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Abstract—Due to energy-efficiency requirements, computa-
tional systems are now being implemented using noisy nanoscale
semiconductor devices whose reliability depends on energy con-
sumed. We study circuit-level energy-reliability limits for deep
feedforward neural networks (multilayer perceptrons) built using
such devices, and en route also establish the same limits for for-
mulas (boolean tree-structured circuits). To obtain energy lower
bounds, we extend Pippenger’s mutual information propagation
technique for characterizing the complexity of noisy circuits, since
small circuit complexity need not imply low energy. Many device
technologies require all gates to have the same electrical operating
point; in circuits of such uniform gates, we show that the mini-
mum energy required to achieve any non-trivial reliability scales
superlinearly with the number of inputs. Circuits implemented in
emerging device technologies like spin electronics can, however,
have gates operate at different electrical points; in circuits of such
heterogeneous gates, we show energy scaling can be linear in the
number of inputs. Building on our extended mutual information
propagation technique and using crucial insights from convex
optimization theory, we develop an algorithm to compute energy
lower bounds for any given boolean tree under heterogeneous
gates. This algorithm runs in linear time in number of gates,
and is therefore practical for modern circuit design. As part of
our development we find a simple procedure for energy allo-
cation across circuit gates with different operating points and
neural networks with differently-operating layers.

Index Terms—Circuit optimization, fault tolerant systems,
mutual information, neural networks.

I. INTRODUCTION

AS NEURAL networks become larger and more prevalent,
their energy requirements are becoming of key con-

cern [3]. Though most current deep networks are enormous
cloud-based structures, there is a further desire for hard-
ware implementations for mobile, in-sensor, and in-memory
inference [4]–[7]. At the same time, as area and energy
scaling in CMOS technology saturates, the semiconductor
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industry has been exploring promising new energy-efficient
nanoscale devices as computational substrates [8]. Special-
purpose nanoscale hardware is faster and more energy-efficient
than alternate approaches, making deep learning suitable for
applications ranging from voice recognition on mobile devices
to in-sensor health monitoring [9], [10]. A major challenge,
however, in using nanoscale devices is that they can be
very unreliable, especially when operated at low energy [11].
This has renewed interest in the study of reliable circuit
design using unreliable components, both digital and ana-
log [12]–[15], a problem first addressed by von Neumann
through a modular redundancy approach [16].

For the success of low-power inference, understanding
energy-reliability limits of nanoscale neural networks is impor-
tant. Nanoscale devices fail at random, but for each particular
device technology like spintronics or carbon nanotubes, there
is a functional relationship between failure probability and
energy. Devices consume more energy as they are built to have
lower failure rates [11], [17]. Here we aim to use the device-
level relationship to determine basic energy-reliability limits
at the circuit level. We focus on deep feedforward networks
(multilayer perceptrons), which are directed acyclic graphs
(DAGs). As a simpler setting to build towards neural networks,
we also consider tree-structured boolean circuits (known as
formulas), which are of independent interest in fault-tolerant
computing.

Past information-theoretic studies have focused on bounding
the minimum size of a noisy circuit to compute a func-
tion with a given reliability, e.g., [18]–[20], and to upper
bound the device noise for which a non-trivial reliability
can be achieved [21]–[23], largely restricted to formulas.
Using a basic mathematical tool due to Pippenger [22], the
lower bound on circuit size for a target reliability has been
improved [21], [24], [25]. Such circuit complexity results,
however, do not directly provide insight into the basic energy
requirements for reliable nanoscale circuits as we aim to obtain
here. After all, one could consider making a fixed number of
individual gates less noisy with more energy, or one could
construct larger and more redundant circuit designs with gates
that remain noisy. Determining best design strategies is useful
not just as a proof technique, but also for informing prac-
tical circuit design and explaining the nature of biological
neural networks in sensory cortex, as we detail in separate
works [8], [26]. In neurobiology, we show that neural con-
nectivity, reliability, and energy characteristics are matched to
one another, as per our theory [26]. In circuit design, [8] details
several circuits designed for practical problems.
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Here we extend Pippenger’s mutual information prop-
agation technique and use crucial insights from convex
optimization theory to determine energy limits for reliable
nanoscale boolean trees and feedforward neural networks with
unreliable components. The main contributions are detailed
next.

A. Contributions

En route to neural network results, we first derive energy-
reliability limits for boolean trees where all logic gates
are constrained to have uniform electrical operating points
(Section VI-A), a constraint common in many extant device
technologies. The main goal is to understand the scaling
of energy consumption with number of inputs. We observe
that a superlinear scaling of energy consumption with num-
ber of inputs is unavoidable for both extant and emerging
technologies.

As some new technologies promise to relax the constraint of
uniform operating points, we also study heterogeneous logic
gates that consume different energies (Section V). Extending
the mutual information propagation technique and using ideas
from convex optimization theory, we determine the minimum
energy needed for a given reliability requirement and vice
versa. For certain symmetric circuits, linear scaling of energy
consumption is possible. We also obtain an efficient procedure
for energy allocation.

Note that in the presence of unreliable components, mini-
mum complexity realizations may not consume the minimum
energy. Hence, we must go beyond previous work on cir-
cuit complexity bounds in fault-tolerant computing. Unlike
previous work which gives complexity bounds only on the
class of all n-input circuits, we also propose a linear-time
algorithm to bound energy for any given boolean tree under
non-uniform gate operations. This algorithm draws on crucial
insights from convex optimization theory and is specifically
useful in practice for modern circuits with very large numbers
of gates, see [8]. This method also leads to a heuristic energy
allocation scheme. This is because the optimization problem
corresponding to the bound can be seen as a convex surrogate
for the exact energy allocation problem, which is intractable
in general.

Returning to feedforward neural networks, we study two
complementary scenarios: (i) all neurons in the network have
uniform energy consumption, and (ii) neurons in the same
layer have the same energy consumption, but non-uniform
energy consumption across layers. We again build on the
mutual information propagation technique (now extended to
consider DAGs) to obtain energy bounds that yield insights
into the structural and connectivity requirements for reliable
operations of nanoscale feedforward neural networks. We also
obtain a design heuristic for choosing operating points in a
deep neural network—a simple energy allocation that informs
practical circuit design.

Note that earlier presentations of this work [1], [2] were
focused only on circuits with homogeneous electrical operat-
ing points for devices, whereas the new synthesis in the current
paper emphasizes the value of heterogeneous operation of

gates and neural network layers. Results on energy allocation
are therefore novel to this paper.

B. Related Work

A recent paper on energy-efficient circuit design [27] is
similar to our work in obtaining energy bounds for reliable
computing, but there are notable differences. First, in terms
of mathematical approach, we extend a mutual information
propagation technique [28], whereas they build on a circuit
equivalence technique [18], [20]. Second, our approach to
obtaining energy bounds for a given formula circuit offers
design insights on good energy allocation in that circuit. Such
quantitative design insights are very useful to circuit design
practitioners, e.g., [8]. Third, our approach works for any con-
vex smooth energy-failure function for gates, whereas [27]
requires strong assumptions on the energy-failure relations.
Our bounding techniques and design insights can also be
extended to the case where devices in a circuit have dif-
ferent energy-failure functions. Finally, most importantly, we
can consider directed acyclic computation graphs in the con-
text of feedforward neural networks, which move beyond just
tree-structured formula circuits.

There are some further differences: our approach yields
energy bounds for any particular formula circuit (rather than
just bounds over the class of all n-input formula circuits), we
develop a linear-time (in n) algorithm that computes the bound,
and we demonstrate effectiveness of our design heuristic on
simple circuits.

II. MODELS

This section provides mathematical models for formulas and
for feedforward neural networks.

A. Boolean Formulas

The goal is to design circuits to compute n-input boolean
functions using a single type of gate among the set of universal
gates, i.e., NAND and NOR, such that each gate has at most k
inputs and exactly one output. Gates are interconnected into
a circuit to compute the desired function, such that inputs to
gates are some of the n inputs to the function, outputs of other
gates in the circuit, or constants {0, 1}. The output of the circuit
is the output of a certain gate. In general, a boolean function
can be realized by several different circuits using the same
kind of universal gate. Indeed, elementary digital logic design
is concerned with minimal realizations [29].

We assume that the boolean function F is sensitive to
each input, i.e., for each input i, there is a configuration
of other inputs x1 = c1, x2 = c2, . . . , xi−1 = ci−1, xi+1 =
ci+1, . . . , xn = cn, such that

F(c1, . . . , ci−1, 0, ci+1, cn) �= F(c1, . . . , ci−1, 1, ci+1, cn).

A boolean function of n inputs which is not sensitive to one
of its inputs is equivalent to a function of n − 1 inputs. In
combinatorial circuits there is no feedback, i.e., the connec-
tions between the gates must form a directed acyclic graph,
where gates are vertices and the connections between gates are
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edges. The input to a gate is considered the head of a directed
edge. A special class of combinatorial circuits of interest are
formulas, where the graph is a directed tree.

Under the ε-noisy model [16], a gate produces a correct
output for a given input with probability 1 − ε and flips its
output with probability ε. Each gate in a circuit fails indepen-
dently of any other. The noise probability ε of a gate depends
on its electrical characteristics such as bias voltage, as well
as physical and material properties. These characteristics also
determine the energy consumption of the gate. For a given
device technology, there is a relationship between energy con-
sumption of the gate and its probability of failure that depends
on the fundamental nature of the device, whether CMOS or
emerging beyond-CMOS technologies such as spin electronics
or carbon nanotubes.

Definition 1: For a gate with probability of failure ε and
energy consumption eg, let the energy-failure function of the
gate be ε = χ(eg).

When we construct circuits from noisy gates, for any given
input, there is a probability that the output of a circuit is
incorrect.

