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Abstract—With the flourish of digital technologies and rapid
development of 5G and beyond networks, Metaverse has become
an increasingly hotly discussed topic, which offers users with
multiple roles for diversified experience interacting with virtual
services. How to capture and model users’ multi-platform or
cross-space data/behaviors become essential to enrich people
with more realistic and immersed experience in Metaverse-
enabled smart applications over 5G and beyond networks. In
this study, we propose a Personalized Federated Learning with
Model-Contrastive Learning (PFL-MCL) framework, which may
efficiently enhance the communication and interaction in human-
centric Metaverse environments by making use of the large-
scale, heterogeneous, and multi-modal Metaverse data. Differing
from the conventional Federated Learning (FL) architecture,
a multi-center aggregation structure to learn multiple global
models based on the changes of dynamically updated local
model weights, is developed in global, while a hierarchical neural
network structure which includes a personalized module and a
federated module to tackle both issues on data heterogeneity and
model heterogeneity, is designed in local, so as to enhance the
performance of PFL with unique characteristics of Metaverse
data. In particular, a two-stage iterative clustering algorithm
with a more precise initialization is developed to facilitate
the personalized global aggregation with dynamically updated
multiple aggregation centers. A personalized multi-modal fusion
network is constructed to greatly reduce the computational cost
and feature dimensions from the high-dimensional heterogeneous
inputs for more efficient cross-modal fusion, based on a hierar-
chical shift-window attention mechanism and a newly designed
bridge attention mechanism. A MCL scheme is then incorporated
to speed up the model convergence with less communication
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overload between the local federated module and global model,
while an embedding layer which effectively enables the delivered
global model to better adapt to the local personality in each
client is further integrated. Compared with five baseline methods,
experiment and evaluation results based on two different real-
world datasets demonstrate the excellent performance of our
proposed PFL-MCL model in a fine-grain personalized training
strategy, toward more efficient communication and networking
among human-centric Metaverse enabled smart applications.

Index Terms—Personalized Federated Learning, Model-
Contrastive Learning, Attention Mechanism, Multi-Modal Fu-
sion, Human-Centric, Metaverse

I. INTRODUCTION

The advancement of digital technologies has enabled a
virtualized world of reality which we considered Metaverse
[1]. The Metaverse allows its users to own and use their
personalized avatar to feel the virtual reality with immersed
interaction experience. Through the Metaverse, users can
travel, have social interaction, work, and perform many other
activities as they do in real life. Virtual reality, augmented
reality, and mixed reality technologies allow better and more
convenient interfaces to interact with the Metaverse, and also
offer a better experience for users with different roles such
as participants and creators. However, virtual services offered
in Metaverse also brought forward the challenges such as the
requirements of high processing capability and communication
resource allocation. Every user in the Metaverse is unique
and can be characterized by their behaviors in the Metaverse.
In order to provide more realistic, intelligent, and immersed
experience in Metaverse, records of historical activities in
Metaverse will need to be integrated with vast amount of
multi-modal user data coming from heterogeneous platforms.
Therefore, it is imperative that Metaverse applications are
able to make use of the unique heterogeneous data to offer
personalized services and experiences.

The development of deep learning allows the possibility
to construct the highly accurate modeling based on user’s
historical activity records in the Metaverse. However, the com-
putation and communication requirements of deep learning
and centralized machine learning are also higher. Federated
Learning (FL), as a distributed machine learning approach,
has achieved a good success on distributed model training
and user privacy protection [2]. Among the users, there exist
large amounts of imbalanced and non-IID (independent and
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identically distributed) data. Traditional FL has the vulnera-
bility of not able to handle non-IID data and hence results
in low model quality and accuracy, but higher communica-
tion cost. The traditional centralized training also means the
model lacks personalization [3], [4]. For example, traditional
FL focuses more on the knowledge sharing and extraction
across multiple participants in achieving a better global model,
different features and characteristics across different users are
therefore lost. The modeling of different Metaverse user can
be very different and do not obey the IID assumption, and
a good global model will not achieve an equal performance
on individual users. Accordingly, the version of Personalized
Federated Learning (PFL) is emerging and becomes required,
which can construct personalized models for each user based
on the global model and hence preserve personalized features,
especially in human-centric Metaverse services and applica-
tions.

In addition to personalized services, human-centric Meta-
verse data also has some unique characteristics that need to
be tailored in order to achieve more accurate modelling and
service provision. First, as previously mentioned, Metaverse
client data may come from multiple platforms and therefore
is highly heterogeneous and multi-modal. Such multi-modal
data results in wider differences across local trained models,
and hence leads to the issue of potential slow convergence in
the overall FL process. Second, it is critical to achieve real-
time learning and data processing in order to support good user
experience and human-centric Metaverse applications. Consid-
ering these two characteristics, it becomes important to make
sure that the heterogeneous multi-modal data can be properly
incorporated into local models, while fast convergence can
be achieved in PFL to support real-time service provision.
To accommodate these challenges, we took inspiration on
the traditional contrastive learning and apply that on the
model level to form the so-called Model-Contrastive Learning
(MCL) to facilitate finding commonality across local models,
and therefore ensuring fast convergence. The ability of MCL
to handle heterogeneous multi-modal data can completement
PFL to make use of the unique characteristics of the diverse
Metaverse client data and to enable efficient convergence in
the overall PFL process.

In this study, we focus on designing and developing a PFL
framework, which may enhance the multi-modal user mod-
eling and personalized recommendation in the human-centric
Metaverse environments, by making use of the large-scale,
heterogeneous, and multi-modal Metaverse data. In particular,
we design and propose a PFL with Model-Contrastive Learn-
ing (PFL-MCL) model, in order to enhance the human-centric
communication and interaction in Metaverse-enabled smart
applications. Compared with the conventional FL architecture,
we develop a multi-center aggregation structure to learn mul-
tiple global models considering the changes of dynamically
updated weights in global, and design a hierarchical neural
network structure, including a personalized module and a
federated module, to handle the data heterogeneity and model
heterogeneity issues in local, which can better facilitate the
PFL with Metaverse data. A MCL scheme is incorporated to
accelerate the model convergence in local training when facing

the imbalanced data distribution from multiple modalities,
while a two-stage iterative clustering scheme is developed
to realize the multi-center global aggregation for PFL in a
more efficient way. Main contributions of this paper can be
summarized as follows.

i) A PFL framework is newly designed, which includes a
multi-center global aggregation structure facilitated by a
two-stage iterative clustering scheme and a hierarchical
local training structure integrated with a MCL scheme, so
as to improve the recommendation accuracy and reduce
the communication overhead with accelerated conver-
gence speed in human-centric Metaverse environments.

ii) A multi-center global aggregation mechanism is devel-
oped, in which a so-called two-stage iterative clustering
algorithm is devised to enhance the aggregation efficiency
with a more precise initialization according to the weight
changes in each client, and dynamically update the mul-
tiple aggregation centers as well as their involved clients
for personalized global aggregation reflecting distribution
of local personal data.

iii) A personalized multi-modal fusion network is con-
structed, in which a hierarchical shift-window attention
mechanism is improved to fuse the high-dimensional
inputs from users’ multi-modal data while effectively
reduce the feature dimensions, and a so-called bridge
attention mechanism is introduced to greatly reduce the
computational cost for more efficient cross-modal fusion
from the heterogeneous data.

iv) A MCL scheme is developed to enhance a faster con-
vergence but less communication cost between the local
client and global model, in which an embedding layer is
further involved to make the delivered global model better
adapt to the local personality in each client for PFL.

