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Abstract

In this paper, we establish a task-oriented cross-system design framework to minimize the required

packet rate for timely and accurate modeling of a real-world robotic arm in the Metaverse, where sensing,

communication, prediction, control, and rendering are considered. To optimize a scheduling policy

and prediction horizons, we design a Constraint Proximal Policy Optimization (C-PPO) algorithm by

integrating domain knowledge from relevant systems into the advanced reinforcement learning algorithm,

Proximal Policy Optimization (PPO). Specifically, the Jacobian matrix for analyzing the motion of the

robotic arm is included in the state of the C-PPO algorithm, and the Conditional Value-at-Risk (CVaR)

of the state-value function characterizing the long-term modeling error is adopted in the constraint.

Besides, the policy is represented by a two-branch neural network determining the scheduling policy

and the prediction horizons, respectively. To evaluate our algorithm, we build a prototype including a

real-world robotic arm and its digital model in the Metaverse. The experimental results indicate that

domain knowledge helps to reduce the convergence time and the required packet rate by up to 50%, and

the cross-system design framework outperforms a baseline framework in terms of the required packet

rate and the tail distribution of the modeling error.
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I. INTRODUCTION

As a digital world that mirrors the physical world and generates feedback for human users

in real-time, the Metaverse can blur the lines between the physical and digital worlds and

revolutionize how humans communicate and interact with each other [1]. To achieve this goal, the

timely and accurate modeling of real-world devices/humans in the Metaverse is critical for user

experience. The communication and computing latency and digital model distortion will lead

to chaotic interactions and user dizziness [2]. For some mission-critical applications assisted by

the Metaverse, such as remote healthcare and factory automation, slight out-of-synchronization

between a real-world device and its digital model may cause serious consequences [3].

Efficiently replicating the real world in the Metaverse brings significant challenges in com-

munications. While 5G networks have significantly improved latency, reliability, data rate, and

connection density, it still falls short of satisfying the demands of the Metaverse [4]. One of the

examples is that 5G New Radio can achieve 1 ms latency and 10−5 packet error probability in

the radio access networks (RANs), but does not guarantee end-to-end delay and reliability. Jitter

is another issue that can lead to inaccurate modeling, which may be caused by 5G RANs and

5G core networks. Furthermore, there is a mismatch between communication Key Performance

Indicators (KPIs), i.e., latency, reliability, jitter, and throughput, and the KPI requirements of

diverse tasks in the Metaverse, such as modeling error, haptic feedback distortion, and seman-

tic segmentation errors, which will lead to poor user experience and low resource utilization

efficiency.

On the other hand, the performance of modeling in the Metaverse is not solely determined by

communication networks. Other systems, including sensing, prediction, control, and rendering,

can also have significant impacts on End-to-End (E2E) latency and accuracy. Designing these

systems separately results in strictly sub-optimal solutions and may fail to meet the task-oriented

KPI requirements. Thus, cross-system design has been investigated in the recent literature, such as

prediction and communication co-design [5], [6] and sampling and communication co-design [7],

[8]. They have shown significant gains of the cross-system design, but they have also revealed

potential issues. For example, cross-system models could be analytically intractable, and the



complexity of cross-system problems can be much higher than problems in separate design

approaches. Thus, novel methodologies are needed for cross-system design.

The first step toward cross-system design is to formulate a problem that takes the relevant

systems into account. Nevertheless, it could be difficult to obtain closed-form expressions of the

objective function and the constraints as some of the KPIs are analytically intractable. Although

we can use some approximations to formulate the problem, it is generally non-convex or NP-

hard. This motivates us to develop data-driven deep learning approaches, where the policy to

be optimized is represented by a neural network. Deep Reinforcement Learning (DRL) is a

promising method for training the neural network. For example, Proximal Policy Optimization

(PPO) is developed to optimize policies with a discrete action space [9]. More recently, the

primal-dual method and Constraint-Rectified Policy Optimization (CRPO) were introduced into

DRL for solving constrained problems [10]–[12]. It is worth noting that a straightforward

implementation of DRL algorithms may not work [13]. Integrating domain knowledge from

relevant systems into DRL algorithms is essential for the success of DRL [14] in practical

applications.

A. Related Work

1) Gaps between 5G/6G and Metaverse: The concept of the Metaverse was initially introduced

in Neil’s book, Snow Crash [15], coinciding with the development of virtual physical fusion

technology. Notable pioneering contributions have been made in various applications of the

Metaverse, including the game networking [16], autonomous vehicles [17], Internet of Things

(IoT) devices [18], and education [19]. The above work has yielded valuable insights that could be

leveraged to advance the development of the Metaverse, particularly with regard to the conception

and refinement of forthcoming communication systems and network architectures. However, there

still exists a research gap between 5G/6G and the Metaverse: 1) The KPIs in 5G such as latency,

reliability, and throughput cannot fulfill the requirements of diverse tasks in the Metaverse [1].

This misalignment leads to significant challenges in future communication system design for

the Metaverse. For example, there is no closed-form relation between the KPIs in 5G and

the requirement of tasks in the Metaverse. As a result, it is difficult to guarantee End-to-End

(E2E) performance requirement [20]. 2) Future 6G networks should support a large number of

devices with diverse KPIs in the Metaverse by leveraging distributed computing, storage, and

communication resources in local devices, edge servers, and central servers [21]. A hierarchical



communication network architecture with a strong cloud server and multiple edge servers is

promising, where edge servers generate quick responses to mobile devices and update critical

messages to the cloud. 3) Existing HCI, sensing, communication, and computing systems are

developed separately [22], which leads to sub-optimal solutions, brings extra communication

overhead for coordinating multiple tasks and cannot meet task-oriented KPIs [23].

2) Timely, Efficiently and Accurate Modeling for Digital Twin and Metaverse: In 2012, NASA

clarified the concept of Digital Twins and defined it as “integrated multiphysical, multiscale,

probabilistic simulations of an as-built vehicle or system using the best available physical models,

sensor updates, and historical data” [24]. However, the communication, computing, and storage

resources in the existing IT and networking infrastructures are insufficient to support of diverse

applications associated with digital twins and the Metaverse. Some existing studies focused on the

timely, efficient, and accurate modeling of digital twins in the Metaverse. [18], [25]–[29]. In [28],

a deep reinforcement learning approach was developed to solve the placement and migration

problems of digital twins to minimize the synchronization delay with the help of edge computing.

The authors of [18] proposed a resource allocation algorithm for synchronizing Internet of Things

devices with their digital models in the Metaverse by using a game-theoretic framework. In [29],

the authors proposed an edge continual learning framework that can accurately synchronize

a physical object with evolving affinity with its digital twin. Instead of using a centralized

framework, a distributed Metaverse framework was developed in [18] for synchronizing multiple

digital twins, known as sub-Metaverses. The above work revealed some fundamental tradeoffs

between resource utilization efficiency and KPIs in the Metaverse. Nevertheless, coordinating

communications, computing, and storage sources for diverse Metaverse applications remains an

open problem due to its high complexity, especially when the scale of the system is large.