Definition 2: We say a circuit for the n-input boolean
function F is δ-reliable if for any input configuration
{x1, x2, . . . , xn} ∈ {0, 1}n, the output of the circuit y satisfies
the following:

Pr(y = F(x1, x2, . . . , xn)) ≥ 1− δ,
where probability is over all the failure patterns of the gates
in the circuit.

This work aims to answer the following general question:
What is the minimum energy needed to realize an n-input
boolean function using a δ-reliable formula? We first consider
circuits (and/or technologies) where each gate in the circuit
must have the same operating point and hence consume the
same energy. We obtain the minimum energy per device for
reliable computation. Some emerging technologies like spin
electronics allow different devices in the circuit to have differ-
ent operating points [8]. The energy-reliability limit with such
heterogeneous gates is better; we characterize such settings
later.

B. Feedforward Neural Networks

Consider a binary L-layer feedforward neural network
with n inputs and a single output used to learn and
approximate potentially complicated logic functions—a so-
called multilayer perceptron—as described in standard text-
books [30]. Inputs to the neural network are ±1, where logical
0 maps to −1 and logical 1 maps to +1. The neural network
has a given connection pattern between neurons in the various
layers, e.g., full connectivity or d-regular connectivity between
layers, and there are real-valued weights on the edges. Each
neuron has an associated activation function with a real-valued
input and an output that is ±1. For a neuron, the input to the
activation function is a sum of the outputs of the neurons of
the previous layer, weighted by the edge weights.

A neuron g can fail independently of any other neuron with
probability εg. When a neuron fails, it flips the output from +1

to −1 and vice versa. As in boolean circuits, neuron energy
consumption eg and εg are related by energy-failure function
χ . We define the notion of a δ-reliable neural network in the
same way and ask: What is the minimum energy expenditure
in a δ-reliable neural network?

III. PRELIMINARIES

We present some preliminary definitions and results for the
boolean tree problem.

A. Circuit Graphs

An n-input boolean function Fn can be realized by vari-
ous different formula structures of (universal) logic gates of a
given kind. For a given realization, we have a directed graph
Gg = (Vg, Eg), where vertices Vg are the set of gates and
Eg are the edges corresponding to connections between gates.
Each edge is directed towards the gate to which it is an input.
We call Gg the gate graph of the realization of the formula.
In this section we only consider formulas, and hence, the
corresponding graphs are trees.

Another graph that we use subsequently is the bit graph
Gb = (Vb, Eb). Here, Vb corresponds to interconnects/wires in
the circuit. In a circuit there are interconnects that run from
output of one gate to input of another gate, from circuit inputs
to inputs of gates, and from fixed sources (corresponding to
permanent 0 or 1) to input of gates. Two nodes in Vb share an
edge if the corresponding interconnects are incident to a com-
mon gate. As the circuit is a tree, interconnects between gates
have a one-to-one mapping to gates (the gates to which they
are outputs) and further Gg is a subgraph of Gb. In addition
Gb has leaf nodes that correspond to either inputs or to fixed
sources. This relation will be useful later.

B. Mutual Information Propagation

Pippenger developed the technique of circuit information
flow to bound the size of a δ-reliable circuit constructed using
ε-noisy gates [22], which we review. For a boolean function
F of n inputs, for any input i there exist values c\i ∈ {0, 1}n−1

such that Fi(x) := F(c\i, x) = x or x̄, where x̄ is the com-
plement of x. Hence, for any random input X, Fi(X) is a
one-to-one mapping. When F is realized using noisy gates, the
output is no longer Fi(X), but a random variable Y , depending
on Gg and gate noise.

Note δ is the upper bound on probability of error, Pe(c\i)
for input configuration c\i, and the possible number of values
of Y is M = 2. Then using Fano’s inequality:

I(X;Y) ≥ H(X)− h
(
Pe
(
c\i
))− Pe

(
c\i
) ln(M − 1)

ln 2
, (1)

where h(·) is the binary entropy function. Since M = 2 as the
output is binary, it follows that:

1− h(δ) ≤ I(X;Y). (2)

Unlike in communications, here, h(Pe) is not bounded by 1
for simplification.

Finally to bring gate failures into this bound, two observa-
tions are made. First, for a perfect gate g with input random



CHATTERJEE AND VARSHNEY: ENERGY-RELIABILITY LIMITS IN NANOSCALE FEEDFORWARD NEURAL NETWORKS AND FORMULAS 253

variables U1,U2, . . . ,Uk and output random variable U0, for
any random variable Z:

I(Z;U0) ≤ I(Z;U1,U2, . . . ,Uk)

≤
k∑

i=1

I(Z;Ui) (3)

by the data processing inequality and the distributive rule of
mutual information [22]. Second, if the gate is ε-noisy, then the
output is Ũ0 = U0 + N0, where N0 is a Bernoulli(ε) random
variable independent of U0. Then, a strong data processing
inequality holds [22], [24], [25]:

I
(
Z; Ũ0

) ≤ (1− 2ε)2I(Z;U0). (4)

Based on these two information inequalities and some com-
binatorial arguments, we get a lower bound on the depth of
a formula in terms of δ and ε [22], [24], [25]. There, gate
noise was fixed and energy consumption was not considered.
Here, we build on this technique to study circuits where energy
(hence, noise) of a gate can be tuned and derive bounds on
total energy consumption to realize a boolean function.

C. Energy-Failure Functions

A few special cases of the energy-failure function χ are
relevant to modern device technologies. Here we will obtain
a generic lower bound applicable to a broad class of energy-
failure functions that encompass all relevant technologies. We
define a class of functions as follows.

Definition 3: Let physical energy-failure functions be ones
that satisfy χ :(0,∞) �→ (0, a), 0 < a ≤ 1, that is strictly
decreasing, convex, and differentiable with limeg→0 χ(eg) = a
and limeg→∞ χ(eg) = 0.

Lemma 1: Any physical energy-failure function χ has an
inverse χ−1 that is strictly decreasing, convex, and differen-
tiable.

Proof: See the Appendix.
Energy-failure functions for CMOS, carbon nanotube, and

spin electronics are all physical. A closed-form expression
relating energy and failure for a typical spin device has been
derived based on the physics of the device [11]. An approx-
imate form of the functional dependence is ε = ε0 exp(−cI),
where I is the supply current of the device. Constants c > 0
and ε0 ∈ (0, 1] depend on the device parameters, like critical
current, gate delay, and other switching parameters. As energy
consumption scales as square of current, failure ε and energy
e in a spin device are related as: ε = ε0 exp(−c′

√
e), with

c′ > 0. A generic way to capture this kind of dependence
is through stretched exponentials, ε = ε0 exp(−ceβ), where
ε0, β ∈ (0, 1], and c > 0. For CMOS technologies, it has
been shown that the exponential energy-failure function is a
fundamental thermodynamic limit [17]. Polynomial functions
are another wide class of energy-failure dependence functions
that can be used to approximately characterize different logic
devices: ε = ε0

(e+1)β
, with β > 0, ε0 ∈ (0, 1).

We now proceed to determine the energy-reliability limits of
boolean trees and will then return to energy-reliability limits
of neural networks.

IV. BOOLEAN TREE CIRCUITS FROM

HOMOGENOUS GATES

Let us consider the setting where each gate in the circuit
must have the same electrical operating point. This may be due
to limitations of the design and fabrication technologies of the
electronic devices being used. Some emerging technologies
do allow variable gate operations [8], which we discuss in
Section V.

A. Computation Energy Per Input Bit

For an n-input formula F, consider a given realization of the
formula using logic gates and hence a given directed gate tree
Gg = (Vg, Eg). For each input bit i, 1− h(δ) ≤ I(Fi(X);X) ≤
(1 − 2ε)2|Pi|, where Pi is the path in Gg to the output gate
from the gate to which xi is input. This follows by induc-
tively using (3) and (4) along the depth of Gg from root to the
terminal gate into which xi is an input [22], [24], [25].

Thus, for any δ-reliable circuit realization of F with total
energy consumption E the following conditions must be
satisfied.

C1. 1− h(δ) ≤ (1− 2ε)2|Pi|, for 1 ≤ i ≤ n,

C2. χ

(
E
∣
∣Vg
∣
∣

)

= ε. (5)

Condition C1 follows from the definition of δ-reliability of
the circuit since for any input bit i and any configuration c\i,
Pr(Y = Fi(X)) ≥ 1− δ. Condition C2 relating total energy E
and ε follows because gates with the same electrical character-
istics consume the same energy. Hence, energy consumption
per gate is eg = E

|Vg| , which along with ε = χ(eg) implies the
condition.

Our goal is to find a lower bound on the total energy con-
sumption E in a circuit realization of F. This implies that a
condition weaker than C1, together with C2, would give a
lower bound on E. Hence, we develop the following weaker
condition.

C3.
1

4
ln

1

1− h(δ)
≥ |Pi|ε, for 1 ≤ i ≤ n, (6)

Lemma 2: For a given formula F, realization gate tree Gg =
(Vg, Eg), and required reliability δ, if E satisfies conditions
(C1, C2), then it also satisfies conditions (C3, C2).

Proof: To relate C1 and C3, we note that 1− x ≤ exp(−x),
which implies that if (5) is satisfied for a given E, then for
that E : 1 − h(δ) ≤ exp(−4|Pi|ε), for 1 ≤ i ≤ n. Taking the
natural logarithm of both sides does not disturb the inequality
since ln(·) is monotonic. Thus we obtain the desired result by
multiplying both sides by −1 and flipping the inequality.

Due to linear dependence on graph structure, condition C3
is more tractable than C1. As we discuss later, these conditions
lead to a closed-form lower bound on energy consumption.

It is apparent from these necessary conditions that the lower
bound on energy will depend on the χ function. Intuitively,
when probability of failure of a gate decays faster with its
energy consumption, the total energy consumption of the
circuit should also be lower.