The rest of the paper will be organized as follows. Section
II summarizes the state-of-the-art research works related to FL
and Metaverse applications. Section III introduces the problem
investigated in the study and the basic framework architecture
for PFL. Section IV addresses the implementation of our
proposed model with the detailed mechanisms and algorithms.
Experiment and evaluation results are demonstrated in Section
V, and we conclude this study with promising future directions
in Section VI.

II. RELATED WORKS

In this section, we give a brief survey on PFL, contrastive
learning, and Metaverse application, respectively.

A. Personalized Federated Learning

Comparing with traditional FL paradigms, an emerging
concept of PFL, has drawn increasing attentions on dealing
with data privacy challenges with personalization strategies,
especially when facing highly heterogeneous data in varying
edge computing environments [5]. Jin et al. [6] addressed a
PFL framework integrated with a self-knowledge distillation
scheme, which allowed the local model to be initialized by
the global model, and transfer the historical knowledge based
on the previous personalized model using self-distillation
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technology. Zhou et al. [7] introduced a 2-dimensional FL
framework to facilitate the personalized human activity recog-
nition when handling the insufficient training data in cyber-
physical-social systems. They incorporated the vertical FL
and horizontal FL schemes together, which were employed
to extract features from heterogeneous data generated across
multiple IoT devices, and aggregate the encrypted local models
among multiple individual users respectively. Tashakori et al.
[8] developed a PFL model for multi-sensory classifications
based on a semi-supervised training scheme. They designed a
personalized autoencoder for each user from a hyper network
in the cloud server, then generated a series of base models
which would be delivered to local training according to
different user distributions using their own labeled datasets.
Li et al. [9] presented a cluster-based PFL scheme, which
used a reinforcement learning enhanced clustering algorithm to
group user devices with similar preference, and employed the
hierarchical transfer learning to improve the model accuracy,
in order to balance the accuracy-cost optimization issue in
wireless network environments with multiple base stations.
Huang et al. [10] constructed a federated dual network, which
included an execution network to obtain the ideal model
updating, and an evaluation network to generate the person-
alized local model under the local application scenario. They
further developed a so-called personalized update algorithm
with an optimal backtracking replacement policy, to improve
the accuracy degradation and stability in FL process. To
enable the trained global model that could better adapt the
data distribution of each individual client, Farnia et al. [11]
integrated the optimal transport theory into the FL scheme,
which could transfer samples from multiple distributions to
a common probability domain based on the combination of
the global model and the learned optimal transport maps.
Taking advantage of generated adversarial networks, Cao et
al. [12] proposed a PFL scheme to deal with the non-IID
data, which allowed local models to be built independently
in each client, but no need to share the model structure and
parameters with other clients. Mills et al. [13] added the multi-
task learning scheme into the general iterative FL framework,
and used the non-federated private batch normalization layer to
realize the personalization, which could improve the individual
model accuracy and convergence speed comparing with the
traditional federated averaging algorithm. Yu et al. [14] built
an online FL framework to support the personalized federated
human activity recognition using a semi-supervised strategy.
They developed algorithms to calculate the unsupervised gra-
dient under the consistency training proposition, which could
improve the concept drift and convergence instability in an
unsupervised gradient aggregation process.

B. Contrastive Learning

Currently, as one especial self-supervised representation
learning, contrastive learning has shown growing popular-
ity and great promise in richer vector representation, which
may collaborate with many other AI-related technologies,
including metric learning, knowledge distillation, relational
reasoning, etc, for complex network services. Compared with

conventional supervised learning schemes, Chen et al. [15]
developed a contrastive self-supervised learning algorithm of
visual representation, in which a so-called learnable nonlinear
transformation was addressed between the representation and
contrastive loss, to improve the feature representation quality
without needing a specialized architecture. Wu et al. [16]
presented a graph contrastive learning network to facilitate the
unsupervised cross-domain classification, which leveraged the
attraction and repulsion forces for the intra- and inter-domain
consistency, enabling the knowledge transferring among dif-
ferent domains for better embedding feature learning. Wang
and Qi [17] built a so-called contrastive learning with stronger
augmentations framework, in which they designed a distribu-
tional loss to enhance the knowledge transfer from weakly
augmented views to strongly augmented views, in order to
improve the representation of weakly augmented images.
Kermiche [18] introduced a contrastive Hebbian feedforward
learning scheme for Boltzmann machines, which could be
employed to improve the training of deep neural network based
on the estimation only based on feedforward computations,
local contrastive Hebbian correlations, and local disturbances.
Wang et al. [19] integrated the clustering scheme into the
contrastive learning framework for human activity recognition,
which could select the same-cluster samples from negative
pairs based on a newly defined contrastive loss function. Zhu
et al. [20] combined the reinforcement learning and contrastive
learning together, and addressed a multi-instance reinforce-
ment contrastive learning framework, in which a reinforcement
learning-based agent was designed to assist the contrastive
learning via better selection of the discriminative feature sets
with inherent semantic relationships. Liu et al. [21] constructed
a contrastive self-supervised learning framework to deal with
graph anomaly detection tasks on attributed networks. They
defined a so-called contrastive instance pair which could
capture the node’s local information as well as its neighboring
substructure, in order to improve the learning of representative
information between pairs of node-subgraph instances. Zhu et
al. [22] addressed a contrastive representation method to en-
hance a reinforcement learning framework, which considered
the correlation among consecutive inputs, and jointly trained
the CNN encoder and Transformer through a contrastive learn-
ing process, in order to reconstruct features based on context
frames. He et al. [23] proposed a graph contrastive learning
model, in which a contrastive learning scheme was developed
to train the attribute completion and representation learning in
an unsupervised heterogeneous framework, aiming to handle
the missing attributes and jointly learn the embeddings of
nodes and attributes.