3) Task-Oriented Cross-System Design For Metaverse: While 5G can support enhanced broad-

band services with high data rates, ultra-reliable and low-latency communications, and massive

machine-type communications [4], it still falls short of satisfying task-oriented KPIs in the

Metaverse, such as modeling error, haptic feedback distortion, and semantic segmentation er-

ror [30]. To fill the gap between the communication KPIs and the KPI requirements of specific

tasks, task-oriented cross-system design is a promising approach. The authors of [31] considered

an Age-of-Loop metric for the remote control of autonomous guided vehicles, and proposed

a goal-oriented wireless solution that adjusts the data rate to achieve high control accuracy.

Their results showed that with the goal-oriented KPI, it is possible to achieve higher accuracy



than the commonly used communication KPIs, such as Age-of-Information. In [32], the authors

proposed a learning-based communication scheme that optimizes feature extraction, source cod-

ing, and channel coding in a task-oriented manner to achieve low-latency inference for image

classification. The experimental results of this work indicated that task-oriented communication

achieves a better rate-distortion tradeoff than baseline methods. More recently, the authors of

[33] developed E2E task-oriented resource management by integrating sensing, computing, and

communication processes into a joint design framework, where the artificial intelligence model

is split and executed on edge servers for low-latency intelligent services. To improve the user

experience in immersive Metaverse applications, the authors of [34] proposed a user-centered

joint optimization approach to optimize frame generation location, transmission power, and

channel access arrangement. These studies indicated that by task-oriented cross-system design, it

is possible to provide a better user experience and achieve higher resource utilization efficiency.

However, Metaverse is expected to handle large amounts of heterogeneous data from various

sources and formats. How to develop task-oriented data representation and ontology models

that enable efficient data exchange, integration, and interpretation within the Metaverse context

still needs further investigation [35]. Furthermore, the cross-system problems are non-convex or

NP-hard in general. Finding a near-optimal resource management solution with low complexity

remains a challenging issue.

B. Contributions

In this paper, we aim to address the following fundamental issues: 1) How to eliminate the

gap between traditional communication KPIs defined in the 5G standard and user-centered task-

oriented KPIs in the Metaverse? 2) How to implement cross-system design in the Metaverse,

including sampling, communication, prediction, control, and rendering? 3) How to utilize cross-

system domain knowledge to guide the E2E training of DRL algorithms? The main contributions

of this paper are summarized as follows:

• We establish a task-oriented cross-system design framework, where sensing, communication,

prediction, control, and rendering are jointly considered for modeling a robotic arm in

the Metaverse. The scheduling policy and the prediction horizon are jointly optimized to

minimize the required packet rate to guarantee a modeling error constraint.

• We propose a Constraint Proximal Policy Optimization (C-PPO) algorithm by integrating

domain knowledge into the advanced PPO algorithm, and further train the policy using the



C-PPO algorithm. Specifically, 1) the Jacobian matrix, which is widely used for analyzing

the motion of robotic arms, is included in the state of DRL to improve the training

efficiency of C-PPO. 2) The Conditional Value-at-Risk (CVaR) of the state-value function

that characterizes the long-term modeling error is applied to formulate the constraint. 3)

A two-branch neural network is developed to determine the scheduling policy and the

prediction horizons.

• We build a prototype system including a real-world robotic arm and its digital model in the

Metaverse, where the Nvidia Issac Gym platform is used. Extensive experiments are carried

out in the prototype to evaluate the proposed task-oriented cross-system design approach.

The experimental results show that our C-PPO outperforms several benchmark algorithms

in terms of convergence time, stability, packet rate, and modeling error, and the cross-system

design framework outperforms a baseline framework in terms of the required packet rate

and the tail distribution of tracking errors.

The rest of this paper is organized as follows. In Section II, we propose the task-oriented cross-

system design framework where all subsystems, i.e., sensing, communication, reconstruction,

prediction, control, and rendering, are elaborated in detail. In Section III, we develop the C-PPO

algorithm to optimize the scheduling and prediction policy while minimizing the communication

load under the constraint of CVaR. Section IV describes the prototype and provides performance

evaluations. Finally, Section V concludes this paper.

II. TASK-ORIENTED CROSS-SYSTEM DESIGN

In this section, we propose a task-oriented cross-system design framework for timely and

accurate modeling in the Metaverse. The specific goal is to build a digital model of a real-world

robotic arm for real-time monitoring and control.

A. Framework

The framework is shown in Fig. 1, where the real-world robotic arm with multiple joints is

controlled by a user (a student or a trainee) for some tasks for example training in healthcare.

The trajectory (the angles of all the joints) of the real-world robotic arm is measured by the

built-in sensors. Then, the trajectory is sampled and transmitted to the Metaverse in a cloud

server, where the sampled data are used to reconstruct the historical trajectory and predict the

future trajectory. Here, the digital model in the Metaverse is controlled by the predicted trajectory



TABLE I

SUMMARY OF MAIN SYMBOLS

Symbol Explanation Symbol Explanation

ts Duration of time slot P(t) Pose of real-world robotic arm in the t-th time slot

I The number of joints ηc(t) Unit vector of rotation axis

T (t) Trajectory of the real-world robotic arm in the t-th time slot ψη(t) Angle of rotation

τi(t) Angle value of the i-th joint measured in the t-th time slot Ff (·) Forward kinematics of real-world robotic

xi(t) Whether the i-th joint is scheduled to transmit in the t-th time slot P̌ (t) Pose of virtual-world robotic arm in the t-th time slot

X(t) Decision of the scheduler in the t-th time slot e(t) Modeling error in the t-th time slot

yi(t) Indicators of whether packet arrivals in the t-th time slot ω1, ω2 Weighting coefficients of the modeling error

Ṡ(t) Set of angles received by the Metaverse πθ Scheduling and prediction policy

Wl Historical observation window for reconstruction θ Parameters of policy

T̄ (t0) Reconstructed trajectory in the t0 time slot at Action taken in the t-th time slot

Fl(·, θl) Function of reconstruction st State

θl Parameters of reconstruction at,i
[1], at,i

[2] Action of the i-th joint taken in the t-th time slot

Wp Input length of the prediction ρt,i
[1], ρt,i

[2] Distribution of action in the t-th time slot

H Output length of the prediction Lc, Lr Loss functions of policy network

Fp(·, θp) Function of prediction A(s,a) Advantage function

θp Parameters of the prediction function Qπθ (s,a) State-action value under policy

Lp MSE loss of prediction V πθ (s) State value function

T̂ (t) Prediction trajectory in the t-th time slot J (·) Jacobian matrix

τ̂i(t) Prediction trajectory of the i-th joint in the t-th time slot L1, L2, L3 Length of joint links

Z(t) Optimal prediction horizon ϕ(t) Angle between x-axis and x′-axis

zi(t) Optimal prediction horizon of the i-th joint r(st,at) Instantaneous reward

Nc Time interval of control command generation c(st,at) Instantaneous cost

Nr Processing time of each image Rπθ Long-term reward

kp Proportional parameter of PD controller Cπθ Long-term cost

kd Derivative parameter of PD controller γ Discount factor

T̃ (t) Control results in the t-th time slot Γc Constraint of modeling error

τ̃i(t) Control result of the i-th joint in the t-th time slot CVaRα(·) CVaR function

Fr(·, θr) Function of rendering 1-α Confidence level of CVaR

θr Parameters of rendering function v Multiplier of CVaR

Ť (k) The rendered trajectory β Learning rate of CVaR

rather than the reconstructed trajectory to compensate for delays caused by different components

across systems. Finally, the digital model in the Metaverse is rendered and presented to another

user (an expert or a trainer) via a computer screen or VR/AR headset. It is worth noting that each

joint has its own state, and the states of the joints are interdependent. They need to collaborate

with each other to accomplish the task. In addition, the total communication resources shared by

all the joints are limited. Thus, it is possible to extend our system into multi-sensor scenarios.