254 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Lemma 3: For physical energy-failure functions χ and for a
given n-input boolean function F with realization graph Gg =
(Vg, Eg),

E ≥ ∣∣Vg
∣∣χ−1

(
1

4 maxi|Pi| ln
1

1− h(δ)

)
, for δ <

1

2
.

Proof: For a given n-input formula F and its corresponding
directed tree Gg = (Vg, Eg), it follows from (6) that

ε ≤ min
i

1

4|Pi| ln
1

1− h(δ)
= 1

4 maxi|Pi| ln
1

1− h(δ)
.

Now as ε = χ(E/|Vg|), and χ−1 is strictly decreasing, ε ≤
1

4 maxi |Pi| ln
1

1−h(δ) implies that for a given formula and Gg,

E ≥ ∣∣Vg
∣∣χ−1

(
1

4 maxi|Pi| ln
1

1− h(δ)

)
.

We also state some combinatorial properties of trees with a
fixed number of leaves, proved in the Appendix, that allow us
to give the main theorem on minimum energy per input bit.

Lemma 4: Among all directed rooted trees with L leaves
and number of children bounded by k, a k-ary balanced tree
has the minimum number of non-leaf nodes.

Lemma 5: Among all directed rooted trees with L leaves
and number of children bounded by k, a k-ary balanced tree
has the minimum depth for the subtree made of non-leaf nodes.

Lemma 6: Among the class of directed rooted trees with
bounded children, the minimum depth and minimum size of
the subtree consisting of non-leaf nodes are monotone in
number of leaves.

Theorem 1: The minimum energy required to realize any
n-input boolean function using a δ-reliable (δ < 1

2 ) formula
of gates with degree no more than k (with k < n), and each
with the common physical energy-failure function χ is

n

k
χ−1

(
ln k

4 ln n
ln

1

1− h(δ)

)
.

Proof: A lower bound on energy consumption over all real-
ization circuits (graphs) and all n-input boolean functions can
be obtained by minimizing the realization-specific bound from
Lemma 3 over all realizations and n-input functions:

E ≥ min
Fn,Gg

∣∣Vg
∣∣χ−1

(
1

4 maxi|Pi| ln
1

1− h(δ)

)

≥
(

min
Fn,Gg

∣∣Vg
∣∣
)

min
Fn,Gg

χ−1
(

1

4 maxi|Pi| ln
1

1− h(δ)

)

=
(

min
Gg : n inputs

∣∣Vg
∣∣
)

min
Gg:n inputs

χ−1
(

1

4 maxi|Pi| ln
1

1− h(δ)

)
,

where the last equality follows because for each formula there
is a gate tree and vice versa.

For a rooted tree G = (V, E), let �(V) and �̄(V) denote the
leaf and non-leaf nodes, respectively. Then, it is clear from the
relationship between bit graphs and gate graphs that �̄(Vb) =
Vg and Eg = Eb ∩ (Vg × Vg).

As Gg has n inputs, the corresponding Gb has at least n
leaves. Thus, one can write

min
Gg:n inputs

∣
∣Vg
∣
∣ = min

Gb:≥n leaves
�̄(Vb).

By Lemma 6 and the fact that adding more constraints only
increases the minimum we have

min
Gb:≥n leaves

�̄(Vb) ≤ min
Gb:n leaves

�̄(Vb).

By Lemma 4, a k-ary Gb achieves the minimum. Now as
there are n leaves, in a k-ary tree there are at most � 1

k n
 nodes
in the level above. In turn, there are at most � 1

k � 1
k n

 in the

level above that and so on. This continues until we have only
one node at the top level. Thus the total number of non-leaf
nodes are lower bounded by � 1

k n
 + � 1
k � 1

k n

 + · · · + 1 ≥ n
k .

This implies that minF,Gg:n inputs |Vg| ≥ n
k .

To bound the other term note that χ−1 is strictly
decreasing, so χ−1( 1

4 maxi |Pi| ln
1

1−h(δ) ) is minimized when
1

4 maxi |Pi| ln
1

1−h(δ) is maximized. This is because ln 1
1−h(δ) ≥ 0,

for δ < 1
2 . Thus when maxi |Pi| is minimized the other term

is also minimized.
As maxi |Pi| is the depth of Gg, by Lemma 5, this minimum

is achieved by a k-ary tree. Now, by Lemma 6 and the relation
between Gb and Gg, the depth of Gg is minimized when the
number of leaves in Gb is minimized. The number of leaves
in Gb is no less than n, as there are n inputs. For a k-ary tree
with n leaves, the depth is at least � ln n

ln k 
 ≥ ln n
ln k . Hence,

E ≥ n

k
χ−1

(
ln

1

1− h(δ)

ln k

4 ln n

)
.

To understand the implications of Theorem 1, let us consider
the simple case where we fix δ ∈ (0, 1

2 ) and k = O(1). Then,
the theorem implies that to realize δ-reliability using gates of
at most k inputs, the minimum energy requirement scales with
number of inputs n as

�

(
nχ−1

(
c(δ, k)

ln n

))
, for some constant c(δ, k).

Typical nanoscale circuits compute functions of large num-
bers n of inputs and so such order scaling is of central
interest. In most practical scenarios (including the conditions
in Theorem 1), χ−1 is strictly decreasing and limε→0 χ

−1 =
∞. Thus, as n→∞, the term χ−1(

c(δ,k)
ln n )→∞. This implies

that the minimum energy requirement per input bit over all
boolean functions increases with number of input bits for any
δ ∈ (0, 1

2 ) and k = O(1).
This contrasts sharply with circuits of noiseless gates, where

there are many n-input functions that can be realized using
O(n) gates. As each gate requires only a constant amount of
energy for its perfect operation, the total energy consumption
is O(n) for these circuits. Hence, as devices and gates become
unreliable there is a price to be paid in terms of the energy
per input bit.

Next, we build a more quantitative understanding of the
scaling of energy per input bit by considering a few relevant
classes of energy-failure dependence functions χ .

B. Energy Bounds for Device Technologies

As discussed before, the energy-failure functions for most
device technologies are either polynomial or stretched expo-
nential. The following lower bounds for polynomial and
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stretched exponential energy-failure dependence follow from
Theorem 1.

Corollary 1: The minimum energy required to realize any
n-input boolean function using gates with maximum k inputs,
k < n, and each with ε = χ(e) is

n

kc
1
β

(
ln

4ε0 ln n

ln k
− ln ln

1

1− h(δ)

) 1
β

when χ(e) = ε0 exp(−ceβ), and

n

k

(
4ε0 ln n

ln k ln 1
1−h(δ)

) 1
β

when χ(e) = ε0
(e+1)β

.
Proof: Since both energy-failure functions are physical,

the result follows by substituting the appropriate χ−1 in
Theorem 1.

When we have a lower bound on χ rather than an exact
functional form, we can still obtain a lower bound on energy
consumption.

Lemma 7: Let energy-failure functions χ1 and χ2 be phys-
ical and χ1(e) ≤ χ2(e) for all e. For gates with χ1 if there
exists no δ-reliable circuit Gg for a formula F with total energy
consumption no more than E, then the same is true for χ2
gates.

Proof: The result follows by noting that if a per-gate energy
e2 in case of χ2 achieves δ-reliability, then by the monotonicity
of χ1 and χ2, the dominance between them, and condi-
tion (6), e2 energy per gate achieves δ-reliability in case of χ1
gates.

Thus, if we have a lower bound on χ , we can find the fun-
damental lower bound on energy consumption. This is useful
when device physics are not tractable and an exact func-
tional form is unknown. Here we use this property to make
an interesting generic observation about a broad class of χ
functions.

Note that the exponential function ε = ε0 exp(−ce) lower
bounds polynomial and stretched exponential functions. Thus,
by Lemma 7, the exponential function can be used to obtain a
lower bound on energy consumption for all sub-exponential
energy-failure functions. Since energy-failure functions for
many devices fall in the sub-exponential class and the expo-
nential energy-failure function is also a fundamental thermo-
dynamic limit for CMOS technologies, we can obtain a generic
bound using exponential functions.

From Corollary 1 it follows that for ε = ε0 exp(−ce), the
energy consumption for computing n-input functions is lower
bounded by

n

ck

(
ln ln n− ln ln k + ln(4ε0)− ln ln

1

1− h(δ)

)
. (7)

As k = O(1) and so is δ, for large n the leading term
is n ln ln n

ck . So, for large n, as long as δ < 1
2 , the minimum

energy requirement scales at least as n ln ln n
ck . This has important

implications.
First, if gates are error-prone and have sub-exponential

energy-failure functions, then to achieve any non-trivial relia-
bility (δ < 1

2 ), the energy requirement per bit of computation

scales at least as c′ ln ln n, and this lower bound on scaling
is independent of the reliability requirement (as long as it is
non-trivial). This means that the reliability requirement is not
the bottleneck in obtaining linear scaling of energy with num-
ber of inputs. Rather, the bottleneck is the sub-exponential
unreliability of the gates.

Second, even if we allow a decreasing reliability require-
ment with increasing input size, it does not help in obtaining
a constant energy consumption per input bit. As long as δn ↑ 1

2
such that h(δn) = 1−ω( 1

n ), the minimum energy requirement
per input bit scales at least as ln ln n, irrespective of the scaling
of δn. This can be seen by substituting h(δn) for h(δ) in (7).
This further implies that the fundamental bottleneck is the
sub-exponential unreliability of the gates, not the reliability
requirement.

V. BOOLEAN TREE CIRCUITS FROM

HETEROGENEOUS GATES

Emerging technologies like spin electronics promise cir-
cuits with gates having different electrical operating points
(and energy levels). Now we determine the minimum energy
required to compute a given n-input boolean function using a
given gate graph if the energy of each gate is tuned separately.