C. Metaverse Applications

As an embodied version of Internet, the concept of Meta-
verse has been widely discussed in both academic and industry
fields, as an exceptional multi-dimensional and multi-sensory
communication medium in end-edge-cloud environments [24].
Meng et al. [25] presented a co-design framework of sam-
pling, prediction, and communication, aiming to synchronize
device trajectories in both real world and its digital world
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for Metaverse. They developed a deep reinforcement learning
algorithm with expert knowledge to improve the sampling rate
and prediction horizon as well. Han et al. [26] addressed a
hierarchical data collection framework with a group of IoT-
assisted digital twins for Metaverse. They employed an evolu-
tionary game strategy to model the device selection behaviors
in both Metaverse and physical world components for the syn-
chronization optimization. Deveci et al. [27] investigated three
implementation options for integrating autonomous vehicles
in Metaverse, which were evaluated based on a multi-criteria
decision-making method using the q-rung orthopair fuzzy sets,
and could be used to enhance the personal mobility in terms
of vehicle assessment in Metaverse. Jiang et al. [28] discussed
a coded distributed computing framework for Metaverse in
vehicular services based on blockchain technologies. They
defined a reputation metric for reliability evaluation, and
applied a game-theoretic method to find a sustainable scheme
to improve user experience in vehicle Metaverse. Aiming to
investigate the social and educational impact of Metaverse,
Wang et al. [29] proposed a theoretical framework with four
basic components, to review literatures and synthesize learning
practices for education Metaverse ecosystem. Bansal et al.
[30] surveyed the state-of-the-art Metaverse applications in
healthcare industry, including seven domains as: telemedicine,
clinical care, education, mental health, physical fitness, veteri-
nary, and pharmaceuticals, which pointed out technical issues
and directions for future development of Metaverse in medical
and healthcare-related systems. Ren et al. [31] introduced a so-
called quantum collective learning method with a matching
game theory to model connected and autonomous vehicles
in Metaverse. They defined the spectrum resource allocation
problem as a discrete Markov decision process, and developed
a quantum-inspired reinforcement learning mechanism to op-
timize the distributed vehicle selection policy. Shi et al. [32]
employed multi-agent reinforcement learning scheme to model
the collective intelligence in digital entity, aiming to enhance
the immersive environment in Metaverse. They implemented
a deep deterministic policy gradient for the domain random-
ization, which could assist a perception-control modularization
for the improvement of generalization performance in multiple
unmanned aerial vehicle systems.

III. PFL IN HUMAN-CENTRIC METAVERSE

In this section, we first discuss basic issues faced in human-
centric Metaverse scenarios when building the PFL model.
The overall framework of our PFL-MCL with core function
modules is then introduced.

A. Application Scenario and Problem Definition

As shown in Fig.1, we introduce the PFL-MCL framework
to provide users with more adaptive personalized services in
the human-centric Metaverse environment, in which users may
generate a large amount of personal data, including browsing
and shopping records, game data, and even physiological
data (e.g., brain waves and electrocardiograms) detected by
wearable sensors. Considering such scenarios, a single client
may not only constrain computing resources with limited

data access, but also need to face the high requirement of
real-time data process with the privacy, security, and het-
erogeneity issues. Our proposed framework can effectively
improve the distributed model training performance on the
premise of data privacy protection, while providing each user
with more personalized services, which may better adapt to
the heterogeneous data in Metaverse-oriented applications. In
particular, this framework incorporates the MCL to accelerate
the convergence speed in local model training to meet the real-
time requirements, and a hierarchical neural network structure
is constructed locally to facilitate the personalized design for
each client. Given the total model weight indicated as W ,
the neural network model includes two important components:
a personalized module indicated as WP(·), which is used
to extract and fuse multi-modal feature vectors from the
heterogeneous input data, and a federated module indicated
as WF(·), which is designed to facilitate the participation of
heterogeneous local models for cross-modal fusion in PFL
with higher training and communication efficiency based on
the contrastive learning strategy.

Generally, the personal data generated by each user in the
Metaverse environment is complex and diverse, which may
lead to serious data heterogeneity issues between each client,
and reduce the training performance when using traditional
FL schemes. In such scenario, it is obvious that whenever the
client uses its local data to update the model, the personalized
local model may then deviate from the aggregated global
model. When the local model is later uploaded for global
model aggregation, it may impact the global model conver-
gence, resulting in low training efficiency for PFL. Therefore,
we improve the FL with a multi-center global aggregation
mechanism to better address the heterogeneity by assigning
clients to different clusters. Specifically, a two-stage clustering
algorithm is developed in global to aggregate similar WF(·)
into the same center in an iterative way. Given K as the
the number of centers, it is noted that, two extreme cases,
i) when K = 1, it is the original federated learning with
one aggregated model(i.e., same to the traditional FedAvg),
which is not easy to capture the heterogeneous features from
different clients, and cannot adapt well to the personalized
model training in a specific client; ii) when K = m (m is the
number of clients), it becomes a m-center aggregation model,
which means every client has its own aggregation model. This
is, however, not federated learning and need to be avoided.
Therefore, the goal is to find a suitable number for K during
the multi-center global aggregation process for more efficient
PFL.

During the local training in the PFL-MCL, both the loss
function of the local model and the distance between the local
model and the global model, need to be considered. Thus the
MCL scheme is involved, which can not only speed up the
model convergence, but also ensure the local model is not too
far away from the global model. The optimization objective is
to minimize the loss function ℓlocal in terms of the m-th local
model and can be formulated as follows.

min
W t

m

ℓs(Dm,M t
m,W t

m) + ℓc(Dm,WF
t
m,WF

t−1
m ,WG

t
k) (1)
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Fig. 1. Multi-Modal Modeling Based on PFL-MCL in Human-Centric Metaverse

where ℓs(·) is the supervised loss function of the local model,
ℓc(·) is the MCL loss function. Dm = {xm, ym} is the private
data set of m-th client, xm and ym denote the input sample
and the corresponding label respectively. M t

m denotes the local
neural network model of the m-th client in the t-th round,
M t

m : xm → ym, which can be used to predict user behavior
and provide personalized recommendations for users in the
Metaverse environment. W t

m denotes the total model weight
of the m-th client in the t-th round. WF

t−1
m and WF

t
m denote

the weights of federated module of the m-th client in the (t-
1)-th and t-th rounds respectively. WG

t
k denotes the global

weight of aggregated federated modules from the k-th global
aggregation center in the t-th round.

