
1

An Adaptive and Modular Blockchain Enabled
Architecture for a Decentralized Metaverse

Ye Cheng, Yihao Guo, Minghui Xu, Member, IEEE, Qin Hu, Member, IEEE, Dongxiao Yu, Senior
Member, IEEE, Xiuzhen Cheng, Fellow, IEEE

Abstract—A metaverse breaks the boundaries of time and space between people, realizing a more realistic virtual experience,
improving work efficiency, and creating a new business model. Blockchain, as one of the key supporting technologies for a metaverse
design, provides a trusted interactive environment. However, the rich and varied scenes of a metaverse have led to excessive
consumption of on-chain resources, raising the threshold for ordinary users to join, thereby losing the human-centered design.
Therefore, we propose an adaptive and modular blockchain-enabled architecture for a decentralized metaverse to address these
issues. The solution includes an adaptive consensus/ledger protocol based on a modular blockchain, which can effectively adapt to the
ever-changing scenarios of the metaverse, reduce resource consumption, and provide a secure and reliable interactive environment. In
addition, we propose the concept of Non-Fungible Resource (NFR) to virtualize idle resources. Users can establish a temporary
trusted environment and rent others’ NFR to meet their computing needs. Finally, we simulate and test our solution based on
XuperChain, and the experimental results prove the feasibility of our design.

Index Terms—Metaverse, Modular Blockchain, Adaptive, Non-Fungible Resource

✦

1 INTRODUCTION

The notion of metaverse was first introduced in the 1992
science fiction novel “Snow Crash” by Neal Stephenson.
In recent years, this novel concept has gained increasing
attention in various fields, from industry to academia [1].
Researchers and developers have been exploring the poten-
tial technologies to recreate the immersive and interactive
virtual world described in the novel. The goal is to realize a
seamless integration of the virtual and the physical worlds,
enabling new forms of communication, collaboration, and
creativity [2]. As such, the development of metaverse has
significant implications for various industries such as gam-
ing and e-commerce, as well as for social and cultural
practices [3], [4].

Blockchain technology [5] has achieved great success in
the field of cryptocurrency due to its decentralization, trans-
parency, and immutability, and it has been widely regarded
as one of the essential technologies to realize a metaverse [2].
Many studies [6], [7] have investigated the role of blockchain
within a metaverse and recognized that blockchain-enabled
metaverse can provide a trusted environment for users who
do not trust each other in the metaverse. However, besides
the aforementioned advantages, a blockchain-enabled meta-
verse still has two key challenges that need to be addressed.

The first challenge is the incompatibility between the
dynamic nature of the metaverse and the static consen-
sus/ledger mechanism inherent to a current blockchain
system. Specifically, as the scenes and participants within a

Corresponding author: Minghui Xu.
Y. Cheng, Y. Guo, M. Xu, D. Yu, and X. Cheng are with the School
of Computer Science and Technology, Shandong University, Qingdao,
Shandong, China (e-mail: {yech@mail., yhguo@mail., mhxu@, dxyu@,
xzcheng@}sdu.edu.cn).
Q. Hu is with the Department of Computer and Information Science, Indiana
University-Purdue University Indianapolis, USA (e-mail: qinhu@iu.edu).

metaverse undergo constant changes, the security and sys-
tem performance requirements for the metaverse also vary
accordingly. For example, users may exhibit higher levels
of trust when the scenes are limited to a single company,
but their trust diminishes when scenes require collaboration
among multiple companies. In comparison, the consensus
mechanism and ledger in a blockchain are typically static.
During initialization of the blockchain, specific consensus
algorithm and ledger structure are predetermined, which
are suitable for the initial development. However, they
are not well-suited for dynamically changing scenarios in
the metaverse. XuperChain [8] and Ethereum [9] have at-
tempted to dynamically replace the consensus algorithm of
a blockchain, but they are dependent on human interven-
tions and have issues such as high delays and low fault-
tolerance.

The Consensus/Ledger Adaptation (CLA) problem arises due
to the complex coupling design of a blockchain system,
making it difficult to dynamically change its consensus al-
gorithm and ledger structure. Human-driven strategies such
as those taken by XuperChain and Ethereum face difficulties
in terms of time consumption as they need to keep up with
the fast-paced changes within the metaverse. Moreover,
relying on active human participation introduces artificial
behaviors, posing threats to the security of the system.
To address this challenge, an adaptive consensus/ledger
replacement scheme needs to be designed to eliminate the
effect of human factors and cater to the changing demands
of the metaverse.

Second, the increasing demand on computing power
in a metaverse has raised an entry barrier for users. Nu-
merous metaverse scenes, including gaming [10] and in-
dustrial manufacturing [11], require significant computa-
tional power to provide immersive experiences and precise
models. However, users who lack adequate computational

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version
may no longer be accessible.

ar
X

iv
:2

30
9.

03
50

2v
1 

 [
cs

.C
R

] 
 7

 S
ep

 2
02

3



2

resources face difficulties in participating, hindering the
widespread adoption of the metaverse. At present, users
can acquire computational power through hardware up-
grades or by renting servers. However, the former approach
involves significant asset investment, and the latter bene-
fits the giant centralized service providers while limits the
opportunity for the small ubiquitous computational power
providers. One reason resulting in such a limitation is due
to the absence of a trusted distributed trading platform. This
problem is known as the Resource Consolidation (RC) problem,
whose solution can help to utilize idle or under-utilized
resources hooked on the Internet. To overcome it, a trusted
distributed transaction environment based on blockchain
is necessary; nevertheless, blockchain cannot directly trade
physical computational resources. Therefore, a resource vir-
tualization solution needs to be developed that can fulfill
the on-chain transaction requirements and meet the compu-
tational power demands of metaverse participants.

In this paper, we present an adaptive and modular
blockchain-enabled architecture for a decentralized meta-
verse, aiming to effectively tackle the above two challenges.
More specifically, to address the CLA problem, we propose
the dynamic and adaptive consensus/ledger replacement
protocols leveraging a modular blockchain to minimize the
costs associated with consensus and ledger replacement.
Additionally, we incorporate AI models to ensure adaptabil-
ity to the constantly changing metaverse environment with
human intervention. To solve the RC problem, we introduce
the concept of Non-Fungible Resource (NFR) and propose
a protocol for NFR virtualization. This protocol allows
users to upload their idle resources onto the blockchain for
trading. Furthermore, we implement a temporary trusted
environment to reduce on-chain resource consumption.

Our contributions are highlighted as follows:

• We introduce an adaptive and modular blockchain-
enabled architecture for a decentralized metaverse,
highlighting the crucial role of blockchain in its de-
velopment.

• To solve the CLA problem, we propose adaptive
protocols for consensus and ledger replacements.
These protocols enable the dynamic adaptation to the
constantly-changing metaverse environment.

• To solve the RC problem, we present the concept of
NFR via which computing resources can be leased
in the metaverse, successfully realizing the resource
virtualization and effectively providing support to
the nodes in need of computational resources.

• We build a prototype of the mertaverse architecture
to demonstrate our design and validate its perfor-
mance, which can contribute to the metaverse com-
munity and help developers in designing practical
metaverse applications.

The rest of the paper is organized as follows. Section 2
provides a comprehensive review on the most relevant
works. In Section 3, we present the preliminary knowl-
edge necessary to understand the subsequent sections. Sec-
tion 4 delves into details of the proposed blockchain-enabled
metaverse architecture, whose prototype implementation
and performance evaluation are discussed in Section 5.

2 RELATED WORKS AND MOTIVATIONS

In this section, we first summarize the status quo of meta-
verse in both academia and industry, then conduct an inves-
tigation on the roles that blockchain can play in a metaverse,
and finally describe the motivations behind our design on a
decentralized metaverse.

