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Solving inverse problems via auto-encoders
Pei Peng, Shirin Jalali and Xin Yuan

Abstract

Compressed sensing (CS) is about recovering a structured signal from its under-determined linear measurements.

Starting from sparsity, recovery methods have steadily moved towards more complex structures. Emerging machine

learning tools such as generative functions that are based on neural networks are able to learn general complex

structures from training data. This makes them potentially powerful tools for designing CS algorithms. Consider a

desired class of signals Q, Q ⊂ Rn, and a corresponding generative function g : Uk → Rn, U ⊂ R, such that

supx∈Q minu∈Uk
1√
n
‖g(u)−x‖ ≤ δ. A recovery method based on g seeks g(u) with minimum measurement error.

In this paper, the performance of such a recovery method is studied, under both noisy and noiseless measurements.

In the noiseless case, roughly speaking, it is proven that, as k and n grow without bound and δ converges to zero, if

the number of measurements (m) is larger than the input dimension of the generative model (k), then asymptotically,

almost lossless recovery is possible. Furthermore, the performance of an efficient iterative algorithm based on projected

gradient descent is studied. In this case, an auto-encoder is used to define and enforce the source structure at the

projection step. The auto-encoder is defined by encoder and decoder (generative) functions f : Rn → Uk and

g : Uk → Rn, respectively. We theoretically prove that, roughly, given m > 40k log 1
δ

measurements, such an

algorithm converges to the vicinity of the desired result, even in the presence of additive white Gaussian noise.

Numerical results exploring the effectiveness of the proposed method are presented.

Index Terms

Compressed sensing, generative models, inverse problems, auto-encoders, deep learning.

I. INTRODUCTION

A. Problem statement

Solving inverse problems is at the core of many data acquisition systems, such as magnetic resonance imaging

(MRI) and optical coherence tomography [2]. In many of such systems, through proper quantization in time or

space, the measurement system can be modeled as a system of linear equations as follows. The unknown signal

to be measured is a high-dimensional signal x ∈ Q, where Q represents a compact subset of Rn. The measured
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signal can be represented as y = Ax + z. Here A ∈ Rm×n, y ∈ Rm and z ∈ Rm denote the sensing matrix,

the measurement vector, and the measurement noise, respectively. Typically the main goal is to design an efficient

algorithm that recovers x from the measurements y. In addition to computational complexity, the efficiency of

such an algorithm is measured in terms of its required number of measurements, its reconstruction quality, and

its robustness to noise. While classic recovery methods were designed assuming that m is larger than n, i.e., the

number of unknown parameters, during the last decade, researchers have shown that, since signals of interest are

typically highly-structured, efficient recovery is possible, even if m� n.

The main focus in compressed sensing (CS), i.e., solving the described ill-posed linear inverse problem, has been

on structures, such as sparsity. Many signals of interest are indeed sparse or approximately sparse in some transform

domain, which makes sparsity a fundamental structure, both from a theoretical and from a practical perspective.

However, most of such signals of interest, in addition to being sparse, follow other more complex structures as

well. Enabling recovery algorithms to take advantage of the full structure of a class of signals could considerably

improve the performance. This has motivated researchers in CS to explore algorithms that go beyond simple models

such as sparsity.

Developing a CS recovery method involves two major steps: i) studying the desired class of signals (e.g., natural

images, or MRI images) and discovering the structures that are shared among them, and ii) devising an efficient

algorithm that given y = Ax+ z, finds a signal that is consistent with the measurements y and also the discovered

structures. For instance, the well-known iterative hard thresholding algorithm [3] is an algorithm that is developed

for the case where the discovered structure is sparsity.

One approach to address the described first step is to design a method that automatically learns complex signal

models from training data. In other words, instead of requiring domain experts to closely study a class of signals,

we build an algorithm that discovers complex source models from training data. While designing such learning

mechanisms is in general very complicated, generative functions (GFs) defined by trained neural networks (NNs)

present a successful modern tool in this area. The well-known universal approximation theory (UAT) states that

with proper weights, NNs can approximate any regular function with arbitrary precision [4]–[7]. This suggests that

trained NNs operating as GFs are potentially capable of capturing complex unknown structures.

In recent years, availability of i) large training data-sets on one hand, and ii) computational tools such as GPUs

on the other hand, has led to considerable progress in training effective NNs with state-of-art performance. While

initially such networks were mainly trained to solve classification problems, soon researchers realized that there is no

fundamental reason to restrict our attention to such problems. And indeed researchers have explored application of

NNs in a wide range of applications including designing effective GFs. The role of a GF is to learn the distribution

of a class of signals, such that it is able to generate samples from that class. (Refer to Chapters 4 and 12 in [8] to

learn more about using GFs in classification.) Modern GFs achieve this goal typically through employing trained
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neural networks. Variational auto-encoders (VAEs) [9] and generative adversarial nets (GANs) [10] are examples of

methods used to train complex GFs. The success of such approaches in solving machine learning problems heavily

relies on their ability to learn distributions of various complex signals, such as image and audio files. This success

has encouraged researchers from other areas, such as compression, denoising and CS, to look into the application

of such methods, as tools to capture the structures of signals of interest.