Accordingly, the optimization problem of our PFL-MCL in
global can be formulated as follows.

min
{W t

i },{rik},{WG
t
k}

m∑
i=1

(αiℓlocal (M
t
i , Di,W

t
i ,WF

t
i,WF

t−1
i ,WG

t
k)

+
λ

m

K∑
k=1

m∑
i=1

rikDist
(
WF

t
i,WG

t
k

)
)

(2)
where αi =

|Di|∑
j |Dj | indicates an importance weight measured

by the number of samples in each client. rik indicates a judge-
ment function to determine whether the i-th client belongs to
the k-th center or not. λ is a coefficient to control the trade-off
between ℓlocal and the distance indicated as Dist(·).

It is noted that the second term in the Eq.(2) aims to
minimize the distance between each federated module in
local and its corresponding nearest global center, thus can
be optimized by minimizing the intra-cluster distance and
described as follows.

min
{rik},{WG

t
k}

1

m

K∑
k=1

m∑
i=1

rikDist(WF
t
i,WG

t
k) (3)

B. Overall Framework

As shown in Fig.2, a two-layer structured framework of
PFL-MCL is constructed, which includes a hierarchical neural
network structure in local, and a multi-center aggregation
structure in global. Specifically, the training of local model
consists of two essential components, namely, a personalized
module and a federated module, aiming to handle the hetero-
geneous multi-modal data fusion in a personalized manner,
while reduce communication overhead with a higher training
efficiency. The personalized module is designed to refine
the cross-modal fusion with lower computational complexity
based on the idea of bridge attention, and the federated module
is devised to enhance the personalized local training based on a
developed MCL scheme, making it increasingly closer to the
global model with accelerated model convergence speed. A
multi-center global aggregation mechanism is then developed
in global based on a two-stage iterative clustering scheme, in
order to improve the aggregation efficiency while alleviate the
model deviation issue caused by personal data heterogeneity
in PFL.

Basically, the multi-modal data will first be input into the
personalized module, and the low-dimensional feature repre-
sentations are extracted and generated using different encoders
through a hierarchical shift-window attention network. A so-
called bridge attention structure is further incorporated for
more efficient cross-modal fusion from the heterogeneous data.
Then, in the federated module, a MCL scheme is developed
for the convergence optimization in FL, which allows the
federated module to get closer to the global model, but
far away from that of the previous round in an accelerated
way. An embedding layer is newly designed and added to
further enhance the personality in local model training, which
enables the delivered global model to adapt to local data
features in a more personalized way. Furthermore, a two-
stage iterative clustering algorithm is implemented in global to
realize the multi-center global aggregation, based on which a
suitable number of K centers are dynamically determined and
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Fig. 2. Overall Architecture of PFL-MCL

initialized considering the changes of weights in local models
in the first stage, while the uploaded weights of each client
can be assigned to the closest center for more efficient global
aggregation with less iterations in the second stage.

With large quantities of heterogeneous data coming from
multiple modalities, the computational loads are also expected
to be high. Therefore, we design a hierarchical shift-window
attention structure, which divides the large number of neurons
into a certain number of small windows, then conducts the
attention calculation within each small window. It is noted that
each divided window is not isolated, but has a certain overlap.
This design can help obtain the better time-series feature
representation while reduce the dimension with less compu-
tational cost. Inspired by the ”Attention Bottleneck” in [33],
we further develop and construct a bridge attention structure,
which incorporates a set of ”bridge” neurons between each
modality, so as to extract features of adjacent modalities in a
more aggregated way based on the restriction of attention flow.
Compared with ”Attention Bottleneck”, our bridge attention
mechanism has less computation but higher efficiency, because
only the ”bridge” neurons need to be involved in the final
cross-modal fusion. Moreover, to speed up the convergence
in local model training, the MCL is introduced, which is
employed to reduce the distance between the local and global
models, and increase the distance between the local model and
that of the previous round. Compared with [34], we leverage
an embedding layer to better adapt the delivered global model
to the local personality, which can not only control the
deviation in local, but also enhance the real-time performance
in PFL. In addition, to maximize the benefit of MCL, a multi-
center aggregation structure is adopted in global, which may
also better adapt to different clients/users with heterogeneous
data from multiple modalities. Compared with [35], a two-
stage iterative clustering algorithm with more precise cluster
initialization is developed in our PFL-MCL, so as to reduce
the communication overhead and improve the robustness of
the overall framework with accelerated convergence speed in

PFL.

IV. MODELING AND IMPLEMENTATION OF PFL-MCL

In this section, we mainly discuss the detailed implemen-
tation of our proposed PFL-MCL model, especially including
the heterogeneous multi-modal fusion, local model training
based on MCL, and multi-center global aggregation.

A. Bridge Attention Based Multi-Modal Fusion

As we discussed above, the local training model is com-
posed of a personalized module and a federated module. In
the personalized module, to deal with the heterogeneous data
in each client, a personalized multi-modal fusion network
is designed and constructed, including a hierarchical shift-
window attention structure and a so-called bridge attention
structure, so as to facilitate the heterogeneous data fusion from
multiple modalities in a more efficient way. Specifically, given
a client m, the multi-modal data may include the audio, image,
and text data, which can be recorded as xa, xb, and xc. To
better integrate and fuse these multi-modal data, different en-
coders will first be used to map the data into low-dimensional
features, e.g., using CNN, LSTM, and Transformer, for feature
extraction respectively. Then the feature vectors corresponding
to xa, xb, xc can be converted into the token sequences, which
can be described as follows.

z = [za||zb||zc] (4)

za = f(xa, Ea), zb = f(xb, Eb), zc = f(xc, Ec) (5)

where [·|| · ||·] denotes the concatenation of the tokens for
each modality. f(·) indicates a mapping relationship. Ea, Eb,
and Ec are the encoders of the corresponding modalities
respectively.

It is noted that if the token sequence z is directly fused using
the traditional attention mechanism, all the neurons need to
be considered for each calculation on one neuron, which may
lead to a huge computing consumption. Therefore, we design

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3345431

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES 7

a hierarchical shift-window attention mechanism to reduce
the dimension of the token sequence, which is similar to the
downsampling process in CNN. In details, the shift-window
mechanism divides the input token sequence into a series of
small windows with n neurons in each independent modality
according to their corresponding time steps, and the attention
calculation will then be performed within each window. Since
the divided windows are not independent, as shown in Fig.3,
the overlaps existing among them may help increase the inter-
actions between windows, ensuring the information related to
some certain time steps can simultaneously appear in multiple
windows. In addition, as the hierarchical layer increases, the
overlapping parts will gradually decrease, thus can effectively
prevent redundancy in feature extraction for the over-fitting
issue. The shift-window attention of a specific layer l can be
described as follows.

zl+1 = SWAl(zl;β) (6)

where SWAl(·) indicates the shift-window attention function
of the l-th layer, and zl+1 = [zl+1

a ||zl+1
b ||zl+1

c ] is a low-
dimensional token sequence. β = {βa, βb, βc} denotes the
independent parameters of each modality.

