our model
on a DELL server with Ubuntu 18.04 operating system,
equipped with 64GB RAM and an RTX3090 GPU card. The
PyTorch and Python versions are 1.7.1 and 3.7, respectively.
For drivers, the CUDA and cudnn versions installed in the
server are 11.0 and 8, 004. It takes about 3 hours to train
our semantic communication system, 3 hours for our proposed
perturbation generator, and 4 more hours for the adversarial
training on the three datasets. Our model takes up 3GB of
GPU memory during the training procedure. The parameters
of neural networks are randomly initialized and then iteratively
updated by the Adam optimizer with an initial learning rate
of 0.00005. We set the batch size as 256 for all datasets. The
parameter σ2 in the Rayleigh channel is set as 1.5. We refer
to previous works [20], [26] to calculate pmax as

pmax = psig × 10PSR/10, (18)

where the Perturbation-to-signal ratio (PSR) indicates the ratio
of the received perturbation power to received signal power,
psig refers to the power of a signal. For simplicity, we also
set the radius ε in `p ball of (13) as pmax. Table II shows
the detailed parameters for neural models, attacks, training
procedures, and the OFDM modules.

C. Performance Metrics

1) Commonly used metrics: We evaluate the performance
of our MobileSC with three widely used metrics including
PSNR, SSIM and classification accuracy.
• PSNR: PSNR is the most commonly used metric to

quantify the reconstruction quality of the lossy image and
video compression. Generally, a higher PSNR indicates
the reconstruction is of higher quality.

• SSIM: SSIM can be used for predicting the perceived
quality of images and videos. It is a full reference metric
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Fig. 6: Performance comparisons under various attacks. (a), (b), (d), (f) and (g) are comparisons after reconstructing images in
terms of three metrics including classification accuracy, PSNR and SSIM under four attacks including jamming attack, PGD,
PGM and our proposed SemAdv with SNR=10dB and PSR=-4dB. (c) and (e) are comparisons without reconstructing images.
(a)-(c), (d)-(f), (g) are based on MNIST, CIFAR10 and ImageNet dataset respectively. (h) and (i) measure the controllability

of our proposed attacks.

that leverages the initial uncompressed or distortion-free
image as a reference.

• Classification accuracy (CA): In our ESC system, CA
quantifies the performance of a neural classification
model as the number of correct predictions divided by the
total number of predictions. We have some pre-defined
class categories.

2) Misleading Rate: We introduce a new metric “mislead-
ing rate” to evaluate the capabilities of our model in misleading
the predictions to a certain category. Such a metric measures
the capability of our model conducts “controlled attacks” on
the semantic communication system.

D. Baselines

We compare our model with three baseline models including
Jamming attack, PGD and PGM.

• Jamming attack: This attack follows the same distribution
as the Gaussian noise. It is widely used in conventional
communication systems.

• PGD: PGD is a standard method for adversarial training
and it generates adversarial examples based on gradients.
We integrate the publicly released PGD implementation
into our system for generating the perturbations.

• PGM: PGM is proposed for the generation of adversarial
attacks for content-level wireless communication systems.
We re-implement this baseline in PyTorch as it is not
publicly available.

E. Performance Under Attacks

Figure 6 shows the comparison results in terms of classifi-
cation accuracy, PSNR, SSIM, and Misleading rate. Different
from previous works that quantify the performance of all
categories with a single score, our comparisons are conducted
in a much more fine-grained manner, which is based on each
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Fig. 7: The comparisons of adversarial robustness for various defense strategies on the MNIST dataset, including “PGM based
AT”, “SemAdv based AT”, and “Our AT”. Here the abbreviation AT indicates adversarial training. SNR and PSR are configured
as 10dB and -4dB, respectively. Under SemAdv attacks, (a), (b), and (c) demonstrate the robustness of different defense
mechanisms measured by classification accuracy and PSNR, respectively. Under PGM attacks, (d), (e), and (f) demonstrate
the comparisons of adversarial robustness of different defenses with the two metrics. (c) and (f ) are comparisons without
reconstructing images. A vertical comparison of these pictures shows our algorithm’s ability to defend against both attack
methods.

category of the images. Each class type indicates certain se-
mantics. We also give the average values of these performance
scores (the dotted line in the same color). Such comparisons
can better measure the impact of various adversarial attacks
on different semantics that are transmitted over a wireless
channel.

