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Human-Centric Resource Allocation in the
Metaverse over Wireless Communications

Jun Zhao, Liangxin Qian, Wenhan Yu

Abstract—The Metaverse will provide numerous immersive
applications for human users, by consolidating technologies like
extended reality (XR), video streaming, and cellular networks.
Optimizing wireless communications to enable the human-centric
Metaverse is important to satisfy the demands of mobile users.
In this paper, we formulate the optimization of the system utility-
cost ratio (UCR) for the Metaverse over wireless networks. Our
human-centric utility measure for virtual reality (VR) applica-
tions of the Metaverse represents users’ perceptual assessment
of the VR video quality as a function of the data rate and the
video resolution and is learned from real datasets. The variables
jointly optimized in our problem include the allocation of both
communication and computation resources as well as VR video
resolutions. The system cost in our problem comprises the energy
consumption and delay and is non-convex with respect to the
optimization variables. To solve the non-convex optimization,
we develop a novel fractional programming technique, which
contributes to optimization theory and has broad applicability
beyond our paper. Our proposed algorithm for the system UCR
optimization is computationally efficient and finds a stationary
point to the constrained optimization. Through extensive sim-
ulations, our algorithm is demonstrated to outperform other
approaches.

Index Terms—Metaverse, human-centric, resource allocation,
virtual reality, wireless communications.

I. INTRODUCTION

The Metaverse is expected to offer a myriad of opportuni-
ties for mobile users to interact with the immersive virtual
world [1]. In various Augmented/Virtual Reality (AR/VR)
applications for the Metaverse, humans are at the core since
users judge whether the AR/VR videos or games provide a
satisfying Quality of Experience (QoE) [2]. Compared with
the traditional Quality of Service (QoS) that measures the
objective service performance (e.g., bit rate, data accuracy),
QoE as a utility measure concerns the enjoyment of users [3].
Providing satisfying utilities to multiple users in a resource-
constrained system requires allocating resources wisely. In this
paper, we formulate and solve human-centric resource alloca-
tion for VR in the Metaverse over wireless communications.
Our goal is to reduce the Metaverse system’s cost in terms
of delay and energy, as well as to enhance the human-centric
utilities of mobile users accessing the Metaverse via wireless
networks. Tackling this problem also motivates us to propose
a new optimization technique.

Studied problem. Our researched system consists of one
Metaverse Server (MS) and multiple VR Users (VUs). We
consider downlink wireless communications, where the MS
sends to each VU the corresponding VR video via frequency
division multiple access (FDMA). The MS solves the system
utility-cost ratio (UCR) optimization by allocating 1) commu-
nication resources (i.e., bandwidth and transmission power)
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for the MS’s communication with each VU, and 2) the MS’s
computation resources for processing the videos to be sent
to VUs, as well as deciding 3) the video resolution for all
VUs, and 4) the CPU frequencies for the VUs. Then, the MS
uses the allocated computation resource to process each VR
video with the selected resolution, and transmits the videos to
the VUs with the decided bandwidth and transmission power.
Each VU receives VR frames of a video and processes the
frames with the arranged CPU frequency. To perform the UCR
optimization, the MS knows the human-centric utilities of all
VUs and how the energy or delay depends on the optimization
variables. The system cost is a weighted sum of the energy
consumption and delay. For energy, we take into account both
the MS and VUs. The energy usage on the MS comprises those
for video processing and transmission, whereas the energy of
VUs is for video processing. The delay computation includes
the processing on the MS, the wireless transmission, and the
processing on each VU. Next, we discuss VUs’ human-centric
utilities.

Human-centric utility. Prior resource allocation stud-
ies [4]–[9] for wireless communications typically do not
consider human-centric utilities. Incorporating subjective user
perception into the design is critical for the development of
VR and the Metaverse, as it provides valuable insights into
how the technologies can be improved to deliver the best
possible experiences for VUs. A recent work [2] also argues
the importance of developing the Metaverse to be human-
centric. In our paper, the human-centric utility for each VU is
learned from the VU’s perceptual assessment of the VR video
quality as a function of the data rate and the video resolution,
as illustrated by a recent dataset reporting users’ evaluation of
watching 360◦ VR videos [10]. Then UCR is the ratio of all
VUs’ sum human-centric utilities to the system cost.

Our contributions include the problem formulation, a novel
fractional programming technique, and an efficient optimiza-
tion algorithm, as listed below.

• To the best of our knowledge, our work is the first in
the literature to consider the optimization of the system
utility-cost ratio (UCR) for the Metaverse over wireless
communications. Our work is also among pioneering
studies that incorporate human-centric utility for Meta-
verse optimization.

• We propose a novel technique for fractional programming
(FP), where the objective to be minimized is the sum of
a convex function and a series of non-convex ratios with
convex numerators and concave denominators. FP of the
above kind cannot be addressed by prior work [11], [12]
(viz., Section IV). Our technique contributes to optimiza-
tion theory and is applicable to many other problems.

• Our UCR optimization is difficult to solve due to the
following two aspects: 1) the objective function being
the sum of a complicated function and a sequence of
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non-convex fractions, and 2) jointly deciding five vector
variables (for bandwidth, transmission power, video res-
olution, allocation of the Metaverse server’s computing
resource, CPU frequencies of VR users, respectively).
Despite the challenges, we propose an efficient algorithm
by leveraging our novel FP technique above and carefully
identifying a roadmap (on Pages 8 and 8) to solve the
variables step-by-step.

• Simulations demonstrate the superiority of our algorithm
over other baselines. The human-centric utilities used in
the simulations are learnt from real-world data including
a recent VR dataset [10].

Roadmap. This work is organized as follows. We review
related work in Section II. The system model is presented
in Section III. We propose a novel technique for fractional
programming (FP) in Section IV. Using this FP technique, we
analyze how to solve the UCR optimization for the Metaverse
over wireless communications in Sections V and VI. Based on
the analysis, Section VII presents our algorithm for the UCR
optimization, as well as its performance including solution
quality, convergence, and time complexity. We model human-
centric utilities from real datasets in Section VIII, and use
the obtained utility functions to provide simulation results in
Section IX. We conclude the paper in Section X.

II. RELATED WORK

We discuss related work from the following aspects: op-
timization in wireless networks, the Metaverse over wireless
communications, human-centric utility, and the fractional pro-
gramming technique.

Optimization for wireless networks. Many studies have
addressed optimization related to delay, energy, or utility for
wireless networks, as discussed below. Optimizing the system
cost, defined as the weighted sum of system delay and system
energy consumption, is investigated in [4], [5] for wireless
federated learning, in [7] for UAV-enabled mobile edge com-
puting, in [8] for 5G networks. In [9], the difference between
the utility and the energy consumption in a heterogeneous net-
work is maximized. There are also papers on ratio optimization
to improve the system’s performance. The ratio is often energy
efficiency (EE) [13], [14] or computation efficiency (CE) [15],
[16], which denotes the ratio of the number of transmitted or
computed bits to energy consumption. EE or CE above can be
understood as utility

energy , but surprisingly there seems no existing
work in communication/network publications on optimizing

utility
energy+delay like our paper, although we have conducted an
extensive literature survey. Moreover, we consider human-
centric utility for the Metaverse, which further increases the
novelty of our studied problem.

Metaverse over wireless communications. Recently, re-
searching the Metaverse over wireless communications and
networks has become an emerging topic. Recent papers [1], [3]
have surveyed Metaverse research from different aspects: [1]
focusing on fundamental underlying technologies as well as
security/privacy issues, [3] on how edge computing empowers
the Metaverse. In addition to surveys [1], [3] above, we discuss
representative technical work [17]–[21] below. In [17], sam-

pling, communication and prediction are co-designed to min-
imize the communication load for synchronizing a real-world
device and its digital model in the Metaverse. Yu et al. [18]
optimize the delay and reliability of wireless Metaverse using
deep reinforcement learning. Contest theory is utilized in [19]
for the Metaverse with semantic communications, while game
theory is applied in [20], [21] for the vehicular Metaverse.
In [14] led by the current paper’s first author, fractional
programming (FP) is leveraged for energy efficiency optimiza-
tion of the Metaverse subject to physical-layer security of
wireless communications. In addition to the difference in terms
of problem formulation compared with ours, [14] allocates
communication resources only without optimizing computing
resources and video resolutions. Also [14] does not use our
novel FP technique of Section IV.

Network Utility Maximization (NUM). Our work is
related to the research on network utility maximization
(NUM) [22]. For a network of users, NUM considers that
all users act altruistically to maximize the total network
utility [23], defined as the sum of all users’ individual utilities.
In the classical NUM problem by Kelly et al. [24], the goal
is to allocate traffic rates to users in order to maximize the
total network utility subject to resource constraints (e.g., link
capacity limitations). Since then, various NUM problems have
been investigated in the literature [25]–[27]. The total network
utility is also referred to as the social welfare in [28], where
game theory is adopted to solve the problem. Despite the
relevance of NUM research to our work, we emphasize that
our objective is optimizing the ratio U

C of the total system
utility U to the total system cost C, rather than just maximizing
U . The optimization of the fraction U

C is more challenging than
that of U due to the non-convexity of the fraction.

Human-centric utility. When utility is referred to as video
quality, it can be measured using objective or subjective
assessment methods. The subjective quality assessment (SQA)
results in human-centric perceptual utility since human sub-
jects are asked for their opinions directly. Higher human-
centric utility means better Quality of Experience (QoE),
which is in contrast with the traditional notion of Quality
of Service (QoS) that quantifies the objective performance of
the system. The survey [29] covers human-centric utility for
traditional 2D video applications. Human-centric design for
Augmented/Virtual Reality (AR/VR) and the Metaverse has
received much interest recently. A 2023 survey [30] systemat-
ically reviews human-centric mobile AR. Elwardy et al. [10]
report SQA of users watching 360° videos when wearing HTC
Vive Pro VR headsets. In [2], the human-centric nature of
the Metaverse and using it for personalized value creation are
discussed. In the current paper on VR for the Metaverse, we
model human-centric utility functions of VR users from SQA
video datasets [10], [31], as elaborated on in Section VIII
later. The logarithmic function form will be adopted, which
has been used in [32] for crowdsourcing, in [33] for mobile
edge computing, and in [34] for space-air-ground integrated
networks.

Fractional programming (FP). In this paper, we present
a novel FP technique and use it to transform a non-convex
optimization problem into parametric convex optimization.



ACCEPTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC) 3

The detailed comparison between our work and other FP
papers [11], [12] is deferred to Section IV.

III. SYSTEM MODEL

Our studied system consists of one Metaverse Server (MS)
and N VR Users (VUs), indexed by N = {1, 2, · · · ,N }. In
downlink wireless communications, the MS sends to each VU
the corresponding VR video via frequency division multiple
access (FDMA) so that communications do not interfere.

We have overviewed the system operation in the “Studied
problem” paragraph on Page 1. As already stated, our goal is
to optimize the system utility-cost ratio (UCR), by deciding
communication resources (i.e., bandwidth and transmission
power) and computation resources (i.e., the MS’s computation
allocation and the VUs’ CPU frequencies), as well as VR
video resolutions. Figure 1 illustrates the system model.

Note that before the video transmission, there are message
exchanges between the MS and VUs for control purpose; e.g.,
each VU informs the MS of its maximum CPU frequency
and utility function, and the MS notifies the obtained CPU
frequency for each VU from the system utility-cost ratio
(UCR) optimization. We ignore the overhead of the control
information since it is much smaller than the video data sizes.
Below we first introduce notations, which are used to define
the system utility and cost in Sections III-A and III-B. Then
we formalize the UCR optimization in Section III-C.

For communications via FDMA, we define b =
[b1, b2, . . . , bN ], p = [p1, p2, . . . , pN ] as the bandwidths and
transmission powers used for the MS to communicate with
VUs. With gn being the channel attenuation from MS to VU n,
the achievable rate from MS to VU n is given by the function
notation below:

rn(bn, pn) = bn log2(1 +
gnpn
σ2bn

). (1)

A. Modeling the human-centric utilities of VR users

Based on the subjective test in [10], for each VU n, we
formulate the human-centric utility as Un(rn, sn), a function
of the transmission rate rn and resolution sn satisfying As-
sumption 1 below.
Assumption 1. Un(rn, sn) is non-decreasing in rn and sn,
concave in rn, and concave in sn.

The vector s = [s1, r2, . . . , sN ] gives the resolutions of VR
frames for the VUs. The system utility, defined as the sum of
all N VUs’ human-centric utilities, is given by

U(b,p, s) =
∑
n∈N Un(rn(bn, pn), sn). (2)

Our analysis and algorithm use Assumption 1, and do not
need Un(rn, sn)’s joint concavity in rn and sn, though the
expression of Un(rn, sn) in Section VIII from real datasets is
jointly concave in rn and sn.

B. System cost comprising delay and energy consumption
We start with defining some notations. For each n ∈ N ,

let fMS
n be the MS’s computational resource allocated to

process the frames for VU n. Such allocation of computing
resources is also considered in [35] for edge computing. The
CPU frequency of VU n is denoted by fVU

n . Then fMS :=
[fMS

1 , fMS
2 , . . . , fMS

N ] and fVU := [fVU
1 , fVU

2 , . . . , fVU
N ]. About

the frames for VU n, let µn be the number of bits per pixel,

and νn > 1 be the compression ratio. The MS will generate
a VR video of Λn frames for XU n. Let An(sn,Λn) (resp.,
Bn(sn,Λn)) be the number of CPU cycles on MS (resp., VU
n) to process a part of those Λn frames before (resp., after)
wireless transmission. While later frames of the VR video
are yet to be generated, earlier frames can be transmitted
from the MS to each VU n. Similarly, while later frames
of the VR video are yet to be received, VU n can process
earlier frames which have already been accepted. Hence, the
following three stages partially overlap: processing at the MS,
wireless transmission from the MS to VU n, and processing
at VU n, as shown in Fig. 2.

Processing on the MS
Wireless transmission from the MS to VU n

Processing on VU n

0 Time

𝑡!"#:%&'

𝑡!() 𝑡!*+:%&'

Fig. 2: The timeline.

Then we define the following:

• the time used on the MS to generate and process frames
for VU n before wireless transmission:
tMS:Pro
n (sn, f

MS
n ) = An(sn,Λn)

fMS
n

,
• the time expended to transmit all Λn VR frames from the

MS to VU n: tTx
n (bn, pn, sn) =

snµnΛn

rn(bn,pn)νn
,

• the time cost on VU n for processing frames after
wireless transmission: tVU:Pro

n (sn, f
VU
n ) = Bn(sn,Λn)

fVU
n

,

We will set the expressions of An(·),Bn(·) in Section IX on
simulations. Thus, the delay for VU n is
tn(bn, pn, sn, f

MS
n , fVU

n ) = tMS:Pro
n (sn, f

MS
n ) + tTx

n (bn, pn, sn)

+ tVU:Pro
n (sn, f

VU
n ). (3)

Then, we let the maximum of all VUs’ delays be the system
delay:
T (b,p, s,fMS,fVU) = maxn∈N tn(bn, pn, sn, f

MS
n , fVU

n ).
(4)

Let κMS, κVU
n be MS’s and VU n’s effective switched

capacitance. From the process of generating Λn frames at
MS to rendering them at VU n, the following energy will
be consumed:

• energy spent on MS to process Λn VR frames for VU n:
EMS:Pro
n (sn, f

MS
n ) = κMSFn(sn,Λn)(fMS

n )2,
• energy spent for transmitting Λn VR frames from MS to

VU n: ETx
n (bn, pn, sn) =

(pn+p
cir
n )snµnΛn

rn(bn,pn)νn
,

• energy spent on VU n to process Λn VR frames:
EVU:Pro
n (sn, f

VU
n ) = κVU

n Gn(sn,Λn)(fVU
n )2,

where we note that Fn(sn,Λn) (resp., Gn(sn,Λn)) is different
from An(sn,Λn) (resp., Bn(sn,Λn)) above, since the latter is
only before (resp., after) wireless transmission as shown in
Fig. 2, while the former considers CPU cycles to process Λn
frames. The notations above highlight the dependence on Λn,
but we do not write Λn in delay and energy functions as Λn
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Virtual Reality (VR) videos in different scenarios
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Fig. 1: Optimizing the system utility-cost ratio (UCR), in a system of one Metaverse Server (MS) and N VR Users (VUs),
by deciding communication and computation resources as well as VR video resolutions.

is not optimized. The total consumed energy is:
E(b,p, s,fMS,fVU) =

∑
n∈N EMS:Pro

n (sn, f
MS
n )

+
∑
n∈N ETx

n (bn, pn, sn) +
∑
n∈N EVU:Pro

n (sn, f
VU
n ). (5)

The system cost is a weighted sum of the system delay in
Eq. (4) and energy consumption in Eq. (5):

C(b,p, s,fMS,fVU) = ceE(b,p, s,fMS,fVU)

+ c tT (b,p, s,fMS,fVU), (6)
where ce and ct are the weight parameters for energy and
delay, respectively. With the utility in Eq. (2) and the cost
of the whole system in Eq. (6), we present the optimization
problem in the next section.