To avoid repeated calculations and reduce the square com-
plexity of attention mechanism, inspired by [33], we de-
sign a bridge attention mechanism, introducing a number of
”bridge” neurons between each modality, to better capture
the time-series features based on the restriction of attention
flow between two adjacent modalities. Additionally, to further
reduce the computational complexity in the fusion process, the
number of ”bridge” neurons B needs to be set as much smaller
than the number of neurons N in each modality (i.e., B ≪ Na,
B ≪ Nb, B ≪ Nc). Given the output of the hierarchical
shift-window attention network as z′ = [z′a||z′b||z′c], the input
sequence of bridge attention network with two ”bridges” z1
and z2 can be described as follows.

z′ = [z′a ∥z1∥ z′b ∥z2∥ z′c] (7)

Since the ”bridge attention” is designed to obtain cross-
modal information from multi-modal tokens, the cross-modal
calculation can be expressed as follows.

zl+1 = Cross Attention
(
z′

l
; θ
)

(8)

where θ = {θa, θb, θc} is the independent parameters of each
modality.

Furthermore, fusion of neurons from different modalities
(i.e., z′a, z′b, and z′b) based on the ”insert” of z1 and z2, can
be refined as follows.

zl+1
1,a = Attention

([
z′la ∥zl1

]
; θa

)
zl+1

1,b = Attention
([
z′lb∥zl1

]
; θb

)
zl+1

2,b = Attention
([
z′lb∥zl2

]
; θb

)
zl+1

2,c = Attention
([
z′lc ∥zl2

]
; θc

) (9)

where za and zb exchange information through z1 to obtain
zl+1

1,a and zl+1
1,b respectively, zb and zc exchange information

through z2 to obtain zl+1
2,b and zl+1

2,c respectively.

Then the fused neurons related to the same ”bridge” can be
merged together, which are described as follows.

zl+1
1 = zl+1

1,a ⊙ zl+1
1,b

zl+1
2 = zl+1

2,b ⊙ zl+1
2,c

(10)

where ⊙ is the Hadamard product.
Accordingly, the output of the bridge attention network,

which may represent features fused from different modalities
in a more precise way, based on the z

(l+1)
1 and z

(l+1)
2 in the

l + 1 layer, can be described as follows.

zl+2
1,2 = Attention(zl+1

1 , zl+1
2 ) (11)

Differing from [33], which directly input the token sequence
into a ”bottleneck” structure and needs to repetitively conduct
the attention calculation from all the fused neurons, our
multi-modal fusion network first incorporates a shift-window
attention structure to reduce the dimension of multi-modal
tokens, so as to alleviate the computational complexity in
terms of the attention calculation during the the further fusion
process. Then the idea of bridge attention is involved to refine
the cross-modal fusion from multiple modalities, where only
the ”bridge” neurons need to be considered to generate the
final output of the fused features. Finally, a fully connected
layer is employed to obtain the feature vectors with unified
dimensions, as the normalized input to the next federated
module.

Fig. 3. Conceptual Image of Hierarchical Shift-Window Attention and Bridge
Attention Mechanisms

B. MCL Enhanced Local Training

Basically, the Bi-LSTM structure, which is an extension of
the traditional LSTM network, allowing information to flow
forward and backward in the network, is adopted to enhance
the sequential context-aware feature extraction in the federated
module.

On this basis, we develop a MCL scheme to enhance the
personalized local training, while optimizing the convergence
in FL. Compared with traditional contrastive learning, we
conduct it in the model level, making the federated module
in local continuously to become closer to the global model in
the corresponding aggregation center, but further away from
that of the previous round. In addition, differing from [34], an
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embedding layer is newly added, which allows the delivered
global model to adapt to local data features, then speed up
the local training based on MCL. This design can not only
enhance the convergence speed, but also control the deviation
between the local federated module and the global model, so
as to ensure the real-time performance in each client.

As shown in Fig.4, in the t-h round of communication, after
receiving WG

t
k from the global aggregation model, the client

m first makes WG
t
k adapt to the local data feature through the

embedding layer. The calculation in the embedding layer can
be described as follows.

WF
t
m = WG

t
k ⊙ FC(zl+2

1,2 ) (12)

where WF
t
m denotes the weight of the local federated module

of client m in the t-th round. FC(·) denotes the function of
the fully connected layer.

It is noted that when using the local data to update the
model, two kinds of losses may need to be considered. The
first one is the typical loss in supervised learning (e.g., binary
cross-entropy loss), which is denoted as ℓs. While the second
one is our MCL loss, which is denoted as ℓc, and can be
specified as follows.

ℓc = − log(
exp(sim(WF

t
m,WG

t
k)/(τ∆t))

exp(sim(WF
t
m,WG

t
k))

τ∆t +
exp(sim(WF

t
m,WF

t−1
m ))

τ∆t

)

(13)
where ∆t denotes the time difference between the t-th model
update and the (t-1)-th model update. τ denotes a so-called
temperature parameter. The numerator is the positive sample
pair (WF

t
m,WG

t
k), and the denominator is all sample pairs,

including positive sample pairs and negative sample pairs
(WF

t
m,WF

t−1
m ). WF

t−1
m denotes the federated module in the

(t-1)-th round. sim(·) denotes the function of similarity cal-
culation.

The specific calculation of similarity can be formulated as
follows.

sim(WF
t
m,WG

t
k) =

1

n

n∑
j=1

A(WF
t
mj)×A(WG

t
kj)√

|A(WF
t
mj)| ×

√
|A(WG

t
kj)|

(14)
where A(·) is a function that expands the matrix into a one-
dimensional vector. n is the number of weight matrices of the
federated module.

Accordingly, the total local loss function of the m-th client
can be expressed as follows.

ℓlocal = ℓs
(
M t

m, Dm,W t
m

)
+µℓc

(
WF

t
m,WF

t−1
m ,WG

t
k

)
(15)

where µ is a hyperparameter that controls the MCL loss.
The overall algorithm for the local model training is shown

in Algorithm 1. In the t-th round of FL, after the client receives
the delivered WG

t
k, it will map WG

t
k to WF

t
m through the

embedding layer. Then in each epoch, the local data set Dm

is used to update the local model using the stochastic gradient
descent, and WF

t
m for the federated module will be updated

through ℓlocal, and uploaded for the next round of FL.