2.1 Metaverse in Industry and Academia

Efforts to develop metaverse technologies in industry pri-
marily focus on exploring its feasibility in various fields.
In an online office, a metaverse allows users to display
3D physical models in a virtual space and provide strong
interaction capabilities, thereby improving user engagement
and work efficiency. For examples, Microsoft Mesh [12]
and Horizon Workroom [13] enable multi-person meetings,
while NVIDIA Omniverse [11] allows real-time collabora-
tive 3D modeling. In the gaming industry, a metaverse offers
users an authentic gaming experience, rich game content
and diverse gameplay. Users no longer are just participants
in a game but also become game designers and developers.
Examples include Second Life [14], Minecraft [15], and
Roblox [10], which aim to strike a balance between game
authenticity and user openness.

In academia, researchers focus on different aspects of
a metaverse such as architecture and security. They also
conduct experiments to evaluate scenario usability and pro-
pose solutions to address various challenges. Radoff [16]
introduced a seven-layer metaverse architecture. Nair et
al. [17] proposed a privacy-preserving framework to en-
hance the security of VR devices. Duan et al. [18] presented a
metaverse prototype for university campuses. Wang et al. [2]
reviewed the security and privacy issues of major metaverse
solutions. Kye et al. [19] investigated the opportunities and
challenges of a metaverse in education.

2.2 Blockchain for Metaverse

Blockchain can provide a decentralized and trusted in-
teractive environment for a metaverse. Decentraland [20]
is a decentralized platform based on Ethereum, enabling
users to obtain rewards through NFT creation, trade, and
use/consumption. Cryptovoxels [21] provides a highly
open virtual world on Ethereum, where players can un-
leash their creative potential and craft their own custom
items. Yang et al. [22] emphasized the importance of AI and
blockchain in a metaverse. Huynh et al. [23] studied the role
of blockchain in a metaverse from a technical perspective.
Fu et al. [6] conducted a comprehensive review on the use
of blockchain and intelligent networking in creating immer-
sive metaverse experiences. Huang et al. [24] discussed the
potential of combining metaverse and blockchain via the
building information modeling technology to transform the
physical world into an exciting digital one. Metarepo [25]
leverages blockchain technologies to provide a secure mech-
anism for storing the digital assets in a metaverse. By inte-
grating artificial intelligence and blockchain, the metaverse
proposed by Ali et al. [26] can provide secure and efficient
healthcare services. Xu et al. [7] presented a blockchain-
based metaverse framework to integrate hardware and soft-
ware resources, stressing blockchain as the underlying layer



3

that provides a trusted environment with high security and
privacy.

2.3 Motivations

Based on the above summary and analysis, one can see
that the development of metaverse in industry is still in
its early stage and is currently limited to specific appli-
cation scenarios, such as online collaboration and gaming.
In academia, research efforts are largely dedicated to the
proposals on innovative concepts and architectures. Even
though some studies outlined in Section. 2.2 highlight the
importance of blockchain in a metaverse, they often re-
main at the theoretical level without considering specific
system implementations. Furthermore, these existing works
overlook the CLA and RC issues introduced in Section. 1,
which seriously hinder the development and implementa-
tion of a practical metaverse. To address these concerns,
we propose an adaptive decentralized metaverse based on
modular blockchain technologies. Our metaverse makes use
of adaptive consensus/ledger changes and resource virtual-
ization, effectively reducing the entry barriers for users and
increasing the system security.

3 PRELIMINARIES

In this section, we present the necessary background in-
formation on modularized blockchain, Non-Fungible Token
(NFT), and off-chain payment channel.

3.1 Modularized Blockchain

Modularized Blockchain is a type of blockchain architecture
that aims to improve scalability, flexibility, and interoper-
ability by partitioning different components of a blockchain
into modules or layers. In a modularized blockchain, each
module is designed to perform a specific function such
as consensus, data storage, or smart contract, and can be
developed and updated independently [27].

A modularized architecture enables a blockchain to
adapt to different use cases and business requirements
by allowing developers to customize and plug-in different
modules. For example, a business can choose a specific con-
sensus algorithm or data storage module that suits its own
needs, rather than being restricted to the default options of
a blockchain platform. Moreover, modularized blockchains
facilitate interoperability between different blockchain net-
works by enabling modules to communicate with each
other through well-defined interfaces. This allows for the
exchanges of data and assets between different blockchains,
which can improve the efficiency and convenience of cross-
chain transactions. Several blockchain projects such as Xu-
perChain [8] and Celestia [28] have adopted a modularized
blockchain architecture to achieve better scalability and
interoperability.

3.2 Non-Fungible Token

Non-Fungible Token (NFT) [29] is a digital asset that repre-
sents ownership or proof of authenticity of a unique item or
a piece of content. Unlike cryptocurrencies such as Bitcoin,
which are interchangeable and have the same value, NFTs

are unique and each has its own distinct value. NFTs are
based on blockchain technologies and are created using
smart contracts that verify the ownership and uniqueness
of the asset. The concept of NFT has gained significant
attention in recent years, particularly in the art world, where
NFTs have been used to authenticate and sell digital arts.
NFTs provide a way for artists to monetize their digital
creations, as the ownership of an NFT can be transferred
between buyers and sellers in a secure and transparent way.
Additionally, NFTs have the potential to revolutionize the
gaming industry by allowing players to truly own in-game
items and assets.

The process of using an NFT involves creating or
purchasing the NFT, which is typically done through a
blockchain platform such as Ethereum that supports NFTs.
An NFT is created via a smart contract that includes details
about the item or content being represented, such as its own-
ership, provenance, and any additional term or condition of
the sale or transfer. Once the NFT is created, it can be sold
or transferred between individuals, typically through an
online marketplace or auction. The transaction is recorded
on the blockchain, which ensures that the ownership and
authenticity of the NFT are transparent and immutable.
Owners of NFTs can display or store them in digital wallets
or galleries, and may be able to earn revenue from their
NFTs through licensing or resale. The popularity of NFTs
has grown rapidly in recent years, with a few high-profile
sales reaching millions of dollars [30], [31].

3.3 Off-chain Payment Channel
The concept of off-chain payment channels was first pro-
posed by Joseph Poon and Thaddeus Dryja in their paper
talking about Lightning Network [32]. It is a technique
used in blockchain technologies to enable faster and cheaper
transactions between two parties without having to wait for
their transactions to be recorded on a blockchain. This is
achieved by creating a temporary payment channel between
the two parties off-chain.

Definition 1 (The Process of Off-chain Payment Channel).
An off-chain payment channel involves collaborative interactions
between on-chain and off-chain. The whole process can be divided
into three steps: Open, Transfer, and Close.

• Open (on-chain). Both parties initiate a request to a
smart contract separately via transactions to apply
for opening a channel and deposit a certain amount
of funds. The smart contract verifies the correctness
of the transaction signatures and deposit amounts,
then sets the deposited amounts from both parties
as the initial state of the channel. At this point, the
channel is opened.

• Transfer (off-chain). Both parties can send transac-
tions back and forth within the channel multiple
times. Each transaction needs to be executed by both
parties to update the channel state, and the updated
state needs to be signed by both parties, which is
called a transaction certificate. A transaction certifi-
cate includes a timestamp that records the time at
which the channel state was updated.

• Close (on-chain). When the interactions between the
two parties are complete and the channel needs to be



4

closed, one party (agreed by both parties) can upload
the final transaction certificate to the smart contract.
The smart contract then verifies the correctness of the
signatures and the final state on the certificate, sub-
sequently updating the corresponding state on the
blockchain. If the selected party behaves maliciously
and fails to upload the correct final transaction cer-
tificate (e.g., one provides a certificate that is biased
towards its own interest rather than reflecting the
final result), the other party can appeal by providing
the correct certificate within a designated time frame.
The smart contract would verify the authenticity of
the certificates by cross-checking the signatures and
timestamps provided by both parties.