C. Optimization problem
The aim is to maximize the utility-cost ratio (UCR) of the

system as follows:
Problem P1 : maxb,p,s,fMS,fVU

U(b,p,s)
C(b,p,s,fMS,fVU)

(7)
s.t.

∑
n∈N bn ≤ bmax, (7a)∑
n∈N pn ≤ pmax, (7b)

sn ∈ Sn, ∀n ∈ N , where the set Sn
can be continuous or discrete, (7c)∑
n∈N fMS

n ≤ fMS
max, (7d)

fVU
n ≤ fVU

n,max, ∀n ∈ N . (7e)
Constraints (7a), (7b), and (7d) mean the sum-limit of the
bandwidth, power, and computing resources of the MS. Con-
straint (7c) gives the range of the resolution, and (7e) sets the
CPU frequency limit of each VU. Our approach to solving P1

will use a fractional programming technique presented next.

IV. OUR PROPOSED TECHNIQUE FOR FRACTIONAL
PROGRAMMING (FP)

In this section, we will first formulate the FP problem and
then explain how our proposed FP technique differs from those
in the state-of-the-art work [11], [12].

Fractional programming (FP) problem. Let
An(x), Bn(x), G(x) be functions of variable(s) x, and
these functions have definitions on a convex set S, which is
a subset of a real vector space. Also, for x ∈ S, we have
An(x) ≥ 0 and Bn(x) > 0. Then we consider:
FP-problem:optimizing H(x) := G(x) +

∑N
n=1

An(x)
Bn(x)

subject to x ∈ S. (8)
Two specific instances of FP-problem above are as follows:
FP-maximization: maximizing H(x) subject to x ∈ S,
for concave An(x) and convex Bn(x), (9)
FP-minimization: minimizing H(x) subject to x ∈ S,
for convex An(x) and concave Bn(x). (10)

Note that the above problem formulations (8) (9) (10) cover
constrained optimization where the constraints are convex so
that we can incorporate the constraints into defining S.

An overview of our contribution in FP technique. With
problems defined in (8) (9) (10) above, Table II compares our
novel FP technique and those in [11], [12]. We present the
details in the paragraphs below, describing [11], [12] and our
work, respectively.

Prior work [11] on FP. In case of G(x)≡0, [11] optimizes∑N
n=1

An(x)
Bn(x)

, which is referred to as the sum of ratios (SoR).
Then FP-maximization (resp., FP-minimization) un-
der G(x) ≡ 0 can be referred to SoR-maximization
(resp., SoR-minimization). Via a transform into para-
metric convex optimization problems, [11] obtains a
global optimum for SoR-maximization (i.e., maximizing∑N
n=1

An(x)
Bn(x)

for concave An(x) and convex Bn(x)) and

SoR-minimization (i.e., maximizing
∑N
n=1

An(x)
Bn(x)

for
convex An(x) and concave Bn(x)). However, the approach
of [11] is only applicable to the case of G(x) ≡ 0. The
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TABLE I: A comparison of our paper and other work [11], [12] on fractional programming (FP).

Paper Contribution to fractional programming

Jong [11]
Find the global solution to FP-maximization in (9)
and FP-minimization in (10), both only in the special case of G(x) ≡ 0,
but fail to tackle any problem in the case of G(x) ̸≡ 0.

Shen and Yu [12]
Find a stationary point for FP-maximization in (9)
for both cases of G(x) ≡ 0 and G(x) ̸≡ 0,
but fail to tackle FP-minimization.

Our current work
Find a stationary point for FP-minimization in (10)
for both cases of G(x) ≡ 0 and G(x) ̸≡ 0.

reason is that although the original SoR optimization and the
transformed problem find the same optimal solution for the
variable(s), the optimal objective-function values of the two
problems are different.

Prior work [12] on FP. To address cases of G(x) ≡ 0 and
G(x) ̸≡ 0, in the breakthrough work [12], Shen and Yu trans-
form each An(x)

Bn(x)
into Jn(x, yn):= 2yn

√
An(x)− yn2Bn(x),

and prove that for concave An(x) and convex Bn(x),
FP-maximization in (9) is the same as maximizing
V (x,y) := G(x) +

∑N
n=1 Jn(x, yn) subject to x ∈ S and

yn ∈ R (the set of real numbers). Then alternating optimiza-
tion (AO) is adopted to optimize x and y := [y1, . . . , yN ] in an
alternating manner, since V (x,y) is concave in x and concave
in y, despite not being jointly concave in them. This AO
algorithm leads to a stationary point for FP-maximization.
Note that [12] tackles only FP-maximization and does
not address FP-minimization. Jn(x, yn) above can not
be used for FP-minimization, since the minimum of
Jn(x, yn) is −∞.

Our new technique for FP. Based on the above discussions,
[11], [12] do not cover FP-minimization in (10) with
G(x) ̸≡ 0. To fill this gap, our paper proposes the following
technique for FP-minimization in both cases of G(x) ≡
0 and G(x) ̸≡ 0. Specifically, we transform each An(x)

Bn(x)

into Kn(x, yn) := [An(x)]
2yn + 1

4[Bn(x)]2yn
, and prove that

for convex An(x) and concave Bn(x), FP-minimization
in (10) is the same as minimizing W (x,y) := G(x) +∑N
n=1Kn(x, yn) subject to x ∈ S and yn ∈ R+. The

above holds because with y#(x) denoting y ∈ (R+)N which
minimizes W (x,y) given x (i.e., y#n (x) := 1

2An(x)Bn(x)
),

the partial derivative of W (x,y) with respect to x at y being
y#(x) is the same as the derivative of H(x) with respect to x,
where the computations are straightforward and shown in the
Appendix of our full version [36]. Then FP-minimization
in (10) can be tackled by optimizing x and y in an alternating
manner to minimize W (x,y), since W (x,y) is convex in x
(for convex G(x)) and convex in y (for any G(x)), despite not
being jointly convex in them. For non-convex G(x), optimiz-
ing W (x,y) with respect to x can employ techniques such
as difference-of-convex programming or successive convex
approximation [37]. The above alternating optimization finds
a stationary point for FP-minimization in (10). Finally,
we note that while our proposed FP technique will be used
to solve the current paper’s Problem P1 of Section III-C, the
technique can also be applied to many other FP problems [12]

beyond our paper.

V. SOLVE THE OPTIMIZATION PROBLEM P1
We present our method of solving P1 of (7) below. The

denominator in the objective function of (7), i.e., the system
cost, is given by (6) and involves a “maximize” term from
the system delay in (4). We add an auxiliary variable T to
circumvent that “maximize” so that P1 is transformed into
Problem P2:

Problem P2 : maxb,p,s,fMS,fVU,T
U(b,p,s)

ceE(b,p,s,fMS,fVU)+c tT

(11)
s.t. tn(bn, pn, sn, f

MS
n , fVU

n ) ≤ T, ∀n ∈ N ,
(11a)

(7a), (7b), (7c), (7d), (7e). (11b)
The subsections below present our steps for solving P1.

These steps together induce our Algorithm A1 on Page 6,
which can be better understood after readers have finished all
subsections below.

A. Dinkelbach’s transform for the ratio optimization

For P2 maximizing a ratio (i.e., numerator of (11)
denominator of (11) ), we

use Dinkelbach’s transform [12] to transform P2 into a
series of parametric optimization P3(y) which maximizes
“numerator of (11)−y ·denominator of (11)” subject to P2’s
constraints, where solving the current P3(y) decides “y” used
in the next P3(y). For an optimization problem Pi, let HPi

denote its objective function. Then HP3
and P3 are as follows:

HP3(b,p, s,f
MS,fVU, T | y) :

= numerator of (11)− y · denominator of (11)
= U(b,p, s)− y · (ceE(b,p, s,fMS,fVU) + c tT ), (12)

Problem P3(y) :

maxb,p,s,fMS,fVU,T HP3
(b,p, s,fMS,fVU, T | y) (13)

s.t. (7a), (7b), (7c), (7d), (7e), (11a).
The process of using P3 to solve P2 is as follows. For

ease of explanation, we denote [b,p, s,fMS,fVU, T ] by x,
and write the objective function of P3(y) as U(x)− y ·C(x).
Then starting from a feasible x(0) at initialization, we set
y(0) as U(x(0))

C(x(0))
. Then we solve P3(y

(0)), denote the obtained

solution as x(1), set y(1) as U(x(1))
C(x(1))

. This process continues

iteratively: in the (i + 1)th iteration, y(i) is set as U(x(i))
C(x(i))

(given by Line 5 of Algorithm A1 on Page 6), and x(i+1) is
obtained from solving P3(y

(i)). As stated in [12], the above
process converges and does not lose optimality; i.e., under
global optimization of each P3(y) (not achieved in our current
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Algorithm A1: Solve Problem P2 and hence Problem P1 for the system UCR optimization.

1 Initialize i← −1 and for all n ∈ N : b(0)n = bmax

N , p(0)n = pmax

N , s(0)n =
smin
n +smax

n

2 , (fMS
n )(0) =

fMS
max
N , (fVU

n )(0) = fVU
n,max;

2 T (0) ← maxn∈N tn(b
(0)
n , p

(0)
n , s

(0)
n , (fMS

n )(0), (fVU
n )(0));

3 repeat
4 Let i← i+ 1;

5 y(i) ← U(b(i),p(i),s(i))
ceE(b(i),p(i),s(i),(fMS)(i),(fVU)(i))+c tT (i) ;

6 //Lines 8–25 solve P3(y
(i))

7 Initialize j ← −1,
8 [b(i,0),p(i,0), s(i,0), (fMS)(i,0), (fVU)(i,0), T (i,0)]← [b(i),p(i), s(i), (fMS)(i), (fVU)(i), T (i)];
9 repeat

10 //Lines 13–22 solve P4(y
(i), s(i,j))

11 Let j ← j + 1.
12 Initialize ℓ← −1;
13 [b(i,j,0),p(i,j,0)]← [b(i,j),p(i,j)];
14 repeat
15 Let ℓ← ℓ+ 1.
16 Set z(i,j,ℓ)n ← 1

2·(p(i,j,ℓ)n +pcir
n )s

(i)
n µnΛn·rn(b(i,j,ℓ)n ,p

(i,j,ℓ)
n )νn

17 Obtain [b(i,j,ℓ+1),p(i,j,ℓ+1), (fMS)(i,j,ℓ+1), (fVU)(i,j,ℓ+1), T (i,j,ℓ+1)] through solving Problem
P5(z

(i,j,ℓ), y(i), s(i,j)) according to Algorithm A2, and denote the resulting optimal objective-function
value of P5(z

(i,j,ℓ), y(i), s(i,j)) by V ∗
P5
(z(i,j,ℓ), y(i), s(i,j));

18 until ℓ ≥ 1 and the relative difference between the optimal objective-function values for Problem
P5(z

(i,j,ℓ), y(i), s(i,j)) and Problem P5(z
(i,j,ℓ−1), y(i), s(i,j)) is no greater than ϵ3 for a small positive number

ϵ3 (i.e.,
V ∗
P5

(z(i,j,ℓ),y(i),s(i,j))

V ∗
P5

(z(i,j,ℓ−1),y(i),s(i,j))
− 1 ≤ ϵ3);

19 Set [b(i,j+1),p(i,j+1), (fMS)(i,j+1), (fVU)(i,j+1), T (i,j+1)]←
[b(i,j,ℓ+1),p(i,j,ℓ+1), (fMS)(i,j,ℓ+1), (fVU)(i,j,ℓ+1), T (i,j,ℓ+1)], which we consider as a solution to
P4(y

(i), s(i,j));
20 Set s as s(i,j+1) denoting the optimal solution of Problem

P6(b
(i,j+1),p(i,j+1), (fMS)(i,j+1), (fVU)(i,j+1), T (i,j+1), y(i)), which is obtained from (19).

21 until the relative difference between HP3
(b(i,j+1),p(i,j+1), s(i,j+1), (fMS)(i,j+1), (fVU)(i,j+1), T (i,j+1) | y(i)) and

HP3
(b(i,j),p(i,j), s(i,j), (fMS)(i,j), (fVU)(i,j), T (i,j) | y(i)) is no greater than ϵ2 for a small positive number ϵ2

(i.e., HP3 (b
(i,j+1),p(i,j+1),s(i,j+1),(fMS)(i,j+1),(fVU)(i,j+1),T (i,j+1)|y(i))
HP3 (b

(i,j),p(i,j),s(i,j),(fMS)(i,j),(fVU)(i,j),T (i,j)|y(i)) − 1 ≤ ϵ2) ;

22 Set [b(i+1),p(i+1), s(i+1), (fMS)(i+1), (fVU)(i+1), T (i+1)]←
[b(i,j+1),p(i,j+1), s(i,j+1), (fMS)(i,j+1), (fVU)(i,j+1), T (i,j+1)], which we consider as a solution to Problem
P3(y

(i));
23 until the relative difference between y(i+1) (i.e., U(b(i+1),p(i+1),s(i+1))

ceE(b(i+1),p(i+1),s(i+1),(fMS)(i+1),(fVU)(i+1))+c tT (i+1) ) and y(i) is no

greater than ϵ1 for a small positive number ϵ1 (i.e., y
(i+1)

y(i)
− 1 ≤ ϵ1);

24 Return [b(i+1),p(i+1), s(i+1), (fMS)(i+1), (fVU)(i+1), T (i+1)] as a solution to Problem P2, which means
[b(i+1),p(i+1), s(i+1), (fMS)(i+1), (fVU)(i+1)] is a solution to Problem P1;

paper, as discussed later), global optimization of P2 is also
achieved.

We will solve each P3(y) by alternating optimizing
(AO) s and b,p,fMS,fVU, T . Section V-B optimizes
b,p,fMS,fVU, T given s, while Section V-D optimizes s
given b,p,fMS,fVU, T . AO means looping through these two
steps until convergence; i.e., the relative difference between the
objective-function values of consecutive iterations is no more
than the error tolerance, as shown in Line 21 of Algorithm A1.

B. Optimizing b,p,fMS,fVU, T given s for Problem P3(y)

For Problem P3(y), given s, optimizing b,p,fMS,fVU, T
means the following optimization:

Problem P4(y, s) :

maxb,p,fMS,fVU,T F (b,p,fMS,fVU | s, y)− yce · ETx(b,p, s)
(14)

s.t. (7a), (7b), (7d), (7e), (11a).
where F (b,p,fMS,fVU,T | s,y)=U(b,p,s)

−y·[ce·(
∑
n∈N

EMS:Pro
n (sn,f

MS
n )

+
∑
n∈N

EVU:Pro
n (sn,f

VU
n ))+c tT ],

and ETx(b,p, s) :=
∑
n∈N ETx

n (bn, pn, sn)

=
∑
n∈N

(pn+p
cir
n )snµnΛn

rn(bn,pn)νn
. (15)
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Eq. (15) has a summation of non-convex ratios, which
we address using our fractional programming technique of
Section IV, as detailed soon. Note that we cannot use the
sum-of-ratios approach in [12], since the objective func-
tion in (14) includes not just the sum of ratios, but also
F (b,p,fMS,fVU,T | s,y).

C. Leveraging our fractional programming technique to solve
P4(y, s)

We utilize our fractional programming technique of Sec-
tion IV to transform P4 into a series of P5:
P5(z, y, s) : max

b,p,fMS,fVU,T
F (b,p,fMS,fVU,T | s,y)

− yce·
∑
n∈N

{
[(pn + pcir

n )snµnΛn]
2zn+

1
4(rn(bn,pn)νn)2zn

}
(16)

s.t. (7a), (7b), (7d), (7e), (11a), (17)
where we introduce the auxiliary z := [z1, z2, . . . , zN ] with
zn > 0. We solve P5(z, y, s) in Section VI.

The process of using P5(z, y, s) to solve P4(y, s) is as
follows. For ease of explanation, we denote [b,p,fMS,fVU, T ]
by χ, and write the objective function of P5(z, y, s) as
A(χ) −

∑
n∈N (Bn(χ)zn + Cn(χ)

zn
). Then starting from a

feasible χ(0) at initialization, we set z
(0)
n as

√
Cn(χ(0))
Bn(χ(0))

(i.e., optimizing the above objective function with respect to
z given χ = χ(0)). Then we solve P5(z

(0), y, s), denote
the obtained solution as χ(1), set z(1)n as

√
Cn(χ(1))
Bn(χ(1))

. This

process continues iteratively: in the (ℓ + 1)th iteration, z(ℓ)n
is set as

√
Cn(χ(ℓ))
Bn(χ(ℓ))

, and χ(ℓ+1) is obtained from solving
P5(z

(ℓ), y, s). As explained in Section V-C, the above process
is alternating optimization and thus converges. We will discuss
its performance in Section VI.