Fig. 4. MCL Scheme for PFL

Algorithm 1 Personalized Local Model Training
Input: Dataset Dm

Output: The trained model MT
m after T rounds

1: Initialize the number of communication rounds T
2: Initialize the number of clients m, the number of local

epochs E
3: Initialize temperature τ , learning rate η, and hyper-

parameter µ
4: LocalTraining(Dm,WG

t
k):

5: for t = 1, 2, . . . , T do
6: Receive WG

t
k from global

7: WF
t
m ←WG

t
k

8: for epoch e = 1, 2, ..., E do
9: for each batch b = {xm, ym} of Dm do

10: Calculate the ℓs
11: Calculate the ℓc based on Eq. (15)
12: WP

t
m ←WP

t
m − η∇ℓlocal

13: WF
t
m ←WF

t
m − η∇ℓlocal

14: M t
m ←WP

t
m +WF

t
m

15: end for
16: Upload WF

t
m to global

17: end for
18: end for
19: Return MT

m

C. Two-stage Clustering Based Multi-center Global Aggrega-
tion

Usually, a model trained on the entire dataset may achieve
better feature extraction than that trained on a skewed subset,
but when the client faces the very severe data heterogeneity
issue, it may lose its advantage in the traditional FL. As
considered in [35], the K-Means algorithm was applied to
cluster the data from different users and form the multi-center
FL. However, if the initial number of clusters is uncertain,
too many or too few initially set centers may lead to more
iterations to converge to an optimized result.

Therefore, we propose a two-stage iterative clustering algo-
rithm to realize a dynamic multi-center generation process for
PFL. Specifically, in the first stage, the number of centers will
be initialized based on the changes in terms of the local model
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weight, reflecting the distribution of local personal data. Then
in the second stage, the uploaded weights of each client will
be assigned to the closest center for global aggregation during
the following iteration process.

In particular, in the first round of communication, the global
model will initialize WG

1
k and send it to all clients, the number

of centers in global is K = 1. After receiving WG
1
k, for

example, the m-th client will use its local personal data to
update WF

1
m based on WG

1
k, and upload it back to the global.

Then the corresponding weight change between the m-th client
and the k-th global center can be calculated as follows.

∆Wm =
∣∣WG

1
k −WF

1
m

∣∣ (16)

The cosine distance is used to calculate the distance among
the weight changes of each client, which can be formulated
as follows.

di,j =
∆Wi,∆Wj

∥∆Wi∥ ∥∆Wj∥
(i ̸= j; i, j = 1, 2, · · · ,m) (17)

The first stage clustering is then performed to find the
suitable K centers, which is similar to the density-based
clustering algorithm. Given m clients recorded as object set
S = {WF1,WF2, . . . ,WFm}, First, an object WFi is randomly
selected from S and determine whether it belongs to an
existing cluster. If yes, re-select an object from S. Otherwise, if
WFi is identified as the core object point, calculate the distance
among it and other objects (e.g., WFj). If the distance is less
than the specific threshold and WFj does not belong to any
existing cluster, put WFj and WFi into a new cluster. Repeat
the above process until all the objects in S are assigned to
a certain cluster. Following this way, we initialize a suitable
number (i.e., K) of multiple centers, and the multi-center
global aggregation can be conducted within each center.

As for the second stage clustering in the following com-
munication rounds, the client will send the updated WF

t
m

to the global, then the distance between WF
t
m and WG

t
k in

the existing K centers can be calculated. Consequentially, the
center with the closest distance will be selected to join, which
can be described as follows.

rmk =

{
1, if k = argminjsim(WF

t
m,WG

t
j)

0, otherwise
(18)

where rmk is defined to determine whether WF
t
m can be

assigned to the k-th center for global aggregation. sim(·) is a
similarity calculation function.

Based on these, the global aggregation will perform the
weighted summation within all the K centers respectively,
which can be formulated as follows.

WG
t+1
k =

1
m∑
i=1

rik

m∑
i=1

rikWF
t
i (19)

Finally, the global model aggregated in each center can be
delivered to the corresponding clients, and the clients will
continue to update their own local models, the process of
which will be repeated until the convergence is reached in
every client.

The specific multi-center global aggregation mechanism is
shown in Algorithm 2. The first stage is to initialize the
suitable number of global aggregation centers, based on the
calculation of dynamic weight changes of local models. The
second stage is to measure the distance among uploaded local
weights and existing global centers, where the center with the
closest distance will be selected to conduct the aggregation.
The second stage may be repeated until all the local model
training converge based on the delivered global model in each
round.

Algorithm 2 Multi-Center Global Aggregation for PFL

Input: Local WF
t
m from each client

Output: The global weight WG
T
k after T rounds

1: Initialize the number of communication rounds T
2: Initialize the number of clients m
3: Initialize WG

1
k

4: for t = 1, 2, 3, . . . , T do
5: Deliver WG

t
k to each client

6: Update WF
t
m: WF

t
m ← LocalTraining(Dm,WG

t
k)

7: if t = 1 then
8: Calculate ∆Wm based on Eq. (16)
9: Calculate dij based on Eq. (17)

10: Generate K centers using di,j
11: Average aggregation within the center: WG

t+1
k ←

1
n

∑
WF

t
m

12: end if
13: if t ̸= 1 then
14: Select the optimal center based on Eq. (18)
15: Update WG

t+1
k based on Eq. (19)

16: end if
17: end for
18: Return WG

T
k

V. EXPERIMENT AND ANALYSIS

In this section, the experimental setup and used dataset will
be presented first, followed by the performance evaluations
against five baseline methods in terms of stability, efficiency,
and accuracy.

A. Experiment Design

The experiments are conducted with two real-world datasets
focusing on user behavior prediction for both the offline and
online tests. The Amazon Product Reviews (APR) dataset
that contains 847,733 interactions involving 70,679 users and
24,915 items is applied for user prediction offline experiment
[36]. The APR dataset presents a comprehensive compilation
of reviews, product metadata, and inter-product connections
within the Amazon platform. It provides detailed information
about products, including description, category, price, and
brand specifications. Additionally, it features photos showing
products that are ”also viewed” or ”also bought” together. The
dataset also encompasses essential review details such as star
ratings, review texts, and helpfulness votes, indicating how
many users found a review beneficial. For the validation of
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our model within the Metaverse environment, we partitioned
user behavior features, reserving ”Buy”, and ”Cart” actions
in the physical realm, while separating ”Click” interactions in
the Metaverse space, to ensure they do not overlap with the
physical space. The ”Buy” and ”Cart” actions are considered
in the physical space because they represent actual purchase
and shopping cart interactions through a real-world interface or
device. In contrast, the “Click” action represents interactions
such as selecting items and browsing menus that are performed
only in the virtual environment.