Off-chain payment channels only support off-chain ex-
changes of currency, which limits their application scenar-
ios. To overcome this restriction, various relevant schemes
such as off-chain state channels [33], cross-chain chan-
nels [34], and privacy-preserving off-chain channels [35]
gradually emerged to increase the universality, security, and
efficiency of off-chain payment channels.

4 AN ADAPTIVE DECENTRALIZED METAVERSE

In this section, we first provide an overview on our pro-
posed metaverse system, then detail the protocol, and finally
describe a specific work scenario of the metaverse.

4.1 Overview
As shown in Fig. 1, our proposed metaverse architecture
is designed based on a modular blockchain and it mainly
consists of three components to support the operations of
a metaverse, in which a user can participate through VR
glasses or other devices.

First, considering the challenges that constantly chang-
ing metaverse scenes pose on the blockchain consensus and
ledger, we propose adaptive consensus/ledger protocols
(introduced in Section. 4.2) that can automatically determine
the most suitable consensus/ledger based on the current
state of the entire metaverse, and substitute the consen-
sus/ledger through hot plugging, effectively improving the
security of the metaverse and conserving system resources.
This consideration is based on the modular blockchain
design, which allows a low cost consensus change. The hot-
pluggable consensus/ledger replacement avoids the defi-
ciency of downtime updates. The introduction of the adap-
tive protocol with machine learning algorithms reduces the
interference of human factors and increases the system’s se-
curity and robustness, further addressing the CLA problem
(as described in Section. 1).

Second, a user can virtualize its idle resources, which
could be large computers or small sensors, based on
our NFR (Non-Fungible Resource) design (introduced in
Section. 4.3), and upload the NFRs into the metaverse
blockchain for rent, maximizing the resource utilization and
thereby efficiently addressing the RC problem (as described
in Section. 1).

Finally, in addition to the adoption of our TME (Trusted
Metaverse Environment) design (introduced in Section. 4.4)
to purchase and use NFR, we equip the TME with enhanced

security, reliability, and parallel processing abilities through
the utilization of an improved Local Trust Model (shown
in Section. 4.4.1) and an On-Demand Trusted Metaverse
Cluster (shown in Section. 4.4.2). Users can join specific
metaverse scenes, such as social, NFT, and work, through
TME. The transaction records of NFRs are written into the
blockchain to ensure the correctness of interactions between
untrusted parties. A large amount of computational tasks
are carried out off-chain to reduce on-chain resource con-
sumption. It is worth mentioning that NFR enables users
with insufficient resources to join a scene, lowering the
threshold for entering the metaverse and thereby fully em-
bodying a people-centric metaverse design.

4.2 Adaptive Modular Blockchain

To solve the CLA problem, we propose an adaptive con-
sensus protocol and an adaptive ledger protocol based on a
modular blockchain.

4.2.1 Adaptive Consensus Protocol
Hot-plugging is an ability to replace or install a component
without shutting down the computer it attaches. In a meta-
verse, the complexity of the scenario dictates the need for
consensus algorithms to be constantly changing. Therefore,
when facing new requirements for performance and secu-
rity, a developer does not need to design a new blockchain to
meet the demands but can upgrade the consensus algorithm
online instead, as long as the blockchain system supports
hot-pluggable consensus.

A simplified process such as the one in XuperChain
to support hot-pluggable consensus can be summarized
as follows. First, a user initiates a consensus replacement
proposal by calling a smart contract, specifying the name of
the consensus algorithm to be replaced and that of the new
one, the block height at which the voting would be collected,
the trigger condition for the consensus replacement, and
the block height at which the new consensus should take
effect. Then, other users in the blockchain system vote on
the proposal. When the number of votes collected in the
smart contract meets the trigger condition for the consen-
sus replacement, the smart contract marks the proposal
as “success”, and all nodes would execute the consensus
replacement operation to substitute the consensus, with the
new one starting to be effective at the designated block
height. If the smart contract fails to collect enough votes,
the proposal would be marked as “failure”, which signals
that the consensus update fails and the nodes do not need
to perform any operation.

However, in a metaverse, users pay more attention
to their experience rather than the consensus algorithm
adopted by the underlying blockchain system. In fact, the
general public may not have any knowledge about consen-
sus. This implies that ordinary users may not be able to
initiate consensus proposals following the approach the cur-
rent hot-pluggable consensus mechanism is implemented
(which is more likely a developer’s behavior). Therefore
consensus changes should be transparent to the users of the
metaverse. To realize this objective, we design an adaptive
consensus mechanism based on the modular blockchain that
supports hot-pluggable consensus and obtain a blockchain



5

GameWork

NFT Living

Modular Blockchain

TME

Adaptive Consensus/Ledger Protocol

Set consensus/ledger

NFR

Idle resource
virtualization

Collect & Train

Open

Adaptive 
Consensus/Ledger Model

PoS

…

PoW

PBFT

Chain

DAG

LTM 

OTMC 
…

…Trust

Upload Rent Close

Ledger

Multi-user 
network

…

Fig. 1. The architecture of a decentralized metaverse. The adaptive consensus/ledger protocols are responsible for collecting data from the
metaverse and learning to set up a consensus/ledger that can better suit the scenario. Users can virtualize idle resources as NFR (Non-Fungible
Resources) and rent them on the blockchain. The metaverse supports TME (Trusted Metaverse Environment) to realize a locally trusted working
environment.

that can select an optimal consensus algorithm according to
the network scale, number of error nodes, network delay,
throughput, and other indicators, to replace the consensus
that does not work well due to situation changes, thereby
improving the performance and security of the underlying
blockchain system.

Our adaptive consensus protocol needs a data set that
can be obtained by testing the throughput and latency
of various consensus algorithms under different network
scales, error node ratios, and network delays, over a mod-
ular blockchain supporting hot-pluggable consensus. The
tags of the data set are various consensus algorithms while
the features are indicators such as network scale, error node
ratio, and network delay. One can use this data set for
training and testing different adaptive consensus models,
making use of various machine learning algorithms such as
random forest, gradient boosting decision tree (GBDT), XG-
Boost, and LightGBM [36]. The consensus with the highest
accuracy is selected and plugged into the blockchain to take
effect in the next.

We summarize the whole process of the adaptive con-
sensus protocol as follows. First, the adaptive consensus
protocol obtains the current network state at a fixed interval
to identify the optimal consensus algorithm and compares
it with the one currently used by the blockchain. If they are
the same, the update process stops; otherwise, the protocol
broadcasts a transaction (proposal) to the blockchain con-
taining the name of the consensus algorithm to be updated
and other relevant information for hot-pluggable consensus
change. When a node in the blockchain system receives the
transaction, it calls a voting contract, which can count the
votes and verify whether the current number of votes has
reached the threshold for updating the proposed consensus
algorithm. If the threshold is reached, all honest nodes au-
tomatically execute the update process of the consensus and
broadcast a “success” message after the consensus update
is successful. If a node fails to complete the update at the

specified block height, the node cannot participate in the
subsequent consensus and needs to synchronize its status
with other nodes. Note that the consensus algorithm library
of the modular blockchain is renewable. When someone
proposes a new consensus algorithm, the implementation
of the algorithm can be added to the library. Therefore, it
is necessary to test and count the indicators of the new
consensus off-chain, update the data set, and finally retrain
the adaptive consensus model.

