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Abstract—A revolutionary technology relying on Stacked Intel-
ligent Metasurfaces (SIM) is capable of carrying out advanced
signal processing directly in the native electromagnetic (EM)
wave regime. An SIM is fabricated by a sophisticated amalgam
of multiple stacked metasurface layers, which may outperform
its single-layer metasurface counterparts, such as reconfigurable
intelligent surfaces (RIS) and metasurface lenses. We harness this
new SIM for implementing holographic multiple-input multiple-
output (HMIMO) communications without requiring excessive
radio-frequency (RF) chains, which is a substantial benefit
compared to existing implementations. First of all, we propose
an HMIMO communication system based on a pair of SIM at
the transmitter (TX) and receiver (RX), respectively. In sharp
contrast to the conventional MIMO designs, SIM is capable
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of automatically accomplishing transmit precoding and receiver
combining, as the EM waves propagate through them. As such,
each spatial stream can be directly radiated and recovered
from the corresponding transmit and receive port. Secondly,
we formulate the problem of minimizing the error between
the actual end-to-end channel matrix and the target diagonal
one, representing a flawless interference-free system of parallel
subchannels. This is achieved by jointly optimizing the phase
shifts associated with all the metasurface layers of both the TX-
SIM and RX-SIM. We then design a gradient descent algorithm
to solve the resultant non-convex problem. Furthermore, we
theoretically analyze the HMIMO channel capacity bound and
provide some fundamental insights. Finally, extensive simulation
results are provided for characterizing our SIM-aided HMIMO
system, which quantifies its substantial performance benefits, e.g.,
150% capacity improvement over both conventional MIMO and
its RIS-aided counterparts.

Index Terms—Stacked intelligent metasurfaces (SIM), holo-
graphic MIMO (HMIMO), reconfigurable intelligent surface
(RIS), 3D integrated metasurfaces, wave-based computing.

I. INTRODUCTION

W ITH the completion of the 3GPP Release 17, it is
high time for both the industry and academia to begin

conceptualizing the sixth-generation (6G) cellular networks
[1]. The wireless network evolution has been primarily mo-
tivated by the pursuit of higher data rates and wider device
connectivity. While this demand will continue to increase,
the explosive proliferation of the Internet-of-Everything (IoE),
ranging from extended reality to interconnected autonomous
systems, is driving a fundamental paradigm shift [2]. It is
envisaged that by 2030 the number of connected devices will
reach 500 billion, according to Cisco’s annual report [3]. To
support these heterogeneous IoE services imposing extreme
specifications, 6G wireless networks are expected to integrate
communication, sensing, computing, and control capabilities,
while drastically improving data rates, latency, and connec-
tivity [4]. As such, 6G will undergo a revolutionary trans-
formation by flexibly orchestrating both physical and virtual
resources in support of these heterogeneous IoE scenarios and
by harnessing sophisticated disruptive techniques, including
artificial intelligence (AI) [5], satellite communications [6],
and programmable metasurfaces [7], to name just a few.

A. Related Technologies

We commence by reviewing a pair of 6G enabling tech-
niques, namely, reconfigurable intelligent surfaces (RIS) and
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holographic multiple-input multiple-output (HMIMO) commu-
nications.

1) Reconfigurable Intelligent Surfaces (RIS): The emerg-
ing metasurface technology was shown to be able to shape
smart reconfigurable environments [7]–[11]. Specifically, a
programmable metasurface is composed of a large number
of low-cost passive reflecting elements, which are capable
of manipulating the electromagnetic (EM) behavior of radio
waves, allowing for proactive customization of the wireless
propagation environment [12], [13]. By employing a RIS,
Huang et al. [14] substantially boosted the energy efficiency of
the downlink in multiuser multiple-input single-output (MISO)
communication systems compared to the conventional relaying
solutions. Following this, a great deal of research has sprouted
up by investigating the effects of realistic hardware imperfec-
tions [15], optimizing the phase shifts based on the statistical
channel state information (CSI) [16], [17], and enhancing the
quality-of-service (QoS) [18]–[20] in RIS-assisted communi-
cation systems, etc. However, the encouraging performance
benefits of these RIS solutions rely on the availability of
accurate CSI, which generally requires excessive pilot over-
head for acquisition [21]. To address this issue, An et al.
[12] designed a codebook-based framework for RIS-assisted
MIMO systems. Thus, the composite channel estimation and
transmit beamforming design in the conventional protocol can
be directly applied, while simplifying the reflection coefficient
optimization by selecting the best entry from the designed
reflection coefficient codebook [22]. This codebook-based
solution is appealingly scalable and exhibits strong robustness
against hardware imperfections [12], [22].

2) Holographic MIMO (HMIMO): Over the past decade,
the massive MIMO technique has become one of the most
crucial enablers for increasing wireless capacity [23]. Ex-
plicitly, massive MIMO is capable of focusing energy into
a smaller spatial region, thus attaining huge improvements in
both spectral and energy efficiency [24]. Furthermore, massive
MIMO also has the benefits such as inexpensive low-power
components, reduced latency, simplified protocol design, and
robustness against jamming [23]. As the 6G research is ramp-
ing up, a natural question arises – what will the next-generation
MIMO be like? Recently, the innovative concept of HMIMO
has emerged [25]–[27]. Specifically, by employing a large
intelligent surface (LIS) constructed of an electromagnetically
active material integrating a massive number of radiating
and sensing elements, impressive improvements are expected
[28]. Furthermore, Dardari [29] demonstrated that LIS-aided
solutions are capable of improving the spatial multiplexing
gain even in strong line-of-sight (LoS) propagation conditions.
To characterize the fundamental capacity limits of HMIMO
communications, Pizzo et al. [30] established a mathematically
tractable channel model by considering the small-scale fading
in the far-field as a spatially correlated random Gaussian field,
while being consistent with the scalar Helmholtz equation.
The same authors then developed a Fourier plane-wave series-
based expansion of the HMIMO channel response for ar-
bitrary scattering environments [31]. Following this, Demir
et al. [32] conceived a novel channel estimation scheme by
leveraging the specific array geometry for identifying a low-

dimensional common subspace for arbitrary spatial correlation
matrices. Moreover, Hu et al. [33] studied the family of dis-
crete amplitude-controlled holographic beamformers with the
specific objective of satisfying a given sum-rate requirement,
while multi-user HMIMO systems were investigated in [34],
[35].

B. Motivation

Recently, a novel technology relying on stacked intelligent
metasurfaces (SIM) has emerged by cascading multiple meta-
surfaces1 [36], [37], [41], which is capable of implementing
signal processing in the EM wave regime. In this paper,
we integrate SIMs with the transceivers to support HMIMO
communications. Before proceeding, we first elaborate on our
motivation by answering the question – why do we need SIM?
– from the following three perspectives:

1) The existing research on HMIMO communications is still
in its infancy and lacks practical implementations. Since
integrating an abundance of expensive active elements at
the transceiver is an impractical option, recent research
efforts focus on implementing HMIMO communications
by employing programmable metasurfaces [25], [26].
However, their performance remains limited by practical
hardware constraints, such as the tunable amplitude/phase
associated with each meta-atom of a single-layer metasur-
face. As a remedy, a multilayer metasurface architecture
might be beneficial for improving both the spatial-domain
gain and the design degrees-of-freedom, thus flexibly
forming diverse radio frequency (RF) waveforms com-
pared to its single-layer counterparts.

2) Although integrating RIS into existing wireless networks
has been numerically shown to improve both the spectral
and energy efficiency in various scenarios [14], [15],
[42], there are still stumbling blocks in the way of
practical deployments of RIS. On one hand, the two-
hop multiplicative path loss coefficient severely impacts
the resultant performance [43]. Indeed, Wu et al. [15]
have demonstrated that RISs should be deployed near
the transceiver for reducing path loss. As a further im-
pediment, the widespread RIS deployment significantly
increases the burden of media access control (MAC)
optimization, including both resource allocation and mul-
tiple access [44]. The joint optimization of coexisting
distributed active and passive nodes in wireless networks
also increases the computational burden and control
signaling overhead. Hence, we embark on investigating
HMIMO communications by intrinsically integrating pro-
grammable metasurfaces with the transceiver.