The E2E Motion-To-Photon (MTP) latency is defined by the delay between the movement
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Fig. 1. Proposed task-oriented cross-system design framework for modeling a robotic arm in the Metaverse, where sensing,

communication, reconstruction, predication, control and rendering are considered.

of the real-world robotic arm and the movement of its digital model in the Metaverse. Thus,

it includes communication delay, computation delay, control delay, and rendering delay. By

optimizing the prediction horizon and the scheduling policy1, we minimize the communication

overhead subject to constraints on the modeling accuracy and the MTP latency.

Fig. 2 illustrate the timing sequence of the proposed framework. The data is generated from

the built-in sensors at the physical robotic arm. Then, the communication module conducts

scheduling and sends the selected data to a computer server via a network. The server conducts

data reconstruction and prediction, and then controls the digital model of robotic arm. Finally,

the digital model was rendered2 and presented to a human (trainer) via a VR headset (or a

screen). In the following, we will introduce each component:

1) Sensing and Communications: Time is discretized into slots with a duration of ts. The built-

in sensors measure I joint angles in each time slot. Let T (t) = [τ1(t), ..., τI(t)] be the trajectory

of the real-world robotic arm, where τi(t), i = 1, 2, 3, ..., I , is the angle value of the i-th joint

measured in the t-th time slot. We consider a scheduling policy in the communication system,

where the indicator, xi(t), represents whether the i-th joint is scheduled for data transmission

in the t-th time slot, i = 1, ..., I . If the i-th joint is not scheduled, then xi(t) = 0. Otherwise,

xi(t) = 1, and one packet will be transmitted to the Metaverse. The decision of the scheduler

in the t-th time slot is denoted by X(t) = [x1(t), x2(t), ..., xI(t)]. The total number of packets

1The scheduling policy determines which joints will be scheduled for data transmission.
2To simplify the system, we assume that the rendering takes place at the server and the human user (trainer) directly interacts

with the digital model via human-computer interface.
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Fig. 2. The timing sequence of the proposed framework, where the modeling accuracy and the MTP latency need to be satisfied.

to be transmitted in the communication systems in the t-th time slot is given by
∑I

i=1 xi(t).

2) Reconstruction: To reconstruct the trajectory from sampled data, we use the linear inter-

polation and extrapolation method, which is widely used in the existing literature and can be

easily implemented in our system [36]. The indicators of packet arrivals in the t-th time slot

at the Metaverse are denoted by yi(t), i = 1, 2, ..., I . If a packet from the i-th joint arrived

at the Metaverse in the t-th time slot, then yi(t) = 1. Otherwise, yi(t) = 0. From the arrived

packets, the set of joint angles obtained by the Metaverse in the t-th time slot is denoted by

S(t) = {τi(t) | yi(t) = 1, i = 1, ..., I}. In a certain time slot t0, the cloud server reconstructs the

trajectory of the robotic arm from the received joint angles in a historical observation window

with a duration of Wl time slots. The reconstruction algorithm is given by

T̄ (t0) = Fl(S(t), θl | t ∈ [t0 −Wl, t0 −Wl + 1, ..., t0 − 1]), (1)

where T̄ (t0) ∈ R1×I is the reconstructed trajectory, Fl(·, θl) is the reconstruction function, and

θl is the interpolation and extrapolation parameters.

3) Prediction: To compensate for the MTP latency, we propose to use the attention-mechanism-

based predictor, referred to as Informer, to predict the future trajectory from the historical

trajectory [37]. The lengths of the input and output trajectories are denoted by Wp and H . The

values of Wp and H are determined by the auto-correlation coefficient of the trajectories [38]. We

denote the prediction results for trajectory in the t-th time slot by T̂ (t) = [τ̂1(t), τ̂2(t), ..., τ̂I(t)].



In a certain time slot t1, the prediction algorithm can be expressed as follows,

[T̂ (t1 + 1), T̂ (t1 + 2), ..., T̂ (t1 +H)] = Fp([T̄ (t1 −Wp), T̄ (t1 −Wp + 1), ..., T̄ (t1)], θp), (2)

where Fp(·, θp) is the prediction function and θp represents the parameters of this function. The

loss function of the prediction algorithm is Mean Squared Error (MSE) between the output

trajectory and the ground truth, which is given by

Lp =
1

H

H∑
n=1

(
T̂ (t1 + n)− T (t1 + n)

)2

. (3)

We will optimize the prediction length Z(t) = [z1(t), z2(t), ..., zI(t)], zi(t) ≤ H for each joint in

our cross-system design framework, which will be introduced in the next section.

4) Control: There are different algorithms we can use to control the virtual robotic arm in

the Metaverse [39]. Without loss of generality, we utilize the joint-space position control and

proportional–derivative (PD) controller [40]. Considering the limitations of the control frequency

and the processing time, the target angle for each joint will be generated by the control algorithm

and subsequently executed for every Nc time slots, which is denoted by T̃ (t) = [τ̃1(t), ..., τ̃I(t)].

In the t2-th time slot, for each joint i, the target joint position τ̃i(t2) to be executed within the

Nc time slots can be expressed as

τ̃i(t2) = kp · (τ̂i(t1 + zi(t))− τ̃i(t2 −Nc)) + kd · (
dτ̂i(t1 + zi(t))

dt
− dτ̃i(t2 −Nc)

dt
), (4)

where kp and kd are the proportional and derivative parameters of the PD controller, respectively.

5) Rendering: In computer graphics, rendering refers to the process of generating controllable

and photo-realistic images and videos of virtual scenes [41]. In our system, the processing time

of each image is denoted by Nr time slots. In other words, the monitor or VR/AR glasses refresh

the images at a refresh rate of 1/(Nrts) (times/second). The relationship between the trajectory

of the digital model and the trajectory displayed to the user is given by

Ť (t) = Fr(T̃ (t), θr), (5)

where Fr(·, θr) is the rendering function and θr represents the parameters for rendering.