4.2.2 Adaptive Ledger Protocol

At present, blockchain ledgers can be categorized into two
types: chain-based and DAG-based [37]. In a chain-based
ledger, each block, except for the genesis one, stores the hash
value of the previous block in its block header. The blocks
are then linked together by hashes in a chain-like structure.
Examples of prominent blockchains that use a chain-based
ledger include Bitcoin [5] and Ethereum [9]. In contrast,
a DAG-based ledger creates and stores a directed acyclic
graph (DAG) of relationships between blocks or transac-
tions. DAG-based ledgers offer higher concurrency than
chain-based ones, which results in increased throughput of
the blockchain system. However, maintaining consistency
in DAG-based ledgers is more challenging, as conflicts
take longer time to resolve. Some state-of-the-art DAG-
based blockchains include IOTA tangle [38], Conflux [39],
and Sui [40]. The choice of ledger implementation should
depend on specific application requirements.

We present a novel adaptive ledger protocol that lever-
ages the modular blockchain to enable automated con-
version between chain-based and DAG-based ledgers. The
conversion process relates to consensus replacement since
the two ledger types employ different consensus algorithms.
In a manner akin to the adaptive consensus protocol, an
additional model is trained for the purpose of facilitating
decision-making pertaining to the conversion of ledgers.
In order to initiate the conversion process, a miner creates



6

a smart contract as Fig. 2. The LedgerConversion contract
comprises of the following elements: function ChainToDAG(),
function DAGToChain(), function vote(), solidity mapping
isVote, and uint voteCount. The contract LedgerConversion
proceeds in two major steps: voting and ledger conversion.
The solidity mapping isVote records the miner address
that has cast a vote, thus preventing any miner from
voting twice. When a miner invokes vote(), voteCount
is incremented after verifying isVote; then the function
checks whether the current voteCount has surpassed the
threshold. Upon reaching the threshold, nodes all execute
ChainToDAG() or DAGToChain(). The call to either function
requires the two parameters convertHeight (also denoted by
Ĥ in the following context) and consensusName to be passed,
where convertHeight specifies the block height at which the
new ledger comes into effect, and consensusName represents
the name of the consensus algorithm to be adopted follow-
ing the conversion.

LedgerConversion Contract

contract LedgerConversion {
mapping (address => bool) public isVote;
uint voteCount;
function vote() public {

require(isVote[msg.sender] == false);
voteCount++;
if (count >= threshold) {

execute either ChainToDAG() or DAGToChain();
}

}
function DAGToChain (uint convertHeight, string
consensusName) public {· · · }
function ChainToDAG (uint convertHeight, string
consensusName) public {· · · }

}

Fig. 2. A simplified example of smart contract for ledger conversion.

A large number of transactions in a miner’s transac-
tion pool can be processed more efficiently by converting
a chain-based ledger to a DAG-based structure, thereby
increasing concurrency. If a strongly-consistent consensus
algorithm such as PBFT is used before ledger conversion,
there will be no fork before Ĥ . However, if a weakly-
consistent consensus algorithm is used, the block at Ĥ − 1
may not be determined when all nodes are in the process of
Ĥ . As shown in Fig. 3, proposed blocks or transactions from
different miners at height Ĥ may point to different branches
(forks) before Ĥ , causing inconsistency. To ensure that all
miners record the same hash pointer in the proposed blocks
or transactions at Ĥ , a distributed randomness beacon is
used to conduct leader election between Ĥ−1 and Ĥ . Then
the leader selects one path to be committed, and all pro-
posed blocks or transactions at Ĥ point to the same block,
i.e., the leader, ensuring ledger consistency after conversion.

When a miner encounters a few pending transactions in
its transaction pool, it can initiate a transaction to invoke
DAG-Chain conversion, which can reduce the likelihood of
transaction conflicts and strengthen the consistency of the
ledger. In the case when the blockchain system operates on a
strongly-consistent DAG-based consensus algorithm, there
will be no fork at height Ĥ . In the case when the blockchain

miner A

miner B

miner C

miner D

…

Block in chain-based ledger

Block(Transaction) in DAG-based ledger

Ĥ-3 Ĥ-2 Ĥ-1 Ĥ

…

…

Leader election

miner A

miner B

miner C

miner D

The block selected by leader

Problem

Solution

Fig. 3. The challenge and solution concerning the chain-DAG conver-
sion.

system utilizes a weakly-consistent DAG-based consensus
algorithm, there is a probability that forks might occur in the
ledger starting from Ĥ as depicted in Fig.4. Nevertheless,
such a fork does not impact the eventual consistency of the
ledger after Ĥ since a chain-based consensus algorithm can
ensure the consistency through the longest chain rule or the
GHOST rule.

miner A

miner B

miner C

miner D

Block in chain-based ledger

Block(Transaction) in DAG-based ledger

Ĥ-2 Ĥ-1 Ĥ Ĥ+1 ……

miner A

miner B

miner C

miner D

ledger maintained by A

ledger maintained by B

Ĥ+5

Fig. 4. The challenge and solution concerning the DAG-chain conver-
sion.

4.3 Non-Fungible Resources
A metaverse needs to integrate the computing capabilities
of various devices hooked on the Internet. An NFT (Non-
Fungible Token) can be understood as a certificate of virtual
or physical asset, which is indivisible, irreplaceable, and
unique [41]. Recently, NFT has been developed rapidly,
expanding from games and collectibles to music, real es-
tate, art, and finance [42], [43]. However, NFT focuses on
digital ownership and uniqueness, and it does not support
functionalities such as virtualization, access control, and
fair-trading of hardware resources, making it incapable of
addressing the RC problem. To overcome this issue, we pro-
pose Non-Fungible Resource (NFR), which can virtualize
computational resources including CPU, GPU, and Disk,
and map them to tokens recorded by a blockchain.

We implement NFR using the NFR contract as presented
in Fig. 5. An NFR is described as a solidity struct NFR, includ-



7

ing uint tokenID, string resourceOwner, string resourceType,
and uint price. The string tokenID is the unique iden-
tifier of an NFR. The contract includes the following
functions: Registration(), Rental(), Liquidation(), and
Cancellation(). The function Registration() is to register
the resources from users and returns NFRs to the them. An
NFR can only be rented by one user at a time. When a
resource-constrained node wants to complete a computing
task, it needs to call the function Rental() to rent some
NFRs on demand. When calling Rental(), nodes need to
provide the rent time and pay a deposit for preventing ma-
licious rentals. If a resource-constrained node completes the
computing task, it returns the NFR by calling the function
Liquidation(), which automatically settles the cost of rental
and return the balance of the deposit to the node. If the node
fails to liquidate until the timeout, Liquidation() deduct the
deposit from the node and retracts the NFR which is rented
by the node. If the owner of a resource no longer rents out its
resource forever, it calls the function Cancellation() in the
contract to cancel the NFR corresponding to the resource.

NFR Contract

contract NFR {
struct NFR {

uint tokenID;
string resourceOwner;
string resourceType;
uint price;

}
function Registration (string resourceType, uint price)
public {· · · }
function Rental (uint tokenID, uint deposit) public {· · · }
function Liquidation (uint tokenID) public {· · · }
function Cancellation (uint tokenID) public {· · · }

}

Fig. 5. An example of simplified smart contract of NFR.

Maintaining consistency between digital NFRs and their
corresponding physical resources is of utmost importance.
Inconsistencies can lead to vulnerabilities, particularly re-
source fraud attacks. Resource fraud occurs when a user
pays for NFRs, but the malicious owners of the NFRs do
not provide the corresponding physical resources, resulting
in unreliable resources for the user despite payment. To
address this issue, we propose a scheme that guarantees the
availability and reliability of digital resources corresponding
to NFRs in the physical world. We utilize Proofs of Storage
(PoS) technique to ensure the validity of storage space
when an NFR corresponds to storage resources. PoS allows
a user uploading data to a server to repeatedly verify if
the server is storing data correctly. For NFRs correspond-
ing to CPUs/GPUs, we employ the Proof of Work (PoW)
technique. The server responds to users with a random
challenge along with a proof every fixed period of time. If
the proof is valid, the resource owner has idle CPU/GPU to
serve computing tasks.