1) Classification Accuracy: Figures 6 (a), (d) and (g)
show the comparisons of classification accuracy under various
attacks, and we configure SNR and Perturbation-to-signal ratio
(PSR) [20] as 10dB and -4dB, respectively. We set the 2-
nd class type as the targeting semantics, which is digital
number 2 in MNIST, bird in CIFAR10, and frogs in ImageNet,
respectively. Figures 6 (c) and (e) show the comparisons of
classification accuracy without reconstructing images under
various attacks, and we configure SNR and Perturbation-to-
signal ratio (PSR) [20] as 10dB and -4dB, respectively. We
set the 9-th class type as the targeting semantics to indicate
the universality of the attack effect. In general, we observe
that the classification accuracy is significantly degraded by ad-
versarial attacks on the three datasets, and adversarial attacks
are more destructive than conventional jamming attacks. This
observation aligns with the findings that are based on end-to-
end autoencoder-based communication systems [20]. We also
have several interesting observations beyond the prior efforts:
• Our proposed SemAdv is able to attack the targeting

semantics and decrease the classification performance by
17, 18, and 60 points, respectively, while it only causes

less than 10 points decrease on other categories with
different semantics. Such an observation confirms our
hypothesis that our attack is semantic-oriented and the
interpretation of targeting semantics will be significantly
degraded by the SemAdv attack.

• Our MobileSC system tends to predict all images recon-
structed by the receiver as the 6-th class type under PGM
adversarial attacks on CIFAR10. We posit this is possible
because the neural models almost collapse under PGM
attacks, due to the high sensitivity of the parameters.
Although more destructive, PGM will be easily detected
by the receiver to develop a defense strategy as all data
transmitted in the system is affected.

2) PSNR: Figures 6 (b) reports the performance compar-
isons in terms of PSNR under various attacks on MNIST, with
SNR and PSR configured as 10dB and -4dB, respectively.
Interestingly, our proposed SemAdv causes slight PSNR
performance degradation to all classes for the reconstructed
images, although the classification accuracy is significantly
degraded. Conversely, PSNR performance significantly drops
by 50%, 25% , and 20% under PGM, PGD, and the Jamming
attacks, respectively. The sharp performance decrease will be
visually identified by detectors or human beings. These results
suggest that our proposed SemAdv will not significantly
degrade the reconstruction quality of images and hence are
more imperceptible than PGD and PGM attacks in semantic
communication systems.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

3) SSIM: Figures 6 (f) shows the performance comparisons
in terms of SSIM against jamming attack, PGD, PGM, and
SemAdv respectively on CIFAR10. Here the metric SSIM
measures the similarity between an original image and its
reconstructed one. We find that SSIM slightly drops with our
proposed SemAdv, implying that minor distortions caused
by attacks may not be perceived by human beings or de-
tectors. However, SSIM is very sensitive under jamming,
PGD, and PGM attacks. For example, the average SSIM
is degraded by more than 60% under PGM attacks. The
significant SSIM fluctuation can be noticed by the system.
These comparison results further confirm the superiority of
our proposed SemAdv in generating imperceptible physical-
layer adversaries for semantic communications.

4) Misleading Rate: We also train our attacker to deceive
the receiver to predict all data to a specific class type, i.e., the
6-th class type, which is the dog category in CIFAR10 and
digital image 6 in the MNIST dataset. Then in the testing stage,
we attack our ESC system under various PSR ranging from
-10dB to -2dB. From Figures 6 (h) and (i), we observe that the
misleading rate, which incorrectly predicts the reconstructed
image to the 6-th type, can reach 100% on both two datasets.
The results show that the attacks can be controllable in deep
learning-based semantic communication systems. It should be
noted that the perturbations generated by our SemAdv can
also mislead the system to multiple class types if we train our
generator in such a setting.

In summary, the experimental results confirm that our pro-
posed physical-layer adversarial attacks crafted by SemAdv
are able to meet the four criteria mentioned at the beginning,
which are semantic-oriented, imperceptible, input-agnostic,
and controllable.