Let F be an n-input boolean function with a gate (realiza-
tion) graph Gg, a directed rooted tree. We allocate energy to
each gate to ensure that the circuit is δ-reliable and is also
energy efficient. Our goal is twofold: to characterize the min-
imum energy required by a circuit realization while having
δ-reliability and to understand the best reliability that can be
achieved for a given energy budget.

Using information propagation we find that to achieve δ-
reliability, for each input bit i, we need:

1− h(δ) ≤ I(Fi(X);X) ≤
∏

g∈Pi

(
1− 2εg

)2
,

where Pi is the path in Gg to the output gate from the gate
to which xi is input. As in the case of uniform gates, this
follows by inductively using (3) and (4) along the depth of
Gg from root to the terminal gate into which xi is an input.
After straightforward algebraic manipulations, the condition
becomes

1

4
ln

1

1− h(δ)
≥
∑

g∈Pi

εg,

where εg = χ(eg) for each g ∈ Vg. We introduce the nota-
tion γ (δ) = 1

4 ln 1
1−h(δ) . Note that as εg ≥ 0, to satisfy the

necessary condition for δ-reliability, we only need to consider
the maximal paths {Pi}, where a path Pi for an input bit i is
maximal if there exists no bit j �= i such that Pi ⊂ Pj. Hence,
the necessary condition for δ-reliability is

γ (δ) ≥
∑

g∈P
εg, for all maximal P . (8)

In a tree Gg, the only maximal paths are the unique root-to-leaf
paths for each leaf node in Gg.
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A. Minimum Energy Requirement

Based on the necessary condition (8), we first determine
the minimum energy requirement for δ-reliable realization of
F using Gg. Consider the following problem,

min
∑

g∈Vg

eg

s.t.
∑

g∈P
εg ≤ γ (δ) for all maximal P,

εg = χ(eg) and eg ≥ 0 ∀g ∈ Vg. (9)

The constraints in this optimization problem are from the
δ-reliability requirements and the objective is the total energy
consumed across gates. Thus, the optimal solution satisfies the
necessary conditions for δ-reliability and is a lower bound on
the total energy required to realize F using Gg.

For physical energy-failure functions, χ has an inverse, 0 ≤
εg = χ(eg) ≤ a, for 0 ≤ eg ≤ ∞. Hence, the problem can be
further simplified by eliminating the energy variable eg,

min
∑

g∈Vg

ψ(εg)

s.t.
∑

g∈P
εg ≤ γ (δ) for all maximal P,

0 ≤ εg ≤ a (10)

where ψ = χ−1. Note that by Lemma 1, ψ is strictly decreas-
ing, convex, and differentiable. Thus, it follows that (10) is a
convex optimization problem [31].

To lower bound energy consumption, one can solve (10)
using a general method like projected gradient descent.
However, it would involve projection onto the intersection
of 2n half-spaces (in R

n) at each iteration, which is com-
putationally intensive for a large circuit. Here, building on
insights from KKT conditions and the structure of (10), we
derive a simple lower-bounding procedure that can be used
for any reasonable target δ. This procedure gives simple
closed-form expressions for certain structured circuits and also
gives rules of thumb for obtaining lower bounds for gen-
eral circuits. Towards that we make certain observations about
problem (10).

First, note that for any δ, there is a finite {eg} that satisfy
the constraints. Hence, the value of the objective is finite for
this {eg}. On the other hand, suppose at the optimum, for some
g, εg = 0. Then by the definition of physical energy-failure
functions we have that ψ(eg) = ∞. This implies an infinite
value of the objective. Hence, at the optimum value, εg > 0
for all g ∈ Vg. Hence, problem (10) remains the same if we
remove the condition εg ≥ 0 for all g.

Second, we claim that if the reliability requirement δ is such
that h(δ) ≤ 1−exp(−4a), then at the optimum of (10), εg < a
for all g ∈ Vg. This follows by noting that at the optimum, the
condition:

∑
g∈P εg ≤ γ (δ) must be satisfied for all maximal

paths P , and by noting that γ (δ) = 1
4 ln 1

1−h(δ) .
Hence, for reliability requirement δ satisfying h(δ) ≤ 1 −

exp(−4a), the bound on energy consumption can be obtained

by solving:

min
∑

g∈Vg

ψ(εg)

s.t.
∑

g∈P
εg ≤ γ (δ) for all maximal P . (11)

This problem is also a convex problem satisfying Slater’s
conditions. So, strong duality holds and the KKT conditions
are necessary and sufficient conditions for optimality. In prac-
tice, a is at least 0.5, as without any energy the gate outputs
a floating binary value at random, which is correct with a
probability at least 0.5. Thus, the condition is equivalent to
h(δ) ≤ 0.865, which is practically reasonable.

The Lagrangian for problem (11) is

∑

g∈Vg

ψ
(
εg
)+

∑

P
νP

⎛

⎝
∑

g∈Pi

εg − γ (δ)
⎞

⎠,

where νP ≥ 0, for all P . The KKT conditions are

νP

⎛

⎝
∑

g∈P
εg − γ (δ)

⎞

⎠ = 0 ∀P,
∑

g∈P
εg ≤ γ (δ) ∀P,

ψ ′
(
εg
)+

∑

P :g∈P
νP = 0 ∀g. (12)

Now, we use structural properties of the gate graph and the
optimization problem to obtain relations among εg values at
the optimum. Consider any node g in the gate graph and its
children g1, g2, . . . , gk. As the gate graph is a tree, any path
Pi that passes through a gl, 1 ≤ l ≤ k, also passes through g
and a path that passes through gl does not pass through gl′ ,
1 ≤ l �= l′ ≤ k. So,

∑
P :g∈P νP =

∑k
l=1

∑
P :gl∈P νP .

This, together with the KKT conditions (12) imply that for
any node g in Gg and its children g1, g2, . . . , gk,

ψ ′
(
εg
) =

k∑

l=1

ψ ′
(
εgl

)
. (13)

We make another observation that will be useful later. We
claim that at the optimum of (11),

∑

g∈P
εg = γ (δ), (14)

for any maximal path P .
To see this, let us assume the contrary so there is a path

P ′ such that
∑

g∈P ′ εg < γ (δ). As Gg is a tree, there is a
leaf node on P ′ through which no other path passes. We can
increase εg for that node until the inequality is matched with
equality. This would result in a decrease in total energy, which
contradicts the optimality of the present energy allocation. So,
condition (14) holds.

The following lemma is useful in deriving the bound on
energy consumption.

Lemma 8: Conditions (13) and (14) are necessary and
sufficient for {εg} to be an optimum of (11).
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Proof: As (11) satisfies Slater’s conditions, KKT conditions
are necessary and sufficient for optimality. So, (13) derived
from KKT conditions is necessary. Necessity of (14) at the
optimum has already been argued. For proving sufficiency,
note that the KKT conditions are sufficient. For each P , νP =
−ψ ′(εgP ) where gP is the leaf gate of the path P . It is easy
to check that for these choices of νP , the KKT conditions are
satisfied, given (13) and (14) are satisfied.

B. Minimum Energy for Device Technologies

Let us consider polynomial and exponential energy-failure
functions, and discuss how our optimality conditions yield
minimum energy requirements for symmetric gate graphs.
Later, we also present a generic procedure to determine the
minimum energy requirement for any tree gate graph and
any physical energy-failure function. Immediate derivatives
of these procedures for obtaining energy lower-bounds are
heuristic schemes for energy allocation in formulas.

An exact energy allocation problem for formulas involves
finding an energy allocation across gates to minimize total
energy consumption while ensuring δ-reliability. Note that the
δ-reliability condition requires that the probability of error
must be no more than δ for each input configuration. Hence,
the exact energy allocation problem would have 2n constraints,
which are, in general, non-convex. The optimization problem
in (10) can be seen as a tractable convex surrogate to this
problem.

1) Polynomial Energy-Failure Function: Consider a poly-
nomial energy-failure function εg = χ(eg) = a

(1+eg)β
. Note

that this function has an inverse eg = ψ(εg) = ( a
εg
)

1
β − 1

that is convex, strictly decreasing and differentiable, ψ ′(εg) =
− 1
β

a
1
β ε

1
β
−1

g . Hence, condition (13) becomes

ε
1
β
−1

g =
k∑

l=1

ε
1
β
−1

gl . (15)

Consider a symmetric k-ary tree of depth d as the gate
graph, i.e., each gate has k inputs. Now, by symmetry and
by condition (14), each gate at depth d must have the same
energy and hence, the same failure probability, say ε at the
optimum of (11). Now, again by symmetry and condition (14),
each gate at depth d−1 must have the same failure probability,
say ε′. By condition (15), we have that

ε′
1
β
−1 = kε

1
β
−1, which implies that ε′ = k

β
1−β ε.

Following this procedure implies that at depth i all the gates
have the same failure probability ε(i):

ε(i) = k
(d−i)β

1−β ε.

Now, by condition (14) it follows that
∑d

i=0 ε(i) = γ (δ),
so we have

ε
1− k̃d+1

1− k̃
= γ (δ),

where k̃ = k
β

1−β < 1. This gives the optimum ε to be

ε∗ =
γ (δ)

(
1− k̃

)

1− k̃d+1
.

So, the minimum energy requirement is given by the total
energy consumed at this optimum allocation:

d∑

i=0

ψ(ε(i))ki =
d∑

i=0

ki

((
a

ε∗k̃d−i

) 1
β − 1

)

=
d∑

i=0

(
kk̃

1
β

)i
k̃
−d
β

( a

ε∗
) 1
β −

d∑

i=0

ki

= �(n),
where the last line follows by noting that kd+1 = �(n).

Observe that in this example of a symmetric circuit with
non-uniform energy allocation, a linear scaling of energy with
the number of inputs is possible. This is in contrast to the
circuits with uniform operating points, where linear scaling is
not possible.