D. Optimizing s given b,p,fMS,fVU, T for Problem P3(y)

When Sn in (7c) is [smin
n , smax

n ], given b,p,fMS,fVU, T ,
optimizing s for P3(y) means the following:

Problem P6(b,p,f
MS,fVU, T, y) :

maxs U(b,p, s)− y · (ceE(b,p, s,fMS,fVU) + c tT )
(18)

s.t. smin
n ≤ sn ≤ min{smax

n , vn(bn, pn, f
MS
n , fVU

n , T )},
∀n ∈ N ,

where vn(bn, pn, fMS
n , fVU

n , T ) is defined as sn which makes
tn(bn, pn, sn, f

MS
n , fVU

n ) equal T .
Assuming An(sn,Λn), Bn(sn,Λn), Fn(sn,Λn), and

Gn(sn,Λn) of Section III-B to be convex in sn (which hold
in our simulations in Section IX), P6(b,p,f

MS,fVU, T, y)
is convex optimization for s, for which the Karush–
Kuhn–Tucker (KKT) conditions give a global optimum.
Using the KKT conditions, we obtain that with s#n
denoting the maximum point of the function Vn(sn) :=
Un(rn(bn, pn), sn) − yce ×

(
κMSFn(sn,Λn)(fMS

n )2 +
(pn+p

cir
n )snµnΛn

rn(bn,pn)νn
+ κVU

n Gn(sn,Λn)(fVU
n )2

)
that is concave

with respect to sn ∈ (0,∞), the optimal solution of sn to
P6(b,p,f

MS,fVU, T, y) is

for continuous Sn = [smin
n , smax

n ]:
s̃n := max{smin

n ,min{s#n , smax
n , vn(bn, pn, f

MS
n , fVU

n , T )}},
for discrete Sn: one of sup

n and slow
n which gives a higher

Vn(·), for sup
n (resp., slow

n ) denoting the
smallest (resp., largest) sn in Sn greater
(resp., less) than s̃n.

E. Putting the above together: Our Algorithm A1 on Page 6
Based on the above, we present Algorithm A1 on Page 6 to

solve P1. Algorithm A1 consists of three levels of iterations:
the outermost iteration based on Dinkelbach’s transform in
Section V-A, the mid-level iteration for alternating optimiza-
tion based on Sections V-B and V-D, and the innermost itera-
tion using our fractional programming technique as discussed
in Section V-C. In Algorithm A1’s pseudocode, Line 3 repre-
sents the outermost iteration based on Dinkelbach’s transform,
which solves a series of Problem P3(y) for iteratively-updated
y, in order to solve Problem P2 at convergence. Line 9
corresponding to the mid-level iteration is to alternating solve
Problem P4(y, s) and Problem P6(b,p,f

MS,fVU, T, y), in
order to resolve Problem P3(y) at convergence. In Line 14, the
innermost iteration is executed to solve Problem P5(z, y, s)
for iteratively-updated z, in order to settle Problem P4(y, s)
at convergence.

We defer the solution quality and time complexity of
Algorithm A1 to Section VII after explaining in Section VI
below how each P5(z, y, s) in Line 17 of Algorithm A1 is
solved.

VI. GLOBAL OPTIMIZATION OF PROBLEM P5(z, y, s)
IN (16)

The transmission rate rn(bn, pn) is jointly concave in bn
and pn [6]. Then from the composition rule in Eq. (3.11)
of [38] and our Assumption 1 on Page 3, U(b,p, s) in Eq. (2)
is jointly concave in b and p. Thus, P5(z, y, s) belongs to
convex optimization. The CVX tool [38] can be used to
solve it. However, the worst-case complexity of global convex
optimization grows exponentially with the problem size N
from Section 1.4.2 of [38]. Below we analyze the KKT
conditions [38] to globally optimize P5(z, y, s).

The Lagrange function of P5(z, y, s) is given below, where
α, β, γ, δ, ζ denote the multipliers:
LP5

(b,p,fMS,fVU, T, α, β, γ, δ, ζ | z, y, s)
= −F (b,p,fMS,fVU, T | y, s)

+ yce ·
∑
n∈N

{
[(pn + pcir

n )snµnΛn]
2zn + 1

4(rn(bn,pn)νn)2zn

}
+ α ·

(∑
n∈N bn − bmax

)
+ β ·

(∑
n∈N pn − pmax

)
+ γ ·

(∑
n∈N fMS

n − fMS
max

)
+
∑
n∈N

[
δn · (fVU

n − fVU
n,max)

]
+
∑
n∈N

[
ζn · (tn(bn, pn, sn, fMS

n , fVU
n )− T )

]
. (19)

Abbreviating LP5(b,p,f
MS,fVU, T, α, β, γ, δ, ζ |

z, y, s),fVU, T | s, y), Un(rn(bn, pn), sn) and rn(bn, pn) as
LP5

, Un and rn for simplicity, we present the KKT conditions
of P5(z, y, s) as (20)-(31) below.
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• Stationarity:
∀n ∈ N :

∂LP5
∂bn

= 0, meaning

− ∂Un

∂rn
· ∂rn∂bn

− yce
2rn3νn2zn

∂rn
∂bn

+ α− ζn snµnΛn

rn2νn
∂rn
∂bn

= 0; (20)
∀n∈N :

∂LP5
∂pn

=0, meaning

− ∂Un

∂rn
· ∂rn∂pn

+2ycezn(snµnΛn)
2(pn+p

cir
n )

− yce
2rn3νn2zn

∂rn
∂pn

+β−ζn snµnΛn

rn2νn
∂rn
∂pn

=0; (21)

∀n ∈ N :
∂LP5
∂fMS

n
= 0, meaning

yce · 2κMSFn(sn,Λn)fMS
n + γ − ζnAn(sn,Λn)

(fMS
n )2

= 0;

(22)

∀n ∈ N :
∂LP5
∂fVU

n
= 0, meaning

yce · 2κVU
n Gn(sn,Λn)fVU

n + δn − ζn Bn(sn,Λn)
(fVU

n )2 = 0;

(23)
∂LP5
∂T = 0, meaning

∑
n∈N ζn = yc t. (24)

• Complementary slackness:
α ·

(∑
n∈N bn − bmax

)
= 0; (25)

β ·
(∑

n∈N pn − pmax
)
= 0; (26)

γ ·
(∑

n∈N fMS
n − fMS

max

)
= 0; (27)

δn · (fVU
n − fVU

n,max) = 0 for all n ∈ N ; (28)

ζn · (tn(bn, pn, sn, fMS
n , fVU

n )− T ) = 0 for all n ∈ N . (29)
• Primal feasibility: (7a), (7b), (7d), (7e), (11a). (30)
• Dual feasibility:
(31a): α ≥ 0; (31b): β ≥ 0; (31c): γ ≥ 0;
(31d): δn ≥ 0 for all n ∈ N ; (31e): ζn ≥ 0 for all n ∈ N .

(31)

We now analyze the KKT conditions of (20)–(31), to solve
P5(⋆), where “⋆” denotes “z, y, s” from now on for notation
simplicity. Among the Lagrange multipliers, it is clear from
(20) that

α > 0. (32)
Then using (32) in (25), we obtain∑

n∈N bn = bmax. (33)
Thus, (25) (7a) (31a) can be replaced by (32) (33). Hence,

the KKT conditions of Problem P5(⋆), which include
(20)–(29), (30) (i.e., (7a), (7b), (7d), (7e), (11a)), and (31)
(i.e., (31a), (31b), (31c), (31d), (31e)),
can be expressed as SKKT , which denotes the collection of
(20)–(24), (26)–(29), (7b), (7d), (7e), (11a), (31b), (31c),
(31d), (31e), (32), and (33).

(34)

Identifying a roadmap to compute the variables step-by-
step. Given “z, y, s” (denoted by “⋆” below), we will find
b,p,fMS,fVU, T, α, β, γ, δ, ζ to satisfy the KKT conditions
SKKT defined above.

We will partition the KKT conditions given in SKKT of (34)
for P5(⋆) into the sets S1.1,S1.2.1,S1.2.2.1, S1.2.2.2,S2.1,S2.2
defined below to enable a step-by-step approach, in order to
solve for the variables:



Step 1: Considering ζ as an parameter, find [b,p,fMS,
fVU, α, β, γ, δ] satisfying S1.1 ∪ S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2
as functions of [ζ,⋆] through Steps 1.1 and 1.2 below,
whereS1.1 ∪ S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 ={

(20), (21), (22), (23), (26), (27), (28),
(7b), (7d), (7e), (31b), (31c), (31d), (32), (33)

}
, (35)

for S1.1, S1.2.1, S1.2.2.1 and S1.2.2.2 defined in (36), (38),
(40) and (41) below,

Step 1.1: Find fMS,fVU, γ, δ satisfying S1.1 as
functions of [ζ,⋆]:
S1.1 :=

{
(22), (23), (27), (28), (7d), (7e), (31c), (31d)

}
,

(36)
Step 1.2: Find b,p, α, β satisfying
S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 as functions of [ζ,⋆] through

Steps 1.2.1, 1.2.2.1, and 1.2.2.2 below, where
S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 ={

(20), (21), (26), (7b), (31b), (32), (33)
}
, (37)

for S1.2.1, S1.2.2.1 and S1.2.2.2 defined in (38), (40)
and (41) below,

Step 1.2.1: Considering [α, β] as parameters, find
b,p satisfying S1.2.1 as functions of [α, β, ζ,⋆],
for S1.2.1 :=

{
(20), (21)

}
, (38)

Step 1.2.2: Using results of Step 1.2.1, find [α, β]

satisfying S1.2.2.1 ∪ S1.2.2.2 as functions of
[ζ,⋆] through Steps 1.2.2.1 and 1.2.2.2 below,

where S1.2.2.1 ∪ S1.2.2.2 ={
(26), (7b), (31b), (32), (33)

}
, (39)

for S1.2.2.1 and S1.2.2.2 defined in (40) and (41) below,

Step 1.2.2.1: considering β as a parameter, find α
satisfying S1.2.2.1 as a function of [β, ζ,⋆], for
S1.2.2.1 :=

{
(32), (33)

}
, (40)

Step 1.2.2.2: using results of Step 1.2.2.1, find β
satisfying S1.2.2.2 as a function of [ζ,⋆],
for S1.2.2.2 :=

{
(26), (7b), (31b)

}
, (41)

Step 2: Using results of Steps 1.1 and 1.2, find [T, ζ]

satisfying S2.1 ∪ S2.2 as a function of “⋆” through Steps
2.1 and 2.2 below, where S2.1 ∪ S2.2 :={
(24), (29), (11a), (31e)

}
, (42)

for S2.1 and S2.2 defined in (43) and (44) below,

Step 2.1: considering T as a parameter, find ζ

satisfying S2.1 as a function of [T,⋆],
for S2.1 :=

{
(29), (11a), (31e)

}
, (43)

Step 2.2: using results of Steps 1.1 and 1.2, find T
satisfying S2.2 as a function of “⋆”,
for S2.2 := {(24)}, (44)

(45)

Steps 1.1, 1.2.1, 1.2.2.1, 1.2.2.2, 2.1, and 2.2 use
S1.1,S1.2.1,S1.2.2.1,S1.2.2.2,S2.1, and S2.2, respectively. Each
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step uses a subset of the KKT conditions SKKT (defined
in (34)) of Problem P5(⋆), and all steps combined together
utilize all the conditions, since it holds from (36), (38), (40),
(41), (43) and (44) that

S1.1 ∪ S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 ∪ S2.1 ∪ S2.2 (46)
= KKT conditions SKKT in (34).

We introduce notations to denote the computed results in
the steps. The goal is to obtain
[b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆), T#(⋆), α#(⋆),
β#(⋆), γ#(⋆), δ#(⋆), ζ#(⋆)],denoting a solution of
[b,p,fMS,fVU, T, α, β, γ, δ, ζ] to the KKT conditions
SKKT in (34);
i.e., [b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆), T#(⋆)]
denotes a global optimum to P5(⋆).

(47)
For X being 1.1, 1.2, 1.2.1, 1.2.2.1, 1.2.2.2, 2.1, or 2.2,

Proposition X below is a formal presentation of Step X above.
For better clarity, we also present the following table to help
understand notations.
Proposition 1.1. We have the following results which formally
explain Step 1.1 of Page 8.
(i) Given “⋆”, if in S1.1 defined in (36), we substitute ζ with
ζ#(⋆) defined in (47), then
[fMS,fVU, γ, δ] satisfying S1.1 is
[(fMS)#(⋆), (fVU)#(⋆), γ#(⋆), δ#(⋆)] defined in (47).
(ii) Given “⋆” and ζ, let the solution of [fMS,fVU, γ, δ] to
S1.1 be[f́MS(ζ | ⋆), f́VU(ζ | ⋆), γ́(ζ | ⋆), δ́(ζ | ⋆)]. Then
[f́MS(ζ#(⋆) | ⋆), f́VU(ζ#(⋆) | ⋆), γ́(ζ#(⋆) | ⋆),

δ́(ζ#(⋆) | ⋆)] = [(fMS)#(⋆), (fVU)#(⋆), γ#(⋆), δ#(⋆)].
(48)

Proof of Proposition 1.1: Given “⋆” and ζ, the con-
ditions in S1.1 of (36) are necessary and sufficient to
decide [fMS,fVU, γ, δ]. Since setting [ζ,fMS,fVU, γ, δ]
as [ζ#(⋆), (fMS)#(⋆), (fVU)#(⋆), γ#(⋆), δ#(⋆)] satis-
fies S1.1 due to (47), Results (i) and (ii) of Proposition 1.1
clearly hold.
Proposition 1.2. We have the following results, which formally
explain Step 1.2 of Page 8.
(i) Given “⋆”, if in S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 defined
in (37), we substitute ζ with ζ#(⋆) defined in (47),
then [b,p, α, β] satisfying S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 is
[b#(⋆),p#(⋆), α#(⋆), β#(⋆)] defined in (47).
(ii) Given “⋆” and ζ, let the solution of [b,p, α, β] to
S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2
be [b́(ζ | ⋆), ṕ(ζ | ⋆), ά(ζ | ⋆), β́(ζ | ⋆)]. Then
[b́(ζ#(⋆) | ⋆), ṕ(ζ#(⋆) | ⋆), ά(ζ#(⋆) | ⋆),β́(ζ#(⋆) | ⋆)]

= [b#(⋆),p#(⋆), α#(⋆), β#(⋆)]. (49)
Proof of Proposition 1.2: Given “⋆” and ζ, the condi-
tions in S1.2.1 ∪ S1.2.2.1 ∪ S1.2.2.2 of (37) are necessary and
sufficient to decide [b,p, α, β]. Since setting [ζ, b,p, α, β]
as [ζ#(⋆), b#(⋆),p#(⋆), α#(⋆), β#(⋆)] satisfies S1.2.1 ∪
S1.2.2.1 ∪ S1.2.2.2 due to (47), Results (i) and (ii) of Proposi-
tion 1.2 clearly hold.
Proposition 1.2.1. We have the following result which for-
mally explains Step 1.2.1 of Page 8.
(i) Given “⋆” and ζ, if in S1.2.1 defined in (38), we substitute
[α, β] with [ά(ζ | ⋆), β́(ζ | ⋆)] defined in Proposition 1.2,

then [b,p] satisfying S1.2.1 is [b́(ζ | ⋆), ṕ(ζ | ⋆)] defined in
Proposition 1.2.
(ii) Given “⋆” and [α, β, ζ], let the solution of [b,p] to S1.2.1
be [b̃(α, β, ζ | ⋆), p̃(α, β, ζ | ⋆)]. Then
[b̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆), p̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆)]

= [b́(ζ | ⋆), ṕ(ζ | ⋆)]. (50)
Proof of Proposition 1.2.1: Given “⋆” and [α, β, ζ], the
conditions in S1.2.1 of (38) are necessary and sufficient to
decide [b,p]. Since setting [b,p, α, β] as [b́(ζ | ⋆), ṕ(ζ |
⋆), ά(ζ | ⋆), β́(ζ | ⋆)] satisfies S1.2.1 by the ´(·) notations
in Proposition 1.2, Results (i) and (ii) of Proposition 1.2.1
clearly hold.
Proposition 1.2.2. We have the following result which for-
mally explains Step 1.2.2 of Page 8.
Given “⋆” and [α, β, ζ], if in S1.2.2.1∪S1.2.2.2 given in (39),
we substitute [b,p]
with [b̃(α, β, ζ | ⋆), p̃(α, β, ζ | ⋆)] defined in Proposi-
tion 1.2.1, then [α, β] satisfying S1.2.2.1 ∪ S1.2.2.2 is [ά(ζ |
⋆), β́(ζ | ⋆)] defined in Proposition 1.2.
Proof of Proposition 1.2.2: Given “⋆” and [α, β, ζ], if in
S1.2.2.1 ∪S1.2.2.2 of (39), we substitute [b,p] with [b̃(α, β, ζ |
⋆), p̃(α, β, ζ | ⋆)] defined in Proposition 1.2.1, the conditions
in S1.2.2.1 ∪ S1.2.2.2 of (39) are necessary and sufficient to
decide [α, β]. Since setting [b,p, α, β] as
[b̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆), p̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ |
⋆), ά(ζ | ⋆), β́(ζ | ⋆)]
(i.e., [b́(ζ | ⋆), ṕ(ζ | ⋆), ά(ζ | ⋆), β́(ζ | ⋆)] according
to (50)) satisfies S1.2.2.1∪S1.2.2.2 by the definition of the ´(·)
notations in Proposition 1.2, Proposition 1.2.2 clearly follows.