3) Over the past decade, we have witnessed the rise of the
deep learning (DL) techniques. Although DL has been
widely utilized for improving the performance of wireless
networks, the implementation of DL relies essentially on
a central processing unit (CPU) or a graphical processing

1Note that a range of other terminologies having a similar multilayer struc-
ture were also used in different research communities, such as programmable
AI machine [36], stacked metasurface slab [37], 3D integrated metasurface
device [38], cascaded metasurfaces [39], and multilayer metasurfaces [40].
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unit (GPU) [45]. Explicitly, DL is merely a computing
architecture, whose processing speed is fundamentally
constrained by the specific CPU/GPU utilized. To further
improve computational efficiency and reduce power con-
sumption, a novel wave-based computing paradigm has
recently enjoyed much research attention [46]. Specifi-
cally, by constructing a diffractive neural network having
a well-designed multilayer structure, the computational
tasks can be performed on the profile of the EM wave
by leveraging the amplitude/phase information [47]. By
fully harnessing the benefits of this wave-based comput-
ing paradigm, it becomes possible to perform massively
parallel signal processing in the native EM wave regime,
where the forward propagation within the diffractive
neural network can be realized at the speed of light.

C. Contributions

Motivated by the aforementioned observations, in this paper,
we present an SIM-aided HMIMO communication system.
Specifically, the main contributions of this paper are summa-
rized as follows:

1) We establish a novel HMIMO framework by harnessing
an SIM at the transmitter (TX) and another one at the
receiver (RX) for achieving substantial spatial gains.
Furthermore, one could directly perform the designed
precoding and combining in the native EM wave regime,
while reducing the number of RF chains, as a benefit of
the large metasurface aperture.

2) We formulate the channel fitting problem of approximat-
ing an end-to-end diagonal channel matrix by optimizing
the phase shifts associated with the different metasurface
layers. This allows each spatial stream to be radiated
and recovered independently at the corresponding trans-
mit and receive ports, thus effectively creating a set
of interference-free parallel subchannels. By taking into
account the constant-modulus constraint and the coupled
variables in the objective function, we then propose an
efficient gradient descent algorithm for iteratively solving
the resultant non-convex problem.

3) We theoretically analyze the HMIMO channel capacity.
Since it is non-trivial to derive the closed-form capacity
expression, we provide both an upper and lower bound
of the HMIMO capacity by assuming that all the spatial
streams experience the best and worst sub-channel qual-
ity, respectively. Furthermore, we provide fundamental
insights into the scaling law of the HMIMO channel
capacity versus the number of data streams and meta-
atoms.

4) Our extensive results demonstrate the benefits of the
SIM-aided HMIMO framework conceived as well as
the accuracy of our analytical results. We also quantify
the channel fitting performance as well as the channel
capacity attained under various setups, shedding light
on the optimal SIM design. Additionally, we verify the
substantial performance improvements attained compared
to the conventional MIMO schemes as well as to their
RIS-aided counterparts.

D. Organization

The rest of this paper is organized as follows. In Section II,
we introduce the general SIM-assisted HMIMO system model,
which encompasses the SIM structure and spatially-correlated
HMIMO channel model. Following this, we formulate the
aforementioned channel fitting problem in Section III-A and
propose an efficient algorithm to address the optimization
problem in Section III-B. Moreover, we analyze the HMIMO
channel capacity and computational complexity of the pro-
posed algorithm in Section IV. Finally, our numerical results
are provided in Section V before concluding the paper in
Section VI.

E. Notations

We adopt bold lowercase and uppercase letters to de-
note vectors and matrices, respectively; (·)∗, (·)T , and (·)H
represent the conjugate, transpose, and Hermitian transpose,
respectively; |c|, ℜ (c), and ℑ (c) refer to the magnitude,
real part, and imaginary part, respectively, of a complex
number c; ∥·∥F is the Frobenius norm; E (·) stands for the
expectation operation; loga (·) is the logarithmic function
with base a, while ln (·) is the natural logarithm; diag (v)
produces a diagonal matrix with the elements of v on the
main diagonal; S1/2 denotes the square root of a square
matrix S; vec (M) denotes the vectorization of a matrix M;
Ma:b, :, M:, c:d, Ma:b, c:d represent the matrices constructed
by extracting a-to-b-th rows, c-to-d-th columns, as well as
both a-to-b-th rows and c-to-d-th columns, respectively, of the
matrix M; sinc (x) = sin (πx) / (πx) is the sinc function;
Cx×y represents the space of x× y complex-valued matrices;
⌈x⌉ refers to the nearest integer greater than or equal to x;
mod (x, n) returns the remainder after division of x by n;
∂f/∂x means the partial derivative of a function f with respect
to (w.r.t.) the variable x; 0 and 1 denote all-zero and all-
one vectors, respectively, with appropriate dimensions, while
IN ∈ CN×N denotes the identity matrix; the distribution
of a circularly symmetric complex Gaussian (CSCG) random
vector with mean vector µ and covariance matrix Σ ⪰ 0 is
denoted by ∼ CN (µ,Σ), where ∼ stands for “distributed as”.

II. THE PROPOSED SIM-AIDED HMIMO SYSTEM MODEL

In this section, we present the holistic system model of
our SIM-aided HMIMO. Specifically, we first introduce the
proposed TX/RX-SIM design and then elaborate on the spa-
tially correlated HMIMO channel model based on the recent
consolidated efforts [32]. Finally, we discuss the optimal
transmission regime of the HMIMO channel, given a limited
number of streams.

A. Proposed SIM Design

Before proceeding, let us briefly review the conventional
MIMO scheme illustrated in Fig. 1(a), where multiple data
streams are first precoded and then fed to the corresponding
transmit antennas. At the output of the wireless channel,
receiver combining is adopted for recovering the different
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Fig. 1. Transmission comparison of conventional MIMO and SIM-aided HMIMO.

spatial streams. As a consequence, multiple parallel subchan-
nels are constructed in the eigenspace [48], benefiting from
the precoding and combining at the transmitter and receiver,
respectively.

Next, we consider the SIM-assisted HMIMO system shown
in Fig. 1(b). In sharp contrast to the conventional MIMO
systems having only active antennas, an SIM is integrated
with both the TX and RX for enhancing the QoS2. Specif-
ically, a TX/RX-SIM is a closed vacuum container having
several stacked metasurface layers [36]. Each metasurface is
comprised of a large number of meta-atoms [49], which are
connected to a smart controller, e.g., a field programmable
gate array (FPGA) board. By appropriately tuning the drive
level of the control circuit associated with each meta-atom,
the system becomes capable of manipulating the EM behavior
of the penetrating wave and thus producing a customized
spatial waveform shape at the output of the metasurface layer.
Moreover, by compactly arranging a large number of meta-
atoms on the output metasurface of the TX-SIM as well as on
the input metasurface of the RX-SIM, the desired information-
bearing EM waves can be radiated from almost the entire
surface into the ether and then collected in the same way. As
such, both the TX-SIM and RX-SIM interact with the wireless

2Although in this paper we only consider the point-to-point HMIMO
scenario, our SIM can also be utilized to perform the zero-forcing (ZF)
precoding and combining for supporting multiuser HMIMO communications
[34], [35]. The specific design is beyond the scope of this paper and reserved
for our future research.

channel in an almost continuous manner, thus supporting
low-latency HMIMO communications. Specifically, the TX-
SIM undertakes the precoding task, casting the appropriate
information-bearing EM wave into the ether, while the RX-
SIM efficiently combines the impinging EM wave on the input
surface for signal recovery. As a result, we are able to establish
multiple parallel subchannels in the physical space, and the
corresponding multiple data streams can be directly radiated
and recovered from the associated transmit and receive anten-
nas, respectively, without imposing any interference.