Recall from Section VI-A that any circuit (including ones
with reliable components) with n inputs must have energy scal-
ing at least �(n) since for n inputs, we need at least n

k gates
with each gate consuming �(1) energy. For reliable compo-
nents this is obvious, as the energy consumption per gate is
constant and does not need to be tuned. For circuits with unre-
liable components, if there is a gate that consumes o(1) energy,
then ε = χ(o(1)) for that gate is ω(1). Then, the necessary
condition

∑
g∈P εg ≤ γ (δ) cannot be satisfied for any finite δ

for the maximal path through that gate, when n scales.
Remark 1: For symmetric gate graphs with polynomial

energy-failure functions, we obtain the following rule of thumb
for failure allocation: ε should be geometric along the depth

with a factor k
β

1−β from a layer to the one above. This in turn

gives a rule of thumb for energy allocation: a ratio of k
1

β−1 is
maintained from a layer to the one above for 1+ eg.

2) Exponential Energy-Failure Function: Now consider the
exponential energy-failure function, εg = a exp(−ceg) with
inverse ψ(εg) = − 1

c ln εg
a . Clearly, this function is convex,

strictly decreasing, and differentiable, ψ ′(εg) = − a
cεg

. Thus,
condition (13) becomes

1

εg
=

k∑

l=1

1

εgl

. (16)

If we consider the same symmetrical k-ary tree as the gate
graph, for gates at depth i and i+1 we have ε(i) = 1

k ε(i+1),
following the same approach as for polynomial energy-failure
functions. Further following the same steps, we obtain

ε∗ =
γ (δ)

(
1− 1

k

)

1− 1
kd+1

. (17)

The rest of the derivation of the lower bound follows by
replacing k̃ in Section V-B1 by 1

k and ψ(εg) = − 1
c ln εg

a .
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Algorithm 1 Minimum Energy Allocation
Input: γ (δ)
Initialize: ∀g, εg = 0, ε̄g = 1, γ = γ (δ)
Parameters: 0 < η � 1

1: Call SUBTREEALLOC(γ (δ),Gg).
2: Allocate ψ(εg) energy to gate g

Minimum energy consumption is given by

1

c

∑

i

ki ln
akd−i

ε∗
= 1

c

∑

i

⎛

⎝(d − i)ki ln k + ki ln
a
(

1− 1
kd+1

)

γ (δ)
(

1− 1
k

)

⎞

⎠

= �(n).
Notice that the energy allocations for gates at depth i and

i + 1 follow exp(−c(e(i) − e(i + 1))) = 1
k , implying e(i) =

e(i+ 1)+ 1
c ln k.

Remark 2: For exponential energy-failure function and
symmetric gate graph, though the rule of thumb of ε allo-
cation is geometric upwards in the tree (with a factor k), the
energy allocation is additive with a factor proportional to ln k.

3) Generic Procedure: In general, a numerical value for the
minimum energy requirement can be obtained by solving the
convex optimization problem (11) directly for a given δ. This
gives an allocation {εg} and an energy allocation {eg}. Note
this is only a heuristic energy allocation procedure rather than
a provably optimum one, as (11) only gives necessary condi-
tions to achieve δ-reliability. Though, note no energy allocation
scheme can have δ-reliability with a total energy less than the
optimum of (11).

Alg. 1 gives a procedure based on the optimality condi-
tions (13) and (14), which is computationally simpler than
solving (11) using a generic convex optimization algorithm.

Let us define P(Subtree, g) as the sum of εg along any path
from root of the subtree to a leaf through g. Let S(g) be the
sibling nodes of g in the gate graph and subtree(g) be the
subtree rooted at g.

This algorithm starts by allocating some ε to the nodes
at lowest depth that are siblings and tunes ε according to a
binary search while adjusting ε values of other nodes accord-
ing to conditions (13) and (14). For any allocations of ε values
to the children of a node, it uses condition (13) to obtain
the allocation of their parent. Note that solving (13) is the
same as solving the one-dimensional unconstrained convex
optimization problem in Step 10 of SUBTREEALLOC. Since
ψ is convex, the optimality condition for Step 10 is equiv-
alent to the derivative being 0, which is the same as (13).
We write Step 10 in this fashion to show that (13) is eas-
ily solvable, given the ε values of child nodes. When a node
has been allocated an ε, then one can enforce conditions on
ε values of other sibling nodes using (14). The sub-routine
SUBTREEALLOC carries out this procedure recursively.

Proposition 1: Alg. 1 reaches the optimum of (11) in
O(|Vg| Q log 1

η
) steps, where Q is the number of steps required

to solve the one-dimensional convex optimization problem in
Step 10 of SUBTREEALLOC.

Proof: We build on Lemma 8. Note that at the optimum
of (11), conditions (13) and (14) are satisfied with path sums

Algorithm 2 SUBTREEALLOC(γ ,Subtree(root))
1: Among nodes at maximum depth pick g with smallest

index
2: Assign εg = εg+ε̄g

2 to g
3: while |P(Subtree, g)− γ | > ηγ do
4: if P(Subtree, g)− γ > γη then
5: ε̄g ← εg
6: else
7: εg ← εg
8: end if
9: Assign εg = εg+ε̄g

2 to g
10: For g′, where g ∈ child(g′): εg′ ←

arg minε
(
ψ(ε)− ε∑g∈child(g′) ψ

′(εg)
)

11: for v ∈ S(g′) (in numerical order) do
12: SUBTREEALLOC(P(Subtree(g), g)),Subtree(v))
13: end for
14: end while
15: For all u ∈ S(g), reset εu = 0, ε̄u = 1, but keep εu

being γ (δ). Conditions (13) and (14) constrain failure val-
ues of all nodes while leaving only one free parameter. This
implies that if the conditions (13) and (14) are enforced, then
for a given choice of ε for a leaf node at the maximum depth,
failure values of all other nodes become fixed (as a function
of ε). Thus it is then sufficient to do a binary search over ε.
The algorithm does exactly that.

At the end of the algorithm, conditions (13) and (14) are
satisfied with path sum being γ (δ) from any leaf node. As
this is a necessary and sufficient condition for optimality, the
algorithm output is optimal.

The complexity result follows because for a given value
of ε on a leaf node, one has to iterate through all nodes and
enforce conditions (13) and (14), which takes O(|Vg|) time. In
addition, in each iteration, solving the optimization problem
in Step 10 takes Q queries. As we have to do binary search
for ε up to an accuracy η, the log 1

η
factor follows.

C. Maximum Reliability

Let us consider the case where there is a given energy bud-
get E for the whole circuit. Then, the necessary condition for
δ-reliability is

∑

g∈P
εg ≤ γ (δ) for all maximal P,

∑

g∈Gg

eg ≤ E,

εg = χ
(
eg
)

and eg ≥ 0 ∀g, (18)

We aim to determine the maximum reliability achievable for
a given circuit energy budget, using the following optimization
problem.

min y

s.t.
∑

g∈P
εg − y ≤ 0, for all maximal P,

∑

g

ψ
(
εg
) ≤ E,

0 ≤ εg ≤ a ∀g ∈ Vg. (19)
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Let ymin(E) be the solution of problem (19). Note that
γ : [0, 1

2 ] → [0,∞) is a strictly increasing function of
δ on [0, 1

2 ] and is bijective, with an inverse that is also
strictly increasing. This implies γ−1(ymin(E)) is the minimum
δ for which a feasible {eg} exists that satisfies the necessary
conditions.

Note that the optimum is strictly decreasing with increasing
E. To see this, consider E′ > E, then the optimal solution for
budget E is a feasible solution for the problem with budget E′.
Now use this allocation with additional E′−E

|Vg| energy per gate.
This is a feasible solution for the problem with budget E′. This
feasible solution gives a y value strictly less than ymin(E), as
χ is strictly decreasing. Hence, ymin(E′) < ymin(E). Also, as
E→∞, ymin(E)→ 0. This is easy to see by picking εg = E

|Vg|
for all g, and noting that

∑
g∈P εg ≤ χ( E

|Vg| )maxP |P| → 0
as E→∞. Thus the optimum solution of (19), ymin(E) goes
to 0 as E→∞.

By properties of physical energy-failure functions, namely
χ(eg)→ 0 as eg → ∞ and χ strictly decreasing, the condi-
tions 0 ≤ εg are redundant for any finite energy budget. Also,
as ymin(E) → 0 when E → ∞, there exists Eθ such that for
all E ≥ Eθ , ymin(E) < a. Thus, for E ≥ Eθ , εg < a for all g
are redundant conditions.

There is no closed-form expression for Eθ , but is straight-
forward to compute. For a given budget E, let the optimal
solution of (20) be y∗; then E is the optimal solution of (11)
for γ (δ) = y∗. This is proven by contradiction. Note that the
optimal solution of (20) is a feasible solution of (11). Now, if
for a given γ (δ) = y∗, the optimal solution of (11) is strictly
less than E, then we can divide the excess energy (E minus
the minimum) among all gates to improve y∗ in (20), which is
a contradiction. This implies that to compute Eθ we can run
Alg. 1 for γ (δ) = a.

Now we focus on maximum reliability for an energy bud-
get E ≥ Eθ , as in most cases a = 0.5 and γ (δ) < 0.5 is
a bare-minimum reliability requirement. So, we consider the
following problem.

min y

s.t.
∑

g∈P
εg − y ≤ 0, for all maximal P,

∑

g

ψ
(
εg
) ≤ E. (20)

By convexity of ψ , this is a convex program. As for
minimum energy allocation, we find KKT conditions for suf-
ficiency of optimality. The conditions are: for λP ≥ 0 and
μ ≥ 0,

∑

P
λP = 1

∑

P :g∈Pi

λP + μψ ′
(
εg
) = 0,

μ

⎛

⎝
∑

g∈Vg

ψ
(
εg
)− E

⎞

⎠ = 0,

λP

⎛

⎝
∑

g∈P
εg − y

⎞

⎠ = 0.