Despite Proposition 1.2.2, simultaneously solving for [α, β]
to S1.2.2.1 ∪S1.2.2.2 is challenging. Instead, we solve for α as
a function of β first and then decide β in Propositions 1.2.2.1
and 1.2.2.2 below.
Proposition 1.2.2.1. We have the following results which
formally explain Step 1.2.2.1 of Page 8.
(i) Given “⋆” and ζ, if in S1.2.2.1 defined in (40), we substitute
b with b̃(α, β́(ζ | ⋆), ζ | ⋆), then α satisfying S1.2.2.1 is
ά(ζ | ⋆), where the ´(·) and ˜(·) notations are defined in
Propositions 1.2 and 1.2.1.
(ii) Given “⋆” and ζ, if in S1.2.2.1, we substitute b with
b̃(α, β, ζ | ⋆) defined in Proposition 1.2.1, let the solution
of α to S1.2.2.1 be ᾰ(β, ζ | ⋆). Then
ᾰ(β́(ζ | ⋆), ζ | ⋆) equals ά(ζ | ⋆), and (51)

[b̃(ᾰ(β́(ζ | ⋆), ζ | ⋆), β́(ζ | ⋆), ζ | ⋆), p̃(ᾰ(β́(ζ | ⋆), ζ | ⋆),

β́(ζ | ⋆), ζ | ⋆)] equals [b́(ζ | ⋆), ṕ(ζ | ⋆)]. (52)
Proof of Proposition 1.2.2.1: Given “⋆” and ζ, if in S1.2.2.1
defined in (40), we substitute b with b̃(α, β́(ζ | ⋆), ζ | ⋆),
then the conditions in S1.2.2.1 of (40) are necessary and
sufficient to decide α. Since setting α as ά(ζ | ⋆) and setting
b as b̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆) (i.e., b́(ζ | ⋆) according
to (50)) satisfies S1.2.2.1 by the definition of the ´(·) notations
in Proposition 1.2, Proposition 1.2.2.1 clearly follows. In
particular, after we have (51), we further obtain (52) from
(50) and (51).
Proposition 1.2.2.2. We have the following result which for-
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TABLE II: Notes for notations, where “ ” denotes a wildcard symbol hereinafter for convenience.
Notations Notes
⋆ Represent “z, y, s”
´(·) notations Defined in Propositions 1.1 and 1.2
#(·), ˜(·), ˘(·), `(·) Defined in (47), and Propositions 1.2.1, 1.2.2.1, and 2.1, respectively

mally explains Step 1.2.2.2 of Page 8.
Given “⋆”, if in S1.2.2.2 defined in (41), we substitute p
with p̃(ᾰ(β, ζ | ⋆), β, ζ | ⋆), then β satisfying S1.2.2.2 is
β́(ζ | ⋆), where ˘(·), ˜(·), and ´(·) notations are defined in
Propositions 1.2.2.1, 1.2.1, and 1.2.
Proof of Proposition 1.2.2.2: Given “⋆”, if in S1.2.2.2 defined
in (41), we substitute p with p̃(ᾰ(β, ζ | ⋆), β, ζ | ⋆), then
the conditions in S1.2.2.2 of (41) are necessary and sufficient
to decide β. Since setting β as β́(ζ | ⋆) and setting p as
p̃(ᾰ(β́(ζ | ⋆), ζ | ⋆), β́(ζ | ⋆), ζ | ⋆) (i.e., ṕ(ζ | ⋆) based
on (51) and (52)) satisfies S1.2.2.2 by the ´(·) notations in
Proposition 1.2, Proposition 1.2.2.2 clearly follows.
Proposition 2. We have the following result which formally
explains Step 2 of Page 8.
Given “⋆”, if in S2.1 ∪ S2.2 defined in (42), we substitute
[b,p,fMS,fVU, α, β, γ, δ] with
[b́(ζ | ⋆), ṕ(ζ | ⋆), f́MS(ζ | ⋆), f́VU(ζ | ⋆), ά(ζ | ⋆), β́(ζ |
⋆), γ́(ζ | ⋆), δ́(ζ | ⋆)] defined in Propositions 1.1 and 1.2,
then [ζ, T ] satisfying S2.1 ∪ S2.2 is [ζ#(⋆), T#(⋆)] defined
in (47).

Despite Proposition 2, simultaneously solving for [ζ, T ] to
S1.2.2.1 ∪ S1.2.2.2 is challenging. Instead, we solve for ζ as
a function of T first and then decide T in Propositions 2.1
and 2.2 below.
Proposition 2.1. We have the following result which formally
explains Step 2.1 of Page 8.
(i) Given “⋆”, if in S2.1 defined in (43), we substitute
[T, b,p,fMS,fVU] with
[T#(⋆), b́(ζ | ⋆), ṕ(ζ | ⋆), f́MS(ζ | ⋆), f́VU(ζ | ⋆)], then ζ
satisfying S2.1 is ζ#(⋆), where the #(·) and ´(·) notations
are defined in (47) and Proposition 1.2 respectively.
(ii) Given “⋆”, if in S2.1 defined in (43), we substitute
[b,p,fMS,fVU] with
[b́(ζ | ⋆), ṕ(ζ | ⋆), f́MS(ζ | ⋆), f́VU(ζ | ⋆)], let the solution
of ζ to S2.1 be ζ̀(T | ⋆). Then
ζ̀(T#(⋆) | ⋆) equals ζ#(⋆), and (53)

[b́(ζ̀(T#(⋆)|⋆)|⋆), ṕ(ζ̀(T#(⋆)|⋆)|⋆), f́MS(ζ̀(T#(⋆)|⋆)|⋆),
f́VU(ζ̀(T#(⋆)|⋆)|⋆), ά(ζ̀(T#(⋆)|⋆)|⋆), β́(ζ̀(T#(⋆)|⋆)|⋆),
γ́(ζ̀(T#(⋆)|⋆)|⋆), δ́(ζ̀(T#(⋆)|⋆)|⋆)]
equals [b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆),

α#(⋆), β#(⋆), γ#(⋆), δ#(⋆)]. (54)
Proof of Proposition 2.1: Given “⋆”, if in S2.1
defined in (43), we substitute [T, b,p,fMS,fVU] with
[T#(⋆), b́(ζ | ⋆), ṕ(ζ | ⋆), f́MS(ζ | ⋆), f́VU(ζ | ⋆)],
then the conditions in S2.1 of (43) are necessary and
sufficient to decide ζ. Since setting [ζ, T, b,p,fMS,fVU]
as [ζ#(⋆), T#(⋆), b́(ζ#(⋆) | ⋆), ṕ(ζ#(⋆) |
⋆), f́MS(ζ#(⋆) | ⋆), f́VU(ζ#(⋆) | ⋆)] (i.e.,
[ζ#(⋆), T#(⋆), b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆)]
according to (48) and (49)) satisfies S2.1 by the #(·)

notations in (47), Proposition 2.1 clearly follows.
Proposition 2.2. We have the following result which formally
explains Step 2.2 of Page 8.
Given “⋆”, if in S2.2 defined in (44), we substitute
[ζ, b,p,fMS,fVU] with
[ζ̀(T | ⋆), b́(ζ̀(T | ⋆) | ⋆), ṕ(ζ̀(T | ⋆) | ⋆), f́MS(ζ̀(T |
⋆) | ⋆), f́VU(ζ̀(T | ⋆) | ⋆)], then T satisfying S2.2
is T#(⋆), where ´(·), `(·), and #(·) notations are in
Proposition 1.2, Proposition 2.1, and (47).
Proof of Proposition 2.2: Given “⋆”, if in S2.2 defined in
(44), we substitute [ζ, b,p,fMS,fVU] with
[ζ̀(T | ⋆), b́(ζ̀(T | ⋆) | ⋆), ṕ(ζ̀(T | ⋆) | ⋆), f́MS(ζ̀(T |
⋆) | ⋆), f́VU(ζ̀(T | ⋆) | ⋆)], then the conditions in S2.2 of
(44) are necessary and sufficient to decide T . Since setting
[ζ, T, b,p,fMS,fVU] as
[ζ̀(T#(⋆) | ⋆), b́(ζ̀(T#(⋆) | ⋆) | ⋆), ṕ(ζ̀(T#(⋆) | ⋆) |
⋆), f́MS(ζ̀(T#(⋆) | ⋆) | ⋆), f́VU(ζ̀(T#(⋆) | ⋆) | ⋆)] (i.e.,
[ζ#(⋆), T#(⋆), b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆)]
according to (48) (49) and (53)) satisfies S2.2 by the
definition of the #(·) notations in (47), Proposition 2.2
clearly follows.

Based on the above propositions, Fig. 3 and Algorithm A2
present our procedure to solve P5(⋆). For clarity, the function
“Alg-Solve-x(·)” is to compute x(·); e.g., Alg-Solve-T#(⋆)
obtains T#(⋆).

Algorithm A2: Given z, y, s (written
as “⋆” below), find a globally optimal
solution to Problem P5(⋆), denoted as
[b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆), T#(⋆)].

1 Use Alg-Solve-T#(⋆) of Algorithm 2.2 on Page 14 to
obtain T#(⋆);

2 Use Algorithm 2.1 on Page 13 to obtain
ζ̀(T#(⋆) | ⋆), which is ζ#(⋆) from (53);

3 Use Algorithm 1.2 on Page 11 to obtain
[b́(ζ#(⋆) | ⋆), ṕ(ζ#(⋆) | ⋆), ά(ζ#(⋆) | ⋆)],
which equals [b#(⋆),p#(⋆)] from (49); //Comment:
Algorithm 1.2 uses Algorithms 1.2.1, 1.2.2.1, and
1.2.2.2.

4 Use Algorithm 1.1 on Page 12 to obtain
[f́MS(ζ#(⋆) | ⋆), f́VU(ζ#(⋆) | ⋆)], which equals
[(fMS)#(⋆), (fVU)#(⋆)] from (48);

For X being 1.1, 1.2, 1.2.1, 1.2.2.1, 1.2.2.2, 2.1, or 2.2,
Algorithm X will be presented for the computation in Propo-
sition X, as shown in Fig. 3 and explained in detail below.

Algorithm 1.1: Computing [f́MS(ζ | ⋆), f́VU(ζ |
⋆), γ́(ζ | ⋆), δ́(ζ | ⋆)] defined in Proposition 1.1 using
S1.1 of (36). Among S1.1, [f́MS(ζ | ⋆), γ́(ζ | ⋆)] is [fMS, γ]
satisfying (22) (27) (7d) (31c), while [f́VU(ζ | ⋆), δ́(ζ | ⋆)]
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• Computing [b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆), T#(⋆)]

which denotes a globally optimal solution to Problem P5(⋆) as defined in (47)

Via (54)⇐⇒



• Algorithm 1.1: Computing [f́MS(ζ | ⋆), f́VU(ζ | ⋆), γ́(ζ | ⋆), δ́(ζ | ⋆)] defined in Proposition 1.1,

• Algorithm 1.2: Computing [b́(ζ | ⋆), ṕ(ζ | ⋆)] defined in Proposition 1.2,
Via (50)⇐⇒ • Computing [b̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆), p̃(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆)],

⇐⇒



• Algorithm 1.2.1: Computing [b̃(α, β, ζ | ⋆), p̃(α, β, ζ | ⋆)] defined in Proposition 1.2.1,

• Computing [ά(ζ | ⋆), β́(ζ | ⋆)] defined in Proposition 1.2

Via (51) and
Proposition 1.2.2.2⇐⇒


• Algorithm 1.2.2.1:

Computing ᾰ(β, ζ | ⋆) defined in Proposition 1.2.2.1
(which needs Algorithm 1.2.1 above),

• Algorithm 1.2.2.2:
use Algorithm 1.2.2.1 to compute β́(ζ | ⋆)

according to Proposition 1.2.2.2.

• Algorithm 2.1: Computing ζ̀(T | ⋆) defined in Proposition 2.1, which needs

[b́(ζ | ⋆), ṕ(ζ | ⋆), f́MS(ζ | ⋆), f́VU(ζ | ⋆)]; i.e., Algorithms 1.1, 1.2.1, 1.2.2.1, 1.2.2.2 above,

• Algorithm 2.2: Computing T#(⋆) according to Proposition 2.2,

which needs Algorithm 2.1 as well as Algorithms 1.1, 1.2.1, 1.2.2.1, 1.2.2.2 above.
Fig. 3: Our procedure to solve Problem P5(⋆).

is [fVU, δ] satisfying (23) (28) (7e) (31d). From (22) and (23),
with PositiveRoot(E) for an equation E denoting the positive
root of E, we have
fMS
n

= PositiveRoot(ζn
An(sn,Λn)

x2 − yce · 2κMSFn(sn,Λn)x = γ),
(55)

fVU
n

= PositiveRoot(ζn
Bn(sn,Λn)

x2 − yce · 2κVU
n Gn(sn,Λn)x = δn).

(56)
To obtain [fVU, δ] satisfying (23) (28) (7e) (31d), we have

the following two cases:

• If PositiveRoot(ζn
Bn(sn,Λn)

x2 − yce · 2κVU
n Gn(sn,Λn)x =

0) > fVU
n,max; i.e., if 3

√
Bn(sn,Λn)ζn

2Gn(sn,Λn)yceκVU
n
> fVU

n,max, setting
δn as 0 violates (7e). This with (31d) means δn > 0,
which with (28) induces fVU

n = fVU
n,max;

• If PositiveRoot(ζn
Bn(sn,Λn)

x2 − yce · 2κVU
n Gn(sn,Λn)x =

0) ≤ fVU
n,max; i.e., if 3

√
Bn(sn,Λn)ζn

2Gn(sn,Λn)yceκVU
n
≤ fVU

n,max, then

setting δn as 0 and fVU
n = 3

√
Bn(sn,Λn)ζn

2Gn(sn,Λn)yceκVU
n

satisfies
(23) (28) (7e) (31d).

To obtain [fMS, γ] satisfying (22) (27) (7d) (31c), we
discuss the following two cases:

❶ If PositiveRoot(ζn
An(sn,Λn)

x2 − yce · 2κMSFn(sn,Λn)x =

0) > fMS
max; i.e., if

∑
n∈N

3

√
An(sn,Λn)ζn

2Fn(sn,Λn)yceκMS > fMS
max,

then setting γ as 0 violates (7d). This with (31c) means
γ > 0, which is used in (27) to induce∑

n∈N PositiveRoot(ζn
An(sn,Λn)

x2

− yce · 2κMSFn(sn,Λn)x = γ) = fMS
max. (57)

After obtaining the desired γ, we use it in (55) to get
fMS
n .

❷ If PositiveRoot(ζn
An(sn,Λn)

x2 − yce · 2κMSFn(sn,Λn)x =

0) ≤ fMS
max; i.e., if

∑
n∈N

3

√
An(sn,Λn)ζn

2Fn(sn,Λn)yceκMS ≤ fMS
max,

then setting γ as 0 and fMS
n = 3

√
An(sn,Λn)ζn

2Fn(sn,Λn)yceκMS

satisfies (22) (27) (7d) (31c).

Algorithm 1.1 explained above:
Alg-Solve-f́MS(ζ |⋆)-and-f́VU(ζ |⋆).

1 Set f́VU
n (ζ | ⋆) as min

{
fVU
n,max,

3

√
Bn(sn,Λn)ζn

2Gn(sn,Λn)yceκVU
n

}
;

2 if
∑
n∈N

3

√
An(sn,Λn)ζn

2Fn(sn,Λn)yceκMS ≤ fMS
max, then set

f́MS
n (ζ | ⋆) as 3

√
An(sn,Λn)ζn

2Fn(sn,Λn)yceκMS ;
3 else with function C(·) being set as∑

n∈N PositiveRoot(ζn
An(sn,Λn)

x2 − yce ·
2κMSFn(sn,Λn)x = γ), and Ctarget being set as fMS

max,
run Standard-Bisection-Search([ζ,⋆], function C(·),
Ctarget, 0, f

MS
max) based on Algorithm A4 on Page 14 to

obtain the desired γ satisfying Eq. (57),
4 let the obtained γ be γ́, and set set f́MS

n (ζ | ⋆) as
PositiveRoot(ζn

An(sn,Λn)
x2 − yce · 2κMSFn(sn,Λn)x =

γ́) for each n ∈ N ;
5 Return f́VU(ζ | ⋆) (resp., f́MS(ζ | ⋆)) as

[f́VU
n (ζ | ⋆)|n∈N ] (resp., [f́MS

n (ζ | ⋆)|n∈N ]);

Algorithm 1.2: Computing [b́(ζ | ⋆), ṕ(ζ | ⋆)] defined
in Proposition 1.2. As shown in the pseudocode, Algorithm
1.2 calls Algorithms 1.2.1, 1.2.2.1, and 1.2.2.2 detailed below.