B. KPIs and Communication Load

1) Task-Oriented KPI: The end effector of a robotic arm could be a gripper, a drill bit, or

a sensor, depending on the specific task. We assume that the real-world end effector has seven

degrees of freedom, and the pose of the end effector is denoted by

P(t) = [lx,r(t), ly,r(t), lz,r(t), qx,r(t), qy,r(t), qz,r(t), qw,r(t)]. (6)
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Fig. 3. Orientation of the end effector to the base coordinate system O.

Specifically, lx,r(t), ly,r(t), lz,r(t) are the coordinates of the end effector in a three-dimensional

Cartesian coordinate system. [qx,r(t), qy,r(t), qz,r(t), qw,r(t)] is the quaternion representing the

orientation of the end effector [42]. Quaternions are preferred over other representations, such

as Euler angles or rotation matrices, in our context because of their compact representation

and their ability to avoid a particular limitation associated with 3D rotation systems, known as

gimbal lock, which can cause a loss of degrees of freedom [43]. Please see Appendix B for more

information. As shown in Fig. 3, the unit vector of the rotation axis, ηc(t) = [ac(t), bc(t), cc(t)],

and angle of rotation, ψη(t), can be characterized by qx,r(t), qy,r(t), qz,r(t), and qw,r(t). In

particular, the rotation axis is located in the coordinate system defined by three imaginary unit

basic vectors, ui, uj, and uk, which follow special multiplication rules [42]. The relationship

among the quaternions, ηc(t), and ψη(t) is expressed by

qx,r(t) = sin(
ψη(t)

2
) · ac(t),

qy,r(t) = sin(
ψη(t)

2
) · bc(t),

qz,r(t) = sin(
ψη(t)

2
) · cc(t),

qw,r(t) = cos(
ψη(t)

2
). (7)

Similarly, the quaternions of the virtual-world robotic arm follow the same rules.

From the I joint angles, P(t) is obtained from the forward kinematics according to

P(t) = Ff (T (t)), (8)



where Ff (·) maps the joint angles to the pose of the end effector (positions and orientations).

The expression of (8) depends on the structure and configuration of the robotic arm. Like P(t),

the pose of the end effector displayed to the user also has seven degrees of freedom, denoted

by P̌ (t) = [lx,v(t), ly,v(t), lz,v(t), qx,v(t), qy,v(t), qz,v(t), qw,v(t)]. A task-oriented KPI is defined as

the Euclidean distance between P(t) and P̌ (t),

e(t) = ω1 · ∥(lx,r(t), ly,r(t), lz,r(t)), (lx,v(t), ly,v(t), lz,v(t))∥2 (9)

+ ω2 · ∥(qx,r(t), qy,r(t), qz,r(t), qw,r(t)), (qx,v(t), qy,v(t), qz,v(t), qw,v(t))∥2,

where ∥ · ∥2 is the L2-norm defined as ∥ · ∥2 ≜
√∑

(·)2, and ω1 and ω2 are the weighting

coefficients. The first term is the position error and the second is the orientation error. Depending

on the accuracy requirements of different tasks in the Metaverse, ω1 and ω2 can be set to different

values.

2) Communication Load: The Orthogonal Frequency-Division Multiplexing (OFDM) commu-

nication system is considered in our framework for it is widely deployed in cellular networks.

The number of time and frequency resource blocks allocated to a packet is determined by the

channel gain and the packet size. We assume that the channel gain and the packet size are two

stationary random variables. The average number of resource blocks required in each slot is

proportional to the average packet rate. To improve resource utilization efficiency, defined as

the average number of resource blocks per slot, we minimize the average number of packets

transmitted in each slot.

III. CONSTRAINED REINFORCEMENT LEARNING FOR CROSS SYSTEM DESIGN

In this section, we formulate an optimization problem that minimizes the communication load

subject to a constraint on the CVaR of modeling error by optimizing the scheduling policy and the

prediction horizon. In the cross-system design framework, there is no closed-form relationship

between the KPIs and the optimization variables. To solve this problem, we develop a DRL

algorithm by integrating domain knowledge into the advanced PPO algorithm.

A. Preliminary of PPO

PPO is an advanced reinforcement learning algorithm for solving problems with discrete

action space. We chose Proximal Policy Optimization (PPO) as the baseline algorithm due to its

simplicity, effectiveness, and high sample efficiency compared to other reinforcement learning



algorithms [44]. In addition, PPO maintains a balance between exploration and exploitation and

avoids drastic policy updates, which is crucial for managing the complex dynamics of robotics

and ensuring stable training [45]. We denote the state and action of PPO by st and at, respectively.

The policy is a mapping from the state to the probabilities of taking different actions, denoted by

πθ(at | st), where θ are the training parameters of the policy network. With PPO, the parameters

of the policy are updated according to the following expression,

θt+1 = argmax
θ

E
st,at∼πθ

L(st, at, θt, θ). (10)

The loss function L(st, at, θt, θ) is given by

L(st, at, θt, θ) =min

(
πθ(at | st)
πθt(at | st)

Aπθ(st, at), (11)

clip
(
πθ(at | st)
πθt(at | st)

, 1− ϵ, 1 + ϵ,

)
Aπθt (st, at)

)
,

where A(st, at) is the advantage function defined as the difference between the state-action value

function, Qπθ(st, at), and the state value function, V πθ(st),

Aπθ(st, at) = Qπθ(st, at)− V πθ(st), (12)

which estimates the advantage of taking action at in state st, over other possible actions in the

same state [46]. In the sequel, we develop our DRL algorithm by integrating domain knowledge

into the PPO.

B. Knowledge-Assisted Problem Formulation

1) State: The state in the t-th time slot consists of two parts: the angles of the I joints and

the Jacobian matrix of the real-world robotic arm, i.e., st = {T (t),J (T (t))}. In robotics, the

Jacobian matrix is critical for analyzing and controlling the motion of robots. It characterizes

the relationship between the velocity of the end effector and the velocities of all joints [47],

∆P(t)

∆t
= J (T (t))

∆T (t)

∆t
, (13)

where ∆P(t)
∆t

is the velocity of the end effector, and ∆T (t)
∆t

is the angular velocities of I joints. In

the t-th time slot, the Jacobian matrix can be obtained from T (t) and the kinematic properties

of the robotic arm, e.g., Denavit–Hartenberg (D-H) parameters [47]. By multiplying ∆t on both

sides of (13), the relationship between ∆P(t) and ∆T (t) is expressed as follows,

∆P(t) = J (T (t))∆T (t), (14)



(a) (b)

Fig. 4. Three-link two-dimensional robotic arm model.

where J (T (t)) shows how sensitive the modeling error of the end effector is to the errors of

the I joints. Thus, we take the Jacobian matrix as one part of the state to improve the training

efficiency of the DRL algorithm.