In conclusion, our scheme ensures the consistency be-
tween digital NFRs and physical resources, thereby mitigat-
ing the risk of resource fraud attacks.

4.4 Trusted Metaverse Environment
In this section, we demonstrate the process of enabling

parallel computing tasks in a metaverse where users are
mutually untrusted. The entire platform consists of two
components, with the first assessing the trust of the users
involved and the second constructing an on-demand trusted
metaverse cluster.

4.4.1 Trust Evaluation of Computing Nodes

Trust is an important prerequisite for cooperation, which
is influenced by historical behaviors and the current state of
the nodes. The crisis of trust between nodes has seriously
affected the development of distributed systems [44], [45],
and a metaverse is facing similar problems. For example,
a node in a metaverse may make a false description of its
shared resources to seek improper benefits.

In a typical metaverse, nodes form different groups
according to their computing tasks, and each group works
independently. The participation of a large number of het-
erogeneous devices in the metaverse makes the relationship
among all nodes complex and challenging to describe. To
overcome this difficulty, we adopt the Local Trust Model
(LTM) mentioned in [7], which satisfies the locality property
and can effectively solve the above trust evaluation problem.
To be specific, the locality property of LTM implies that the
nodes irrelevant to a metaverse task do not need to join
in the trust evaluation of the task. In fact, these irrelevant
nodes themselves are unwilling to participate in the task to
avoid consuming excess resources.

Based on the LTM model, we further refine the eval-
uation criteria and assessment algorithm for the trustwor-
thiness in an LTM. To provide a symbolized expression of
the LTM, we denote the metaverse network as a weighted
hypergraph [46] H

def
= (V,E,W), where V represents the

set of nodes, E the set of hyperedges, and W the set of
weights. Fig. 6 shows an example, which illustrates four
LTMs in a metaverse network formed by six nodes (marked
as {v1, v2, · · · , v6}). One can see that LTM 3 consists of
three nodes {v2, v3, v4} connected by a hyperedge. The trust
value of LTM 3 is determined by the degree of trust among
{v2, v3, v4}, and the factors considered according to specific
tasks can include the network size, the message latency,
and the historical behaviors of the nodes. We adopt the
Oracle mechanism [47] to aggregate the metaverse network
data to calculate trust. After obtaining the data, nodes
in the LTM can choose a trust evaluation algorithm, e.g.,
Powertrust [48], PET [49], and those in [50], [51], from the
trust evaluation module and obtain trust values. Significant
elements of the trust evaluation process, such as the partic-
ipating nodes, the selected trust evaluation algorithm, and
the trust values, are recorded on the blockchain, and the
smart contract allocates appropriate amount of NFRs to the
LTM according to its computing task and the trust values.

4.4.2 On-Demand Trusted Metaverse Cluster

Considering that there are many independent and par-
allel computing tasks in a metaverse, we adopt the On-
Demand Trusted Computing Environment technique pre-
sented in [7]. However, due to limitations of the computing



8

v2v1

v5

v6

v4

v3H

Trust Evaluation 
Algorithms

LTM 3

LTM 4

LTM 2

LTM 1
v2

v4

v3Historical Behaviors, 
etc.

trust 
measure

trust 
level

Fig. 6. An example of trust evaluation.

power and storage, some nodes are unable to participate.
Therefore, we propose the concept of On-Demand Trusted
Metaverse Cluster (OTMC) based on NFR (introduced in
Section. 4.3), which allows users to rent NFRs on the chain to
acquire the necessary computing resources, thereby alleviat-
ing the resource limitation problem. The main idea of OTMC
is to create a temporary trusted environment for nodes
participating in a task. Note that most of the metaverse
tasks are put off-chain to complete, and only some state
information of an OTMC needs to be recorded on-chain,
such as Open,Run, and Close (shown in Fig. 7). Multiple
computational tasks in the metaverse may occur simulta-
neously, therefore all OTMCs could be executed in parallel.
The participating nodes of each computing task only need
to form an OTMC off-chain and rent NFRs on demand to
perform the computing task. Since the computing process
is off-chain, the process of each OTMC is independent and
does not occupy the resources on the blockchain.

User

Blockchain Ledger On-chain 
rental

NFR
NFR

NFR

On-chain 
rental

Company

OTMC: Open

…

Request NFR

OTMC: Run

…

OTMC: Close

…

Settle NFRAssign NFR
Cluster P Cluster P Cluster P

Fig. 7. The lifecycle of an OTMC, which contrains three stages: Open,
Run, and Close. Nodes with insufficient resources (marked by the red
boxes) can participate in a task by renting NFRs.

Figure 7 presents the lifecycle of an OTMC, denoted
by P. We take P as an example to illustrate the details
of an OTMC. Formally, we denote an OTMC by a vector
C⃗State
Cluster

def
=(CID, State, G, ∆T, NFR, Results), where CID is

a unique identifier of the OTMC, State represents the cur-
rent state of the OTMC (State ∈ {Open,Run,Close}), G
represents the participating nodes, ∆T is a time duration
that regulates how long C⃗ can last, NFR represents the

resource borrowing records of the participating nodes, and
Results is the set of results that needs to be uploaded
when C⃗ attempts to be closed. Therefore, we can use
C⃗Open
P =(CIDP,Open,GP, t+ δ,NFRP,⊥) to denote the initial

state of the cluster P, which states that multiple nodes form
a group GP and send C⃗Open

P to the blockchain to establish
an on-demand trusted metaverse cluster P at time t with a
duration δ. Note that, we use the block height to measure δ
to prevent the clock out-of-sync problem among the partici-
pants in GP.

If GP needs to rent resources through NFR, it should
deposit certain amount of money in the smart contract.
Then, it can send requirements, such as computing power
consumption and time, to the smart contract. The smart
contract would allocate the NFR resources to the cor-
responding users and record this in NFRP. After the
blockchain consensus, the state of P changes from C⃗Open

P

to C⃗Run
P =(CIDP,Run,GP, t+ δ,NFRP,⊥), indicating that the

participants can start to interact. P needs to be closed by
the time t+∆T, otherwise it would be punished (deduct-
ing money deposited in the smart contract). Participants
upload the results of the interactions to the blockchain,
and the miners close P after successful verification via
C⃗Close
P =(CIDP,Close,GP, t+∆T,NFRP,Results). The smart

contract settles down the NFR according to the content of
NFRP and returns the excess amount of the deposit.

5 IPERFORMANCE EVALUATION

In this section, we present a concrete implementation of the
major components of our proposed metaverse architecture.

5.1 Implementation and Experiment Setup

We choose XuperChain1 and Solidity2 as building blocks,
and implement the adaptive modular blockchain on top
of them. Our blockchain system supports three types of
consensus algorithms, namely PoW, PoA, and TDPoS. The
smart contracts of NFR and OTMC, which are the key com-
ponents to enable our decentralized metaverse, are realized
with Solidity. The adaptive consensus protocol relies on a
machine learning model, which intends to choose the most
appropriate consensus algorithm based on the number of
nodes, the ratio of faulty nodes, and the hardware resources.