Algorithm 1.2.1: Computing [b̃(α, β, ζ | ⋆), p̃(α, β, ζ |
⋆)] defined in Proposition 1.2.1 using S1.2.1 of (38). Recall
that S1.2.1 includes (20) (21). From (20) (21) and (1), with ϑn
defined by

ϑn := gnpn
σ2
nbn

, (58)

we obtain that [̃bn(α, β, ζ | ⋆), p̃n(α, β, ζ | ⋆)] is the solution
of [bn, pn] to(∂Un(rn,sn)

∂rn
+ yce

2znrn3νn2 + ζnsnµnΛn

rn2νn

)
×(

log2(1 + ϑn)− ϑn

(1+ϑn) ln 2

)
= α, and (59)(∂Un(rn,sn)

∂rn
+ yce

2znrn3νn2 + ζnsnµnΛn

rn2νn

)
· gn
σ2
n(1+ϑn) ln 2

= β + 2(pn + pcir
n )ycezn(snµnΛn)

2. (60)
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Algorithm 1.2 explained above:
Alg-Solve-b́(ζ | ⋆)-and-ṕ(ζ | ⋆).

1 Run Alg-Solve-β́(ζ | ⋆) of Algorithm 1.2.2.2 to
obtain β́(ζ | ⋆);

2 Use the just obtained β́(ζ | ⋆) as an input to
Alg-Solve-ᾰ(β, ζ | ⋆) of Algorithm 1.2.2.1 to get
ᾰ(β́(ζ | ⋆), ζ | ⋆), which equals ά(ζ | ⋆) according
to (51);

3 For each n ∈ N , use Lines 2 and 1’s obtained
ά(ζ | ⋆) and β́(ζ | ⋆) as inputs to
Alg-Solve-̃bn(α, β, ζ | ⋆) (resp.,
Alg-Solve-p̃n(α, β, ζ | ⋆)) of Algorithm 1.2.1 to get
b̃n(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆) (resp.,
p̃n(ά(ζ | ⋆), β́(ζ | ⋆), ζ | ⋆)), which equals
b́n(ζ | ⋆) (resp., ṕn(ζ | ⋆)) according to (50);

4 Return b́(ζ | ⋆) (resp., ṕ(ζ | ⋆)) as [b́n(ζ | ⋆)|n∈N ]
(resp., [ṕn(ζ | ⋆)|n∈N ]);

With (59) divided by (60), it holds that
log2(1+ϑn)− ϑn

(1+ϑn) ln 2
gn

σ2
n(1+ϑn) ln 2

= α
β+2(pn+pcir

n )ycezn(snµnΛn)2
. (61)

Based on (61), we get
ϑn=ψn(pn, α, β | ⋆), for ψn(pn, α, β | ⋆)

:=exp
{
1+W

(
1
e (

gnα
[β+2(pn+pcir

n )ycezn(snµnΛn)2]σ2
n
−1)

)}
−1.

(62)
Then we can substitute ϑn from (62) into (59) and (60), to
decide [b,p], as shown in Lemma 1 below.
Lemma 1. Given [α, β, ζ,⋆], we know from Proposition 1.2.1
that p̃n(α, β, ζ | ⋆) and b̃n(α, β, ζ | ⋆) denote the values of
pn and bn satisfying (20) and (21). We define ψn(pn, α, β | ⋆)
in (62), and define

rn(pn, α, β | ⋆) := gnpn log2(1+ψn(pn,α,β|⋆))

σ2
nψn(pn,α,β|⋆)

. (63)
Then p̃n(α, β, ζ | ⋆) is a solution of pn to[ (∂Un(rn,sn)

∂rn

)
|rn=rn(pn,α,β|⋆)

+ yce

2zn·[rn(pn,α,β|⋆)]3νn2 + ζnsnµnΛn

[rn(pn,α,β|⋆)]2νn

]
×[

log2
(
1 + ψn(pn, α, β | ⋆)

)
− ψn(pn,α,β|⋆)

(1+ψn(pn,α,β|⋆)) ln 2

]
= α.

(64)
With p̃n(α, β, ζ | ⋆) decided according to (64) above, the
corresponding bn satisfying (20) and (21) is

b̃n(α, β, ζ | ⋆) = gnp̃n(α,β,ζ|⋆)

σ2
nψn(p̃n(α,β,ζ|⋆),α,β|⋆)

. (65)
Proof of Lemma 1: First, for pn and bn satisfying (20)
and (21), we have already explained above that gnpn

σ2
nbn

(i.e.,
ϑn defined in (58)) equals ψn(pn, α, β | ⋆) defined in (62).
Then bn equals gnpn

σ2
n·ψn(pn,α,β|⋆)

, and rn(bn, pn) denoting
bn log2(1+

gnpn
σ2bn

) equals the right hand side of (63), which we
denote as rn(pn, α, β | ⋆) in (63) for notation simplicity. Then
letting rn be rn(pn, α, β | ⋆) in (59), we obtain (64) which
will be used to solve pn. With p̃n(α, β, ζ | ⋆) denoting the
obtained pn, the corresponding bn is given by (65). Hence, we
have proved that p̃n(α, β, ζ | ⋆) and b̃n(α, β, ζ | ⋆), denoting
pn and bn satisfying (20) and (21), are given by (64) and (65),
respectively.

Then we use (64) and (65) of Lemma 1 to solve p̃n(α, β, ζ |

⋆) and b̃n(α, β, ζ | ⋆), respectively. They are considered as
two subprocedures of Algorithm 1.2.1, as described below.

Algorithm 1.2.1’s Subprocedure 1 via Eq. (64) for
transmission power: Alg-Solve-p̃n(α, β, ζ | ⋆).

1 With function C(·) being set as the left hand side
of (64), and Ctarget being set as α, run
Standard-Bisection-Search([α, β, ζ,⋆], function C(·),
Ctarget, 0, pmax) based on Algorithm A4 on Page 14 to
obtain the desired pn satisfying Eq. (64), and set this
pn as p̃n(α, β, ζ | ⋆);

Algorithm 1.2.1’s Subprocedure 2 via Eq. (65) for
bandwidth: Alg-Solve-̃bn(α, β, ζ,⋆).

1 Run Alg-Solve-p̃n(α, β, ζ,⋆) (i.e., Algorithm 1.2.1’s
Subprocedure 1 above) to obtain p̃n(α, β, ζ | ⋆);

2 Compute b̃n(α, β, ζ | ⋆) according to Eq. (65);

Algorithm 1.2.2.1: Computing ᾰ(β, ζ | ⋆) defined in
Proposition 1.2.2.1 using S1.2.2.1 of (40). Recall that S1.2.2.1
includes (32) and (33). Proposition 1.2.2.1 defines ᾰ(β, ζ | ⋆)
as the solution of α to∑

n∈N b̃n(α, β, ζ | ⋆) = bmax and α > 0. (66)

Algorithm 1.2.2.1 explained above:
Alg-Solve-ᾰ(β, ζ | ⋆).

1 With function C(·) being set as∑
n∈N Alg-Solve-̃bn(α, β, ζ,⋆) (whose computation

requires Algorithm 1.2.1’s Subprocedure 2), and
Ctarget being set as bmax, run
Bisection-Search-with-No-Known-Upper-Bound([β,z, y, s],
function C(·), Ctarget) based on Algorithm A3 on
Page 14 to obtain the desired α satisfying Eq. (66),
and set this α as ᾰ(β | z, y, s);

Algorithm 1.2.2.2 (Pseudocode on Page 13 based on the
following analysis): Using Algorithm 1.2.2.1 to compute
β́(ζ | ⋆) according to Proposition 1.2.2.2 using S1.2.2.2 of
(41). Recall from (41) that S1.2.2.2 includes (26), (7b), and
(31b). Then β́(ζ | ⋆) is the solution of β to

based on (26), we ensure
β ·

(∑
n∈N p̃n(ᾰ(β, ζ | ⋆), β, ζ | ⋆)− pmax

)
= 0; (67a)

based on (7b), we ensure∑
n∈N p̃n(ᾰ(β, ζ | ⋆), β, ζ | ⋆) ≤ pmax; (67b)

based on (31b), we ensure β ≥ 0. (67c)
We have the following two cases:
• If

∑
n∈N p̃n(ᾰ(0, ζ | ⋆), 0, ζ | ⋆) > pmax, then the

solution of β to (67a)–(67c) cannot be 0 (which along
with (67c) means β > 0), since setting β as 0 violates
(67b). We use β > 0 in (67a) to get∑

n∈N p̃n(ᾰ(β, ζ | ⋆), β, ζ | ⋆) = pmax. (68)
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• If
∑
n∈N p̃n(ᾰ(0, ζ | ⋆), 0, ζ | ⋆) ≤ pmax, then 0 is a

solution of β to (67a)–(67c).

Algorithm 1.2.2.2 explained above: Alg-Solve-β́(ζ |
⋆).

1 if
∑
n∈N p̃n(ᾰ(0, ζ | ⋆), 0, ζ | ⋆) ≤ pmax, then set

β́(ζ | ⋆) as 0;
2 else with function C(·) being set as∑

n∈N p̃n(ᾰ(β, ζ | ⋆), β, ζ | ⋆) (whose computation
requires Algorithm 1.2.2.1 and Algorithm 1.2.1’s
Subprocedure 1), and Ctarget being set as pmax, run
Bisection-Search-with-No-Known-Upper-Bound
([ζ,⋆], function C(·), Ctarget) based on Algorithm A3
on Page 14 to obtain the desired β satisfying
Eq. (68), and set this β as β́(ζ | ⋆);

Algorithm 2.1: Computing ζ̀(T | ⋆) defined in Propo-
sition 2.1 using S2.1 defined in (43). Recall from (43) that
S2.1 includes (29), (11a), and (31e). Then for each n ∈ N ,
Proposition 2.1 means ζ̀n(T | ⋆) is ζn which satisfies the
following:

based on (29), we ensure
ζn · (tn(b́n(ζ | ⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆),

f́VU
n (ζ | ⋆))− T ) = 0; (69a)

based on (11a), we ensure
tn(b́n(ζ | ⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆),

f́VU
n (ζ | ⋆)) ≤ T ; (69b)

based on (31e), we ensure ζn ≥ 0. (69c)

Given n ∈ N , we can discuss two cases for ζn as follows:

Case 1: If setting ζn to 0 violates (69b), then ζn must be
strictly positive, which is used in (69a) to show that
the inequality in (69b) actually becomes equality in
this case.

Case 2: If setting ζn to 0 satisfies (69b), then we can just
set ζn as 0.

Summarizing the above two cases, we know that after defining
ζ̊(n) := [ζ1, ζ2, . . . , ζn−1, 0, ζn+1, . . . , ζN ], and (70)

hn(ζ |T ):=


−ζn, if tn(b́n(ζ̊(n) |⋆), ṕn(ζ̊

(n) |⋆), sn,

f́MS
n (ζ̊(n) |⋆), f́VU

n (ζ̊(n) |⋆))≤T, (71a)
tn(b́n(ζ | ⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆),

f́VU
n (ζ | ⋆))− T, otherwise, (71b)

(71)
setting ζ as ζ̀(T | ⋆) always ensures that hn(ζ | T ) = 0.
Letting n iterate through N and defining

h(ζ | T ) := [hn(ζ | T )|n∈N ], (72)
we know that setting ζ as ζ̀(T | ⋆) ensures that

h(ζ | T ) equals the N -dimensional zero vector 0. (73)
We define ζupper

n such that when ζ is [0n−1, ζupper
n , 0N−n],

hn(ζ | T ) = 0. (74)

We will prove the following results and Lemma 2:
• ζ̀n(T | ⋆) ≤ ζupper

n , which along with ζn ≥ 0 means
ζn ∈ [0, ζupper

n ]; (75)
• Given any n ∈ N , for any ζ1, ζ2, . . . , ζn−1, ζn+1, . . . , ζN ,
we have hn([ζ1, ζ2, . . . , ζn−1, ζ

upper
n , ζn+1, . . . , ζN ] | T ) ≤ 0;

(76)
• Given any n ∈ N , for any ζ1, ζ2, . . . , ζn−1, ζn+1, . . . , ζN ,
we have hn([ζ1, ζ2, . . . , ζn−1, 0, ζn+1, . . . , ζN ] | T ) ≥ 0;
i.e., hn(ζ̊(n)) ≥ 0 for ζ̊(n) defined in (70).

(77)

Lemma 2 (Proved in the Appendix of our full ver-
sion [36]). Given ζ and T , given n ∈ N , given
ζ1, ζ2, . . . , ζn−1, ζn+1, . . . , ζN , then hn(ζ | T ) is
non-increasing as ζn increases.

We prove the above Result (75). From Lemma 2 and (74),
it holds that

hn([0
n−1, ζupper

n , 0N−n] | T ) = 0 = hn(ζ | T )
≤ hn([0n−1, ζn, 0

N−n] | T ) ≤ 0, (78)
which with Lemma 2 means ζ̀n(T | ⋆) ≤ ζupper

n .
The above Result (76) clearly follows from Result (75) and

Lemma 2.
We prove the above Result (77). From (71), it holds that

hn(ζ̊
(n)) :=


0, if tn(b́n(ζ̊(n) | ⋆), ṕn(ζ̊

(n) | ⋆),

sn, f́
MS
n (ζ̊(n) | ⋆), f́VU

n (ζ̊(n) | ⋆)) ≤ T,
tn(b́n(ζ̊

(n) | ⋆), ṕn(ζ̊
(n) | ⋆),

sn, f́
MS
n (ζ̊(n) | ⋆), f́VU

n (ζ̊(n) | ⋆))− T,
otherwise,

 ≥ 0.

With the above Results (75) (76) (77), we apply the Poincaré–
Miranda theorem [39] and solve (73) to obtain ζ̀(T | ⋆)
using the multivariate bisection algorithm of [40]. The pseu-
docode is given as Algorithm 2.1 below. Readers may wonder
why the multivariate bisection is not used to jointly solve
[b,p,fMS,fVU, α, β, γ, δ]. The reason is that the conditions
to use the multivariate bisection are quite strict; e.g., Results
(75) (76) (77) are for any ζ1, ζ2, . . . , ζn−1, ζn+1, . . . , ζN given
any n ∈ N . We do not have such strong conditions if we try
to solve [b,p,fMS,fVU, α, β, γ, δ] together.

Algorithm 2.1 explained above: Alg-Solve-ζ̀(T | ⋆).

1 For ζ := [ζ1, ζ2, . . . , ζN ] ∈
∏
n∈N [0, ζupper

n ] for ζupper
n

defined in (74), given Results (75) (76) (77), use the
multivariate bisection algorithm proposed by [40] to
obtain ζ which induces h(ζ | T ) to be the
N -dimensional zero vector 0, to achieve the tolerance
level of ∥h(ζ | T )∥2 ≤ ϵ5, where computing h(ζ | T )
defined in (71) and (72) will call Algorithm 1.1
(resp., Algorithm 1.2) to compute f́MS

n (ζ̊(n) | ⋆) and
f́VU
n (ζ̊(n) | ⋆) as well as f́MS

n (ζ | ⋆) and f́VU
n (ζ | ⋆)

(resp., b́n(ζ̊(n) | ⋆) and ṕn(ζ̊(n) | ⋆) as well as
b́n(ζ | ⋆) and ṕn(ζ | ⋆)) as inputs to the function
tn() defined in (3), where ζ̊(n) is defined in (70);

2 Return the obtained ζ as ζ̀(T | ⋆);
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Algorithm 2.2: Computing T#(⋆) according to Propo-
sition 2.2 using S2.2 defined in (44). Recall from (44) that
S2.2 includes (24). Then Proposition 2.2 defines T#(⋆) as
the solution of T to∑

n∈N ζ̀n(T | ⋆) = yc t. (79)

Algorithm 2.2 explained above: Alg-Solve-T#(⋆).

1 Run Bisection-Search-with-No-Known-Upper-Bound
(⋆,

∑
n∈N ζ̀n(T | ⋆), yc t) based on Algorithm A3

on Page 14 to obtain the desired T satisfying
Eq. (79), and set this T as T#(⋆), where computing∑
n∈N ζ̀n(T | ⋆) will call Algorithm 2.1;

The bisection method is used repeatedly in the algorithms
above. The pseudocodes are given below.