Remark 1: Here we elaborate on three benefits of the
proposed SIM-assisted HMIMO transmission paradigm as
compared to its conventional counterpart [48]. Firstly, the
conventional MIMO design requires a large number of active
components to achieve spatial gains, thus resulting in high
hardware costs and energy consumption. By contrast, the SIM-
aided HMIMO utilizes low-cost metasurfaces for gleaning
spatial gains, which substantially reduces the number of active
RF chains required. Secondly, the conventional MIMO trans-
mission solution relies on high-precision power-thirsty digital-
to-analog converters (DAC) and analog-to-digital converters
(ADC). Instead, the TX/RX-SIM creates multiple parallel
subchannels in the physical space, enabling each data stream
to be individually processed by low-precision power-efficient
DACs/ADCs. For example, 1-bit resolution may be used for
binary phase shift keying (BPSK) without unduly compro-
mising its communication performance. Thirdly, due to using
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Fig. 2. Detailed schematic of the SIM-aided HMIMO system of Fig. 1(b).

precoding and combining in the wave domain, the power
consumption of signal processing is significantly reduced. As
such, the SIM substantially reduces the overall energy con-
sumption compared to conventional digital transceiver designs
[36]. Nevertheless, a quantitative evaluation of the energy
efficiency of the proposed SIM relying on passive metasurfaces
requires an accurate energy consumption model, as well as
an accurate transmission model for characterizing the wave
propagation between adjacent metasurfaces, both of which
require further investigation.

Explicitly, Fig. 2 shows a detailed schematic of the SIM-
aided HMIMO system relying on wave-based precoding and
combining. Let S and S = {1, 2, · · · , S} denote the num-
ber of data streams and the corresponding set, respectively.
Moreover, L and K denote the number of metasurface layers
at the transmitter and the receiver, respectively, while their
corresponding sets are represented by L = {1, 2, · · · , L} and
K = {1, 2, · · · ,K}. For notational convenience, we assume
that the number of meta-atoms on each metasurface layer
of the TX-SIM is identical and so is for the RX-SIM of
Fig. 2. Specifically, let M and N denote the number of
meta-atoms on each metasurface layer associated with the
TX-SIM and the RX-SIM, respectively, satisfying M ≥ S
and N ≥ S, while representing the corresponding set as
M = {1, 2, · · · ,M} and N = {1, 2, · · · , N}. Moreover, let
ϕlm = ejθ

l
m denote the transmission coefficient imposed by the

m-th meta-atom on the l-th transmit metasurface layer with θlm
representing the corresponding phase shift, which we assume
that it can be continuously adjusted in the interval between
0 and 2π, i.e., θlm ∈ [0, 2π) , m ∈ M, l ∈ L. Thus, the
transmission coefficient vector of the l-th transmit metasurface

layer and its corresponding matrix version are denoted by
ϕl =

[
ϕl1, ϕ

l
2, · · · , ϕlM

]T ∈ CM×1 and Φl = diag
(
ϕl
)
∈

CM×M , respectively. Similarly, let ψkn = ejξ
k
n denote the

transmission coefficient imposed by the n-th meta-atom on the
k-th receive metasurface layer, where ξkn represents the corre-
sponding phase shift satisfying ξkn ∈ [0, 2π) , n ∈ N , k ∈ K.
Then, the transmission coefficient vector of the k-th receive
metasurface layer and its corresponding matrix version are
respectively denoted by ψk =

[
ψk1 , ψ

k
2 , · · · , ψkN

]T ∈ CN×1

and Ψk = diag
(
ψk
)
∈ CN×N .

Furthermore, we assume that all the metasurface layers
rely on an isomorphic lattice arrangement [36], while each
metasurface is modeled as a uniform planar array. Specifically,
the element spacing between the m̃-th meta-atom and the m-th
one on the same transmit metasurface and that between the n-
th meta-atom and the ñ-th one on the same receive metasurface
can be expressed as

rm,m̃ = re,t

√
(mz − m̃z)

2
+ (mx − m̃x)

2
, (1)

tñ,n = te,r

√
(ñz − nz)2 + (ñx − nx)2, (2)

respectively, where re,t and te,r denote the element spacing be-
tween adjacent meta-atoms on the same transmit metasurface
and that on the same receive metasurface, respectively (see Fig.
2). Additionally, mz and mx denote the indices of the m-th
meta-atom along the z-axis and the x-axis, respectively, while
nz and nx denote the indices of the n-th meta-atom along the
z-axis and the x-axis, respectively, which are defined by

mz = ⌈m/mmax⌉ , mx = mod (m− 1,mmax) + 1, (3)
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r1m,s =

√[(
mz −

mmax + 1

2

)
re,t −

(
s− S + 1

2

)
λ

2

]2
+

(
mx −

mmax + 1

2

)2

r2e,t + d2t , (7)

t1s,n =

√[(
nz −

nmax + 1

2

)
te,r −

(
s− S + 1

2

)
λ

2

]2
+

(
nx −

nmax + 1

2

)2

t2e,r + d2r. (8)

nz = ⌈n/nmax⌉ , nx = mod (n− 1, nmax) + 1, (4)

respectively, with mmax and nmax denoting the maximum
number of meta-atoms on each row of the transmit metasurface
and that of the receive metasurface, respectively, as shown in
Fig. 2. Throughout this paper, we consider square metasurface
arrays associated with M = m2

max and N = n2max.
Let us now consider the transmission process between the

adjacent metasurface layers. For the sake of simplicity, we
assume that all the metasurface layers are parallel and have
uniform spacing, as shown in Fig. 2. Specifically, let dt and
dr denote the spacing between any two adjacent metasurface
layers in the TX-SIM and that in the RX-SIM, respectively,
while Dt and Dr represent the thickness of the TX-SIM and
RX-SIM, respectively. Thus we have dt = Dt/L and dr =
Dr/K. As a result, the transmission distance from the m̃-th
meta-atom on the (l − 1)-st transmit metasurface to the m-th
one on the l-th transmit metasurface and that from the n-th
meta-atom of the k-th receive metasurface to the ñ-th one on
the (k − 1)-st receive metasurface are

rlm,m̃ =
√
r2m,m̃ + d2t , l ∈ L/ {1} , (5)

tkñ,n =
√
t2ñ,n + d2r, k ∈ K/ {1} , (6)

respectively.
Next, we consider the transmission process from the trans-

mit antenna array to the input metasurface of the TX-SIM and
that from the output metasurface of the RX-SIM to the receive
antenna array. The transmit and receive antennas are both
arranged in a uniform linear array, with the element spacing
of half-wavelength, i.e., λ/2, and the array centers aligned
with those of all metasurfaces. By doing so, the transmission
distance from the s-th source to the m-th meta-atom on the
input metasurface of the TX-SIM and that from the n-th meta-
atom on the output metasurface of the RX-SIM to the s-th
destination is given by (7) and (8), respectively, as shown at
the top of this page.

According to the Rayleigh-Sommerfeld diffraction theory
[46], the transmission coefficient from the m̃-th meta-atom on
the (l − 1)-st transmit metasurface layer to the m-th meta-
atom on the l-th transmit metasurface layer is expressed by

wlm,m̃ =
At cosχ

l
m,m̃

rlm,m̃

(
1

2πrlm,m̃
− j 1

λ

)
ej2πr

l
m,m̃/λ, l ∈ L,

(9)

where rlm,m̃ denotes the corresponding transmission distance,
At is the area of each meta-atom in the TX-SIM, while χlm,m̃
represents the angle between the propagation direction and
the normal direction of the (l − 1)-th transmit metasurface

layer. Let Wl ∈ CM×M , l ∈ L/ {1} denote the transmission
coefficient matrix between the (l − 1)-st transmit metasurface
layer and the l-th transmit metasurface layer. In particular, the
transmission coefficient matrix from the transmit antenna array
to the input metasurface layer of the TX-SIM is represented
by W1 ∈ CM×S . Thus, the effect of the TX-SIM in Fig. 2 is
formulated by

P = ΦLWL · · ·Φ2W2Φ1W1 ∈ CM×S . (10)

Moreover, the transmission coefficient from the n-th meta-
atom on the k-th receive metasurface layer to the ñ-th meta-
atom on the (k − 1)-st receive metasurface layer is expressed
by [46]

ukñ,n =
Ar cos ς

k
ñ,n

tkñ,n

(
1

2πtkñ,n
− j 1

λ

)
ej2πt

k
ñ,n/λ, k ∈ K,

(11)

where tkñ,n denotes the corresponding transmission distance,
Ar is the area of each meta-atom in the RX-SIM, while ςkñ,n
represents the angle between the propagation direction and the
normal direction of the (k − 1)-th receive metasurface layer.
Let Uk ∈ CN×N , k ∈ K/ {1} represent the transmission
coefficient matrix between the k-th receive metasurface layer
to the (k − 1)-st receive metasurface layer, while the trans-
mission coefficient matrix from the output metasurface layer
of the RX-SIM to the receive antenna array is denoted by
U1 ∈ CS×N . Hence, the effect of the RX-SIM in Fig. 2 is
represented by

Q = U1Ψ1U2Ψ2 · · ·UKΨK ∈ CS×N . (12)

Remark 2: In order to maximize the energy efficiency and
characterize the performance of SIM-aided HMIMO commu-
nications, we have applied the constant modulus constraint and
assumed continuously-adjustable phase shifts for the transmis-
sion coefficients associated with each meta-atom [50]. While
the tuning precision in practice is typically proportional to the
hardware costs, the low-resolution meta-atoms may be used
in practical SIM design. The specific SIM optimization and
the resultant performance analysis taking into account these
hardware constraints such as realistic discrete phase shifts
[36], adjustable magnitudes [8], as well as coupled phase and
magnitude tuning mechanisms [7] deserve future exploration.