We test the performance of our adaptive modular
blockchain using up to 50 instances distributed in various
regions on TencentCloud. In order to compare the impact of
different computing power resources on the performance of
the consensus algorithms, we set up two networks, which
only differ in the amount of computational resources. The
first one includes up to 50 S6.MEDIUM4 instances, with
each having a 2-Core CPU (Intel Ice Lake 2.7/3.3 GHz),
4GB memory, and 50GB SSD, and running Ubuntu 20.04
LTS; while the second one contains up to 50 C6.LARGE8
instances, with each having a 4-Core CPU (Intel Ice Lake
3.2/3.5 GHz), 8GB memory, and 50GB SSD, and running
Ubuntu 20.04 LTS. The bandwidth of each instance is 100
Mbps. Only one XuperChain node is set up on each instance.

1. https://github.com/xuperchain/xuperchain
2. https://github.com/ethereum/solidity



9

We carry out the following three experiments:

• Throughput and latency of the modular blockchain.
• Latency of the adaptive consensus protocol.
• Latency and gas cost of NFR and OTMC operations.

In the first experiment, we build an XuperChain blockchain
system considering three consensus algorithms (PoW, PoA,
and TDPoS). We vary the number of instances added to the
blockchain network (from 10 to 50), and send 5000 requests
to test the performance of the blockchain system. We record
the start and end timestamps of each request and check the
blockchain to determine the number of on-chain messages
during that period. Using this data, we calculate the TPS
(transactions per second) and latency of each request. In the
second experiment, we use the results of the first experiment
to create a dataset; then we train and test five learning mod-
els, i.e., Decision Tree, Random Forest, AdaBoost, XGBoost,
and GBDT (all implemented with sklearn and xgboost), and
record their accuracy. We select the model with the highest
accuracy to build an adaptive consensus protocol. Next we
send 20 requests to test the latency of the consensus protocol
with varied number of nodes. In the third experiment, we
deploy the NFR and OTMC smart contracts on the second
blockchain network. Then we designate the nodes on 5
randomly-selected instances as contract invokers to call 8
contract functions 200 times each. We record the start and
end timestamps of each contract function call, as well as the
gas consumption, and use the data to calculate the latency
and gas of each function in the two contracts.

5.2 Performance Evaluation Results

5.2.1 Throughput and Latency of the Modular Blockchain
This experiment is to test the performance of the blockchain
system with respect to different consensus algorithms and
to provide training data for the adaptive consensus protocol.
In this experiment, we compare three consensus algorithms,
i.e., PoW, PoA, and TDPoS, varying the number of nodes,
the ratio of faulty nodes, and the hardware resources. The
unit for throughput is TPS, which refers to the number of
transactions per second. Latency refers to the time delay
between initiating a transaction and confirming it on the
blockchain.

As shown in Fig. 8 (a), the TPS of PoA and TDPoS is
better than that of PoW. Specifically, the TPS of the first
two consensus algorithms decreases as the number of nodes
increases, but that of PoW does not follow this trend. This is
because TPDoS and PoA rely on the approvals of sufficient
validators to add new blocks to the blockchain, while PoW
requires miners to solve a complex mathematical problem.
The communication complexity of PoW is relatively low
compared to the other consensus algorithms. As the number
of nodes increases, the communication time during the
consensus process increases, resulting in a TPS decrease of
PoA and TDPoS, but the TPS of PoW remains relatively
stable. Fig. 8 (c) shows that the gap between PoW and
the other two consensus algorithms is getting narrower.
We find that the node deployed on S6 has less computing
power. When the nodes use PoW, the CPU usage tends to

0 10 20 30 40 50
0

10

20

30

40

The number of nodes(S6)

TP
S

PoW
TDPoS
PoA

(a)

0 10 20 30 40 50
0.0

4.0

8.0

12.0

The number of nodes(S6)

La
te

nc
y 

(m
s) PoW TDPoS PoA

(b)

0 10 20 30 40 50
0

10

20

30

40

The number of nodes(C6)

TP
S

PoW TDPoS PoA

(c)

0 10 20 30 40 50
0.0

4.0

8.0

12.0

The number of nodes(C6)

La
te

nc
y 

(m
s) PoW PoATDPoS

(d)

0.0 0.1 0.2 0.3
0

10

20

30

40

The ratio of faulty nodes(N=30)

TP
S

PoW
TDPoS
PoA

(e)

0.0 0.1 0.2 0.3
0.0

4.0

8.0

12.0

The ratio of faulty nodes(N=30)

La
te

nc
y 

(m
s)

PoW
TDPoS
PoA

(f)

Fig. 8. TPS and latency of different consensus on cloud servers
(S6.MEDIUM4) tests (a) (b), TPS and latency of different consensus
on cloud server (C6.LARGE8) tests (c) (d), TPS and latency of dif-
ferent faulty nodes when the number of nodes is 30 on cloud servers
(C6.LARGE8) tests (e) (f).

reach 100%, which becomes the bottleneck of performance
limitation. When we switch C6 with a more powerful CPU,
the bottleneck disappears. Fig. 8 (b) demonstrates that the
latency of PoA and TDPoS remains stable, but the latency
of PoW fluctuates wildly. This is also because the weaker
CPU limits the performance of PoW. As expected, Fig. 8 (d)
demonstrates that the latency of PoW remains stable.

Then we compare the three consensus algorithms with
respect to the faulty node ratio (FR), the ratio of the number
of existing faulty nodes over the total number of nodes
(N ). The behaviors of the faulty nodes defined here mainly
include stopping communications with other nodes, quit-
ting or joining the network at any time, and proposing
no blocks when working as a miner. We set N = 30, and
FR ∈ {0%, 10%, 20%, 30%}, considering FR < 33% = f/N,
where FR = 0 represents the non-faulty case. As Fig. 8 (e)
shows, the TPS of PoA and TDPoS decreases obviously, and
the TPS of TDPoS even decreases to 0 in the presence of
10%N faulty nodes. In Fig. 8 (f), as FR approaches to 10%,
the TPS of TDPoS approaches to 0, and threfore the latency
of TDPoS approaches to infinity. When FR is 30%, the TPS
of PoW surpasses that of PoA. This is because PoA relies on
authoritative nodes taking turns to become the leader and
propose blocks. When a faulty node becomes the leader,
it can cause the blockchain process to stall or slow down.
Therefore, as the proportion of faulty nodes increases, the



10

performance of PoA significantly decreases, while that of
PoW is not affected. It is clearly shown that the PoW scheme
has stronger fault tolerance property.

TABLE 1
The accuracy of five models

Models Decision
Tree

Random
Forest Adaboost XGBoost GBDT

Accuracy 80.0% 68.3% 70.0% 80.0% 96.7%

5.2.2 The Performance of the Adaptive Protocol

In this experiment, we construct a data set according to
the results of the previous experiments. The data set is
characterized by the number of nodes and the ratio of the
faulty ones. The labels of this dataset include PoA, PoW,
and TDPoS. Then, we use this dataset for model training
and testing. We use the hold-out method to randomly
divide the data set into the training set and the test set
according to the ratio of 7:3, and repeat it 10 times, using
the average accuracy of all tests as the final evaluation
result. We first test the accuracy of Decision Tree, Random
Forest, AdaBoost, XGBoost, and GBDT, and the results are
shown in Table 1. One can see that the GBDT model has the
highest test accuracy; thus we adopt GBDT as the learning
model in our adaptive consensus protocol. Note that the
accuracy of these models is measured based on the selected
features in the experiment. If more feature information is
added to the dataset in future, such as network latency,
the model we ultimately select may be different. Then we
test the latency of the adaptive consensus protocol. The
latency here is defined to be the time duration from when
a user inputs parameters into the model, the model outputs
results, the input and output are sent as a transaction to
the blockchain, until finally the transaction is written into
a block. The transaction specifies the type of consensus to
be changed and the block height (H) at which the change
should occur. Once such information is written into a block,
all nodes update their local consensus mechanism at H and
notify other nodes of the successful update. As shown in
Fig. 9, when the current consensus is PoA, PoW, or TDPoS,
the latency of the adaptive replacement to other consensus is
similar. This is because, under our experimental conditions,
the time to output the model results far exceeds the transac-
tion latency. Therefore regardless of the current consensus,
the entire consensus change latency is almost the same.