Fig. 5. Image of VSM Metaverse Application

In addition to the APR dataset, we also collected data from
the online Virtual Shopping Mall (VSM) in our Metaverse
Innovation Laboratory. The data are collected by Unity 3D
virtual reality engine and the physiological data acquisition
devices, e.g., eye tracking, Electroencephalogram (EEG), Elec-
tromyogram (EMG), Electrodermal activity (EDA). Specifi-
cally, 154 users from age of 19 to 45 participate in shopping on
the VSM platform. All real time behavioral data including user
VIP level, shopping records, staying behaviors, trigger times
of shopping rewards, and average online time are recorded
in the Metaverse space and the physiological data acquisition
devices, which are used for the user behavior prediction
analysis in this paper.

Both the offline and online datasets used in the article are
split into the training set (60% of the total data) and test
set (40% of the total data). All experiments were conducted
in the 12th Gen Intel (R) Core (TM) i7-12700H 2.70 GHz
CPU, 16GB RAM, NVidia GeForce GTX 3060 Ti GPU,
python3.9, CentOS environment. To verify the effectiveness
of the proposed method, five baseline methods listed below
are chosen for comparative analysis. All the methods are
performed on both the APR and VSM dataset.

i) NonFed is a conventional centralized machine learning
approach that does not involve federated learning. A
basic attention mechanism, i.e., the Transfomer model is
operated on a single central server in this study, where
all data is collected and used for model training.

ii) Multimodal Bottleneck Transformer (MBT) [33] is a
specialized model architecture designed for processing
multimodal data (e.g., text, images, audio). It utilizes a

Bottleneck Transformer structure to efficiently handle the
fusion of these diverse data modalities.

iii) Federated Averaging (FedAvg) [37] is a method used
to address the model aggregation problem in federated
learning. It trains local models on multiple devices or
users and then averaging the weights of these models
to obtain a global model. This global model exhibits a
certain degree of generalization across all participating
parties’ data.

iV) Moon [34] is a simple and effective federated learning
framework that utilizes the similarity between model
representations to correct the local training of individual
parties, i.e., conducting contrastive learning at the model-
level.

V) FeSEM [35] is a multi-center aggregation mechanism to
cluster clients using their models’ parameters. It learns
multiple global models from data as the cluster centers,
and simultaneously derives the optimal matching between
users and centers. This process is formulated as an
optimization problem that can be efficiently solved by
a stochastic expectation maximization algorithm.

In the offline comparison test, three general prediction met-
rics, Precision, Recall and F-Measure are applied to evaluate
the performance of all the methods. For a candidate user u
with M candidate items, suppose Gu is the ground truth set,
which contains the items that are actually relevant to the user
u. Pu(|Pu| = M) is the recalled set that stands for the set
of items recommended by the system for user u. The metrics
can be defined as follows.

Precision@M(u) =
|Pu ∩ Gu|
Pu

(20)

Recall@M(u) =
|Pu ∩ Gu|
Gu

(21)

F1-Measure@M(u) =
2 ∗ Precision@M(u) ∗ Recall@M(u)

Precision@M(u) + Recall@M(u)
(22)

To evaluate the proposed model in online metaverse environ-
ments, the online shopping sbehavior on the VSM platform is
examined in the study. The widely used metric Click-Through
Rate (CTR) is utilized to measure the performance as follows.

CTR@M(u) =
# of cart or # of buy
# of impressions

(23)

CTR measures the ratio of users who click on a specific
item (e.g., adding to cart or buying) to the number of times it
was recommended and presented to them (i.e., the number of
impressions). It is used to assess how well the model performs
in terms of generating relevant recommendations that lead to
user engagement (clicks). A higher CTR indicates that a larger
proportion of users found the recommendations engaging and
clicked on them, which is generally considered a positive
outcome for the recommendation model.
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(a) APR (b) VSM

Fig. 6. Local Model Training Performance Evaluation on (a) APR and (b) VSM datasets.

(a) APR (b) VSM

Fig. 7. Federated Learning Training Performance Evaluation on (a) APR and (b) VSM datasets.

B. Evaluation on Local Model Training Performance

To verify the efficiency of the proposed PFL-MCL method,
the local model training performance is investigated at first
by comparing with NonFed and MBT methods. To obtain
a comprehensive training performance evaluation result, both
the APR and VSM datasets are used in the evaluation. The
local training loss evaluation results are shown in Figs.6(a)
and Figs.6 (b) for two datasets respectively.

As shown in Fig. 6, the overall loss consistently decreases
with increasing training steps across all methods, suggesting
that each approach undergoes a positive learning process on
the datasets. For both the VSM and APR datasets, approx-
imately 1000 training iterations are required to reach the
designated MCL loss threshold (i.e., 0.05 in the test). Notably,
the result of the VSM dataset exhibits more pronounced loss
fluctuations compared to the result of the APR dataset. Gener-
ally, the PFL-MCL method consistently achieves better results
with low loss in both scenarios. In contrast, the other baseline
models demonstrate lower learning efficiency observing from
the loss curves.

In addition, the local training performance is further anal-
ysed by comparing the recommendation effectiveness in the

VSM platform. Two widely-used metrics: Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) are employed
here to quantify how well the recommendation system’s pre-
dictions align with the actual preferences or ratings provided
by users. The specific formula is as follow.

RMSE(x, hi) =

√√√√ 1

m

m∑
i=1

(hi(xi)− yi)
2 (24)

MAE(x, hi) =
1

m

m∑
i=1

|hi(xi)− yi| (25)

where xi is a user-item pair representing the user and the
item they interacted with in a recommendation system; hi is
the prediction made by the recommendation system for the
interaction of user xi with the item; yi represents the ground
truth and m is the total number of data points or instances
being considered in the evaluation.

As shown in Table I, the results in the table indicate that all
methods’ RMSE are more sensitive compared to MAE. This is
primarily due to the fact that RMSE gives higher weighting to
larger deviations or outliers in the dataset. Overall, PFL-MCL
outperforms the other two methods in both RMSE and MAE
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TABLE I
PERFORMANCE COMPARISONS FOR DIFFERENT METHODS IN RMSE AND

MAE

Method RMSE MAE
NonFed 5.2 3.1

MBT 4.8 2.9
PFL-MCL 3.5 2.1

metrics. Additionally, MBT, owing to its capability of fusion
of these diverse data modalities in VSM scenario (e.g., eye
tracking traces, EGG, EDA, shopping behaviors), exhibits an
improvement in error rates to some extent, demonstrating bet-
ter performance compared to NonFed, which is not designed
to handle multi-modal data.

C. Evaluation on Federated Learning Performance

In this section, we further investigate the performance of
the PFL-MCL model during the federated learning training
process. Following the methodologies addressed in the paper,
we evaluate both the model’s federated learning aggregation
performance and clustering effectiveness. In order to evaluate
and compare the federated learning process, the FeSEM,
Moon, and FedAvg are selected for evaluation. For the clus-
tering analysis, we compared the results with FeSEM, which
also employs clustering operations in the model.