The following conditions are more useful as they do not
involve dual variables.

ψ ′
(
εg
) =

k∑

l=1

ψ ′
(
εgl

)
. (21)

∑

g∈P
εg = ymin(E), (22)

∑

g

ψ
(
εg
) = E, (23)

for any maximal path P from a leaf to the root.
Lemma 9: Conditions (21)–(23) are necessary and suffi-

cient for the optimality of (20).
Proof: Necessity of (21) follows from the necessity of KKT

conditions.
Necessity of (22) follows because at the optimum, path-

sums of ε along all maximal paths must match. Otherwise,
there is a path P for which an ε path-sum is smaller. Then
one can take a little energy from the leaf gate in that path and
distribute it equally among leaf gates of all other paths. One
can choose the amount to be arbitrarily small such that this
reallocation of energy: (a) decreases path-sums of all paths
other than P , (b) increases the path-sum of P , and (c) keeps
the path-sum of P as the smallest. This strictly decreases y,
which contradicts the optimality of the current allocation.

Necessity of (23) follows because if there is a strict inequal-
ity, we can always distribute the remaining energy to the gates
and decrease ε of each gate, resulting in a decrease in y. This
is contrary to optimality.

For sufficiency of (21)–(23), take λP = ψ ′(εgP )∑
P ψ ′(εgP )

, where

gP is the leaf of P and take μ = − 1∑
P ψ ′(εgP )

. Then, it is
straightforward to verify these λP and μ values satisfy the
KKT conditions.

To derive the best reliability achievable for a given energy
budget, we can use the same approach. First, for a given ε
at the maximum depth, find ε for all other nodes using (21)
and (22), and then using

∑
g χ(εg) = E, obtain ε at the max-

imum depth. This eventually yields the sum of εg along any
path, and therefore ymin(E).

D. Maximum Reliability for Device Technologies

1) Polynomial Energy-Failure Function: By the same sym-
metry arguments as before, gates at the same depth must have
the same failure probabilities. Also, by conditions (21)–(22):
ε(i) = k̃ε(i+1). So, if the failure probability at depth i is ε(i)
and the energy budget is E, then we must have

E =
d∑

i=0

ψ(ε(i))ki

=
d∑

i=0

ki

((
a

ε(d)k̃d−i

) 1
β − 1

)
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=
d∑

i=0

(
kk̃

1
β

)i
k̃
−d
β

(
a

ε(d)

) 1
β −

d∑

i=0

ki

= ε(d)− 1
β

d∑

i=0

(
kk̃

1
β

)i
k̃
−d
β a

1
β −

d∑

i=0

ki,

which gives ε(d) in terms of E.
The best δ that can be achieved is

γ−1

(
d∑

i=0

ε(i)

)

= γ−1

(

ε(d)
1− k̃d+1

1− k̃

)

.

2) Exponential Energy-Failure Function: Following the
same steps as in the case of polynomial energy-failure func-
tions we obtain a similar expression for ε(d) in terms
of E,

E =
d∑

i=0

ki 1

c
ln

a

ε(i)

= 1

c

d∑

i=0

ki
(

ln
a

kd−i
− ln ε(d)

)
,

which implies

ε(d) = exp

(

−cE −∑d
i=0 ki ln a

kd−i
∑d

i=0 ki

)

and

γ (δ) = ε(d)1− 1
kd+1

1− 1
k

.

3) General Procedure: A general procedure of energy allo-
cation can be obtained by solving convex program (20).
As in minimum energy allocation, a computationally simpler
approach would be to use the necessary and sufficient KKT
conditions. We, however, design Alg. 3 to use minimum energy
allocation as a sub-routine. Similar correctness and complexity
results hold with an additional multiplicative factor of log 1

θ
in

the computational complexity, where θ is the energy budget
accuracy (1± θ)E.

The following lemma is useful in proving the accuracy of
Alg. 3.

Lemma 10: For a given energy budget E, ymin is the opti-
mum of (20) if and only if for a given reliability requirement
γ (δ) = ymin, E is the optimum of (11).

Proof: As argued before, recall that for a physical energy-
failure function, ymin(E) is a strictly decreasing function of E,
ymin:[0,∞) �→ [0,∞], which is one-to-one and onto.

We start with the direct part. As E meets γ (δ) reliability
requirement in (11) for an allocation of εg, in (20) this εg

allocation meets the budget E while achieving a γ (δ) relia-
bility. So, ymin(E) ≤ γ (δ). Let ymin(E) < γ (δ), then we can
take away some energy from some gates in the circuit, so that
their εg increases and

∑
g∈P εg = γ (δ) for all maximal P .

This implies that the total energy used is less than E while
achieving γ (δ) reliability, which is a contradiction.

The converse follows similarly by starting with an allocation
that achieves maximum reliability ymin(E) for a given budget E
and showing E is the minimum energy requirement for a given
reliability criteria γ (δ) = ymin(E). Proof follows similarly by

Algorithm 3 Maximum Reliability Allocation
Input: E
Initialize: ∀g, εg = 0, ε̄g = 1, γ = γ (δ)
Parameters: 0 < η � 1, 0 < θ �
1

1: δ = 0, δ̄ = 1, δ = 1
2 .

2: while |∑g ψ(εg)− E| > θE do
3: if

∑
g ψ(εg)− E > θE then

4: δ← δ
5: else
6: δ̄← δ
7: end if
8: δ = δ+δ̄

2
9: Call SUBTREEALLOC(γ (δ),Gg)

10: end while
11: Allocate ψ(εg) energy to gate g

showing an inequality, and then showing that a strict inequality
is a contradiction.

Based on Lemma 10, in Alg. 3 we do a binary search over δ
to find the minimum δ for which minimum energy allocation
obtained is E.

Proposition 2: Alg. 3 reaches the optimum of (20) in
O(|Vg| Q log 1

η
) steps for a given θ if E ≥ Eθ , where Q

is the number of steps required to solve the one-dimensional
convex optimization problem in Step 10 of SUBTREEALLOC.

Proof: There is a unique δ for an energy budget by
Lemma 10, so it is sufficient to search over all δ to find a δ for
which E is the minimum energy requirement. Hence, doing a
binary search for δ and running the minimum energy procedure
for each δ converges to the correct reliability requirement.

Complexity guarantees follow from similar results for the
minimum energy procedure. Here we perform an additional
binary search for δ, but since it is over [0, 1], this search
takes O(1) iterations which is included in the constants in
the complexity order result.

Note that the energy allocation rules in this section are
derived from necessary conditions for δ-reliability. Hence,
they are heuristics for achieving δ-reliability. But, as they are
derived based on the necessary conditions, no energy alloca-
tion scheme can achieve a better energy consumption (for a
given reliability) or reliability (for a given energy budget) than
the bounds obtained by these allocation schemes.

VI. FEEDFORWARD NEURAL NETWORKS

Now we extend the mutual information propagation tech-
nique from tree-structured circuits to directed acyclic graphs,
to study binary feedforward neural networks. Recall the basic
problem formulation from Section II-B. Though we restrict
to single-output neural networks, most results in the sequel
can be extended to neural networks with multiple outputs by
appropriately modifying the definition of δ-reliability.

We give a preliminary lemma before pursuing more general
insight. Consider the setting of neural networks where neurons
in a given layer have the same operating point.

Lemma 11: For an L-layer neural network with n inputs, a
single output, and the same failure probabilities for all neurons
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in a layer:

1− h(δ) ≤
∑

P∈Pg

∏

g∈P

(
1− 2εg

)2
,

for all g ∈ N1 (the input layer), where Pg is the set of directed
paths from g ∈ N1 to the output.

Proof: Proof follows using the proof of a similar result for
a circuit with uniform ε in [24].

As neurons in the same layer must have the same energy, let
e(�) denote the energy of a neuron in layer � and let the failure
probability of a neuron in layer � be denoted ε(�) = χ(e(�)).
Then, by simple substitution, the condition becomes

1− h(δ) ≤ ∣∣Pg
∣
∣

L∏

�=1

(
1− 2ε(�)

)2
, (24)

for all g ∈ N1. The condition can also be written as

1− h(δ) ≤
(

min
g∈N1

∣∣Pg
∣∣
) L∏

�=1

(
1− 2ε(�)

)2
. (25)

Taking natural logarithms of both sides and using the
inequality 1 − x ≤ exp(−x), the necessary condition for
δ-reliability becomes:

ln
1

1− h(δ)
≥ 4

∑

l

ε(�) − min
g∈N1

ln
∣∣Pg

∣∣. (26)

A. Homogeneous Neurons

As discussed in Section I, there are two hardware-
determined technological possibilities for energy allocation
to neurons: either all neurons must be operated at the same
energy level or they can be operated at different energy levels.
In this section, we consider the setting where all neurons are
operated at the same energy level. We want to understand the
implication of a prescribed δ-reliability of the neural network
on its energy consumption in the regime where L is large, i.e.,
the neural network is deep.

For an L-layer neural network with an underlying directed
graph G, let us define πG(L) = ming∈N1 |Pg|. From (24), for
uniform neuron operating points, we have:

1− h(δ) ≤ πG(L)(1− 2ε)2L. (27)

The total energy consumed by the network is ψ(ε)
∑

l N�.
Hence, for a neural network with uniform energy allocation, a
universal lower bound for energy consumption is O(

∑
� N�).

Note that there is also linear scaling in the absence of fail-
ures. Thus our universal lower bound is order-optimal, in the
sense of scaling with the size of the network up to a con-
stant independent of network size and depth. To achieve this
order-optimal scaling of neural network energy consumption,
neuron failure probability ε must be a constant independent
of L and

∑
� N�.