Let’s take the three-link two-dimensional robotic arm as an example to show the Jacobian

matrix [39]. With the example in Fig. 4(a), the forward kinematics in (8) can be expressed as

follows,

P(t) =


lx,r(t)

ly,r(t)

ϕ(t)

 =


L1 · cos τ1(t) + L2 · cos (τ1(t) + τ2(t)) + L3 · cos (τ1(t) + τ2(t) + τ3(t))

L1 · sin τ1(t) + L2 · sin (τ1(t) + τ2(t)) + L3 · sin (τ1(t) + τ2(t) + τ3(t))

τ1(t) + τ2(t) + τ3(t)

 ,
(15)

where L1, L2, and L3 are the lengths of the three links, respectively. As shown in Fig. 4(b), ϕ(t)

is the angle between x-axis and x′-axis in the clockwise direction. Then, the Jacobian matrix

can be obtained by

J (T (t)) =


∂lx,r(t)

∂τ1(t)

∂lx,r(t)

∂τ2(t)

∂lx,r(t)

∂τ3(t)

∂ly,r(t)

∂τ1(t)

∂ly,r(t)

∂τ2(t)

∂ly,r(t)

∂τ3(t)

∂ϕ
∂τ1(t)

∂ϕ
∂τ2(t)

∂ϕ
∂τ3(t)

 (16)

where J (T (t)) consists of all partial derivatives of P(t). Specifically, the first two rows of

the matrix are related to the partial derivatives of the position coordinates, while the last row is

related to the partial derivatives of the angle of the end effector which is shown in Fig. 4(b).

Thus, each element is calculated by



∂lx,r(t)

∂τ1(t)
= −L1 · sin τ1(t)− L2 · sin (τ1(t) + τ2(t))− L3 · sin (τ1(t) + τ2(t) + τ3(t)), (17)

∂lx,r(t)

∂τ2(t)
= −L2 · sin (τ1(t) + τ2(t))− L3 · sin (τ1(t) + τ2(t) + τ3(t)), (18)

∂lx,r(t)

∂τ3(t)
= −L3 · sin (τ1(t) + τ2(t) + τ3(t)), (19)

∂ly,r(t)

∂τ1(t)
= −L1 · sin τ1(t)− L2 · sin (τ1(t) + τ2(t))− L3 · sin (τ1(t) + τ2(t) + τ3(t)), (20)

∂ly,r(t)

∂τ2(t)
= −L2 · sin (τ1(t) + τ2(t))− L3 · sin (τ1(t) + τ2(t) + τ3(t)), (21)

∂ly,r(t)

∂τ3(t)
= −L3 · sin (τ1(t) + τ2(t) + τ3(t)), (22)

∂ϕ

∂τ1(t)
= 1,

∂ϕ

∂τ2(t)
= 1,

∂ϕ

∂τ3(t)
= 1. (23)

From the above description, we can see that the modeling error of the end effector is more

sensitive to the error of the joint that is far away from the end effector and less sensitive to the

error of the joint that is close to the end effector. The robotic arm in our prototype has more

than three joints and can move in a three-dimensional space. Thus, the Jacobian matrix could

be more complicated than the two-dimensional robotic arm in Fig. 4.

The state, including joint angles and elements of the Jacobian matrix, needs to be normalized

before feeding it into the neural network. We first find the maximum and minimum values of

each joint angle and each element of the Jacobian matrix from the data set. Then, these values

are employed to normalize the state within the range of (0, 1).

2) Action: The action to be taken in the t-th time slot includes the joints to be scheduled,

X(t), and the optimal prediction horizons Z(t). Although the prediction horizon needs to be

transmitted to the server, Z(t) is an integer ranging from 1 to 500. Thus, the communication

overhead for updating Z(t) is negligible compared to the update of the joint angle with high

precision. We denote the action by at = [a
[1]
t , a

[2]
t ] = [X(t), Z(t)], where the action of the i-th

joint is denoted by a
[1]
t,i = xi(t) and a

[2]
t,i = zi(t).

3) Instantaneous Reward and Cost: Given the state and the action taken in the t-th time

slot, the instantaneous reward, denoted by r(s(t), a(t)), is the communication load reduction

compared with a benchmark that all joints are scheduled in every time slot. The instantaneous

cost c(s(t), a(t)) is set to e(t) in (9).



4) Policy: The policy is represented by a neural network, πθ (st), where θ represents the

training parameters. The network consists of multiple fully connected layers as shown in Fig. 5.

In our study, the inputs to the policy networks include two different states: the angles of joints and

the Jacobian matrix of the real-world robotic arm. The raw data of a joint angle has complete

information and requires a complex neural network for feature extraction. The Jacobi matrix

provides information that has been processed based on domain knowledge, and we can use a

simple neural network for feature extraction. To handle different types of input information, we

designed the two-branch neural network. Meanwhile, the two branches are designed to optimize

two types of actions separately, i.e., the scheduling of a joint and the prediction horizon.

Specifically, the first two layers are designed for feature extraction, where the input denoted by

{T (t),J (T (t))} is transformed into a more compact and informative representation that captures

the underlying patterns. Then, we decouple the neural network into two parallel branches. The

first branch is for the scheduling policy, π[1]
θ , and the second branch is for the policy of optimizing

of the prediction horizons, π[2]
θ . After that, two branches are concatenated in the final linear layer.

Followed by the Softmax activation function, the distribution of two actions, i.e., ρ[1]t and ρ
[2]
t

are generated. Finally, two actions, i.e., a[1]
t and a

[2]
t are sampled from ρ

[1]
t and ρ[2]t , respectively.

Specifically, π[1]
θ maps the state st to the distribution of a[1]

t,i , denoted by ρ[1]t ∈ R2×I . The i-th

column of ρ[1]t is defined as follows,

ρ
[1]
t,i ≜

Pr{a[1]t,i = 1}

Pr{a[1]t,i = 0}

 . (24)

Similarly, π[2]
θ maps the state st to the distribution of a

[2]
t,i , denoted by ρ

[2]
t ∈ RH×I . The i-th

column of ρ[2]t is defined as follows,

ρ
[2]
t,i ≜

[
Pr{a[2]t,i = 1},Pr{a[2]t,i = 2}, ...,Pr{a[2]t,i = H}

]T
. (25)

Once the distributions are obtained, a[1]
t,i and a

[2]
t,i can be sampled from (24) and (25), respectively.

Here, the probability of each action being sampled is based on the weight located in the

corresponding elements [48]. The policies of different joints are represented by DNNs with

the same structure. If there are more joints and sensors, they can reuse the DNN and fine-tune

the parameters with few-shot learning. In this way, we can address the scalability issue.