Remark 3: It should be noted that the transmission coeffi-
cients between adjacent metasurface layers may deviate from
those specified in (9) and (11) due to the existence of practical
hardware imperfections, irreversible fabrication shortcomings,
as well as innate modeling errors [36]. Hence, it may be
necessary to calibrate these transmission coefficients before
the SIM’s practical deployment, which can be carried out
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separately for each individual SIM. One effective method is to
transmit a known excitation signal and measure the response at
the receive panel, and then update the transmission coefficients
by employing the classic error back-propagation algorithm
[45]. As an initial exploration of the precoding and combining
capability of SIM, the specific calibrate process is beyond the
scope of this paper and reserved for our future research.

B. Spatially-Correlated HMIMO Channel Model

Next, let us consider the HMIMO channel model between
the TX-SIM and the RX-SIM, where the most prominent prop-
erty is the spatial correlation among the tightly packed meta-
atoms. Specifically, the spatially-correlated HMIMO channel
spanning from the output metasurface of the TX-SIM to the
input metasurface of the RX-SIM is written by [33]

G = R
1/2
Rx G̃R

1/2
Tx ∈ CN×M , (13)

where G̃ ∈ CN×M is the independent and identically
distributed (i.i.d.) Rayleigh fading channel, i.e., G̃ ∼
CN

(
0, ρ2IN ⊗ IM

)
with ρ2 denoting the average path loss

between the pair of wireless transceivers, while RTx ∈ CM×M

and RRx ∈ CN×N represent the spatial correlation matrix
at the TX-SIM and that at the RX-SIM, respectively. By
considering far-field propagation in an isotropic scattering
environment [30], [51], the spatial correlation matrix at the
TX-SIM and that at the RX-SIM can be expressed by [32]

[RTx]m,m̃ = sinc (2rm,m̃/λ) , m̃ ∈M, m ∈M, (14)

[RRx]ñ,n = sinc (2tñ,n/λ) , n ∈ N , ñ ∈ N , (15)

respectively.
Moreover, the path loss between the transmitter and the

receiver is modeled by [52]

PL (d) = PL (d0) + 10b log10

(
d

d0

)
+Xδ, d ≥ d0, (16)

where PL (d0) = 20 log10 (4πd0/λ) dB is the free space path
loss at the reference distance d0, b represents the path loss
exponent, Xδ is a zero mean Gaussian random variable with
a standard deviation δ, characterizing the large-scale signal
fluctuations of shadow fading.

Remark 4: Note that the spatial correlation matrix highly
depends on the scattering environments surrounding both the
transmitter and the receiver. Therefore, it is generally unre-
alistic to derive a universal spatially-correlated fading model
that can be applied to all practical communication scenarios.
Motivated readers are referred to [30]–[32] and references
therein for gaining further insights concerning the channel
models for HMIMO systems that are derived from the intrinsic
EM propagation properties.

C. SIM-Aided HMIMO Channel Capacity with Limited Num-
ber of Streams

In this subsection, we will consider both the HMIMO
channel capacity as well as the optimal transmission given a
limited number of data streams. Specifically, given the wireless
channel G and the fixed number of data streams S, the optimal

HMIMO transmission is achieved by applying the truncated
singular value decomposition (SVD) policy [12]. The detailed
procedures are outlined as follows:

1: First of all, we perform the SVD of G so that G =
EΛFH , where we have Λ = diag (λ1, λ2, · · · , λO) and
O = min (M,N), while λ1 ≥ λ2 ≥ · · · ≥ λO denoting
the singular values in non-increasing order.

2: Next, by spreading the data streams using a transmit
precoder P = F:,1:S ∈ CM×S and collecting the spatial
signals using a receive combiner Q = EH:,1:S ∈ CS×N ,
the resultant end-to-end channel becomes the following
diagonal matrix

H = QGP = Λ1:S,1:S ∈ CS×S , (17)

with Λ1:S,1:S being the S-th order leading principal
minor of Λ.

3: Furthermore, in order to maximize the channel capacity,
the optimal power allocation coefficients can be obtained
by applying the well-known water-filling algorithm [20].
Specifically, the amount of power allocated to the s-th
data stream is determined as

ps = max

(
0, τ − σ2

λ2s

)
, s ∈ S, (18)

where τ is a threshold value satisfying the total transmit
power constraint, i.e.,

∑S
s=1 ps = Pt with Pt denoting

the total available power at the transmitter, which can
be obtained by utilizing the bisection method, while σ2

represents the average noise power at the receiver.
4: Therefore, the HMIMO channel capacity for a finite

number of data streams is given by

C =

S∑
s=1

log2

(
1 +

psλ
2
s

σ2

)
. (19)

Next, let us get back to our SIM-aided HMIMO communica-
tion system shown in Fig. 2. In sharp contrast to conventional
MIMO designs constructing multiple virtual streams in the
eigenspace by employing the appropriate digital precoding and
combining, we endeavor to naturally form multiple parallel
physical subchannels between the transmit antennas and their
corresponding receive antennas. Explicitly, the precoding and
combining are implemented in the EM wave regime by opti-
mizing the TX-SIM and RX-SIM as follows

F:,1:S ≃ ΦLWL · · ·Φ2W2Φ1W1, (20)

EH:,1:S ≃ U1Ψ1U2Ψ2 · · ·UKΨK . (21)

Thus, one might be able to construct an end-to-end diagonal
channel H, such that multiple data streams can be directly
radiated and recovered, respectively, from the corresponding
transmit and receive antennas. In a nutshell, SIM not only
reaps spatial gains benefiting from the massive number of
meta-atoms on the metasurface layer but performs the precod-
ing and combining at the speed of light, thanks to its direct
wave-based computing capability attained by the multilayer
structure.
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III. PROBLEM FORMULATION AND SOLUTION OF JOINT
OPTIMIZING TX-SIM AND RX-SIM

A. Problem Formulation

In this subsection, we formulate the problem of minimizing
the error between the end-to-end channel of H = QGP and
the expected diagonal matrix Λ1:S,1:S by optimizing the phase
shifts of the TX-SIM and RX-SIM in Fig. 2. We adopt the
Frobenius norm to characterize the fitting error of the desired
channel fitting problem [53]. Specifically, the optimization
problem is formulated as3

minimize
ϕl
m, ψ

k
n, α

Γ = ∥αQGP−Λ1:S,1:S∥2F (22a)

subject to P = ΦLWL · · ·Φ2W2Φ1W1, (22b)

Q = U1Ψ1U2Ψ2 · · ·UKΨK , (22c)

Φl = diag
([
ϕl1, ϕ

l
2, · · · , ϕlM

]T)
, l ∈ L, (22d)

Ψk = diag
([
ψk1 , ψ

k
2 , · · · , ψkN

]T)
, k ∈ K, (22e)∣∣ϕlm∣∣ = 1, m ∈M, l ∈ L, (22f)∣∣ψkn∣∣ = 1, n ∈ N , k ∈ K, (22g)

α ∈ C, (22h)

where α is a scaling factor compensated by SIM.
Remark 5: Our objective is to evaluate the signal processing

capability of SIM having multiple stacked metasurface layers.
As such, we have assumed that the TX-SIM and RX-SIM of
Fig. 2 compensate for an adaptive gain α, as seen in (22a).
Although this assumption might seem somewhat simplified, it
is reasonable due to the fact that conventional precoding and
combining architectures relying on digital signal processing
result in additional hardware costs and energy consumption.
Thus, a fair performance comparison between these two
paradigms requires special attention under the same resource
consumption. Since the energy consumption of our proposed
SIM is unexplored, it poses an open challenge in conducting
a fair performance comparison.