If ε is a constant then (1 − 2ε)2L goes to 0 exponentially
with L. Hence, to meet any non-trivial (δ < 1

2 ) δ-reliability
constraint, we must have

πG(L) ≥ 1− h(δ)

(1− 2ε)2L
. (28)

So, a necessary condition for order-optimal (linear) energy
scaling with a per-neuron energy consumption eG, i.e., for
energy consumption scaling as eG

∑
� N�, a necessary condi-

tion is that πG(L) must grow exponentially with L with an
exponent dG = 1/(1 − 2χ(eg))

2. This poses the following
constraint on the structure of the deep neural network. There
must be exponentially many paths, dL

G, from each neuron at
the input layer to the output neuron. This implies that if con-
nectivity between any two of the L − 2 ≈ L adjacent hidden
layers are similar and they are regular, then each hidden neu-
ron must have a degree dG connectivity to both of its adjacent
layers.

Remark 3: Consider a deep neural network of faulty neu-
rons with uniform connectivity across all adjacent hidden
layers. Then a linear (in per layer size) number of edges
between any two adjacent layers is necessary for reliability
of the network.

To gain further insights on structural properties of reliable
neural networks constructed from faulty neurons, let us tem-
porarily restrict attention to the class of uniformly-noisy neural
networks with L layers and r neurons in each hidden layer,
such that all hidden neurons have d directed edges to the next
layer. We want to understand the minimum energy required for
networks in the class to be able to compute δ-reliably, where
the minimum is taken over all n-input boolean functions from
{0, 1}n to {0, 1} that can be computed using this class of neural
networks.

Since there are r neurons in each hidden layer and the error
probability of each neuron is ε, then for large L the total energy
consumed by the network is (L− 2) r · ψ(ε) ≈ L r · ψ(ε).

To obtain the minimum energy bound, we compute the min-
imum of this quantity subject to the necessary δ-reliability
constraint in (27). Replacing πG(L) by dL yields a lower bound
on the minimum energy consumption. This enumeration arises
from the maximum number of paths possible from an input
neuron to the output neuron if all the adjacent hidden layers
are fully connected, which gives dL paths.

To satisfy (27), we need ε ≤ 1
2 (1− 1/

√
d), as for large L,

for any non-trivial constant δ, the term (ln 1
1−h(δ) )

1
L is 1. So,

the minimum energy consumed within the class of uniform
and regular neural networks with L layers scales as ≈ L r ·
ψ( 1

2 (1− 1√
d
)).

Hence, the minimum energy consumption lower bound is
linear in the number of hidden layers and the scaling constant
depends on the particular energy-failure function, connectivity
between layers, and the number of neurons in each layer.

Consider the exponential energy failure function εg =
a exp(−ceg), then ψ(ε) = 1

c ln a
ε
. In this case the energy scal-

ing is linear with the size of the network (≈ L · r) and the
constant is 1

c ln 2a
√

d√
d−1

.

B. Heterogeneous Neurons

Next we investigate the setting with flexible hardware
technologies, with neurons that may have different energy
operating points. In particular, consider the case where neu-
rons in the same layer have the same energy operating points,
but the operating points may differ across layers. The total
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energy consumption of this network is
∑
� N�ψ(ε(�)). We aim

for a lower bound on the total energy needed for δ-reliability.
As (26) is a necessary condition for δ-reliability, the solution

to the following optimization problem gives an energy lower
bound.

min
ε(�),1≤�≤L

∑

�

N�ψ(ε
(�))

s.t.
∑

�

ε(�) ≤ γ (δ),

0 ≤ ε(�) ≤ 1 for all �, (29)

where γ (δ) = 1
4 (ln

1
1−h(δ) + lnπG(L)).

For any energy-failure function χ for which
limε→0 χ

−1(ε) = ∞, the constraint on non-negativity
of ε(�) is redundant. So the Lagrangian of this problem is:

∑

�

N�ψ
(
ε(�)

)
+ λ

(
∑

�

ε(�) − γ (δ)
)

+
∑

�

ν�ε
(�) −

∑

�

ν�,

for λ ≥ 0 and ν� ≥ 0 for all �.
KKT conditions for this problem are:

N�ψ
′(ε(�)

)
= −λ− ν� for all �,

λ

(
∑

�

ε(�) − γ
)

= 0,

ν�(ε − 1) = 0, ν� ≥ 0 for all �,∑

�

ε(�) ≤ γ,

λ ≥ 0.

First we argue that at optimum
∑
� ε
(�) = γ . Otherwise,

one can always increase some ε(�) to meet the inequality with
equality and also simultaneously reduce the energy consump-
tion. This implies that λ is not constrained to be 0. Now, as
ψ is strictly decreasing, ψ ′ > 0 for all ε, and hence λ > 0.
So, we have

N1ψ
′(ε(1)

)
+ ν1 = N2ψ

′(ε(2)
)
+ ν2

...

= NLψ
′(ε(L)

)
+ νL. (30)

If optimization problem (29) has parameter γ (δ), which
depends on δ and G, and an energy-failure function χ such
that ε(�) < 1 for all �, then there is a simple relation at the
optimum that can be used to compute {ε(�)}:

N1ψ
′(ε(1)

)
= N2ψ

′(ε(2)
)
= · · · = NLψ

′(ε(L)
)
, (31)

as ν� = 0 for all � under this condition.
Note that if we remove the constraints ε(�) ≤ 1 from (29)

and obtain an optimum in [0, 1)L for that relaxed problem,
then that is also the optimum of (29). Hence, if we use the
relation in (31) and obtain a solution in [0, 1)L, then that is
the optimum solution of (29).

Let us consider some specific energy-failure functions. For a
polynomial energy-failure function χ(eg) = a/(1+ eg)

β , β >

1, under G and δ for which (31) is the optimality condition,

we have N�(ε(�))
1
β
−1 = N�+1(ε

(�+1))
1
β
−1, which implies

ε(�+1) = ε(�)
(

N�
N�+1

) β
1−β
.

Similarly, for exponential energy-failure function χ(eg) =
a exp(−ceg), the condition is N�/ε(�) = N�+1/ε

(�+1), which
implies ε(�+1) = N�+1

N�
ε(�).

In these cases, the minimum energy consumption bound
follows by choosing a variable ε for layer L, which is the
output layer and has one neuron. Then following the relation
in (31), ε(�), � ≤ L− 1 can be obtained in terms of ε and can
solve the equation

∑
� ε
(�) = γ to obtain ε. After substituting

the value of ε and those of ε(�), obtained from the value of ε,
into the objective of (29) the energy bound follows.

Consider an exponential energy-failure function, first assum-
ing at optimum ε(�) < 1, i.e., ν� = 0 for all �. Let ε(�) = ε,
then ε(�) = εN�, as N� = 1 and hence, ε(1+∑l≤L−1 N�) = γ ,
which implies ε = γ /∑� N�. The minimum energy bound for
exponential energy-failure function is therefore:

1

c

∑

�

N� ln
a
∑
� N�

γN�

= 1

c

∑

�

N� ln

∑
� N�
N�

+ 1

c
ln

a

γ

∑

�

N�

= 1

c

∑

�

N� ln
N

N�
+ 1

c
ln

a

γ

(
∑

�

N�

)

,

where N is the total number of neurons. For a non-trivial
constant δ < 1/2, γ is almost independent of δ if πG(L)
grows sufficiently fast with L. In that case the energy lower
bound depends only on the structure of the neural network,
reemphasizing the importance of the neural graph structure in
reliability.

Let us restrict attention to the class of deep neural networks
made of regularly connected hidden layers as in Section VI-A.
We obtain a lower bound on the energy consumption for
non-uniform operating points across the layers. To compute a
closed-form lower bound on energy, we need to use the sim-
ple relation among {ε(�)} that has been derived above under
the condition that the optimum is in [0, 1)L. For this class
of networks, N� = r and

∑
� N� = (L − 1)r + 1. Hence,

ε = γ
(L−1)r+1 and ε(�) ≈ γ

L−1 for large L. Note that if γ < L−1
then the obtained {ε(�)} are in [0, 1)L and hence are the optima
of (29).

Note that if ln d < 4, then for large L we have γ < L−1 and
hence {ε(�)} solutions obtained from (31) are optimal for (29).
So, the energy lower bound is

1

c
N ln L− 1

c
N(ln L+ ln ln d)+ 1

c
N ln 4a = 1

c
N ln

4a

ln d
.

As ln d < 4, for a = 1, i.e., the neuron surely fails at zero
energy, the energy lower bound scales linearly in the size of the
network, and the scaling constant is 1

c ln 4
ln d . By comparison

with the bound in Section VI-A for uniform operating point
and the same energy-failure function, it follows that the energy
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Fig. 1. Tree and line circuit structures.

bound for non-uniform operating points scales linearly with
number of neurons with a strictly smaller constant.

Conditions on G and γ under which (30) is equivalent
to (31) also imply that the energy (or failure probability) allo-
cations at the optimum of (29) have a simple relation across
layers. As (26) is a necessary condition for δ-reliability and
not a sufficient condition, the solution of (29) cannot be proved
to achieve δ-reliability. Nevertheless, the solution gives a fea-
sible energy allocation of the neural network which can serve
as a design heuristic.

VII. NUMERICAL EXAMPLES AND PRACTICAL INSIGHTS

In previous sections, we obtained a heuristic for energy
allocation en route to bounding reliability. In this section
we numerically characterize the performance of the heuris-
tics in simple settings. As this work is primarily con-
cerned with obtaining fundamental energy-reliability bounds,
a detailed study of energy allocation methods is out of scope.
Complementary work details practical applications in circuit
design [8].

For the purpose of our simple numerical studies, we
consider three different boolean functions widely used in
information theory and computer science: conjunction, dis-
junction, and parity. We study circuits constructed with AND
gates for conjunction, circuits constructed with OR gates
for disjunction, and circuits constructed with XOR gates for
parity. In all cases we consider 2-input gates with exponen-
tial energy-failure functions, the fundamental thermodynamic
bound for CMOS devices [17].