5) Long-Term Reward and Cost: Following the policy πθ, the long-term reward and long-term

cost are defined as Rπθ = E[
∑∞

t=0 γ
tr(s(t), a(t)] and Cπθ = E[

∑∞
t=0 γ

tc(s(t), a(t)], respectively,

where γ is the discount factor [12]. To estimate the long-term reward and long-term cost, we
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Fig. 5. Structures of neural networks: Two-branch neural network and fully-connected neural network.

can use the state-value function or the state-action value function. The state-value function and

the state-action-value function of the long-term reward are defined as

V πθ
r (s) = E[

∑∞

t=0
γtr(s(t), a(t)) | s0 = s, πθ], (26)

Qπθ
r (s, a) = E[

∑∞

t=0
γtr(s(t), a(t)) | s0 = s, a0 = a, πθ], (27)

respectively. The advantage function is given by Aπθ
r (s, a) = Qπθ

r (s, a)− V πθ
r (s). Like the long-

term reward, the state-value function and the state-action-value function of the long-term cost

are defined as

V πθ
c (s) = E[

∑∞

t=0
γtc(s(t), a(t)) | s0 = s, πθ], (28)

Qπθ
c (s, a) = E[

∑∞

t=0
γtc(s(t), a(t)) | s0 = s, a0 = a, πθ], (29)

respectively. The advantage function is given by Aπθ
c (s, a) = Qπθ

c (s, a)− V πθ
c (s).

6) Modeling Accuracy Constraint: To guarantee the long-term modeling accuracy constraint,

a straightforward approach is to evaluate Cπθ by using V πθ
c (s) or Qπθ

c (s, a). Note that the average

long-term cost may not be applicable for mission-critical tasks in the Metaverse. For example, in

haptic communications, users cannot recognize errors below a certain threshold, known as Just

Noticeable Difference [49]. For mission-critical tasks, we propose to use CVaR of Qπθ
c (st, at)

as the KPI. CVaR is a well-known risk measure used in financial portfolio analysis that depicts

the cost in the tail of the risk distribution [11]. The expression of CVaR of Qπθ
c (st, at) is given

by

CVaRα[Q
πθ
c (st, at)] = min

v∈R

(
v +

1

1− α
E

st,at∼πθ

{
[Qπθ

c (st, at)− v]+
})

, (30)

where (x)+ = max(x, 0). α ∈ (0, 1) is the confidence level, and Qπθ
c (st, at) is equal to the

average of the worst-case α-fraction of losses under optimal conditions [50].



Algorithm 1 C-PPO
Input: initial the parameters of neural network including policy network θ0, initial state s0, step

length β

1: for t = 0, 1, 2, . . . , T − 1 do

2: Observe st and generate action from current policy πθt([a
[1]
t , a

[2]
t ] | st)

3: Transmit the packets based on action a
[1]
t

4: Reconstruct the trajectory based on received packets by (1)

5: Predict the trajectory based on action a
[2]
t by (2)

6: Store state st, action at, reward rt, cost ct, and next state st+1

7: for k = 1, 2, . . . , K do

8: Update CVaRα[Q
πθ
c (st, at)] by (32)

9: end for

10: Compute the advantage function Aπθ
c (st, at) and Aπθ

r (st, at) based on (11), (33)

11: if CVaRα[Q
πθ
c (st, at)] ≤ Γc

1−γ
then

12: Take one-step policy update towards maximizing Lr(st, at, θt, θ) : θt → θt+1

13: else

14: Take one-step policy update towards maximizing Lc(st, at, θt, θ): θt → θt+1

15: end if

16: end for

Output: Optimal policy π∗
θ

7) Problem Formulation: The goal is to find the optimal policy π∗
θ that maximizes the long-

term reward Rπθ subject to the constraint on CVaR of the long-term cost Cπθ . Thus, the problem

can be formulated as follows:

π∗
θ =argmax

θ
Qπθ

r (st, at) (31)

s.t. CVaRα[Q
πθ
c (st, at)] ≤

Γc

1− γ
, (31a)

where Γc is the modeling error depending on the requirements of specific tasks in the Metaverse.

C. C-PPO Algorithm

To guarantee the modeling accuracy constraint, we develop a C-PPO algorithm by integrating

PPO and CVaR into the CRPO algorithm, which is a safe reinforcement learning algorithm with



convergence guarantee [12]. The basic idea of the CRPO algorithm is to maximize the long-term

reward when the constraint is satisfied and minimize the long-term cost when the constraint is

violated.

The details of the C-PPO algorithm can be found in Algorithm 1. In the t-th step, we first

update the threshold of CVaR according to the current policy by the gradient descent,

v(k+1) = v(k) − β
∆CVaRα(v

(k))

∆v(k)
, (32)

where β is the learning rate and it takes K steps of gradient descent to update the threshold,

k = 1, ..., K. Then, we validate whether the constraint can be satisfied or not. If the constraint

in (31a) is satisfied, we maximize Lr(st, at, θt, θ) which is obtained by substituting Aπθ
r (st, at)

into (11). Otherwise, we minimize Lc(st, at, θt, θ) defined as follows,

Lc(st, at, θt, θ) =min

(
πθ(at | st)
πθt(at | st)

Aπθ
c (st, at), (33)

clip
(
πθ(at | st)
πθt(at | st)

, 1− ϵ, 1 + ϵ,

)
A

πθt
c (st, at)

)
,

where Aπθ
c (st, at) is obtained by Generalized Advantage Estimate (GAE) [46], [51]. With C-PPO,

the parameters are updated according to the following expression,

θt+1 =

θt + α∇θLr(st, at, θt, θ), CVaRα[Q
πθ
c (st, at)] ≤ Γc

1−γ
,

θt − α∇θLc(st, at, θt, θ), CVaRα[Q
πθ
c (st, at)] >

Γc

1−γ
.

(34)

It is worth noting that the policy gradient and the CVaR gradient can be updated with different

learning rates. To guarantee a stable CVaR constraint when performing the policy gradient, we

update the threshold of CVaR with a higher frequency.

IV. PROTOTYPE DESIGN AND PERFORMANCE EVALUATION

In this section, we demonstrate our cross-system prototype3 design as shown in Fig. 6.

Based on the prototype, we first evaluate the effectiveness of the proposed cross-system design

framework and then compare the performance with different benchmarks.

3We will release our dataset and source code of C-PPO if this paper gets published.
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Fig. 6. Illustration of our prototype system. 1) Bottom left photo: A real-world robotic arm is controlled by a human trainee, 2)

Bottom right photo: A digital model of the robotic arm in the Metaverse is rendered and presented to a trainer, 3) The diagram

on the top of the two photos shows the system functions implemented at the two sides.

A. Prototype Design

1) Real-World Robotic Arm: We adopt an industrial-grade robotic arm system, Franka Emika

Panda [52], in our prototype. The robotic arm has seven degrees of freedom (DoF) and can

achieve up to 2 m/s end effector speed and ±0.1 mm repeatability. In our prototype design, we

use five DoF of the real-world robotic arm. The trainer wearing optical markers controls the

robotic arm via the state-of-the-art motion capture system with six motion cameras, OptiTrack

Prime-13 [53]. The reason why we use OptiTrack is because 1) It is a real-time motion capture

system with high accuracy and low latency. This real-time high-fidelity tracking is essential for

maintaining an accurate digital twin in the Metaverse and for evaluating the performance of our

task-oriented, cross-system design framework. The use of OptiTrack also allows us to quantify the

task-oriented KPI, i.e., average tracking error between the real-world robotic arm and its digital

model in the Metaverse. 2) The OptiTrack motion tracking system can be scaled to accommodate

various tracking volumes, from small studio setups to large outdoor environments. This scalability

makes it versatile and adaptable for different types of motion capture objects in the Metaverse.