0 10 20 30 40 50
75.0

80.0

85.0

90.0

The number of nodes

La
te

nc
y 

(m
s)

PoW
TDPoS
PoA

PoA/TDPoS
PoA/PoW

PoW/TDPoS

Fig. 9. The latency of updating consensus algorithms.

5.2.3 Latency and Gas Cost of NFR and OTMC Operations

In this experiment, we test the latency of each function
with respect to a variable number of nodes, and the gas
consumption of each function in NFR and OTMC. As shown
in Fig. 10(a) and (b), one can see that the latency of each
function is at the millisecond level, and it increases slightly
with the increasing number of nodes. The latency of TxOpen

is the longest, roughly from 3.3ms to 4.5ms, which is reason-
able because it involves more uploaded data, e.g., multiple
signatures and addresses. We test the Ethereum gas cost
and XuperChain fee for each function. As our experiment
is based on XuperChain, we also deploy these contracts
on Ethereum to facilitate comparisons and provide readers
with a better understanding of the specific cost of each
contract function. However, as Ethereum and XuperChain
utilize different fee calculation methods, the results are not
proportional. From Fig. 11(a) and (b), one can see that the
gas cost of each function fluctuates between 50,000 and
250,000, and TxOpen consumes the most gas (about 250,000).
The reason lies in that this operation requires more input
data and a more complex calculation process.

0 10 20 30 40 50
2.0

3.0

4.0

5.0

6.0

The number of nodes

La
te

nc
y 

(m
s)

Register
Rental
Liqudation
Cancellation

(a)

0 10 20 30 40 50
2.0

3.0

4.0

5.0

6.0

The number of nodes

La
te

nc
y 

(m
s)

Open
RentNFR
Settle
Close

(b)

Fig. 10. The latency of NFR and OTMC.

Reg
ist

er

Ren
tal

Liqudati
on

Can
ce

lla
tio

n
0.0

1.0

2.0

3.0

0

200

400

600

Operations

Et
he

re
um

 g
as Ethereum gas

XuperC
hain fee

XuperChain fee

105

(a)

Open

Ren
tN

FR
Sett

le
Close

0.0

1.0

2.0

3.0

0

200

400

600

Operations

Et
he

re
um

 g
as Ethereum gas

XuperChain fee

XuperC
hain fee

105

(b)

Fig. 11. The gas cost of NFR and OTMC.

6 CONCLUSION

In this paper, we present an adaptive and modular
blockchain-enabled architecture for a decentralized meta-
verse. Our architecture tackles two key challenges: the
Consensus/Ledger Adaptation (CLA) problem and the Re-
source Centralization (RC) problem. To address the CLA
problem, we propose an adaptive consensus/ledger proto-
col that maintains consensus across a distributed network
while adapting to changing conditions. To solve the RC



11

problem, we introduce the concept of Non-Fungible Re-
source to enable resource virtualization and consolidation
within the metaverse without risking centralization. Addi-
tionally, we design the On-Demand Trusted Metaverse Clus-
ter to support parallel computing and promote fair trading
of the Non-Fungible Resources. Finally, we test the perfor-
mance of our design using three consensus algorithms, and
the experimental results demonstrate the feasibility of our
approach.

7 ACKNOWLEDGEMENT

This study was partially supported by the National Key
R&D Program of China (No.2022YFB4501000), the Na-
tional Natural Science Foundation of China (No.62232010),
Shandong Science Fund for Excellent Young Scholars
(No.2023HWYQ-008), and the Shandong Science Fund for
Key Fundamental Research Project (ZR2022ZD02).

REFERENCES

[1] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding,
and M. Daneshmand, “A survey on metaverse: the state-of-the-
art, technologies, applications, and challenges,” arXiv preprint
arXiv:2111.09673, 2021.

[2] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A survey on metaverse: Fundamentals, security, and privacy,”
IEEE Communications Surveys & Tutorials, 2022.

[3] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,
C. Bermejo, and P. Hui, “All one needs to know about metaverse:
A complete survey on technological singularity, virtual ecosystem,
and research agenda,” arXiv preprint arXiv:2110.05352, 2021.

[4] J. D. N. Dionisio, W. G. B. III, and R. Gilbert, “3d virtual worlds
and the metaverse: Current status and future possibilities,” ACM
Computing Surveys (CSUR), vol. 45, no. 3, pp. 1–38, 2013.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Business Review, p. 21260, 2008.

[6] Y. Fu, C. Li, F. R. Yu, T. H. Luan, P. Zhao, and S. Liu, “A survey
of blockchain and intelligent networking for the metaverse,” IEEE
Internet of Things Journal, 2022.

[7] M. Xu, Y. Guo, Q. Hu, Z. Xiong, D. Yu, and X. Cheng, “A trustless
architecture of blockchain-enabled metaverse,” High-Confidence
Computing, p. 100088, 2022.

[8] X. Lab. What is xuperchain. [Online]. Available: https:
//github.com/xuperchain/xuperchain

[9] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[10] R. Corporation. (2006) Roblox. [Online]. Available: https:
//developer.roblox.com/en-us/

[11] N. Team. (2021) Nvidia omniverse. [Online]. Available: https:
//www.nvidia.com/en-us/omniverse/

[12] M. Team. (2022) Microsoft mesh. [Online]. Available: https:
//www.microsoft.com/en-us/mesh

[13] A. Heath. (2004) Inside facebook’s metaverse for work.
[Online]. Available: https://www.theverge.com/2021/8/19/
22629942/facebook-workroomshorizon-oculus-vr

[14] L. Labs. (2003) Second life. [Online]. Available: https://secondlife.
com/

[15] M. Team. (2009) Minecraft maps. [Online]. Available: https:
//www.minecraftmaps.com/tags/real-cities-in-minecraft

[16] J. Radoff. (2021) The metaverse value-chain. [On-
line]. Available: https://medium.com/building-the-metaverse/
the-metaverse-value-chain-afcf9e09e3a7

[17] V. Nair, G. M. Garrido, and D. Song, “Going incognito in the
metaverse,” arXiv preprint arXiv:2208.05604, 2022.

[18] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for
social good: A university campus prototype,” in Proceedings of the
29th ACM International Conference on Multimedia, 2021, pp. 153–161.

[19] B. Kye, N. Han, E. Kim, Y. Park, and S. Jo, “Educational ap-
plications of metaverse: possibilities and limitations,” Journal of
Educational Evaluation for Health Professions, vol. 18, 2021.

[20] Decentraland. (2017) Welcome to decentraland. [Online].
Available: https://decentraland.org/

[21] Cryptovoxels. (2021) Welcome to voxels - a user-owned virtual
world. [Online]. Available: https://www.cryptovoxels.com/

[22] Q. Yang, Y. Zhao, H. Huang, Z. Xiong, J. Kang, and Z. Zheng,
“Fusing blockchain and ai with metaverse: A survey,” IEEE Open
Journal of the Computer Society, vol. 3, pp. 122–136, 2022.

[23] T. Huynh-The, T. R. Gadekallu, W. Wang, G. Yenduri,
P. Ranaweera, Q.-V. Pham, D. B. da Costa, and M. Liyanage,
“Blockchain for the metaverse: A review,” Future Generation Com-
puter Systems, 2023.