F. Adversarial Robustness

In this part, we begin to investigate to what extent different
defense methods secure semantic interpretation and image
reconstructions under various physical adversarial attacks.
We conduct adversarial training (AT) with various defense
strategies including “AT with PGM”, “AT with SemAdv”, and
“AT with ours”, which indicate that learnings are augmented
with PGM perturbations, SemAdv and SemAdv+PGM pertur-
bations, respectively. Then, we attack the semantic commu-
nication system hardened by the above ATs using SemAdv
attacks and PGM attacks, respectively. We set the SNR and
PSR as 10dB and -4dB, respectively. Our proposed defense
strategy based on “SemAdv+PGM” is termed as SemMixed.

It is worth noting that in Section IV-E the SemAdv at-
tacker aims to distort certain targeting semantics without
any knowledge of input data. Differently, in this part, our
SemMixed considers semantic adversaries for all class types
in two AT experiments including “AT with SemAdv” and “AT
with ours”, such that the targeting semantics will be protected
no matter which type of semantics is attacked. Therefore, we
report the results based on the label of each semantic class,
where the labels range from 0 to 9. The intuition is that,
in practice, the semantics that attackers are going to distort
may also be agnostic, and therefore each semantic type is

expected to be hardened against potential adversaries during
AT. Figures 7 and 8 show the comparison results of different
defense mechanisms. We report the performance scores on
each class label for the three datasets, and also give the average
values (the dotted line in the same color) for a more clear
demonstration.

1) Classification Accuracy: Figures 7 (a) and (d), Figures
7 (c) and (f), Figures 8 (a) and (d), Figures 8 (b) and (e),
and Figures 8 (f) show the comparisons in terms of classifica-
tion accuracy under SemAdv and PGM attacks. We observe
that both SemAdv and PGM attackers can severely threaten
to unprotected semantic communications. Augmenting either
PGM or SemAdv separately to training instances can benefit
the system’s robustness. Among the three defenses under
the two attacks, our proposed SemMixed, which randomly
combines SemAdv and PGM during the training procedure,
consistently achieves comparable robustness to the best one
that is specifically trained for a single attack. We also find
that the classification accuracy of MixedAT remains stable
on each semantic class ranging from 0 to 9. Conversely,
the variance of a single defense scheme is much larger on
different class types. The results confirm the effectiveness of
our proposed defense approach in securing the interpretation of
semantics, the central to the success of a deep learning-based
semantic communication system. Equipped with SemMixed,
our MobileSC is able to provide more reliable transmissions
for the safety-critical applications to make inferences based on
semantics.

We see in Figures 7 (a) and (d), and Figures 7 (c) and (f) that
the average classification accuracy with AT on MNIST is able
to reach near 100%, which is comparable to the one without
attacks. While from Figures 8 (a) and (d) on CIFAR10, we
find that system hardened by various ATs still has a 5% gap
to catch up. This is probably because the semantics involved
in CIFAR are much more complex than the ones in MNIST,
and further understanding such a phenomenon would be an
interesting research direction in future work.

2) PSNR and SSIM: Figures 7 (b) and (e), and Figures 8 (c)
demonstrate the comparisons of robustness in terms of PSNR
using the three different defenses. We observe that each AT
benefits the robustness of PSNR, improving the image recon-
struction quality under various adversarial attacks. However,
“AT with only PGM or AT” with SemAdv cannot effectively
defend the SemAdv attacks or PGM attacks, as SemAdv
attacks haven’t been seen by the “AT with PGM” defense,
and PGM attacks are unseen to the “AT with SemAdv”. Our
SemMixed, which is indicated as “AT with Ours”, is able to
defend against the two attacks with competitive PSNR results.
We find that our SemMixed consistently performs best under
two attacks simultaneously on MNIST. These observations
further confirm the merits of our proposed SemMixed in
mitigating the blind spots of the semantic communication
systems, facilitating reliable semantics understanding at the
receiver side.