First, we examine the effectiveness of federated learning
training. As shown in Fig. 7, we conducted tests on both
the VSM and APR datasets. The results show that the error
fluctuation in the loss curve is more pronounced in the VSM
dataset, while it remains relatively stable in the APR dataset.
After 1000 iterations, the loss of PFL-MCL on the VSM
dataset drops below 0.1, while other methods still fluctuate
around 0.2. For the APR dataset, all methods demonstrate
more consistent performance, with the loss values converging
to within 0.1 after 1000 iterations.

Furthermore, we employ PCA visualization to analyze the
clustering results, conducting tests on both the VSM and APR
datasets. As show in Fig. 8, the clusters between classes illus-
trated by PCA are more distinct in the APR dataset with higher
boundary differentiation. We can conclude that the clustering
performance of both methods on the APR dataset surpasses
that on the VSM dataset. On the other hand, the clustering
results on the VSM dataset exhibit more overlap between
categories since online task is more challenging. Despite this,
when examining the results from PCA, it is evident that the
clustering operations within PFL-MCL create more distinct
boundaries between different classes, resulting in a clearer
separation and more pronounced distances between categories.
These results demonstrate the effectiveness of the proposed
clustering mechanism in the federated learning process.

D. Evaluation on Recommendation Effectiveness

The varying lengths of candidate item lists may impact on
the recommendation result significantly. Generally, a higher
of candidate item implies a larger pool of potential items
to choose from, which can make the recommendation task
more challenging due to the increased number of choices..

Table II presents the results of all methods across different
lengths of candidate items, M ranging from 5 to 30. The
offline evaluation metrics Precision, Recall, and F1-Measure
are applied for the comparison.

As shown in the table, the results from the charts show
that the increasing number of candidate items M leads to
an observable rise in Precision for all the methods. However,
it is worth noting that Recall sees a slight variation as M
increases from 5 to 15, but significantly drops when M keeps
increasing to 30. This leads to an overall decrease in F1-
Measure performance at M=30. First, we observe that the local
model NonFed performs worse than the others for all the cases.
It may be because the well-designed and finely-tuned local
model with a local dataset is hardly suitable for complex real-
world recommendation tasks. Second, compared with all the
baseline models in all three cases, the federated learning model
with clustering scheme FeSEM and PFL-MCL achieves better
performance in all the metrics. Third, compared with the fed-
erated learning model FeSEM, our model achieves most 8.1%
Precision, 1.8% Recall, and 5.0% F-Measure lift at M=15,
and 4.8% Precision, 24.2% Recall, and 16.0% F1-Measure
lift at M=30. Fourth, considering the ability to handle multi-
modality when compared with MBT, the proposed federated
learning scheme PFL-MCL brings 31.7%, 16.7% and 21.1%
absolute gain on F1-Measure for three cases respectively.

Furthermore, we also evaluate the online performance on
VSM platform with M varing from 5 to 30 as well. Table III
shows the comparison results for all methods under different
M . It shows that the proposed PFL-MCL outperforms other
baselines in all cases in terms of the CTR metric the CTR
metric. The results of online metric CTR in Table III for
achieving 51% on M = 5 and 21% on M = 30 for our
method indicate that PFL-MCL can support more precise items
prediction in VSM platform.

VI. CONCLUSION

In this paper, to enrich the realistic and immersed experience
in Metaverse-enabled smart applications, we proposed the so-
called PFL-MCL model, which could better analyze users’
multi-platform or cross-space data from multi-modalities for
more efficient communication and networking in human-
centric Metaverse over 5G and beyond networks.

A PFL framework was newly designed considering the
unique characteristics of Metaverse data, which included a
multi-center aggregation structure with a two-stage iterative
clustering scheme in global, and a hierarchical neural network
structure with a MCL scheme in local. The local training
model could be further divided into a personalized module and
a federated module. Specifically, a personalized multi-modal
fusion network was constructed, in which a hierarchical shift-
window attention mechanism was developed to effectively
reduce the feature dimensions when fusing users’ multi-modal
input data, while a so-called bridge attention mechanism was
devised to refine the cross-modal fusion from heterogeneous
data with less computational cost. Moreover, a MCL scheme
was improved with an embedding layer in local to reduce the
communication cost and speed up the model convergence,
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(a) APR (FeSEM) (b) APR (PFL-MCL)

(c) VSM (FeSEM) (d) VSM (PFL-MCL)

Fig. 8. The PCA visualzation of the clustering result using (a) FeSEM and (b) PFL-MCL on the APR dataset, and using (c) FeSEM and (d) PFL-MCL on
the VSM dataset.

TABLE II
OFFLINE COMPARISONS ON DIFFERENT METHODS WITH DIFFERENT M

Method M = 5 M = 15 M = 30
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

NonFed 52.3% 81.8% 63.8% 56.4% 85.6% 68.0% 78.0% 48.6% 59.9%
FedAvg 51.7% 81.4% 63.2% 58.1% 86.1% 69.4% 72.1% 50.9% 59.8%
MBT 53.3% 82.6% 64.8% 65.2% 86.8% 74.5% 78.4% 51.7% 62.3%
Moon 54.8% 84.4% 66.5% 62.1% 86.3% 72.2% 79.5% 52.6% 63.3%

FeSEM 66.2% 87.3% 75.3% 78.2% 87.9% 82.8% 84.6% 52.9% 65.1%
PFL-MCL 79.9% 91.5% 85.3% 84.5% 89.5% 86.9% 88.7% 65.7% 75.5%

TABLE III
ONLINE COMPARISONS ON DIFFERENT METHODS WITH

DIFFERENT M

Method CTR
M=5 M=15 M=30

NonFed 37% 18% 9%
MBT 39% 26% 13%

FedAvg 39% 28% 13%
Moon 41% 27% 15%

FeSEM 46% 35% 18%
PFL-MCL 51% 37% 21%

which could also make the delivered global model better
adapt to the local personality. A two-stage iterative clustering
algorithm was designed in global to realize a more precise
initialization with dynamically updated multiple centers for

personalized global aggregation. Experiments were conducted
using two different real-world datasets, and evaluations com-
pared with five baseline methods demonstrated the outstanding
results of our proposed model in more efficient learning
performance and recommendation accuracy, which could be
applied in human-centric Metaverse environments with a fine-
grain personalized training strategy.

In future studies, we will go further to conduct more
evaluations in more complex situations to improve our model
and algorithm with better accuracy and efficiency for more
Metaverse-enabled smart systems and applications.
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