Note that due to the non-convex constant modulus constraint
on each transmission coefficient, i.e., (22f) and (22g), as well
as the highly coupled variables in the objective function, i.e.,
(22a), it is non-trivial to obtain the optimal solution of Problem
(22). As such, in Section III-B, we will provide an efficient
algorithm for solving the channel fitting problem iteratively.

B. The Proposed Gradient Descent Algorithm

In this section, an efficient gradient descent algorithm is
proposed for solving the challenging Problem (22). To ensure
compliance with the constant modulus constraints, i.e., (22f)
and (22g), our gradient descent algorithm is implemented by
deriving the partial derivative w.r.t. the phase shifts. As such,
the constant modulus constraints can be guaranteed throughout
the iteration process. The detailed steps of the iteration core

3Note that although the formulated problem seems to have a similar
form to that in hybrid beamforming, e.g., [53], they are fundamentally
different because the proposed SIM-assisted HMIMO fully removes the digital
precoding and combining by utilizing the multilayer metasurface structure,
while imposing the phase shifts in the wave regime.

of the proposed gradient descent algorithm are summarized as
follows.

Step 1: Calculate the partial derivatives
First, the partial derivatives of the loss function Γ w.r.t. the

m-th phase shift θlm of the l-th transmit metasurface layer
and that w.r.t. the n-th phase shift ξkn of the k-th receive
metasurface layer are respectively given by

∂Γ

∂θlm
= 2

S∑
s=1

S∑
s̃=1

ℑ
[(
αϕlmx

l
m,s,s̃

)∗
(αhs,s̃ − λs,s̃)

]
, (23)

∂Γ

∂ξkn
= 2

S∑
s=1

S∑
s̃=1

ℑ
[(
αψkny

k
n,s,s̃

)∗
(αhs,s̃ − λs,s̃)

]
, (24)

where hs,s̃ and λs,s̃ denote the entries located at the s-th row
and the s̃-th column of the matrix H = QGP and that of
the matrix Λ, respectively; while xlm,s,s̃ and ykn,s,s̃ denote the
cascaded channel spanning from the s̃-th transmit antenna to
the s-th receive antenna via the m-th meta-atom of the l-th
transmit metasurface layer and that via the n-th meta-atom of
the k-th receive metasurface layer, which are defined by

xlm,s,s̃ = Qs,:GΦLWL · · ·Wl+1
:,mWl

m,: · · ·Φ1W1
:,s̃, (25)

ykn,s,s̃ = U1
s,:Ψ

1 · · ·Uk
:,nU

k+1
n,: · · ·UKΨKGP:,s̃, (26)

respectively.
Step 2: Normalize the partial derivatives
In order to mitigate the potential gradient explosion and

vanishing problems [54], we normalize the partial derivatives
at each iteration as follows

∂Γ

∂θlm
← π

ϱl
· ∂Γ
∂θlm

, m ∈M, l ∈ L, (27)

∂Γ

∂ξkn
← π

εk
· ∂Γ
∂ξkn

, n ∈ N , k ∈ K, (28)

where we have ϱl = max
m∈M

(
∂Γ
∂θlm

)
, l ∈ L and εk =

max
n∈N

(
∂Γ
∂ξkn

)
, k ∈ K denoting the maximum value of the

partial derivative associated with the l-th transmit metasur-
face layer and that with the k-th receive metasurface layer,
respectively. Note that the normalization process also has the
benefit of allowing us to readily pick an initial learning rate
independent of the data value [54].

Step 3: Update the phase shifts
Then the phase shifts associated with the TX-SIM and RX-

SIM in Fig. 2 can be updated by

θlm ← θlm − η
∂Γ

∂θlm
, m ∈M, l ∈ L, (29)

ξkn ← ξkn − η
∂Γ

∂ξkn
, n ∈ N , k ∈ K, (30)

respectively, where η > 0 denotes the learning rate that
determines the step size at each iteration.

Step 4: Update the scaling factor
Given a set of phase shifts associated with the TX-SIM

and RX-SIM, the resultant end-to-end channel becomes H =
QGP. Consequently, the optimal scaling factor can be readily
obtained by applying the least-square technique as follows

α =
(
hHh

)−1
hHλ, (31)
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TABLE I
THE PROPOSED GRADIENT DESCENT ALGORITHM FOR SOLVING (22).

1: INPUT: Wl, l ∈ L, G, Uk, k ∈ K, Λ1:S,1:S .
2: Randomly initializing the phase shifts, i.e., θl, l ∈ L, ξk, k ∈ K;
3: Calculating the scaling factor α by applying (31);
4: REPEAT
5: Calculating the partial derivatives of Γ w.r.t. θlm and that w.r.t.

ξkn by applying (23) and (24), respectively;
6: Normalizing the partial derivatives of Γ w.r.t. θlm and that w.r.t.

ξkn by applying (27) and (28), respectively;
7: Updating the phase shifts, i.e., θlm and ξkn, by applying (29) and

(30), respectively;
8: Updating the scaling factor α by applying (31);
9: Diminishing the learning rate η by applying (32);

10: Calculating the objective function value Γ by applying (22a);
11: UNTIL The decrement of Γ is less than a preset threshold value or

the number of iterations reaches the maximum;
12: OUTPUT: θl, l ∈ L, ξk, k ∈ K.

where we have λ = vec (Λ1:S,1:S) ∈ CS2×1 and h =

vec (H) ∈ CS2×1 denoting the vectorization of Λ1:S,1:S and
that of H, respectively.

Step 5: Update the learning rate
For the sake of avoiding any overshooting effects [45], we

adopt a negative exponentially decaying learning schedule for
decreasing the learning rate, as the iteration proceeds. More
specifically, the learning rate is updated by

η ← ηβ, (32)

at each iteration, where 0 < β < 1 is a hyperparameter
controlling the decay rate.

After repeating (23) ∼ (32) several times, the loss function
Γ gradually approaches convergence. In order to prevent the
gradient descent algorithm from getting trapped in a local
optimum, we first generate multiple sets of phase shifts and
then select the one that minimizes Γ for initialization. For
clarity, we summarize the detailed procedures of the proposed
gradient descent in Table I.

IV. PERFORMANCE ANALYSIS

A. HMIMO Channel Capacity Analysis

In this subsection, we evaluate the channel capacity of
our HMIMO system. We assume that the TX-SIM and RX-
SIM shown in Fig. 2 have carried out perfect precoding and
combining in the EM regime. However, due to the fact that
(19) cannot be readily expressed in closed form, here we
provide an upper and a lower bound for the channel capacity of
our HMIMO system. Specifically, by assuming that all the data
streams experience either the best or the worst subchannel,
respectively, the ergodic channel capacity is upper and lower
bounded by

S log2

(
1 +

PtE
(
λ2S
)

Sσ2

)
≤ E (C) ≤ S log2

(
1 +

PtE
(
λ21
)

Sσ2

)
,

(33)

where E
(
λ21
)

and E
(
λ2S
)

denote the statistical average of the
1-st and the S-th eigenvalues, respectively, which are obtained
through numerical approximations.

In order to gain some fundamental insights into the HMIMO
channel capacity, we next analyze its scaling law by consid-
ering some special cases. Specifically, the HMIMO channel
capacity evaluated by considering a large number of data
streams is characterized by Proposition 1.

Proposition 1: As S →∞, we have Pt log2 eE
(
λ2S
)
/σ2 ≤

E (C) ≤ Pt log2 eE
(
λ21
)
/σ2.