Algorithm A3:
Bisection-Search-with-No-Known-Upper-Bound
(v, function C(u,v), Ctarget), which returns u ∈ [0,∞)
such that C(u,v) equals (or is arbitrarily close to)
Ctarget given v, where C(u,v) is non-increasing in u
given v.

1 Randomly pick u(0) from (0,∞);
2 if C(u(0),v) = Ctarget: return u(0) as the desired u;
3 if C(u(0),v) < Ctarget

//In this case, the solution u is in [0, u(0))
4 Use Standard-Bisection-Search(v, function C(u,v),

Ctarget, 0, u
(0)) based on Algorithm A4 to find the

result, and return it as the desired u;
5 if C(u(0),v) > Ctarget

//In this case, the solution u is in (u(0),∞)
6 Find i ≥ 0 such that C(u(0) · 2i,v) > Ctarget but

C(u(0) · 2i+1,v) ≤ Ctarget
7 if C(u(0) · 2i+1,v) = Ctarget: return u(0) · 2i+1 as the

desired u;
8 elsif C(u(0) · 2i+1,v) < Ctarget
9 Use Standard-Bisection-Search(v,

function C(u,v), Ctarget, u
(0) · 2i, u(0) · 2i+1)

based on Algorithm A4 to find the result,
and return it as the desired u;

10 endif
11 endif

To better understand bisection search in our algorithms
above, we prove in the Appendix of our full paper [36]
that the left-hand side of (57) (resp., (64), (66), (68), (79))
is non-increasing with respect to γ (resp., pn, α, β, T ). In
simulations, the above often decreases so that there is a unique
solution.

VII. OUR ALGORITHM TO SOLVE PROBLEM P1

Algorithm A1 has been presented on Page 6 to solve
the system UCR optimization P1. In Section V-E, we have

Algorithm A4:
Standard-Bisection-Search
(v, function C(u,v), Ctarget, lower bound L0, upper bound U0),
which returns u ∈ [L0, U0] such that C(u,v) equals
(or is arbitrarily close to) Ctarget given v, where
C(u,v) is non-increasing in u given v.

1 Initialize Blower ← L0, Bupper ← U0;
2 repeat
3 u← Blower+Bupper

2 ;
4 if C(u,v) = Ctarget: return u;
5 if C(u,v) > Ctarget: Blower ← u;
6 else: Bupper ← u;
7 endif
8 until Bupper −Blower is no greater than ϵ4 for a small

positive number ϵ4;

also explained how the different building blocks in Sec-
tions V-A, V-B, V-C, and V-D are combined together to
produce Algorithm A1’s pseudocode. We now discuss the
performance of Algorithm A1.

Solution quality and convergence. Algorithm A1 com-
prises three levels of iterations, with the innermost iteration
from Line 17 containing Algorithm A2 in Line 20. Algo-
rithm A2 obtains a global optimum for Problem P5(⋆). The
outermost iteration from Line 4 is based on Dinkelbach’s
transform and does not lose optimality. However, the mid-level
iteration from Line 11 is based on alternating optimization and
cannot guarantee local/global optimality. Hence, Algorithm A1
cannot guarantee local/global optimality for P1. Yet, using
the terminology of stationary points in [12] for constrained
optimization, Algorithm A1 finds a stationary point for P1.
The convergence of Algorithm A1 is also clear from the above
analysis.

Time Complexity. In Algorithm A1 and its subroutine
Algorithm A2, the bisection search is repeatedly used. Then
the complexity of Algorithm A1 is polylogarithmic in the error
tolerance’s reciprocal in various calls of the bisection search.
Below we analyze the complexities of Algorithms A1 and A2
with respect to the number N of users. Line 1 of Algorithm A2
calls Algorithm 2.2, which calls Algorithm 2.1. Algorithm
2.1 called in the above and in Line 2 of Algorithm A2 calls
Algorithms 1.1 and 1.2. Algorithm 1.2 called in the above and
in Line 3 of Algorithm A2 calls Algorithms 1.2.2.2, 1.2.2.1,
and 1.2.1. For the multivariate bisection search in Algorithm
2.1, from Theorem 2.3 of [40], to achieve the tolerance level
of ∥h(ζ | T )∥2 ≤ ϵ5, the number of iterations required is
log2

∑
n∈N ζupper

n

ϵ5
for ζupper

n define in (74); i.e., logarithmic in
N . Computing b̃(α, β, ζ | ⋆) and p̃(α, β, ζ | ⋆) takes O(N).
Then calculating ᾰ(β, ζ | ⋆) costs O(N). Thus, obtaining
β́(ζ | ⋆) takes O(N). Finally, computing h(ζ | T ) costs
O(N). Line 1 of Alg. A2 takes O(N logN). We analyze other
lines of Alg. A2 similarly. Then Alg. A2 and each innermost
iteration of Alg. A1 cost O(N logN). In the outermost
and mid-level iterations, each computation of the utility U()
in (2) and the cost in (6) requires O(N). To summarize,
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Algorithm A1 takes O(N2 logN).

VIII. MODELING THE HUMAN-CENTRIC UTILITY FROM
REAL DATA

We now model users’ human-centric utilities in the Meta-
verse over wireless communications using two datasets [10],
[31] explained below, which are both based on real experi-
ments of humans assessing videos.

SSV360 dataset. This dataset of [10] captures users’ eval-
uation of 360° videos when wearing HTC Vive Pro Virtual
Reality (VR) headsets. Each data point exhibits a user’s
perceptual quality assessment of a 360° scene of a given bitrate
and a given video resolution, under standing or seated viewing
(SSV).

Netflix dataset. This dataset is a part of Netflix’s Emmy
Award-winning VMAF project [31]. Each data point represents
users’ mean opinion score for a video at a given bitrate and a
given resolution.

The wireless data rate needs to be large enough for users’
smooth watching experience at the given video bitrate [41].
We consider the bitrate as a constant fraction (say θ) of
the wireless rate. Then substituting the bitrate rbitrate with
the wireless rate rwireless just involves replacing rbitrate with
rwireless/θ. Hence, for both datasets above, we perform curve-
fitting with the bitrate and the resolution to obtain the utility
functions.

Modeling human-centric utilities. Based on the two
datasets above, the human-centric utility of each user n,
denoted by Un(rn, sn), is modeled as a function of the bitrate
rn and the video resolution sn. We adopt the logarithmic utility
function, which is used in [32]–[34] for various communica-
tion/network systems. The logarithmic function reflects users’
diminishing marginal gain as the bitrate and the resolution in-
crease. Formally, we have Un(rn, sn) = κn ln(1+l

s
nsn+l

r
nrn)

for coefficients κn, lsn, l
r
n, which are decided by fitting data.

Since using a three-dimensional plot to show the two-variable
function Un(rn, sn) is difficult for visual interpretation, we
use the following transform to obtain a two-dimensional plot.
Let rmax

n (resp., smax
n ) be the maximum rn (resp., sn) from

the dataset. After defining αn := lrnr
max
n + lsns

max
n , we let

lrn
αn
rn+

lsn
αn
sn be the x-axis coordinate, and plot κn ln(1+αnx)

as the y-axis coordinate, since it holds that Un(rn, sn) =

κn ln(1 + αn · ( l
r
n

αn
rn +

lsn
αn
sn)) = κn ln(1 + αnx). With

the above transformation, each data point’s x-coordinate is
between 0 and 1.

In Fig. 4(a) for the SSV360 dataset, the data and curves
are about two users watching a 360° video (“Alcatraz” or
“FormationPace” [10]) under seated or standing view. The
score is an integer from 1 to 5 based on the well-known
Absolute Category Rating. In Fig. 4(b) for the Netflix dataset,
the data and curves present users’ average assessment (from
0 to 100) of different videos (BirdsInCage, BigBuckBunny,
ElFuente1, or CrowdRun [31]). Both subfigures demonstrate
that the curves of the logarithmic human-centric utility func-
tions fit the data. The specific expressions of the functions are
provided in the legends.

IX. SIMULATIONS
In this section on simulations, we first describe the default

settings and then report various results.
Default settings. We consider a macro-cell wireless channel

model for urban areas. With dn denoting the distance between
the Metaverse server (MS) and a virtual-reality user (VU)
indexed by n, the path loss between them is 128.1+37.6 log dn
along with 8 decibels (dB) for the standard deviation of
shadow fading [6], where the unit of dn is kilometer. The
power spectral density of Gaussian noise σn2 is −174 dBm/Hz
(i.e., the thermal noise amount at 20 °C room temperature).
VUs are randomly located in a circle of radius 500m centered
at the MU. The default total bandwidth bmax is 20GHz, and the
total transmission power pmax is 30W. The effective switched
capacitance κMS and κVU are set as 10−27. The number µn
of bits per pixel is 16, and the compression rate νn is 100.
The maximum CPU frequencies at the MS and VUs, fMS

max
and fVU

n,max, are 300GHz and 50GHz, respectively. The default
weights for energy and delay are ce = 0.5 and ct = 0.5. The
default VU number is 5. Based on measurements, Section V
of [41] quantifies the computational complexity of processing
a video frame of resolution sn as w(sn) = (7×10−10×sn3/2+
0.083) tera (i.e., trillion) floating-point operations (FLOPs).
From Fig. 2 in Section III-B, we know that An(sn,Λn) (resp.,
Bn(sn,Λn)) of Page 3 for delay is less than Fn(sn,Λn) (resp.,
Gn(sn,Λn)) of Page 3 for energy. In the simulations, we set
both An(sn,Λn) and Bn(sn,Λn) as Λnw(sn)/30, and set
both Fn(sn,Λn) and Gn(sn,Λn) as Λnw(sn), which make all
of them convex in sn. For all VU n, we let Λn be the same
Λ. Then the optimization objective becomes a multiple of Λ,
which thus has no impact. The above avoids considering the
impact of heterogeneous Λn for simplicity. Possible values for
the resolution sn are 4096×2160, 3072×1620, 2048×1080,
1920× 1080, and 1280× 720 pixels, which are also referred
to as 4k, 3k, 2k, 1080p, and 720p. The SSV360 dataset [10]
in Section VIII includes the perceptual assessment of users
watching VR videos. We use those data for curve-fitting
different logarithmic utility functions, and assign the functions
to users in the simulations: one function for one user.

Comparison with baselines. For the simulation results, we
first compare our algorithm with baselines:

• average allocation, which sets each bn as bmax
N , each pn as

pmax
N , each sn as 2048 × 1080 (i.e., 2k resolution), each fMS

n

as fMS
max
N , and each fVU

n as fVU
n,max;

• optimize b, p, and s only, while setting each fMS
n as fMS

max
N and

each fVU
n as fVU

n,max,
• optimize fMS and fVU only, while setting each bn as bmax

N ,
each pn as pmax

N , and each sn as 2048× 1080.
Various simulation results are plotted in the subfigures of
Fig. 5 for a detailed comparison and examining the impact
of different parameters on the system utility-cost ratio (UCR).
We discuss the results below.

• UCR versus the total bandwidth. Here we vary the total band-
width from 1GHz to 20GHz. In Fig. 5(a), larger bandwidth
induces higher data rates, which reduce latency and energy
consumption, thus increasing the system UCR. In addition,
the difference in UCR between the proposed algorithm and
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(b) Netflix dataset.
Fig. 4: Modeling the logarithmic human-centric utility functions from the SSV360 and Netflix datasets.

the average allocation baseline rises from 522.3% to 630.4%
as the total bandwidth increases.

• UCR versus minimum resolution. We fix the maximum reso-
lution as 4096×2160 (4k) and change the minimum resolution
from 1280 × 720 (720P) to 4096 × 2160. From Fig. 5(b),
the UCR performance of all the algorithms improves as the
minimum resolution decreases, with our proposed algorithm
showing a significant improvement. The reason for this is that
the high data volumes associated with high resolution can lead
to higher energy consumption and system delay. The UCR of
the proposed algorithm gradually plateaus when the minimum
resolution reaches below 1920× 1080 (1080p).

• UCR versus transmission power. Here we configure the
maximum downlink transmission power from 0.03W to 100W.
From Fig. 5(c), the UCR of all algorithms increases as
the transmission power grows, since raising the transmission
power widens the search space for the optimization. When
the transmission power is very small (e.g., 0.03W or 0.3W),
the UCR of the proposed algorithm is slightly higher than
other algorithms, but as the transmission power increases, the
performance of the proposed algorithm far exceeds others. The
UCR of all methods plateaus when the transmission power
reaches 50W.

• UCR versus computation resource. We vary the maxi-
mum server CPU frequency from 0.5GHz to 60GHz and all
VU’s maximum CPU frequencies from 10MHz to 10GHz.
In Fig. 5(d) and Fig. 5(e), the system UCR increases as
the maximum CPU frequency grows, since the optimization
problem has a wider search space. The proposed algorithm
outperforms the average allocation, reaching a difference of
660.9% and 653.2% for server CPU frequency at 60GHz and
VU CPU frequencies at 10GHz, respectively.

• Impact of user number on UCR. We now amplify the
bandwidth, transmission power, and server’s CPU frequency
by 10 times and fix other parameters to see the impact of user
number N on UCR. In Fig. 6, as the user number increases
from 10 to 160, the average UCR decreases. This is because
the server allocates fewer resources to each VU and induces
decreasing utility. In general, the comfortable frame rate for
VR applications is at least 90 [42], i.e., at most 11ms for one
frame. Note that the system delay in Fig. 6 is to complete
each user’s all frames. In all user scenarios shown in Fig. 6,
the delay for one frame (i.e., delay

frame number ) is less than 7 ms,
which satisfies the comfortable frame rate requirement.

All the above simulations compare our algorithm with the
baselines. Below we provide additional simulation results to
show the impact of other settings to our algorithm.

Impact of cost weights on UCR. We configure different
cost weights of energy and delay (ce, ct) to see the effect on
the system UCR, where we enforce ce + ct = 1. In Fig. 5(f),
as ct rises to 0.8, the system UCR also increases, reflecting
the importance of delay optimization for the whole system.
However, as ct increases to 0.9, the system UCR instead drops
significantly, since emphasizing the latency overwhelmingly
while undervaluing the energy may enlarge the system cost.

Reviewing different users’ allocated results. In Fig. 7(a),
we present the optimized bandwidth bn, transmit power pn,
resolution sn, MS resource allocation fMS

n , and user CPU
frequency fVU

n of five users to visualize the resource allocation.
Fig. 7(b) shows the impact of user scenarios on individual
UCRs. Different user preferences and physical states affect
subjective scores. For example, users who prefer high-quality
videos may give stricter subjective scores than those who do
not require high video quality. Generally, many users found
sitting to provide more comfort than standing, as indicated by a
higher UCR in most seated scenarios. However, it’s important
to note that individual differences were observed, and this
trend did not hold true for all participants.

To summarize, extensive simulation results above confirm
the effectiveness of our proposed algorithm.

X. CONCLUSION
In this paper, we optimize the system utility-cost ratio

(UCR) for the Metaverse over wireless networks. The op-
timization variables include the allocation of both commu-
nication and computation resources as well as the resolu-
tions of virtual reality (VR) videos. Our human-centric utility
measure represents users’ subjective assessment of the VR
video quality, and is supported by real datasets. We tackle the
non-convex system UCR optimization by proposing a novel
technique for fractional programming. Our computationally
efficient algorithm for the system UCR optimization is val-
idated by extensive simulations. Three future directions are as
follows. Firstly, since the current paper solves the optimization
problem via alternating optimization (AO) of video frame
resolution and other variables, a future task is to see whether
we can optimize all variables simultaneously to obtain the
globally optimal solution. Secondly, we may incorporate the
priorities of different users into computing the system utility
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Fig. 5: The system utility-cost ratio (UCR) versus various parameters.

(e.g., using a weighted sum with weights representing users’
priorities), and investigate the impact of such formulation on
the optimization. Thirdly, while the current paper contains
extensive simulation results to support the analysis, we can
implement real-world systems to evaluate the performance of
our proposed algorithm in practice.
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APPENDIX

A. Proving the relationship between FP-minimization
in (10) and minimizing W (x,y) := G(x)+

∑N
n=1Kn(x, yn)

subject to x ∈ S and yn ∈ R+, stated in Section IV on Pages 4
and 5

Recall that FP-minimization in (10) means minimizing
H(x) := G(x) +

∑N
n=1

An(x)
Bn(x)

subject to x in a convex set
S, for convex An(x) and concave Bn(x).

We now consider alternating optimization (AO) of x and y
to minimize W (x,y) := G(x) +

∑N
n=1Kn(x, yn) subject to

x ∈ S and y := [y1, . . . , yN ] ∈ (R+)N , where Kn(x, yn) :=
[An(x)]

2yn+
1

4[Bn(x)]2yn
, and R+ denotes the set of positive

numbers. We will show that
if the above AO process of minimizing W (x,y) converges
to (x∗,y∗), x∗ is a stationary point for FP-minimization
in (10).