3) Our proposed framework is not limited to the use of OptiTrack as a motion capture device.

Flexible positioning and motion tracking system can be used bsaed on the practical accuracy

demands of the Metaverse applications.

The robotic arm receives the target pose from the motion capture system and then maps



TABLE II

SYSTEM PARAMETERS FOR PERFORMANCE EVALUATION

Prototype Setup Learning Setup
Parameters Values Parameters Values
Duration of time slot 1ms Learning rate of actor network 3× 10−4

Number of joints I 5 Learning rate of critic network 3× 10−4

Input length of reconstruction function Wl 2000ms Learning rate of cost network 3× 10−4

Input length of prediction function Wp 2000ms Batch size 256
Prediction horizon of prediction function H 500ms Discount factor γ 0.99

Control interval Nc 2ms Clip ratio in the loss functions of C-PPO ϵ 0.2
Refresh rate of image 1/Nrts 60Hz Total steps for updating CVaR K 500
Experimental time 5× 104 ms Learning rate of constraint β 2× 10−3

Weighting coefficient of position ω1 0.5 Confidence level of CVaR 1− αc 0.95
Weighting coefficient of orientation ω2 0.5

the pose to joint angles. After that, the robotic arm applies a proportional-integral-derivative

method [54] for control, which converts the joint angles to a series of commands. Meanwhile,

built-in sensors in the robotic arm measure joint angles, angular velocities, and inertial torque

of each joint [52].

2) Virtual Robotic Arm in the Metaverse: We establish the Metaverse in the Nvidia Isaac

Gym [55], a cutting-edge robotics simulation engine that uses state-of-the-art algorithms and

physics engines to simulate the movement and behavior of robots in various environments.

Meanwhile, we simulate the communication system between the real-world robotic arm and the

Nvidia Isaac Gym by introducing a Gaussian-distributed communication latency. Its mean and

the standard deviation are set to 10 ms and 1 ms, respectively.

B. System Setup

1) Parameters of the Prototype: For the prototype design, five joint angles of the real-world

robotic arm are controlled by the trainee and measured by built-in sensors in each time slot. The

measured data of the real-world and virtual-world robotic arms are recorded in the CSV format

file. For the training process of the predictor, informer, we set the prediction input length Wp

to 2000 ms and output length H to 500 ms. In Nvidia Issac Gym, we set the control interval

Nc to 2 ms. The frequency at which the robotic arm interacts with the virtual environment

is 500 Hz. The method for calculating the Jacobian Matrix can be found in Appendix A. The

default parameters of the prototype and learning algorithm are listed in Table II, unless otherwise

specified.
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Fig. 7. Performance evaluation.

2) Benchmarks: We build our C-PPO algorithm and four benchmarks in the well-known DRL

library Stable-Baselines3 [51]. The legends of the benchmarks are “W2B”, “WJM”, “WCVaR”,

and “WDK”, respectively. (a) In W2B, the two-branch neural network is replaced with a fully-

connected neural network; (b) In WJM, the Jacobian matrix is not included in the state; (c)

In WCVaR, the CVaR of the modeling error is replaced with the average modeling error in

the constraint; (d) WDK is a simplified C-PPO without using any domain knowledge (i.e.,

the two-branch neural network, Jacobian matrix, and CVaR of the modeling error). With the

above benchmarks, we will illustrate the impact of different types of domain knowledge on the

performance of our C-PPO algorithm.

C. Evaluation of C-PPO Algorithm

As shown in Fig. 7, the performance of C-PPO is evaluated by average packet rate, average

modeling error, and average CVaR. We train C-PPO with 800 episodes to show the trends in

performance changes. The average packet rate at the start point is defined as a baseline. The

average packet rate reaches 8 packets/second, which saves 83.3% communication load than the

baseline. In addition, optimizing under the restriction of the constraint CVaR, the average tracking

error of the digital model achieves 0.0281, which is lower than the tracking error of the baseline

(0.0347), as shown in Fig. 7(b). Meanwhile, the CVaR fluctuates around the constraint bound.

The results show that C-PPO converges after 250 training episodes. Meanwhile, constraints

and the average tracking error fluctuate slightly throughout training. In particular, C-PPO is

stable and effective, since it performs consistently better in all ten training repetitions. It is also
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Fig. 8. Ablation Study.

worth noting that although the prediction horizon needs to be transmitted to the server, Z(t)

is an integer ranging from 1 to 500. Thus, the communication overhead for updating Z(t) is

negligible compared to the update of the joint angle with high precision.

D. Ablation Study of C-PPO Algorithm

The performance of the C-PPO and the four benchmarks are illustrated in Fig. 8. In general,

our C-PPO achieves the best performance in terms of convergence time, average packet rate, and

average modeling error. The results in Fig. 8(a) show that the C-PPO can reduce the required

average packet rate by around 50% compared to the benchmark without domain knowledge,

WDK (from 17 packets/second to 8 packets/second). By comparing C-PPO with WJM, we can

see that the Jacobian matrix can reduce the convergence time by 50% (from 800 episodes to 400

episodes). In Fig. 8(b), we evaluate the average modeling errors achieved by different algorithms.

From C-PPO and WCVaR, we can observe that by using CVaR as the metric of the modeling

error, the average modeling error is reduced from 0.041 to 0.032 (around 20% reduction), where

the modeling error is defined in (9). The results 8(c) show that C-PPO, W2B, and WJM can

guarantee the constraint on CVaR of the modeling error, that is, the dashed horizontal line. The

other two benchmarks do not consider CVaR, and hence are not shown in this figure. From

the performance of W2B in all these figures, we can see that the two-branch neural network

converges faster than the fully-connected neural network and achieves better performance in

terms of the average packet rate and average modeling error.
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Fig. 9. Trajectories, instantaneous packet rates and instantaneous prediction horizon of two joints, where joint 5 is close to the

end effector, and joint 1 is close to the base of the robotic arm.

E. Validation of Cross-System Design Framework

1) Dynamic scheduling in C-PPO: In Fig. 9(a), we provide an example to show how the

proposed C-PPO algorithm changes the packet rates according to joint angles. The packet rates

are represented by the grayscale intensity. As the grayscale intensity increases from white to

black, the packet rates increase from 0 to 23 packets/second. The results imply that packet rates

are correlated with fluctuations in joint angles. Besides, the joint that is far away from the end

effector has higher average packet rates than the joint that is close to the end effector. This is

because the modeling error of the end effector is less sensitive to modeling errors of the joints

that are closer to it.