Proof: By taking the limit of lower bound and upper
bound in (33) as S → ∞ and applying the formula
lim
x→∞

(1 + 1/x)
x
= e, the proof is completed. ■

Proposition 1 demonstrates that blindly increasing the
number of active components may not lead to substantial
improvements in channel capacity. Specifically, the HMIMO
channel capacity gradually saturates as the number of data
streams increases due to the intrinsic limitations of spatial
multiplexing in the HMIMO channel. Further increasing the
number of active components may result in severe energy ef-
ficiency degradation. Therefore, the resultant HMIMO channel
capacity critically depends on the statistical expectation of the
eigenvalues, which results in a selection gain associated with
the increased number of meta-atoms.

In order to characterize the fundamental scaling law of
the HMIMO channel capacity versus the number of meta-
atoms, we next consider the particular case of S = 1,
L = K = 1 and assume i.i.d. Rayleigh fading for the sake of
brevity. Specifically, the theoretical ergodic channel capacity
is summarized in Proposition 2.

Proposition 2: As M, N → ∞, we have E (C) ≃
log2

(
1 + π2Ptρ

2

4σ2 M2N2
)

.
Proof: As M, N →∞, the HMIMO channel capacity can

be approximated by

E (C) ≃ log2

[
1 +

Pt
σ2

E
(
|h|2
)]
, (34)

with

E
(
|h|2
)
= ρ2E

∣∣∣∣∣
M∑
m=1

ϕmh1,m

∣∣∣∣∣
2 ∣∣∣∣∣

N∑
n=1

ψnh2,n

∣∣∣∣∣
2
 , (35)

where h1,m ∼ CN (0, 1) , m ∈ M and h2,n ∼
CN (0, 1) , n ∈ N denote the normalized channel coefficient
of the link spanning from the source to the optimal scatterer
via the m-th transmit meta-atom and that from the optimal
scatterer to the destination via the n-th receive meta-atom,
respectively. Note that the unnecessary superscripts and sub-
scripts have been removed for the sake of brevity.

Furthermore, by applying the optimal phase shift configura-
tion, i.e., ϕm = h∗1,m/ |h1,m| and ψn = h∗2,n/ |h2,n|, we have
[15]

E

∣∣∣∣∣
M∑
m=1

ϕmh1,m

∣∣∣∣∣
2
 = E

∣∣∣∣∣
M∑
m=1

|h1,m|

∣∣∣∣∣
2
 =

π

2
M2, (36)

E

∣∣∣∣∣
N∑
n=1

ψnh2,n

∣∣∣∣∣
2
 = E

∣∣∣∣∣
N∑
n=1

|h2,n|

∣∣∣∣∣
2
 =

π

2
N2. (37)

By substituting (36) and (37) into (34), the proof is com-
pleted. ■



10

Proposition 2 testifies to the quadratic scaling law of the
channel gain versus the number of meta-atoms [15]. Note that
in contrast to the RIS-aided system [15], both the TX-SIM and
RX-SIM could attain spatial gains. In an ideal setup, one could
obtain about 4 bps/Hz HMIMO channel capacity improvement
upon every doubling of the number of meta-atoms at both
the TX-SIM and RX-SIM. Again, we note that the rigorous
capacity analysis of SIM-aided HMIMO systems having an
arbitrary number of metasurface layers is a complex task due
to the fact that a large number of matrix multiplications are
involved during the forward propagation [36], [46]. To address
this issue, effective matrix analysis tools might be employed
for evaluating the fitting performance of the proposed SIM as
well as the resultant channel capacity, which requires further
investigation. Nevertheless, our numerical results of Section V
demonstrate that harnessing a pair of SIMs having a moderate
number of metasurface layers at both ends can fit the end-to-
end channel with high accuracy. As such, motivated readers
may refer to [31] for gaining deeper insights concerning
the HMIMO channel capacity relying on conventional digital
precoding and combining, which serves as an upper bound for
our SIM-aided HMIMO system.

B. Computational Complexity Analysis

Next, we analyze the computational complexity of the
proposed gradient descent algorithm in terms of the num-
ber of real-valued multiplications. Specifically, the com-
putational complexity of performing Step 1 includes that
of performing the forward propagation, i.e., O1−1 =
4SM (ML−M + L) + 4SN (NK −N +K) + 4MSN +
2 (M +N)S2, and that of calculating all partial derivatives,
i.e., O1−2 = 2 (ML+NK)S2. Additionally, the computa-
tional complexities of performing Steps 2 ∼ 5 are O2 =
2 (ML+NK), O3 = (ML+NK), O4 = 6S2 + 2, and
O5 = 1, respectively. As a result, the total computational
complexity of the proposed gradient descent algorithm is given
by

O = I [O1−1 +O1−2 +O2 +O3 +O4 +O5]

= I [4SM (ML−M + L) + 4SN (NK −N +K)]

+ I
[
4MSN + 2 (M +N)S2

]
+ 2I (ML+NK)S2

+ 3I (ML+NK) + I
(
6S2 + 3

)
≃ 4IS

(
M2L+N2K

)
, for M, N ≫ S, (38)

where I denotes the number of iterations, which will be shown
in Section V to be less than 20 under an empirical setup. Thus,
the proposed gradient descent algorithm is of polynomial-time
complexity, when solving Problem (22).

V. SIMULATION RESULTS

In this section, we provide numerical results for character-
izing the performance of the proposed SIM-aided HMIMO
system.

A. Simulation Setups

As illustrated in Fig. 2, we consider an SIM-aided HMIMO
system. In our simulations, the thicknesses of both the TX-
SIM and RX-SIM are set to Dt = Dr = 0.05 m. Accordingly,
the transmission coefficients between the adjacent metasurface
layers in the TX-SIM and that in the RX-SIM are given
by (9) and (11), respectively, while the HMIMO channel is
generated by (13). Our SIM-aided HMIMO system operates
at the frequency of f0 = 28 GHz, which corresponds to the
wavelength of λ = 10.7 mm. To account for the large-scale
fading, we consider the reference distance of d0 = 1 m and
set b = 3.5 and δ = 9 dB in our simulations [52]. Moreover,
the distance between the transmitter and the receiver is set to
d = 250 m.

Additionally, the total power available at the transmitter is
set to Pt = 20 dBm, while the receiver sensitivity is set to
σ2 = −110 dBm. For the proposed gradient descent algorithm,
the number of randomizations for initialization is set to 10.
The maximum affordable number of iterations is set to 100,
while the initial learning rate and decay parameter are set to
η0 = 0.1 and β = 0.5, respectively, unless otherwise specified.
All the simulation results are obtained by averaging over 100
independent experiments. Moreover, we adopt a couple of
different performance metrics. Specifically, for the sake of a
fair comparison, we first quantify the normalized mean square
error (NMSE) between the actual channel matrix and the target
diagonal one defined as follows

∆ = E

(
∥αQGP−Λ1:S,1:S∥2F

∥Λ1:S,1:S∥2F

)
, (39)

while the other is the channel capacity of our SIM-assisted
HMIMO system, which is defined by

C =

S∑
s=1

log2

(
1 +

ps |αhs,s|2∑S
s̃ ̸=s ps̃ |αhs,s̃|

2
+ σ2

)
, (40)

where ps denotes the amount of power allocated to the s-
th stream obtained by (18). Note that in sharp contrast to
conventional MIMO designs with extra digital combining, our
SIM-aided HMIMO treats the residual signals from other data
streams as interference, as seen in the denominator of (40).