Given a class of signals, Q ⊂ Rn, consider a corresponding trained GF g : Uk → Rn, U ⊂ R. Assume that g is

trained by enough samples from Q, such that it is able to represent signals from Q, possibly with some bounded

loss. In this paper, we study the performance of an optimization-based CS recovery method that employs g as a

mechanism to capture the structure of signals in Q. We derive sharp bounds connecting the properties of function

g (its dimensions, its error in representing the signals in Q, and its smoothness level) to the performance of the

resulting recovery method. We also study, both theoretically and empirically, the performance of an iterative CS

recovery method based on projected gradient descent (PGD) that employs g to capture and enforce the source model

(structure). We connect the number of measurements required by such a recovery method with the properties of

function g.

B. Notations

Vectors are denoted by bold letters, such as x and y. Sets are denoted by calligraphic letters, such as A and B.

For a set A, |A| denotes its cardinality. For x ∈ R and b ∈ N+, [x]b denotes the b bit quantized version of x is

defined as [x]b = 2−bb2bxc. For a set A ⊂ R and b ∈ N+, let Ab denote the set where every member in A is

quantized in b bits, i.e.,

Ab , {[x]b : x ∈ A}.

C. Paper organization

Section II describes the problem of CS using GFs and states our main result on the performance of an optimization

that employs a GF to capture the source structure. Section III describes an efficient algorithm based on PGD to

approximate the solution of the mentioned optimization which is based on exhaustive search. Section IV reviews

some related work in the literature. Section V presents our simulation results on the performance of the algorithm

based on PGD. Section VI presents the proofs of the main results and Section VII concludes the paper.

II. RECOVERY USING GFS

Consider a class of signals represented by a compact set Q ⊂ Rn. (For example, Q can be the set of images

of human faces, or the set of MRI images of human brains.) Let function g : Uk → Rn denote a GF trained to

represent signals in set Q. (Throughout the paper, we assume that U is a bounded subset of R.)
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Definition 1. Function g : Uk → Rn is said to cover set Q with distortion δ, if

sup
x∈Q

min
u∈Uk

1√
n
‖g(u)− x‖ ≤ δ. (1)

In other words, when function g covers set Q with distortion δ, it is able to represent all signals in Q with a

mean squared error less than δ2.

Consider the standard problem of CS, where instead of explicitly knowing the structure of signals in Q, we have

access to function g, which is known to well-represent signals in Q. In this setup, signal x ∈ Q is measured as

y = Ax+ z, where A ∈ Rm×n, y ∈ Rm and z ∈ Rm denote the sensing matrix, the measurement vector, and the

measurement noise, respectively. The goal is to recover x from y, typically with m� n, via using the function g

to define the structure of signals in Q.

To solve this problem, ideally, we need to find a signal that is i) compatible with the measurements y, and ii)

representable with function g. Hence, ignoring the computational complexity issues, we would like to solve the

following optimization problem:

û = argminu∈Uk‖Ag(u)− y‖, (2)

After finding û, signal x can be estimated as

x̂ = g(û). (3)

The main goal of this section is to theoretically study the performance of this optimization-based recovery method.

We derive bounds that establish a connection between the ambient dimension of the signal n, the parameters of the

function g, and the number of measurements m.

To prove such theoretical results, we put some constraints on function g. More precisely, consider x ∈ Q and let

and y = Ax + z, where A ∈ Rm×n and z ∈ Rm. Assume that

1) g covers Q with distortion δ, where δ ∈ (0, 1),

2) g is L-Lipschitz,

3) U is a bounded subset of R.

Define û and x̂ as in (2) and (3), respectively. The following theorem characterizes the connection between the

properties of function g (input dimension m and Lipschitz constant L), the number of measurements (m) and the

reconstruction distortion (‖x̂− x‖).