V. DISCUSSIONS AND CASE STUDY

So far, we have shown the superiority of our proposed
physical-layer adversarial attacks SemAdv and the corre-
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Fig. 8: The comparisons of adversarial robustness for various defenses include “PGM based AT”, “SemAdv based AT”, and
“Our AT” on the CIFAR10 and ImageNet dataset, where the abbreviation AT refers to adversarial training. SNR and PSR
are configured as 10dB and -4dB, respectively. Under SemAdv attacks, (a), (b), and (c) show the comparisons of robustness
in terms of classification accuracy and PSNR. (d), (e) and (f) demonstrate the comparisons under PGM attacks. (f) indicates
classification without reconstructing images.

TABLE III: Comparisons of model size and inference time on
CIFAR10.

Model Number of Parameters Inference time

Our Semantic Encoder 805,464 5.6s (10,000 images)
Our Semantic Decoder 804,955 5.6s (10,000 images)
Mobilenet V2 Encoder 1,476,032 6.2s (10,000 images)
Mobilenet V2 Decoder 1,475,521 6.2s (10,000 images)
JSCC Encoder [29] 2,760,128 6.7s (10,000 images)
JSCC Decoder [29] 2,759,617 6.7s (10,000 images)

sponding defense strategy SemMixed for the robustness of
semantic communications on the three benchmarks. In this sec-
tion, we take a further step to show some more interesting ob-
servations based on comparisons with previous deep learning-
based approaches for content-oriented communications and
conventional block-structure communication systems. We also
visualize each method with a case selected from CIFAR10.

A. Memory and Computation Efficiency

We compare our semantic encoder and semantic decoder
with ones of the prior work JSCC [29] and MobileNet V2
[28]. Table III reports that our proposed semantic encoder
and decoder only need 64% and 40% fewer parameters and
can speed up by 10% compared with the existing encoders
and decoders. We attribute such a significant gain to our
proposed SemBlock. The size of the encoder or decoder is only
about 3.2MB as it only involves about 805, 464 parameters
with an int 32 data type. We believe the mobile device can
afford such a small neural model for deployment. These results

TABLE IV: comparisons of transmission efficiency and recon-
struction performance

System Number of OFDM symbols PSNR SSIM

1/2LDPC+BPSK 76 19.77 0.77
1/2LDPC+QPSK 38 18.31 0.71
1/2LDPC+16QAM 19 13.75 0.48
1/2LDPC+64QAM 9 11.03 0.28

MobileSC 6 25.13 0.85

further confirm our claims that the proposed ESC framework
MobileSC will be more practical for deployment in mobile
devices with limited battery and memory capacity.

B. Comparisons with Conventional Wireless Communications

1) Performance Comparisons: We refer to previous works
[11], [29] to compare our proposed MobileSC system with a
series of conventional block-structure communication systems,
e.g., “1/2LDPC+QPSK” and “1/2LDPC+16QAM”, in terms of
transmission efficiency, PSNR, and SSIM, respectively. We use
JPG2000 [65] for source encoding/decoding and configure the
SNR as 10dB for both two systems for fair comparisons.

Table IV reports the comparison results in terms of the
number of OFDM symbols transmitted for each image, PSNR
and SSIM. Under the same settings, our proposed MobileSC
needs to transmit only 6 OFDM symbols for each image in
CIFAR10. While the number for a classical communication
system can be as high as 76 (“1/2LDPC+QPSK”), which is
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Fig. 9: Comparisons between MobileSC and a classical
communication system.

nearly 12 times larger than the data transmitted by the se-
mantic communication system. Meanwhile, the image quality
recovered by the MobileSC receiver is much better than
the ones on the conventional communication systems, e.g.,
PSNR of MobileSC can be 25.13, which is much higher
than the results of “1/2LDPC+QPSK” (19.77). Although the
conventional system “1/2LDPC+64QAQ” needs to transmit 9
OFDM symbols for an image, which is much smaller than 76,
the corresponding PSNR and SSIM scores (11.03) are much
lower than the ones of “1/2LDPC+BPSK” (19.77). We observe
that the classical system requires a careful trade-off between
the transmission efficiency and the recovered image quality.
However, our MobileSC doesn’t need such a complex trade-
off and is able to achieve much higher PSNR/SSIM scores
with a much smaller number of symbols to transmit. We can
draw a conclusion that our MobileSC is much more efficient
(e.g., 153 times) for image transmissions, at the same time,
more effective for image reconstruction.