B. Performance versus System Parameters

Fig. 3 first evaluates the NMSE between the actual channel
matrix and the target diagonal matrix for different numbers of
metasurface layers, where we consider S = 4, M = N = 100,
and re,t = te,r = λ/2. As such, At and Ar are determined
accordingly. Observe from Fig. 3 that the channel fitting
NMSE gradually decreases as the number of metasurface
layers increases and eventually bottoms out, when L ≥ 5
or K ≥ 5, thanks to the powerful inference capability of
the multi-layer architecture advocated. Furthermore, Fig. 4
shows the corresponding channel capacity, where the chan-
nel capacity of the HMIMO system having a full-precision
precoder and combiner is also plotted. It reveals that the
SIM-aided HMIMO channel capacity gradually saturates as
the number of metasurface layers increases. The SIM having
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Fig. 3. The NMSE between the actual channel matrix and the target diagonal
one versus the number of transmit metasurface layers, where we have S = 4,
M = N = 100, and re,t = te,r = λ/2.
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Fig. 4. The channel capacity versus the number of transmit metasurface
layers, where we have S = 4, M = N = 100, and re,t = te,r = λ/2.

an adequate number of metasurface layers might approach
the capacity upper bound characterized by the full-precision
precoding and combining. However, due to the fixed thickness
of the SIM considered, i.e., Dt and Dr, excessively dense
metasurfaces may lead to a performance penalty, when the
number of metasurface layers exceeds a certain threshold.
For example, the SIM-aided HMIMO using L = K = 10
metasurface layers suffers both from some fitting performance
erosion as well as from a capacity reduction compared to
L = K = 5. In a nutshell, both the channel fitting NMSE
and the channel capacity approach their optimal values when
using L = 7 metasurface layers, and further increasing the
number of metasurface layers does not help to improve the
fitting NMSE and channel capacity.

In Fig. 5, we portray the channel fitting NMSE versus
the number of meta-atoms, where the number of metasurface
layers is set to L = K = 7, with all other system parameters
remaining unchanged. Observe from Fig. 5 that the fitting
NMSE decreases monotonically as the number of meta-atoms
on each transmit or receive metasurface layer increases. As a
benefit, the system becomes capable of establishing a perfectly
diagonal end-to-end channel matrix for an infinite number of
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Fig. 5. The NMSE between the actual channel matrix and the target diagonal
one versus the number of meta-atoms on each transmit metasurface layer,
where we have S = 4, L = K = 7, and re,t = te,r = λ/2.
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Fig. 6. The channel capacity versus the number of meta-atoms on each
transmit metasurface layer, where we have S = 4, L = K = 7, and
re,t = te,r = λ/2.

meta-atoms, i.e., ∆ → 0 for M → ∞ or N → ∞. Fur-
thermore, Fig. 6 plots the channel capacity versus the number
of meta-atoms on each transmit metasurface layer. Note that
as a benefit of the substantial selection gain discussed in
Proposition 1, one can always select the best S subchannels for
conveying information [48]. The channel capacity is improved
as the number of meta-atoms increases, albeit the number of
data streams is fixed. For example, the SIM-aided HMIMO
system behaves competitively with its counterpart having full-
precision precoding and combiner as M, N → 100. More
specifically, for an adequate number of meta-atoms having
tolerable fitting errors, say N ≥ 25, Fig. 6 confirms our
Proposition 2 that the channel capacity would increase by
about 4 bps/Hz when doubling the number of meta-atoms in
both the TX-SIM and RX-SIM.

Furthermore, Figs. 7 and 8 quantify the channel fitting
NMSE and the channel capacity, respectively, versus the spac-
ing between adjacent meta-atoms, where we set L = K = 7,
M = N = 100, and increase the element spacing from
λ/10 = 1.1 mm to λ = 10.7 mm. It is shown in Fig.
7 that the channel fitting NMSE achieves its minimum at
re,t = te,r = λ/2. Both a larger and a smaller element
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Fig. 7. The NMSE between the actual channel matrix and the target
diagonal one versus the spacing between adjacent meta-atoms on each transmit
metasurface layer, where we have S = 4, L = K = 7, and M = N = 100.
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Fig. 8. The channel capacity versus the spacing between adjacent meta-atoms
on each transmit metasurface layer, where we have S = 4, L = K = 7, and
M = N = 100.

spacing would give rise to the similarity between the trans-
mission coefficients as well as lead to undesired channel
correlations, thus resulting in a poor channel fitting NMSE.
Observe from Fig. 8 that RX-SIM having element spacing of
about te,r = λ/2 attains the maximal capacity as well as
the best fit with the full-precision counterpart. Given the half-
wavelength element spacing between adjacent meta-atoms on
each transmit metasurface, i.e., re,t = λ/2, both the setups
of te,r = λ and te,r = λ/4 suffer from a capacity loss of
about 1 bps/Hz compared with that adopting te,r = λ/2.
The inferior fitting NMSE by taking a small element spacing
also widens the performance gap between the SIM-assisted
HMIMO and its full-precision counterpart. In a nutshell, a
better channel fitting NMSE means that parallel subchannels
are perfectly formed and suffer from less interference, thus
achieving an improved channel capacity for our SIM-aided
HMIMO system.

Next, Figs. 9 and 10 examine the channel fitting NMSE
and channel capacity, respectively, versus the number of data
streams, where we consider L = K = 7, and re,t = te,r =
λ/2. It can be seen from Fig. 9 that we have ∆ = 0 for S = 1
under all the setups, and the fitting performance gradually
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Fig. 9. The NMSE between the actual channel matrix and the target diagonal
one versus the number of data streams, where we have L = K = 7, and
re,t = te,r = λ/2.
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Fig. 10. The channel capacity versus the number of data streams, where we
have L = K = 7, and re,t = te,r = λ/2.

degrades as the number of data streams increases due to the
larger dimension of the channel matrix. By utilizing a pair of
TX-SIM and RX-SIM having small metasurface profiles, such
as M = N = 16, we achieve a fitting NMSE of ∆ = 0.2
for S = 4, which is reduced to ∆ < 0.001 upon increasing
the number of meta-atoms on each metasurface layer to M =
N = 100. Furthermore, in sharp contrast to the full-precision
counterpart, the SIM-aided HMIMO channel capacity mainly
relies on two factors: the number of data streams and the
channel fitting NMSE. On one hand, the increasing number of
data streams may offer a proportional multiplexing gain [48].
On the other hand, it becomes more challenging to acquire
a low channel fitting NMSE for a growing number of data
streams, thus leading to severe interference among different
subchannels. Due to this fundamental tradeoff between the
multiplexing gain and the channel fitting NMSE, the channel
capacity achieves its maximum for a certain number of data
streams, e.g., S = 2, 3, 4, 6 for the four setups considered
in Fig. 10. In addition, note that the ideal channel capacity
approaches saturation as the number of data streams increases,
which is consistent with our Proposition 1.
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(c) L = K = 3;
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(d) L = K = 4;

Fig. 11. The visualization of the end-to-end spatial channel matrix H =
QGP.
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Fig. 12. The convergence curves of the proposed gradient descent algorithm.

C. Validation of the Proposed Algorithm

For the sake of illustration, Fig. 11 visualizes the end-to-
end channel matrix H = QGP for different numbers of
metasurface layers, where we consider S = 4, M = N = 100,
and re,t = te,r = λ/2. Observe from Fig. 11 that for a small
number of metasurface layers, such as L = K = 1, the TX-
SIM and RX-SIM struggle to form a diagonal channel matrix
spanning from the source to the destination. Hence, each data
stream suffers from the interference imposed by other streams,
ultimately resulting in a reduced channel capacity (see Fig.
4). As the number of metasurface layers increases, the TX-
SIM and RX-SIM attain a stronger inference capability and
thus may form multiple parallel subchannels in the physical
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Fig. 13. Channel capacity comparison of the simulation and analytical results
based on (33).

space. Fig. 11(d) shows that the TX-SIM and RX-SIM having
four metasurface layers respectively succeed in forming an
almost perfectly diagonal channel matrix, thus asymptotically
achieving the maximal channel capacity.

Next, we examine the convergence performance of the
proposed gradient descent algorithm by considering different
values of the initial learning rate η0 and the decay parameter
β. As shown in Fig. 12(a), we begin by analyzing the case
of η0 = 0.1. Note that under all the setups, the fitting NMSE
eventually decreases, thus facilitating convergence. However,
for a small value of the decay parameter, e.g., β = 0.3, the
channel fitting NMSE might converge to a local minimum. By
contrast, a larger value of the decay parameter, e.g., β = 0.9,
may result in overshooting effects. As a result, the fitting
NMSE fluctuates violently during the initial iteration stage.
Furthermore, when we increase the initial learning rate to
η0 = 0.2, 0.5, 1.0, the corresponding results are shown in
Figs. 12(b), 12(c), and 12(d), respectively. It is demonstrated
that an excessively high initial learning rate may require a long
period to achieve convergence. For example, more than 40
iterations are required for the setup of η0 = 1.0 and β = 0.9.
Nonetheless, in all cases, the fitting NMSE can converge to
the desired accuracy after a sufficient number of iterations.