A conjunction circuit is constructed with AND gates in two
main ways: line graph and symmetric tree, as in Fig. 1. The
same is true for disjunction circuit constructed with OR gates
and parity circuits constructed with XOR gates. We study reli-
ability of both configurations for each of these three types of
circuits, under the heuristic energy allocation schemes. Though
the energy allocation scheme is applicable to any n-input
boolean function, in this section we restrict ourselves to 4-
input boolean functions. Small circuits are insightful since we
can compute and precisely evaluate closed-form expressions
for reliability.

For the exponential energy-failure function
ε = ε0 exp(−ceg), in most cases ε0 = 0.5, as the out-
put is perfectly random when no energy is allocated to the
gate. Here we study the reliability of the circuits for a given
energy budget, E ≥ ∑

g eg. For convenience we specify the
budget in terms of cE such that cE ≥∑g(ceg) =∑g ln ε0

εg
.

Fig. 2. Energy allocation and worst-case error entropy.

Note that though the heuristic depends on the circuit struc-
ture, it is not affected by the types of gates. Hence, the heuristic
energy allocation is same for conjunction, disjunction, and par-
ity. For the line circuit, it is not hard to see that the heuristic
allocation rule gives uniform energy allocation. On the other
hand, for tree circuits, the heuristic allocation gives different
energies to the gates. In Fig. 2(a) we plot the energy allocated
to each gate (ceg) for different energy budgets (cE). Note that
under the heuristic scheme, the output gate (gate 3) is allocated
more energy to increase its reliability.

As discussed before, δ-reliability is equivalent to worst-case
(across all input patterns) error entropy, h(δ) (for δ ≤ 0.5).
Fig. 2(b) plots the limit of worst-case error entropy against
different energy budgets. We observe that the tree graph has
a better worst-case entropy bound than the line graph.

Next, we study the individual boolean functions separately.
The performance measure we choose is conditional error
entropy, H(E|X1,X2, . . . ,Xn), where E is the binary error
variable and {Xi} are binary input variables, as this also cap-
tures the effects of inputs on the error entropy. For each
boolean function, we compute closed-form expressions for
H(E|X1,X2, . . . ,Xn) for both tree and line graphs in terms of
εg for each gate. Then, we evaluate these omitted expressions
for each energy (and hence εg) allocation. For each boolean
function, we study conditional error entropy for line graph
under the heuristic allocation, for tree under the heuristic allo-
cation, and for tree under uniform energy allocation. Note that
the heuristic allocation is uniform for line graph.
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Fig. 3. Conditional error entropy performance under heuristic allocation.

Fig. 3(a) plots the conditional error entropy again energy
budget for conjunction. We observe that the tree graph with
heuristic energy allocation performs better than line graph
with heuristic energy allocation (uniform allocation). We also
observe that tree graph with uniform energy allocation has a
better error performance than line graph. For conjunction, a
tree graph is more reliable than a line graph.

But the same argument is not true for disjunction. In
Fig. 3(b) we see that tree graph with uniform energy alloca-
tion has a worse error performance than line graph. But, tree
graph with heuristic energy allocation performs better than line
graph with heuristic energy allocation. In both conjunction and
disjunction circuits we observe that the heuristic energy alloca-
tion for tree graphs perform better (by 15–18%) than uniform
energy allocation.

But, this does not mean that the heuristic allocation is
uniformly best. One shortcoming of this heuristic energy allo-
cation is that it optimizes a necessary condition for δ-reliability
while ignoring the truth table of individual gates. This is
reflected in case of parity circuits in Fig. 3(c). Notice that
the error probabilities are the same for both tree and line
graphs. If we consider each gate to be a gate plus an indepen-
dent Bernoulli noise, then error happens if an odd number of
gates have Bernoulli noise 1. This is true irrespective of circuit
structure. Thus all gates are equally critical for reliable real-
ization of this boolean function and uniform energy allocation
is optimal. In summary, the energy allocation heuristic that
emerges from bounding fundamental energy-reliability limits
may or may not be effective.

To study the implications of our energy allocation insights
in the neural network setting, in work presented else-
where [26], we made predictions about mammalian sensory
cortex, under the optimization approach to theoretical biol-
ogy. Experimentally-testable hypotheses were consistent with
experimental observations, in the sense that different aspects
of neural connectivity, reliability, and energy are all matched
to one another as predicted.

VIII. CONCLUSION AND FUTURE WORK

Given deep neural networks at the application layer and
nanoscale devices at the physical layer are both emerging
technologies, there is a desire to implement one on the other
for on-device inference. In pursuing this vision, we need to
understand the effect nanoscale device unreliability has on
the energy and performance of neural networks. Our scaling
bounds for energy consumption led to insights into the struc-
tural and connectivity requirements of reliable neural networks
and also offered design heuristics.

As part of this investigation, we obtained a lower bound on
the minimum energy needed to compute an n-input boolean
function using unreliable gates. We observed that a superlinear
scaling of energy with the number of input bits is unavoidable
for sub-exponential energy-failure functions, irrespective of
the reliability requirement, when gates are constrained to have
uniform operating points. Contrarily, when gates are allowed to
have different operating points, minimum energy requirements
for polynomial and exponential energy-failure functions and
symmetric circuits demonstrate that the lower bound is linear
in the number of inputs. This argues for the value of emerg-
ing device technologies that allow variable gate operations.
For general circuits and energy-failure functions, we proposed
an algorithm that can numerically compute the lower bound
in linear time. This procedure also gives a heuristic to allo-
cate energy to different gates. The heuristic energy allocation
is generic irrespective of the constituent gate types and opti-
mizes the necessary conditions for δ-reliability. The scheme
is computationally simple and may perform well in several
settings.

As future work, we aim to develop provably optimal
energy allocation schemes with uniform performance guaran-
tees for general circuits. This work has followed the worst-
case reliability paradigm of von Neumann for logic circuits,
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but future work aims to investigate average-case reliability
requirements.

APPENDIX

Proof of Lemma 1: First, we use standard arguments from
real analysis to establish χ has an inverse that is one-to-one
and strictly decreasing. Since χ is strictly decreasing, it is
one-to-one. Otherwise there would be an e1 < e2, such that
χ(e1) = χ(e2). From differentiability and therefore continuity
of χ , it also follows that χ is onto.

Let 0 < ε < a be such that there is no eg > 0 with χ(eg) =
ε and we show a contradiction. As the function is decreasing,
there exists an e such that χ(x) < ε for all x > eg and χ(x) > ε

for all x < eg. Consider limx↑eg χ(x) and limx↓eg χ(x). For
any sequence {xk} ↑ eg, {χ(xk)} is monotonic and bounded,
so limk χ(xk) exists and is finite. Similarly, this is true for
xk ↓ eg and limk χ(xk). As χ is continuous these two limits
match and must equal χ(eg). But as χ(x) < ε < χ(x′) for
x > eg > x′, the only possible limit is ε. So, χ(eg) = ε. This
implies that χ : (0,∞)→ (0, a) is onto. So, an inverse exists
for one-to-one and onto χ .

To see that χ−1 is strictly decreasing, let 0 < ε1 < ε2 < a.
Now, there exists e1 and e2 such that ei = χ−1(εi), i ∈ {1, 2}.
We show that e1 ≤ e2 is not possible. Let e1 ≤ e2, then by
the strictly decreasing property of χ , χ(e1) ≥ χ(e2), implying
ε1 ≥ ε2, which is contradictory.

Note that the derivative of χ−1 at a value ε is 1 by the
derivative of χ at the value χ−1(ε), if it is defined. As χ is
strictly decreasing, at no point the derivative of χ is 0, and
hence, χ−1 is differentiable.

Without loss of generality let e1 > e2, so ε1 = χ(e1) <

ε2χ(e2), then for α ∈ [0, 1],

χ−1(αε1 + (1− α)ε2) = χ−1(αχ(e1)+ (1− α)χ(e2))

(a)≤ χ−1(χ(αe1 + (1− α)e2))

= αe1 + (1− α)e2

= αχ−1(ε1)+ (1− α)χ−1(ε2), (32)

where (a) follows because χ−1 is decreasing and χ is convex.
This proves convexity of χ−1.

Proof of Lemma 4: A directed rooted tree is a structure
where directed lines originate from leaves and are eventually
merged at the root node. Each non-leaf node merges lines
coming from the level below it. Thus there are L lines to be
merged.

As each node can have at most k children, each non-leaf
node can merge at most k lines. Each non-leaf node can be
thought of as a gadget/entity which can take at most k lines
as input and outputs one merged line. Consider any structure
of the non-leaves that merges L lines to 1. In any of these
structures if there is a non-leaf node with less than k inputs,
then replacing that with a non-leaf node with k inputs does
not increase the total number of non-leaf nodes. So for any
tree there is a k-ary tree with the same number of leaf nodes,
and no more non-leaf nodes.

Note that converting a k-ary tree to a balanced k-ary tree
with the same number of leaf nodes does not increase the total

number of nodes and hence, does not increase the number of
non-leaf nodes.

Proof of Lemma 5: By similar arguments as in Lemma 4.
Note that if there is a tree with certain number of leaves and
each node with at most k children, then depth does not increase
if we change it to a k-ary tree to same number of leaves. The
rest follows by noting hat converting a k-ary tree to a balanced
k-ary tree with the same number of leaves does not increase
the depth.

Proof of Lemma 6: Consider two directed trees with L and
L′ leaves, L′ ≥ L. Then, any graph configuration with L′ leaves
can be transformed to graph with L leaves without increasing
the size (just by dropping L′−L leaves). Hence, the minimum-
achieving configuration for L′ leaves is also a configuration for
L leaves. Hence, the minimum for L leaves is not larger than
the minimum for L′ leaves.
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