2) Dynamic prediction horizon in C-PPO: The effect of Z(t) has already been demonstrated

in the existing literature [56], [57]. The latency in the communication systems is stochastic,

so we need to adjust the prediction horizon to compensate for the communication latency. In

this way, we can reduce the modeling error in the Metaverse. In addition, we also provide the

diagram of Z(t) along with the trajectories of the real-world robotic arm. As shown in Fig. 9(b),

the value of the prediction horizon is depicted through the grayscale intensity, where darker

intensities correspond to longer prediction horizons. The results show that the prediction horizon

is adjusted according to the mobility of the joints. Moreover, the prediction horizon of joint 5
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Fig. 10. CCDF of the long-term cost.

is much longer than that of joint 1. This is because the modeling accuracy of the end effector

is less sensitive to the prediction errors of the joint that is closer to it compared to the joint that

is farther from it.

3) CVaR: The Complementary Cumulative Distribution Function (CCDF) of the long-term

cost is presented in Fig. 10. The results show that with the probability of 98.5%, the long-

term cost is below the required threshold, which is set to 25 in the experiment. In addition,

the probability (98.5%) is higher than the confidence level (95%). The result also indicates that

the proposed C-PPO can significantly reduce the tail probability (i.e., the probability that the

long-term cost is higher than the required threshold) of the long-term cost.

4) Performance Comparison: We compare our proposed cross-system design framework with

a baseline framework: there is no prediction, and all joints transmit data packets in every time

slot. In Fig. 11, we show the trajectories of the real-world robotic and two digital models

obtained from our cross-system design framework and the baseline framework. The results show

that with prediction, the cross-system design framework can model the virtual-world robotic arm

in a timely manner. Without prediction, the user can recognize the modeling error caused by

communication latency. In Fig. 12, we further illustrate the CCDF of modeling errors in the

two frameworks. The results demonstrate that the cross-system design framework outperforms

the baseline framework in terms of the tail distribution of the modeling error. Besides, with

the baseline framework, all the joints transmit packets in every time slot. The packet rate is
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Fig. 11. Comparison among the trajectories of the real-world robotic arm (at the centre) and its digital models (on two sides,

the left one is designed by the proposed framework while the right one is implemented by the baseline framework without

cross-system design).
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Fig. 12. Modeling errors of the proposed cross-system design framework and the baseline framework.

5000 packets/s, which is much higher than the cross-system design framework.

V. CONCLUSIONS

In this work, we established a task-oriented cross-system design framework to minimize the

required packet rate to meet a constraint on the modeling error of a robotic arm in the Metaverse.

To optimize the scheduling policy and the prediction horizons, we developed a C-PPO algorithm

by integrating domain knowledge into the PPO. A prototype was built to evaluate the performance

of the C-PPO and the cross-system design framework. Experimental results showed that the



domain knowledge helps reduce the required packet rate and the convergence time by up to

50%, and the cross-design framework outperforms a baseline framework in terms of the required

packet rate and the tail distribution of the modeling error.

APPENDIX A

CALCULATION OF JACOBIAN MATRIX

For notational simplicity, the notations used in the appendix are different from the notations

used in the main text.

To obtain the Jacobian matrix defined in Section III-B, one approach is to compute the partial

derivatives with respect to each joint angle. The computation complexity of this approach could

be high, and we introduce a low-complexity numerical method in this appendix to obtain the

Jacobian matrix [47]. For a robotic arm with I rotation joints, the Jacobian matrix can be obtained

from the following expression,

J =



0
0R


0

0

1

× (0Iξ − 0
0ξ)

0
1R


0

0

1

× (0Iξ − 0
1ξ) . . . 0

I−1R


0

0

1

× (0Iξ − 0
I−1ξ)

0
0R


0

0

1

 0
1R


0

0

1

 . . . 0
I−1R


0

0

1




∈ R6×I ,

(35)

where × is the cross product operation defined by: a = [x1, y1, z1], b = [x2, y2, z2], a × b =

[y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1]
T, 0

I−1R ∈ R3×3 is the rotation matrix that describes

the rotation of the coordinate frame {I − 1} in the coordinate frame {0} which is the base

coordinate and 0
I−1ξ ∈ R3×1 is the translation vector that describes the translation of the origin

of the coordinate frame {I − 1} in the coordinate frame {0}. In robotics, a coordinate frame is

a system of reference used to describe the position and motion of robots in space. As shown in

Fig. 13, the rotation center of a joint is commonly used as the reference point for setting up the

coordinate frame {i}. Then, by concatenating the rotation matrix and the translation vector, the

transformation matrix of 0
I−1T is expressed as

0
I−1T =

 0
I−1R

0
I−1ξ

[0, 0, 0] 1

 ∈ R4×4, (36)
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Fig. 13. The coordinate frame {i} and D-H parameters.

which describes the relative position and orientation of coordinate frame {I − 1} with respect

to the coordinate frame {0}.

One way to obtain the transformation matrix is deriving the D-H parameters [47]. D-H

parameters provide a systematic way to describe the position and orientation of each link and

joint in the robot in the joint space which is widely used by industrial manufacturers. The

relationship between D-H parameters and transformation matrix i−1
i T can be expressed by

i−1
i T =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sin(αi−1)di

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cos(αi−1)di

0 0 0 1

 . (37)

As shown in Fig 13, θi is the angle value of i-th joint, αi−1, ai−1, di are the constant parameters

determined by the mechanical system. Then, the transformation matrix 0
iT between coordinate

frames {0} and {i} can be obtained by the forward kinematic chain [47],

0
iT = 0

1T
1
2T

2
3T · · · i−1

i T (38)

In our prototype, Franka Emika Panda robotic arm is used. The corresponding D-H parameters

are shown in Table III [58]. Thus, by substituting the D-H parameters into (38), we can obtain
0
iT , 0

iR and 0
i ξ, i = 1, 2, ..., I . Then, by substituting 0

iR and 0
i ξ, i = 1, 2, ..., I , into (35), we can

obtain the Jacobian matrix J . This completes the calculation of the Jacobian matrix.



APPENDIX B

FOUNDATION OF QUATERNION

Specifically, imaginary basis vectors follow the multiplication rules as

u2
i = u2

j = u2
k = −1, uiujuk = −1 (39)

uiuj = −ujui = uk, ujuk = −ukuj = ui, ukui = −uiuk = uj. (40)

As shown in Fig. 3, according to the unit vector of the rotation axis ηc and the rotation angle

ψη, the quaternion can be obtained by

q = Fq(ac, bc, cc, ψη)

= sin(
ψη

2
) · ac · ui + sin(

ψη

2
) · bc · uj + sin(

ψη

2
) · cc · uk + cos(

ψη

2
). (41)

TABLE III

D-H PARAMETERS OF FRANKA EMIKA PANDA ROBOTIC ARM

Joint a (m) d (m) α (rad) θ (rad)

Joint 1 0 0.333 0 θ1

Joint 2 0 0 −π
2

θ2

Joint 3 0 0.316 π
2

θ3

Joint 4 0.0825 0 π
2

θ4

Joint 5 -0.0825 0.384 −π
2

θ5

Joint 6 0 0 π
2

θ6

Joint 7 0.088 0 π
2

θ7
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