Theorem 1. Consider compact set Q ⊂ Rn and GF g : Uk → Rn that covers Q with distortion δ. (Here, U is

a compact subset of R.) Consider x ∈ Q and let y = Ax + z, where A ∈ Rm×n and z ∈ Rm. Assume that the
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entries of A and z are i.i.d. N (0, 1
n ) and i.i.d. N (0, σ2), respectively. Define û and x̂ as (2) and (3). Set free

parameters η > 2 and ν ∈ (0, 1), such that 1
2 −

υ
2 −

1
η > 0. Assume that m ≤ n, and

m ≥ ηk. (4)

Then,

1√
n
‖x̂− x‖ ≤

√
6Lσ(

2k

m
)

1
4 δ

1
2−

υ
2−

1
η + 4σδ−

2
η

√
k ln 1

δ

m
+ α, (5)

where α , 2δ1−
1
η + δ

1
2−

1
η
√

2σ + 3Lδ1−υ−
1
η

√
k
m + Lδ1−υ

√
k
n = o(δ

1
2−

υ
2−

1
η ), with a probability larger than

1− e−(υ−ζ)k ln 1
δ − e−k ln 1

δ − 3e−0.8m, (6)

where ζ = O( 1
ln 1
δ

).

The proof of Theorem 1 is presented in Section VI-A.

To better understand the implications of Theorem 1, the following corollary considers the case of noiseless

measurements (i.e. σ = 0).

Corollary 1. Consider the same setup as Theorem 1, where σ = 0, i.e., the measurements are noise-free. Set free

parameters η > 1 and ν ∈ (0, 1), such that 1 − υ − 1
η > 0. If m ≥ ηk, then with a probability larger than

1− e−(υ−ζ)k ln 1
δ − e−0.8m,

1√
n
‖x̂− x‖ ≤ 3L

√
η
δ1−υ−

1
η + α, (7)

where α = o(δ1−υ−
1
η ).

Proof. The proof is a straightforward application of the proof of Theorem 1. Note that since there is no measurement

noise in this case, we will not get error terms that are O(δ
1
2−

υ
2−

1
η ). Therefore, The condition on η and ν here has

changed to η > 1 and 1− υ − 1
η > 0.

Remark 1. Consider a lossless GF for a given class of signals described by Q, a compact subset of Rn. That is,

supx∈Qminu∈Uk ‖x−g(u)‖ = 0. In this case, δ = 0. In such a scenario, Corollary 1 states that, essentially, m > k

measurements are sufficient for almost lossless recovery.

The optimization described in (2) was first proposed and analyzed in [11]. It was shown in [11] that O(k logL)

measurements are sufficient for accurate recovery. However, in our results (Theorem 1 and Corollary 1), the number

of measurements does not scale with L (Lipschitz constant) or δ and instead is proportional to k. This is consistent

with our expectations as the Minkowski dimension of a class of signals that are generated by a GF with input
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dimension k is also k, and therefore, in the noiseless setting, we expect to be able to recover the signal from k

noise-free measurements [12].

Remark 2. In the presence of Gaussian noise, first note that, unlike prior work, the error terms in Theorem 1 scale

with the noise power (σ), rather than ‖z‖. Moreover, the dominant error term that does not disappear as δ converges

to zero is 4σδ−
2
η

√
k ln 1

δ

m . To understand the role of this term, first note that, in the presence of Gaussian noise,

due to the trade-off between bias and variance, it is not optimal to choose a model with δ close to zero. Instead,

the optimal choice of δ would depend on the power of noise (σ), and as the noise power increases, models with

larger values of δ will result in more accurate estimates. (Refer to Section V for numerical validation of this point.)

Second, note that the mentioned error term scales with m as O( 1√
m

). This implies that, for any noise power σ and

any representation error δ, as the number of measurements m grows, the effect of this term vanishes as O( 1√
m

).

III. AE-PGD ALGORITHM

The optimization described in (2) is a challenging non-convex optimization. The GF g defined using an NN is a

differentiable function. Therefore, one approach to solving minu∈Uk ‖Ag(u)−y‖ is to apply the standard gradient

descent (GD) algorithm [11]. However, since the problem is non-convex, there is no guarantee that the solution

derived based on this approach is close to the optimal solution. Another approach is to note that minu∈Uk ‖Ag(u)−

y‖ ≡ minx̂∈{g(u): u∈Uk} ‖Ax̂− y‖ and apply PGD as follows: For t = 0, 1, . . ., let

st+1 = x̂t + µAT (y −Ax̂t)

ut+1 = argminu∈Uk‖st+1 − g(u)‖ (8)

x̂t+1 = g(ut+1). (9)

Still the described optimization is non-convex and therefore there is no guarantee that the algorithm will converge

to the desired solution. The following theorem establishes this result and connects the number of measurements m,

the representation error of the GF δ, the input dimension of the GF k, with the convergence performance of the

PGD-based algorithm. Furthermore, it shows the robustness of this approach to additive white Gaussian noise.