(80)
The AO process is as follows: We start with a randomly

initialized x(0) ∈ S. Then we optimize y with x being x(0)

to minimize W (x,y), and denote the obtained y ∈ (R+)N as
y(1). Given y as y(1), we optimize x to minimize W (x,y),
and denote the obtained x ∈ S as x(1). Given x as x(1),
we optimize y to minimize W (x,y), and denote the obtained
y ∈ (R+)N as y(2). The above process continues iteratively.
The i-th iteration includes the following two steps:

• Given x as x(i−1), we optimize y to minimize W (x,y),
and denote the obtained y ∈ (R+)N as y(i).

• Given y as y(i), we optimize x to minimize W (x,y),
and denote the obtained x ∈ S as x(i).

The above AO process converges when the relative difference
between W (x(i−1),y(i−1)) and W (x(i),y(i)) is smaller than
a predefined small error tolerance.

To examine the AO process of minimizing W (x,y), we will
analyze 1) optimizing y given x, and 2) optimizing x given
y. Optimizing y given x means minimizing Kn(x, yn) :=
[An(x)]

2yn + 1
4[Bn(x)]2yn

with respect to yn for each n =

1, 2, . . . , N ; i.e., letting yn be y#n (x) := 1
2An(x)Bn(x)

. If
such y is substituted back to Kn(x, yn), then Kn(x, yn) will
become the desired An(x)

Bn(x)
. Moreover, we now show that the

partial derivative of W (x,y) with respect to x at y being
y#(x) is the same as the derivative of H(x) with respect to
x. In fact, we have
∂Kn(x, yn)

∂x
= 2An(x)yn

∂An(x)

∂x
− 1

2[Bn(x)]3yn
· ∂Bn(x)

∂x
,

(81)

https://personal.ntu.edu.sg/JunZhao/JSAC2023.pdf
https://personal.ntu.edu.sg/JunZhao/JSAC2023.pdf
https://arxiv.org/pdf/1702.05542.pdf
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and
∂
(An(x)
Bn(x)

)
∂x

=
∂An(x)
∂x ·Bn(x)− ∂Bn(x)

∂x ·An(x)
(Bn(x))2

. (82)

From (81) and (82), it holds that(
∂Kn(x, yn)

∂x

)
|yn= 1

2An(x)Bn(x)
=
∂
(An(x)
Bn(x)

)
∂x

, (83)

which further implies(
∂W (x,y)

∂x

)
|y=y#(x) =

∂H(x)

∂x
. (84)

Moreover, as explained, we have
W (x,y)|y=y#(x) = H(x). (85)

Using (84) and (85), we now show (80). The AO process of
minimizing W (x,y) is non-decreasing. Specifically, we have
W (x(i),y(i)) ≤ W (x(i−1),y(i)) ≤ W (x(i−1),y(i−1)). For
lower-bounded W (x,y), we know W (x(i),y(i)) converges as
the iteration number i→∞. Supposing the variable solution
of the AO process converges to (x∗,y∗), we know that

① y∗ is the optimal y for minimizing W (x,y) given x as
x∗ (i.e., y∗n := 1

2An(x∗)Bn(x∗) ), and
② x∗ is the optimal x for minimizing W (x,y) given y as

y∗.

Result “②” means that x∗ satisfies the KKT conditions
for optimizing x to minimize W (x,y∗) subject to x ∈ S .
Suppose x is M -dimensional, and x ∈ S means

Qq(x) ≤ 0, q = 1, 2, . . . , Q,

Rr(x) = 0, r = 1, 2, . . . , R,

x ∈ RM .
Then with α and β denoting the multipliers, the KKT condi-
tions mean

Stationarity:

∂
∂xm

(W (x∗,y∗)

+
∑Q
q=1 αqQq(x∗)

+
∑R
r=1 βrRr(x∗)) = 0,

for m = 1, 2, . . . ,M ,

(86a)

Primal feasibility: Qq(x∗) ≤ 0,

for q = 1, 2, . . . , Q, (86b)
Rr(x∗) = 0,

for r = 1, 2, . . . , R, (86c)
Dual feasibility: αq ≥ 0,

for q = 1, 2, . . . , Q, (86d)
Complementary slackness: αqQq(x∗) = 0

for q = 1, 2, . . . , Q. (86e)
Using (84) in (86a), we know that (86a)–(86e) are equivalent

to

Stationarity:

∂
∂xm

(H(x∗)

+
∑Q
q=1 αqQq(x∗)

+
∑R
r=1 βrRr(x∗)) = 0,

for m = 1, 2, . . . ,M ,

(87a)

Primal feasibility: Qq(x∗) ≤ 0,

for q = 1, 2, . . . , Q, (87b)
Rr(x∗) = 0,

for r = 1, 2, . . . , R, (87c)
Dual feasibility: αq ≥ 0

for q = 1, 2, . . . , Q, (87d)
Complementary slackness: αqQq(x∗) = 0

for q = 1, 2, . . . , Q. (87e)
The above (87a)–(87e) mean that x∗ is a stationary point for
optimizing x to minimize H(x) subject to x ∈ S; i.e., x∗ is a
stationary point of FP-minimization in (10). Hence, we
have proved (80).

B. Proving that the left-hand side of (57) is non-increasing
with respect to γ

With v(x) defined by ζn
An(sn,Λn)

x2 −yce ·2κMSFn(sn,Λn)x,
clearly v(x) is non-increasing with respect to x. Then
PositiveRoot(v(x) = γ), denoting the positive root satisfying
v(x) = γ, is non-increasing with respect to γ. Thus, the left-
hand side of (57) is non-increasing with respect to γ.

C. Proving that the left-hand side of (64) is non-increasing
with respect to pn

From (62), we know (i) ψn(pn, α, β | ⋆) is positive and
decreasing in pn, where “⋆” denotes “z, y, s”. In addition,
(ii) the function log2(1 + x) − x

(1+x) ln 2 is increasing and
positive for x > 0 since the derivative x

(1+x)2 ln 2 is positive
for x > 0, and log2(1 + x) − x

(1+x) ln 2 at x = 0 equals
0. From the above Results “(i)” and “(ii)”, we obtain (iii)[
log2

(
1 + ψn(pn, α, β | ⋆)

)
− ψn(pn,α,β|⋆)

(1+ψn(pn,α,β|⋆)) ln 2

]
is posi-

tive and decreasing in pn.
We also have (iv) the function log2(1+x)

x is decreasing
for x > 0 since the derivative 1

x2 [
x

(1+x) ln 2 − log2(1 + x)]
is negative due to Result “(ii)” above. From the above
Results “(i)” and “(iv)”, we obtain (v) rn(pn, α, β | ⋆)
defined in (63) is increasing in pn. Since the utility function
Un(rn, sn) is concave and non-decreasing in rn, ∂Un(rn,sn)

∂rn
is

non-negative and non-increasing in rn. Then (vi) ∂Un(rn,sn)
∂rn

+
yce

2znrn3νn2 + ζnsnµnΛn

rn2νn
is positive and non-increasing in

rn. From the above Results “(v)” and “(vi)”, we obtain
(vii)

(∂Un(rn,sn)
∂rn

)
|rn=rn(pn,α,β|⋆) +

yce

2zn·[rn(pn,α,β|⋆)]3νn2 +
ζnsnµnΛn

[rn(pn,α,β|⋆)]2νn
is positive and non-increasing in pn.

From the above Results “(iii)” and “(vii)”, the left hand side
of (64) is decreasing as pn increases.



ACCEPTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC) 21

D. Further explanations of the step-by-step analysis in (45)
on Page 8 for Problem P5(z, y, s), which will be useful for
Appendices E, F, and H

In this part, we provide further explanations of the step-by-
step analysis in (45) on Page 8 for Problem P5(z, y, s), which
will be useful to prove the results in Appendices E, F, and H
later.

We recall Problem P5(z, y, s) (i.e., P5(⋆)) from (16):
P5(⋆) : max

b,p,fMS,fVU,T
F (b,p,fMS,fVU,T | s,y)

− yce·
∑
n∈N

{
[(pn + pcir

n )snµnΛn]
2zn

+
1

4(rn(bn, pn)νn)2zn

}
s.t. (7a):

∑
n∈N

bn ≤ bmax,

(7b):
∑
n∈N

pn ≤ pmax,

(7d):
∑
n∈N

fMS
n ≤ fMS

max,

(7e): fVU
n ≤ fVU

n,max, ∀n ∈ N ,
(11a): tn(bn, pn, sn, fMS

n , fVU
n ) ≤ T, ∀n ∈ N .

As shown at the beginning of Section VI on Page 7, P5(⋆)
belongs to convex optimization, and α, β, γ, δ, ζ denote the
Lagrange multipliers for (7a), (7b), (7d), (7e), and (11a),
respectively.

Suppose we already know ζ. We move ζ and (11a) to the
objective function, and construct the following problem (recall
that for an optimization problem Pi, we use HPi

to denote its
objective function):
P7(⋆, ζ) : min

b,p,fMS,fVU,T
−HP5

(b,p,fMS,fVU, T | ⋆)

+
∑
n∈N

[
ζn · (tn(bn, pn, sn, fMS

n , fVU
n )−T )

]
s.t. (7a):

∑
n∈N

bn ≤ bmax,

(7b):
∑
n∈N

pn ≤ pmax,

(7d):
∑
n∈N

fMS
n ≤ fMS

max,

(7e): fVU
n ≤ fVU

n,max, ∀n ∈ N .
We define

• Statement VP5
:

[b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆),
T#(⋆), α#(⋆), β#(⋆), γ#(⋆), δ#(⋆), ζ#(⋆)]
is a solution to the KKT conditions SKKT in (34)
for Problem P5(⋆).

,

and
• Statement VP7 :

[b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆),
T#(⋆), α#(⋆), β#(⋆), γ#(⋆), δ#(⋆)]
is a solution to the KKT conditions of
Problem P7(⋆, ζ

#(⋆)).

.

By checking the KKT conditions of P5(⋆) and
P7(⋆, ζ

#(⋆)), we build the following relationship between

P5(⋆) and P7(⋆, ζ):

Statement VP5⇔


Statement VP7 holds,
and [b#(⋆),p#(⋆), (fMS)#(⋆),
(fVU)#(⋆), T#(⋆), ζ#(⋆)] satisfies
S2.1 ∪ S2.2 :=

{
(24), (29), (11a), (31e)

}
.

 .

(88)

In P7(⋆, ζ), the optimizations of [b,p], [fMS,fVU] and T
are independent and thus separable. This independence holds
because ζ is already given for P7(⋆, ζ). We do not have such
independence in optimizing P5(⋆) where ζ is not decided yet.
Hence, P7(⋆, ζ) is equivalent to the combination of P8(⋆, ζ),
P9(⋆, ζ), and P10(⋆, ζ) defined below:

Problem P8(⋆, ζ) : min
T

yc tT − T
∑
n∈N

ζn

Problem P9(⋆, ζ) : min
b,p


−U(b,p,s)
+yce·

∑
n∈N

{
[(pn + pcir

n )snµnΛn]
2zn

+ 1
4(rn(bn,pn)νn)2zn

}
+

∑
n∈N

(ζn · tTx
n (bn, pn, sn))


(89)

s.t. (7a), (7b),

Problem P10(⋆, ζ) : min
fMS,fVU


y·[ce·(

∑
n∈N EMS:Pro

n (sn,f
MS
n )

+
∑
n∈N EVU:Pro

n (sn,f
VU
n ))]

+
∑
n∈N (ζn · [tMS:Pro

n (sn, f
MS
n )

+tVU:Pro
n (sn, f

VU
n )]


(90)

s.t. (7d), (7e),
Then after defining

• Statement VP8 :{
T#(⋆) is a solution to Problem P8(⋆, ζ

#(⋆)).
}

,
• Statement VP9

: [b#(⋆),p#(⋆), α#(⋆), β#(⋆)]
is a solution to the KKT conditions of
Problem P9(⋆, ζ

#(⋆)).

, and

• Statement VP10
: (fMS)#(⋆), (fVU)#(⋆), γ#(⋆), δ#(⋆)]

is a solution to the KKT conditions of
Problem P10(⋆, ζ

#(⋆)).


we obtain

Statement VP5

⇔


Statements VP8 , VP9 , and VP10 hold,
and [b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆),
T#(⋆), ζ#(⋆)] satisfies
S2.1 ∪ S2.2 :=

{
(24), (29), (11a), (31e)

}
.

 ,

⇔


Statements VP9

and VP10
hold,

and [b#(⋆),p#(⋆), (fMS)#(⋆), (fVU)#(⋆),
T#(⋆), ζ#(⋆)] satisfies
S2.1 ∪ S2.2 :=

{
(24), (29), (11a), (31e)

}
.


(91)

where the last step means P8(⋆, ζ) can be neglected since
(24) induces the objective function of P8(⋆, ζ) to be always
0.

Now we analyze Problem P9(⋆, ζ). Note that β is the
Lagrange multiplier for (7b). Suppose we already know β.
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We move β and (7b) to the objective function, and construct
the following problem:

Problem P11(⋆, ζ, β) :

min
b,p

{
HP9(b,p | ⋆, ζ) + β ·

(∑
n∈N pn − pmax

)}
(92)

s.t. (7a), (93)
where HP9(b,p | ⋆, ζ) denotes the objective function of
Problem P9. Then after defining

• Statement VP11 : [b#(⋆),p#(⋆), α#(⋆)]
is a solution to the KKT conditions of
Problem P11(⋆, ζ

#(⋆), β#(⋆)).


and checking the KKT conditions of P9(⋆, ζ

#(⋆) and
P11(⋆, ζ

#(⋆), β#(⋆)), we have

Statement VP9
⇔


Statement VP11 holds,
and [β#(⋆),p#(⋆)] satisfies
S1.2.2.2 :=

{
(26), (7b), (31b)

}
.


(94)

Now we analyze Problem P11(⋆, ζ, β). Note that α is the
Lagrange multiplier for (7a). Suppose we already know α.
We move α and (7a) to the objective function, and construct
the following problem:

Problem P12(⋆, ζ, β, α) :

min
b,p

{
HP11

(b,p | ⋆, ζ, β) + α ·
(∑

n∈N bn − bmax
)}
, (95)

where HP11(b,p | ⋆, ζ, β) denotes the objective function of
Problem P11. Then after defining

• Statement VP12 :
[b#(⋆),p#(⋆)] is a globally optimal solution to Prob-
lem P12(⋆, ζ

#(⋆), β#(⋆), α#(⋆)),
and checking the KKT conditions of P11(⋆, ζ

#(⋆), β#(⋆))
and P12(⋆, ζ

#(⋆), β#(⋆), α#(⋆)), we get

Statement VP11 ⇔


Statement VP12

holds,
and [α#(⋆), b#(⋆)] satisfies
S1.2.2.1 :=

{
(32), (33)

}
.


(96)

E. Proving that the left-hand side of (68) is non-increasing
with respect to β

From the conditions of Proposition 1.2.1 and Proposi-
tion 1.2.2.1, setting [b,p, α] as [b̃(ᾰ(β, ζ | ⋆), β, ζ |
⋆), p̃(ᾰ(β, ζ | ⋆), β, ζ | ⋆), ᾰ(β, ζ | ⋆)] satisfies S1.2.1 ∪
S1.2.2.1 =

{
(20), (21), (32), (33)

}
; i.e., the KKT conditions

of convex optimization P11(⋆, ζ, β). Hence,

[b̃(ᾰ(β, ζ | ⋆), β, ζ | ⋆), p̃(ᾰ(β, ζ | ⋆), β, ζ | ⋆)]
is a globally optimal solution to P11(⋆, ζ, β).