[24] H. Huang, X. Zeng, L. Zhao, C. Qiu, H. Wu, and L. Fan, “Fusion
of building information modeling and blockchain for metaverse:
a survey,” IEEE Open Journal of the Computer Society, vol. 3, pp.
195–207, 2022.

[25] M. Ersoy and R. Gürfidan, “Blockchain-based asset storage and
service mechanism to metaverse universe: Metarepo,” Transactions
on Emerging Telecommunications Technologies, vol. 34, no. 1, p. e4658,
2023.

[26] S. Ali, T. P. T. Armand, A. Athar, A. Hussain, M. Ali, M. Yaseen,
M.-I. Joo, H.-C. Kim et al., “Metaverse in healthcare integrated with
explainable ai and blockchain: Enabling immersiveness, ensuring
trust, and providing patient data security,” Sensors, vol. 23, no. 2,
p. 565, 2023.

[27] M. Xu, Y. Guo, C. Liu, Q. Hu, D. Yu, Z. Xiong, D. Niyato, and
X. Cheng, “Exploring blockchain technology through a modular
lens: A survey,” arXiv preprint arXiv:2304.08283, 2023.

[28] C. Lab. The first modular blockchain network. [Online]. Available:
https://celestia.org/

[29] O. Ali, M. Momin, A. Shrestha, R. Das, F. Alhajj, and Y. K.
Dwivedi, “A review of the key challenges of non-fungible tokens,”
Technological Forecasting and Social Change, vol. 187, p. 122248, 2023.

[30] K. Ito, K. Shibano, and G. Mogi, “Predicting the bubble of non-
fungible tokens (nfts): An empirical investigation,” arXiv preprint
arXiv:2203.12587, 2022.

[31] S. B. Far, S. M. H. Bamakan, Q. Qu, and Q. Jiang, “A review of non-
fungible tokens applications in the real-world and metaverse,”
Procedia Computer Science, vol. 214, pp. 755–762, 2022.

[32] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016.

[33] S. Dziembowski, S. Faust, and K. Hostáková, “General state chan-
nel networks,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 949–966.

[34] Y. Guo, M. Xu, D. Yu, Y. Yu, R. Ranjan, and X. Cheng, “Cross-
channel: Scalable off-chain channels supporting fair and atomic
cross-chain operations,” arXiv preprint arXiv:2212.07265, 2022.

[35] W. Yu, M. Xu, D. Yu, X. Cheng, Q. Hu, and Z. Xiong, “zk-
pcn: A privacy-preserving payment channel network using zk-
snarks,” in 2022 IEEE International Performance, Computing, and
Communications Conference (IPCCC). IEEE, 2022, pp. 57–64.

[36] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods for
internet of things (iot) security,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[37] H. Pervez, M. Muneeb, M. U. Irfan, and I. U. Haq, “A compara-
tive analysis of dag-based blockchain architectures,” in 2018 12th
International Conference on Open Source Systems and Technologies
(ICOSST), 2018, pp. 27–34.

[38] W. F. Silvano and R. Marcelino, “Iota tangle: A cryptocurrency to
communicate internet-of-things data,” Future Generation Computer
Systems, vol. 112, pp. 307–319, 2020.

[39] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long,
and A. C.-C. Yao, “A decentralized blockchain with high through-
put and fast confirmation,” in 2020 {USENIX} Annual Technical
Conference ({USENIX} {ATC} 20), 2020, pp. 515–528.

[40] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2705–2718.

[41] M. Nadini, L. Alessandretti, F. Di Giacinto, M. Martino, L. M.
Aiello, and A. Baronchelli, “Mapping the nft revolution: market
trends, trade networks, and visual features,” Scientific reports,
vol. 11, no. 1, pp. 1–11, 2021.

[42] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token
(nft): Overview, evaluation, opportunities and challenges,” arXiv
preprint arXiv:2105.07447, 2021.

https://github.com/xuperchain/xuperchain
https://github.com/xuperchain/xuperchain
https://developer.roblox.com/en-us/
https://developer.roblox.com/en-us/
https://www.nvidia.com/en-us/omniverse/
https://www.nvidia.com/en-us/omniverse/
https://www.microsoft.com/en-us/mesh
https://www.microsoft.com/en-us/mesh
https://www.theverge.com/2021/8/19/22629942/facebook-workroomshorizon-oculus-vr
https://www.theverge.com/2021/8/19/22629942/facebook-workroomshorizon-oculus-vr
https://secondlife.com/
https://secondlife.com/
https://www.minecraftmaps.com/tags/real-cities-in-minecraft
https://www.minecraftmaps.com/tags/real-cities-in-minecraft
https://medium.com/building-the-metaverse/the-metaverse-value-chain-afcf9e09e3a7
https://medium.com/building-the-metaverse/the-metaverse-value-chain-afcf9e09e3a7
https://decentraland.org/
https://www.cryptovoxels.com/
https://celestia.org/


12

[43] C. Liu, M. Xu, H. Guo, X. Cheng, Y. Xiao, D. Yu, B. Gong,
A. Yerukhimovich, S. Wang, and W. Lv, “Tokoin: a coin-based
accountable access control scheme for internet of things,” arXiv
preprint arXiv:2011.04919, 2020.

[44] W. Jiang, G. Wang, M. Z. A. Bhuiyan, and J. Wu, “Understanding
graph-based trust evaluation in online social networks: Method-
ologies and challenges,” Acm Computing Surveys (Csur), vol. 49,
no. 1, pp. 1–35, 2016.

[45] X. Wu, R. Zhang, B. Zeng, and S. Zhou, “A trust evaluation model
for cloud computing,” Procedia Computer Science, vol. 17, pp. 1170–
1177, 2013.

[46] A. Bretto, “Hypergraph theory,” An introduction. Mathematical En-
gineering. Cham: Springer, 2013.

[47] Chainlink. (2021) What is a blockchain oracle. [Online]. Available:
https://chain.link/education/blockchain-oracles

[48] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigen-
trust algorithm for reputation management in p2p networks,” in
Proceedings of the 12th international conference on World Wide Web,
2003, pp. 640–651.

[49] Z. Liang and W. Shi, “Pet: A personalized trust model with repu-
tation and risk evaluation for p2p resource sharing,” in Proceedings
of the 38th Annual Hawaii International Conference on System Sciences.
IEEE, 2005, pp. 201b–201b.

[50] A. Josang and J. Haller, “Dirichlet reputation systems,” in The
Second International Conference on Availability, Reliability and Security
(ARES’07). IEEE, 2007, pp. 112–119.

[51] G. Theodorakopoulos and J. S. Baras, “On trust models and trust
evaluation metrics for ad hoc networks,” IEEE Journal on selected
areas in Communications, vol. 24, no. 2, pp. 318–328, 2006.

https://chain.link/education/blockchain-oracles

	Introduction
	Related Works and Motivations
	Metaverse in Industry and Academia
	Blockchain for Metaverse
	Motivations

	Preliminaries
	Modularized Blockchain
	Non-Fungible Token
	Off-chain Payment Channel

	An Adaptive Decentralized Metaverse
	Overview
	Adaptive Modular Blockchain
	Adaptive Consensus Protocol
	Adaptive Ledger Protocol

	Non-Fungible Resources
	Trusted Metaverse Environment
	Trust Evaluation of Computing Nodes
	On-Demand Trusted Metaverse Cluster


	IPerformance Evaluation
	Implementation and Experiment Setup
	Performance Evaluation Results
	Throughput and Latency of the Modular Blockchain
	The Performance of the Adaptive Protocol
	Latency and Gas Cost of NFR and OTMC Operations


	Conclusion
	Acknowledgement
	References