2) Robustness Comparisons: Figure 9 compares our pro-
posed MobileSC with a classical wireless communication
system “1/2LDPC+QPSK” in terms of PSNR and SSIM. We
select these two metrics and don’t use the classification accu-
racy, as it is not feasible to add a classifier to a conventional
block-wise system in such a setting. We show the robustness
of the two systems under various settings, e.g., “no attack”
and “under SemAdv attack”. Some interesting observations
are given as follows.
• Without physical adversarial attacks, the PSNR and

SSIM scores of our MobileSC (the color orange, “No-
defense”) are much higher in the relatively low SRN
regime (≤ 10dB) and comparable in the relatively high
SNR regime compared with the classical communication
system (color blue, “1/2LDPC+QPSK”). The rationale
behind this is that MobileSC is able to reconstruct high-
quality images with powerful DNN. The comparisons
demonstrate the superiority of semantic communications
in image reconstruction over noised wireless channels.

• Our MobileSC can even perform better under adver-
sarial attacks, compared with “1/2LDPC+QPSK” with
the natural noise. We only consider the natural noise
measured by SNR for “1/2LDPC+QPSK” as the concept

PGM

Jamming

No-attack

PGD

Ours

Fig. 10: Case study on CIFAR10 under various attacks.

of adversaries is not applicable in conventional block-
structure wireless communications. These results show
that our semantic communication system can be more
robust under attacks.

• We use “No-defense (under SemAdv attacks)” and “AT-
defense (under SemAdv attacks)” to denote the original
MobileSC system and the reinforced system based on
our proposed adversarial training method SemMixed.
We find that adversarial training benefits the robustness
of MobileSC under physical semantic attacks in var-
ious SNR regimes, although AT is unable to provide
further image quality improvement measured by PSNR
and SSIM.

From the above observations, we are able to conclude that
our MobileSC can be more robust than the conventional
block-wise communication systems, showing great potential
for the practical deployment of semantic communications in
the future.

C. Case Study
We visualize a case study on CIFAR10 to demonstrate

the effect of each attack on image reconstruction on our
proposed semantic communication systems. Figure 10 shows
the visualizations on CIFAR10. The reconstruction quality we
are able to perceive from the image is closely related to two
metrics PSNR and SSIM as discussed in Figure 6. We observe
that the distortions caused by the Jamming attack and our
method are comparable. This aligns with our findings based
on quantitative results in Figures 6 (f). Under SemAdv attacks,
we are still able to identify a bird after reconstruction, even
if the targeting semantics of the attacks belong to the ”bird”
category. Conversely, PGD and PGM attacks are able to bring
obviously distortions, and we can hardly recognize the content.
The visualizations illustrate that our attacks are much more
imperceptible compared with PGD and PGM attacks. We can
draw a conclusion that our SemAdv attacks can be treated as
the Gaussian noise if we measure the reconstruction quality
based on PSNR and SSIM.

VI. CONCLUSION

This paper studies the physical-layer adversarial robust-
ness of deep learning-based semantic communication sys-
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tems. We first present a semantic communication framework
MobileSC, which considers computation constraints and
energy efficiency over the wireless environment, showing great
potential for practical deployment in real-world scenarios.
Equipped with such a framework, we then propose a novel
physical adversarial attacker SemAdv that can craft seman-
tic adversarial perturbations over wireless channels. Unlike
the previous works, the distortions generated by SemAdv
are semantic-oriented, imperceptible, input-agnostic, and con-
trollable, better characterizing the real-world effects. Based
on such perturbations, we then conduct adversarial training
to harden the system’s robustness against semantic attacks.
Experiments on three popular datasets show the effectiveness
of our proposed methods in terms of classification accuracy,
PSNR, and SSIM, as well as a novel metric misleading rate
that is proposed for the robustness evaluation of the ESC
system. In the discussion section, we also show that our
MobileSC can even be more robust than classical block-wise
communication systems in the low SNR regime.
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