(97)

To prove the desired result, we consider the case where
β equals β1, and the case where β equals β2, respectively,
for arbitrarily chosen β1 and β2. Due to Result (97) above,
for HP11

(b,p | ⋆, ζ, β) denoting the objective function of
Problem P11, we obtain
HP11

(b̃(ᾰ(β1, ζ |⋆), β1, ζ |⋆), p̃(ᾰ(β1, ζ |⋆), β1, ζ |⋆|⋆, ζ, β1))
≤
HP11

(b̃(ᾰ(β2, ζ |⋆), β2, ζ |⋆), p̃(ᾰ(β2, ζ |⋆), β2, ζ |⋆|⋆, ζ, β1),
(98)

and
HP11(b̃(ᾰ(β2, ζ | ⋆), β2, ζ |⋆), p̃(ᾰ(β2, ζ |⋆), β2, ζ |⋆|⋆, ζ, β2)
≤
HP11

(b̃(ᾰ(β1, ζ |⋆), β1, ζ |⋆), p̃(ᾰ(β1, ζ |⋆), β1, ζ |⋆|⋆, ζ, β2).
(99)

From (98) and (99), it follows that
HP11

(b̃(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆),
p̃(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆ | ⋆, ζ, β1))
−HP11

(b̃(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆),
p̃(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆ | ⋆, ζ, β2))



+


HP11

(b̃(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆),
p̃(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆ | ⋆, ζ, β2))
−HP11

(b̃(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆),
p̃(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆ | ⋆, ζ, β1)

 ≤ 0. (100)

Since HP11
(b,p,fMS,fVU, T | β, ζ, z, y, s) equals HP9

(b,p |
⋆, ζ) + β ·

(∑
n∈N pn− pmax

)
from (93), the term inside the

first “[·]” of (100) equals (β1 − β2) ·
(∑

n∈N p̃n(ᾰ(β1, ζ |
⋆), β1, ζ | ⋆) − pmax

)
, and the term inside the second “[·]”

of (100) equals (β2 − β1) ·
(∑

n∈N p̃n(ᾰ(β2, ζ | ⋆), β2, ζ |
⋆)− pmax

)
. Then we obtain{

(β1 − β2) ·
(∑

n∈N p̃n(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆)− pmax
)

+(β2 − β1) ·
(∑

n∈N p̃n(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆)− pmax
)}

≤ 0; (101)
i.e., (β1 − β2) ·

(∑
n∈N p̃n(ᾰ(β1, ζ | ⋆), β1, ζ | ⋆) −∑

n∈N p̃n(ᾰ(β2, ζ | ⋆), β2, ζ | ⋆)
)
≤ 0. Hence,∑

n∈N p̃n(ᾰ(β, ζ | ⋆), β, ζ | ⋆), i.e., the left-hand side
of (68), is non-increasing as β increases.

F. Proving that the left-hand side of (66) is non-increasing
with respect to α

From Proposition 1.2.1’s condition, setting [b,p] as
[b̃(α, β, ζ | ⋆), p̃(α, β, ζ | ⋆)] satisfies S1.2.1 ={

(20), (21)
}

; i.e., the KKT conditions of convex optimization
P12(⋆, ζ, β, α). Hence,

[b̃(α, β, ζ | ⋆), p̃(α, β, ζ | ⋆)] is a globally optimal solution
to P12(⋆, ζ, β, α).

(102)

To prove the desired result, we consider the case where
α equals α1, and the case where α equals α2, respectively,
for arbitrarily chosen α1 and α2. Due to Result (102) above,
for HP12

(b,p | ⋆, ζ, β, α) denoting the objective function of
Problem P12, we obtain
HP12(b̃(α1, β, ζ | ⋆), p̃(α1, β, ζ | ⋆) | ⋆, ζ, β, α1) ≤
HP12

(b̃(α2, β, ζ | ⋆), p̃(α2, β, ζ | ⋆) | ⋆, ζ, β, α1), (103)
and
HP12

(b̃(α2, β, ζ | ⋆), p̃(α2, β, ζ | ⋆) | ⋆, ζ, β, α2) ≤
HP12

(b̃(α1, β, ζ | ⋆), p̃(α1, β, ζ | ⋆) | ⋆, ζ, β, α2). (104)



ACCEPTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC) 23

From (103) and (104), it follows that
[HP12

(b̃(α1, β, ζ | ⋆), p̃(α1, β, ζ | ⋆) | ⋆, ζ, β, α1)

−HP12
(b̃(α1, β, ζ | ⋆), p̃(α1, β, ζ | ⋆) | ⋆, ζ, β, α2)]

+[HP12
(b̃(α2,β,ζ |⋆), p̃(α2,β,ζ |⋆) | ⋆,ζ,β,α2)

−HP12
(b̃(α2,β,ζ | ⋆), p̃(α2, β, ζ |⋆) | ⋆,ζ,β,α1)]

≤ 0. (105)
Since HP12

(b,p | ⋆, ζ, β, α) equals HP11
(b,p | ⋆, ζ, β)+α ·(∑

n∈N bn − bmax
)

from (95), the term inside the first “[·]”
of (105) equals (α1 − α2) ·

(∑
n∈N b̃n(α1, β, ζ | ⋆)− bmax

)
,

and the term inside the second “[·]” of (105) equals (α2−α1) ·(∑
n∈N b̃n(α2, β, ζ | ⋆)− bmax

)
. Then we obtain

(α1 − α2) ·
( ∑
n∈N

b̃n(α1, β, ζ | ⋆)− bmax
)

+(α2 − α1) ·
( ∑
n∈N

b̃n(α2, β, ζ | ⋆)− bmax
)
≤ 0; (106)

i.e., (α1−α2)·
(∑

n∈N b̃n(α1, β, ζ | ⋆)−
∑
n∈N b̃n(α2, β, ζ |

⋆)
)
≤ 0. Hence,

∑
n∈N b̃n(α, β, ζ | ⋆), i.e., the left-hand

side of (66), is non-increasing as α increases.

G. Proving Page 13’s Lemma 2

From Lemma 3 to be presented in Appendix I, tn(b́n(ζ |
⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆), f́VU

n (ζ | ⋆)) is
non-increasing as ζn increases. For hn(ζ | T ) defined in
(71), given [ζ1, . . . , ζn−1, ζn+1 . . . , ζN ] and T , we either
have (71a) or (71b). In either case, “tn(b́n(ζ | ⋆), ṕn(ζ |
⋆), sn, f́

MS
n (ζ | ⋆), f́VU

n (ζ | ⋆)) − T ” or “−ζn” de-
fined for hn(ζ | T ) is non-increasing as ζn increases.
Hence, hn(ζ | T ) is non-increasing as ζn increases, given
[ζ1, . . . , ζn−1, ζn+1 . . . , ζN ] and T .

H. Proving that the left-hand side of (79) is non-increasing
with respect to T

We recall from (72) and (73) that
setting ζ as ζ̀(T | ⋆) ensures hn(ζ | T ) = 0 for any n ∈ N ,

(107)
where hn(ζ | T ) = 0 is defined in (71).

From Lemma 3 to be presented in Appendix I below, we can
prove that

∑
n∈N ζ̀n(T | ⋆); i.e., the left-hand side of (79)

is non-increasing with respect to T . The proof is similar to
those in Appendices E and F.

I. Lemma 3 and its proof

Lemma 3. Given “⋆” (i.e., [z, y, s]) and
[ζ1, . . . , ζn−1, ζn+1 . . . , ζN ], we have:
given [ζ1, . . . , ζn−1, ζn+1 . . . , ζN ], and “⋆” (i.e., “z, y, s”),
then as ζn increases,

i) tTx
n (b́n(ζ | ⋆), ṕn(ζ | ⋆), sn) is non-increasing;

ii) tMS:Pro
n (sn, f́

MS
n (ζ | ⋆)) + tVU:Pro

n (sn, f́
VU
n (ζ | ⋆)) is

non-increasing; and
iii) tn(b́n(ζ | ⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆), f́VU

n (ζ | ⋆)) is
non-increasing.

Proof of Lemma 3:

Below we prove Results “i)”, “ii)”, and “iii)”, respectively.
Proving Lemma 3’s Result “i)”:

From Proposition 1.2’s condition, setting [b,p, α, β] as
[b́(ζ | ⋆), ṕ(ζ | ⋆), ά(ζ | ⋆), β́(ζ | ⋆)] satisfies S1.2.1 ∪
S1.2.2.1∪S1.2.2.2 =

{
(20), (21), (26), (7b), (31b), (32), (33)

}
;

i.e., the KKT conditions of convex optimization P9(⋆, ζ).
Hence,

[b́(ζ |⋆), ṕ(ζ |⋆)] is a globally optimal solution to P9(⋆, ζ).
(108)

To prove the desired result, we consider the case where ζn
equals ζ(1)n , and the case where ζn equals ζ(2)n , respectively,
for arbitrarily chosen ζ(1)n and ζ(2)n . Due to Result (108) above,
after defining

ζ(n,1) := [ζ1, . . . , ζn−1, ζ
(1)
n , ζn+1, . . . , ζN ],

ζ(n,2) := [ζ1, . . . , ζn−1, ζ
(2)
n , ζn+1, . . . , ζN ],

then with HP9
(b,p | ⋆, ζ) denoting the objective function of

Problem P9, we obtain
HP9

(b́(ζ(n,1) | ⋆), ṕ(ζ(n,1) | ⋆) | ⋆, ζ(n,1))

≤ HP9(b́(ζ
(n,1) | ⋆), ṕ(ζ(n,1) | ⋆) | ⋆, ζ(n,2)), (109)

and
HP9

(b́(ζ(n,2) | ⋆), ṕ(ζ(n,2) | ⋆) | ⋆, ζ(n,2))

≤ HP9(b́(ζ
(n,2) | ⋆), ṕ(ζ(n,2) | ⋆) | ⋆, ζ(n,1)). (110)

From (109) and (110), it follows that[
HP9(b́(ζ

(n,1) | ⋆), ṕ(ζ(n,1) | ⋆) | ⋆, ζ(n,1))

−HP9
(b́(ζ(n,1) | ⋆), ṕ(ζ(n,1) | ⋆) | ⋆, ζ(n,2))

]
+
[
HP9

(b́(ζ(n,2) | ⋆), ṕ(ζ(n,2) | ⋆) | ⋆, ζ(n,2))

−HP9(b́(ζ
(n,2) | ⋆), ṕ(ζ(n,2) | ⋆) | ⋆, ζ(n,1))

]
≤ 0. (111)

Note that HP9(b,p | ⋆, ζ) is given by (89). Then the term
inside the first “[·]” of (111) equals (ζ(1)n −ζ(2)n )·tTx

n (b́n(ζ
(n,1) |

⋆), ṕn(ζ
(n,1) | ⋆), sn), and the term inside the second “[·]”

of (111) equals (ζ
(2)
n − ζ(1)n ) · tTx

n (b́n(ζ
(n,2) | ⋆), ṕn(ζ

(n,2) |
⋆), sn). Then we obtain

(ζ(1)n − ζ(2)n ) · tTx
n (b́n(ζ

(n,1) | ⋆), ṕn(ζ
(n,1) | ⋆), sn)

+(ζ(2)n − ζ(1)n ) · tTx
n (b́n(ζ

(n,2) | ⋆), ṕn(ζ
(n,2) | ⋆), sn) ≤ 0;

(112)

i.e., (ζ(1)n − ζ(2)n ) ·
(
tTx
n (b́n(ζ

(n,1) | ⋆), ṕn(ζ
(n,1) | ⋆), sn) −

tTx
n (b́n(ζ

(n,2) | ⋆), ṕn(ζ
(n,2) | ⋆), sn)

)
≤ 0. Hence,

tTx
n (b́n(ζ | ⋆), ṕn(ζ | ⋆), sn) is non-increasing as ζn in-

creases.
Proving Lemma 3’s Result “ii)”:

From Proposition 1.1’s condition, setting [fMS,fVU, γ, δ]
as [f́MS(ζ | ⋆), f́VU(ζ | ⋆), γ́(ζ | ⋆), δ́(ζ | ⋆)] satisfies
S1.1 :=

{
(22), (23), (27), (28), (7d), (7e), (31c), (31d)

}
; i.e.,

the KKT conditions of convex optimization P10(⋆, ζ). Hence,

[f́MS(ζ | ⋆), f́VU(ζ | ⋆)] is a globally optimal solution
to P10(⋆, ζ).

(113)
To prove the desired result, we consider the case where ζn

equals ζ(1)n , and the case where ζn equals ζ(2)n , respectively,
for arbitrarily chosen ζ(1)n and ζ(2)n . Due to Result (113) above,
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after defining
ζ(n,1) := [ζ1, . . . , ζn−1, ζ

(1)
n , ζn+1, . . . , ζN ],

ζ(n,2) := [ζ1, . . . , ζn−1, ζ
(2)
n , ζn+1, . . . , ζN ],

then with HP10
(fMS,fVU | ⋆, ζ) denoting the objective

function of Problem P10, we obtain
HP10(f́

MS(ζ(n,1) | ⋆), f́VU(ζ(n,1) | ⋆) | ⋆, ζ(n,1)) ≤
HP10(f́

MS(ζ(n,1) | ⋆), f́VU(ζ(n,1) | ⋆) | ⋆, ζ(n,2)), (114)
and
HP10(f́

MS(ζ(n,2) | ⋆), f́VU(ζ(n,2) | ⋆) | ⋆, ζ(n,2)) ≤
HP10

(f́MS(ζ(n,2) | ⋆), f́VU(ζ(n,2) | ⋆) | ⋆, ζ(n,1)). (115)
From (114) and (115), it follows that[

HP10
(f́MS(ζ(n,1) | ⋆), f́VU(ζ(n,1) | ⋆) | ⋆, ζ(n,1))

−HP10
(f́MS(ζ(n,1) | ⋆), f́VU(ζ(n,1) | ⋆) | ⋆, ζ(n,2))

]
+
[
HP10(f́

MS(ζ(n,2) | ⋆), f́VU(ζ(n,2) | ⋆) | ⋆, ζ(n,2))

−HP10
(f́MS(ζ(n,2) | ⋆), f́VU(ζ(n,2) | ⋆) | ⋆, ζ(n,1))

]
≤ 0. (116)

Note that HP10
(fMS,fVU | ⋆, ζ) is given by (90). Then

the term inside the first “[·]” of (116) equals (ζ
(1)
n − ζ(2)n ) ·

[tMS:Pro
n (sn, f́

MS
n (ζ(n,1) | ⋆)) + tVU:Pro

n (sn, f́
VU
n (ζ(n,1) | ⋆))],

and the term inside the second “[·]” of (116) equals (ζ
(2)
n −

ζ
(1)
n ) · [tMS:Pro

n (sn, f́
MS
n (ζ(n,2) | ⋆)) + tVU:Pro

n (sn, f́
VU
n (ζ(n,2) |

⋆))]. Then we obtain
(ζ

(1)
n − ζ(2)n ) · [tMS:Pro

n (sn, f́
MS
n (ζ(n,1) | ⋆))

+tVU:Pro
n (sn, f́

VU
n (ζ(n,1) | ⋆))]

+(ζ
(2)
n − ζ(1)n ) · [tMS:Pro

n (sn, f́
MS
n (ζ(n,2) | ⋆))

+tVU:Pro
n (sn, f́

VU
n (ζ(n,2) | ⋆))]

 ≤ 0;

(117)

namely, (ζ(1)n −ζ(2)n )·


[tMS:Pro
n (sn, f́

MS
n (ζ(n,1) | ⋆))

+tVU:Pro
n (sn, f́

VU
n (ζ(n,1) | ⋆))]

−[tMS:Pro
n (sn, f́

MS
n (ζ(n,2) | ⋆))

+tVU:Pro
n (sn, f́

VU
n (ζ(n,2) | ⋆))]

≤0.

Therefore, tMS:Pro
n (sn, f́

MS
n (ζ | ⋆)) + tVU:Pro

n (sn, f́
VU
n (ζ | ⋆))

is non-increasing as ζn increases.
Proving Lemma 3’s Result “iii)”: From (3), tn(b́n(ζ |
⋆), ṕn(ζ | ⋆), sn, f́

MS
n (ζ | ⋆), f́VU

n (ζ | ⋆)) is the sum
of tTx

n (b́n(ζ | ⋆), ṕn(ζ | ⋆), sn) and tMS:Pro
n (sn, f́

MS
n (ζ |

⋆))+ tVU:Pro
n (sn, f́

VU
n (ζ | ⋆)). Then the desired result clearly

follows from Lemma 3’s Results “i)” and “ii)”.


	Introduction
	Related Work
	System Model
	Modeling the human-centric utilities of VR users
	System cost comprising delay and energy consumption-5pt
	Optimization problem-5pt

	Our Proposed Technique for Fractional Programming (FP)-5pt
	Solve the Optimization Problem P1
	Dinkelbach's transform for the ratio optimization
	Optimizing b, p, fMS, fVU, T given s for Problem P3(y)
	Leveraging our fractional programming technique to solve P4(y, s)
	Optimizing s given b, p, fMS, fVU, T for Problem P3(y)
	Putting the above together: Our Algorithm A1 on Page 6-5pt

	Global Optimization of Problem P5
	Our Algorithm to Solve Problem P1
	Modeling the Human-centric Utility from Real Data
	Simulations-5pt
	Conclusion-5pt
	 [-20pt]References-6pt 
	Biographies
	Jun Zhao
	Liangxin Qian
	Wenhan Yu

	Appendix
	
	Proving that the left-hand side of (57) is non-increasing with respect to 
	Proving that the left-hand side of (64) is non-increasing with respect to pn
	
	Proving that the left-hand side of (68) is non-increasing with respect to 
	Proving that the left-hand side of (66) is non-increasing with respect to 
	Proving Page 13's Lemma 2
	Proving that the left-hand side of (79) is non-increasing with respect to T
	Lemma 3 and its proof