D. Performance Evaluation and Comparison to Existing
Transmission Technologies

Furthermore, Fig. 13 verifies the accuracy of our theoretical
analysis of the HMIMO channel capacity, where we consider
re,t = te,r = λ/4 and increase the number of data streams
from S = 1 to S = 4. Observe from Fig. 13 that the channel
capacity increases with the number of meta-atoms on each
metasurface as well as that of data streams, which is due to the
substantial selection gain and multiplexing gain, respectively
[48]. Specifically, when considering S = 4 data streams, the 8
bps/Hz capacity increase is observed by quadrupling the num-
ber of meta-atoms on each metasurface from M = N = 25 to
M = N = 100, which is consistent with our previous analysis
in Proposition 2. Furthermore, as expected, the actual channel
capacity of our HMIMO communication system consistently
lies between the upper and lower bounds derived. Specifically,
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Fig. 14. Channel capacity comparison of our SIM-aided HMIMO (S = 4,
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both the upper and lower bounds are tight for a single data
stream, i.e., S = 1. As the number of data streams increases,
there is a widening gap between the analytical and simulation
results due to the imperfect scaling operation in (33). Deriving
the accurate capacity calls for future research.

In Fig. 14, we compare the channel capacity of our SIM-
assisted HMIMO system to that of the massive MIMO scheme
as well as to its RIS-aided MIMO counterpart. The detailed
MIMO setups are shown in Fig. 14. Specifically, we adopt
a pair of TX-SIM and RX-SIM (S = 4, L = K = 7,
M = N = 100, re,t = te,r = λ/2) for performing the wave-
based precoding and combining, while achieving the spatial
gains. As for the RIS-aided MIMO scheme, a RIS having
1,000 elements is deployed at a site having a source-RIS
distance of 200 m and a vertical spacing of 10 m w.r.t. the
source-destination link to enhance the channel quality. Thus,
we have a RIS-destination distance of

√
502 + 102 ≈ 51 m.

All the channels are assumed to be Rayleigh fading along
with the path loss model in (16). The path loss exponents
are adjusted to b = 2.2 and b = 2.7 for the source-RIS and
RIS-destination links, respectively [55]. Observe from Fig. 14
that as a benefit of the substantial spatial gain attained by
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Fig. 16. The channel fitting NMSE comparison of the multilayer SIM and
its single-layer counterpart that has the same total number of meta-atoms.
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Fig. 17. The channel capacity comparison of the multilayer SIM and its
single-layer counterpart that has the same total number of meta-atoms.

the TX-SIM and RX-SIM, our HMIMO outperforms both its
massive MIMO and RIS-aided counterparts under all the se-
tups considered. Specifically, although RIS achieves significant
capacity improvements over the conventional MIMO, it still
suffers from a performance gap compared to the HMIMO due
to the severe two-hop path loss. Even in the vicinity of RIS,
the HMIMO attains a 150% capacity gain, which may increase
to 200% at the cell edge, e.g., at d = 250 m. Additionally, the
massive MIMO equipped with a huge number of active ele-
ments achieves impressive capacity improvements at the cost
of an increasing number of active RF chains, which, however,
still has at least a 3 bps/Hz capacity penalty compared to the
HMIMO scheme.

Fig. 15 compares the error performance of our SIM-assisted
HMIMO system to conventional MIMO schemes. Specifically,
we consider four data streams, each transmitting a BPSK
symbol, which corresponds to a transmission rate of 4 bits
per channel use (bpcu). The distance between the transmitter
and receiver is set to 200 m, and the number of metasurface
layers is set to L = K = 1, 2, 7, respectively. As shown
in Fig. 15, deploying a sufficient number of metasurface
layers, such as L = K = 7 in both the TX-SIM and
RX-SIM, effectively mitigates the inter-stream interference,
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thanks to carrying out the precoding and combining in the
wave domain. Furthermore, as a benefit of the spatial gain
attained by the large transceiver surface aperture, the SIM-
assisted HMIMO achieves a lower bit error rate (BER) than
its large-scale MIMO counterpart. Observe from Fig. 15 that
SIM-aided HMIMO has an 8 dB performance gain compared
to massive MIMO in this setup. However, when reducing
the number of metasurface layers to L = K = 2, the TX-
SIM and RX-SIM modules failed to perfectly suppress the
interference amongst the data streams. Consequently, the SIM-
assisted HMIMO scheme suffers from performance erosion,
which results in a residual BER as the transmit power Pt
increases. Note that we directly use the SIM phase shifts
optimized in Section III-B to evaluate the BER performance
and that directly optimizing the SIM for minimizing the BER
may result in further performance improvements.

Finally, Fig. 16 compares the channel fitting NMSE of the
multilayer SIM to its single-layer counterpart. Specifically,
the total number of meta-atoms in the TX-SIM and RX-
SIM are rearranged into a single-layer metasurface, respec-
tively. In order to maintain the same transceiver surface area,
the meta-atom spacing is set to re,t = 5λ/

⌈√
ML

⌉
and

te,r = 5λ/
⌈√

NK
⌉

. All other simulation parameters are
consistent with those in Fig. 3. Observe from Fig. 16 that
the single-layer SIM fails to accurately fit the expected end-
to-end channel, even with an adequate number of meta-atoms.
By contrast, the multilayer SIM structure achieves a superior
channel fitting NMSE as the number of metasurface layers
increases. Furthermore, Fig. 17 shows the channel capacity of
these two transmission schemes. It is evident that the single-
layer SIM provides only marginal capacity improvements as
the number of meta-atoms increases, which is primarily due
to the inability of the single-layer TX-SIM and RX-SIM to
effectively suppress the inter-stream interference. Moreover,
deploying a large number of meta-atoms in a limited space
also leads to channel correlation. Observe from Fig. 17 that
the proposed SIM-aided HMIMO system associated with
L = K = 10 and M = N = 100 achieves almost twice the
capacity improvement compared to its single-layer counterpart
for the same total number of meta-atoms. In a nutshell, both
the channel fitting NMSE and the corresponding channel
capacity of the single-layer SIM suffer from significant perfor-
mance penalties compared to its multi-layer SIM counterpart.
Nevertheless, finding the optimal SIM design under a given
total number of meta-atoms remains an open research question
that requires further investigation.

VI. CONCLUSIONS

In this paper, we proposed a novel SIM-aided HMIMO com-
munication paradigm, which attains substantial spatial gains
while performing the precoding and combining directly in the
native EM regime at the speed of light. We first formulated a
channel fitting problem to approximate the expected diagonal
channel matrix by optimizing the phase shifts of both the TX-
SIM and RX-SIM. Then, we proposed an efficient gradient
descent algorithm for iteratively solving the non-trivial fitting
problem. Additionally, we provided a numerical approximation

method for characterizing the HMIMO channel capacity and
deriving some fundamental capacity scaling laws. Finally,
extensive simulations were provided for validating the benefits
of the SIM-aided HMIMO, demonstrating that substantial
capacity improvements were attained upon increasing the
number of meta-atoms.

In conclusion, our pivotal findings are as follows. Firstly,
our experimental insights have shed light on the optimal SIM
design. Specifically, we found that a 7-layer SIM having half-
wavelength element spacing achieved an excellent channel
fitting performance and approached the maximum channel ca-
pacity. Secondly, both our theoretical analysis and simulation
results have shown the quadratic channel gain when doubling
the number of meta-atoms. Additionally, we have verified
the performance advantages of the proposed HMIMO scheme
over the existing benchmark schemes. Notably, a 150% ca-
pacity gain was attained over its conventional massive MIMO
and RIS-assisted counterparts. As such, the multilayer SIM
structure is capable of carrying out signal processing in the
wave domain, which might lead to disruptive implementation-
oriented advances. Moreover, an active SIM may be created by
integrating small power amplifiers within some of the meta-
atoms [36]. Upon adjusting the drive level of these power
amplifiers, a non-linear module can be produced for further
enhancing the inference capability of the SIM. Nonetheless,
accurately evaluating the achievable performance gain of the
active SIM requires further investigation.
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