Theorem 2. Consider x ∈ Q, and y = Ax + z, where Q denotes a compact subset of Rn and A ∈ Rm×n. Here,

z1, . . . , zm are i.i.d. N (0, σ2). Assume that function g : [0, 1]k → Rn is L-Lipschitz and satisfies (1), for some

δ > 0. Define ũ and x̃ as argminu∈Uk‖x− g(u)‖ and x̃ = g(ũ), respectively. Choose free parameters α, υ ∈ R+

and define η, γ1 and γ2 as

η ,
k

n
(1 + (

√
n

m
+ 2)2)L2δ2α, (10)
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γ1 , (2 +

√
n

m
)2(Lδα

√
k

n
+ 1) (11)

and

γ2 ,

√
2k

n
(2 +

√
n

m
), (12)

respectively. Assume that

m ≥ 40(1 + α+ υ)k log
1

δ
. (13)

Let µ = 1
m . For t = 0, 1, . . ., define (st+1,ut+1, x̂t+1) as (9). Then, for every t, if 1√

n
‖x̂t − x̃‖ ≥ δ, then, either

1√
n
‖x̂t+1 − x̃‖ ≤ δ, or

1√
n
‖x̃− x̂t+1‖ ≤ 0.9 + η√

n
‖x̃− x̂t‖+

√6(1 + α)
(
log 1

δ

)
k

m
+ γ2Lδ

α

 σ√
n

+ γ1δ,

with a probability larger than 1− 2−2kυ log 1
δ − e−

m
2 − e−0.1(1+α)(log

1
δ )k+2(ln 2)k − e−0.15m.

Theorem 2 states that although the original optimization is not convex, having roughly more than 40k log 1
δ

measurements, the described PGD algorithm converges, even in the presence of additive white Gaussian noise.

In order to implement the proposed iterative method described in (9), the step that might seem challenging is

the projection step, i.e., ut+1 = argminu∈Uk‖st+1 − g(u)‖. Since the cost function is differentiable, one can

use GD to solve it [13]. However, since the cost is not convex, there is no guarantee that the solution will be

close to the optimal. Moreover, using GD to solve this optimization, adds to the computational complexity of the

problem. Therefore, instead, we consider training a separate neural network that approximates the solution to this

optimization. Concatenating this neural network with the neural network that define g essentially yields an “auto-

encoder” (AE) that maps a high-dimensional signal into low-dimensions, and then back to its original dimension.

Using this perspective, the last two steps of the algorithm, basically pass st+1 through an AE. (See Fig. 1.) We

refer to the PGD-based algorithm where the projection is achieved by an AE as the AE-PGD method.

IV. RELATED WORK

Using NNs for CS has been an active area of research in recent years. (See [11], [13]–[20] for a non-comprehensive

list of such results.) Closely studying the literature in this area reveals that, interestingly, the role imagined for the

NN to play is not shared among different approaches. While in some methods, NNs are directly trained to solve

the inverse problem, in others, they are trained, independent of the CS recovery problem, as GFs that capture the

source model. Our focus in this paper is on the latter type of methods where the role of the NN is to build a

powerful GF that captures the source complex structure. Application of NN-based GFs to solve CS problems was
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Fig. 1: AE-PGD CS recovery. The top equation is the gradient descent and the bottom plot shows the AE employed
to perform the projection of the signal.

first proposed in [11], which proved that roughly O(kd log n) measurements are enough for recovering the signal

using the optimization described in (2). (d denotes the number of hidden layers.) In [13], an iterative algorithm based

on PGD (similar to the one studied here) was proposed and studied. Here, we derive sharp theoretical guarantees

for both i) the exhaustive search method described in Section II and ii) the PGD-based algorithm. Our bounds

directly connect the number of measurements with the properties of the GF, such as its input dimension and its

representation quality. In both cases, we study the performance under additive white Gaussian noise as well.

Another related line of work is on using compression codes in designing efficient compression-based recovery

methods [21]. The goal of such methods it to elevate the scope of structures used by CS algorithms to those used by

compression codes. Such an optimization is similar to (3). However, the difference between these two approaches

is that while a lossy compression code can be represented by a discrete set of codewords, a GF g has a continuous

input Uk.

V. SIMULATION RESULTS

To further study the performance of the AE-PGD recovery method, we examine its performance on three different

datasets: i) the MNIST hand-written digits [22], ii) the chest X-ray images provided by NIH [23], and iii) facial

images from the CelebA dataset [24]. The AE structure (2-layer encoder, and 2-layer decoder) (except the one

reported in Section V-C) and the PGD algorithm are shown in Fig. 1. The implementations are performed in

PyTorch using Nvidia 1080 Ti GPU. We use the average peak signal-to-noise ratio (PSNR) to evaluate the quality

of the reconstructed images. All the codes could be found at [25].

Remark 3. While Theorem 2 proves the convergence of the AE-PGD method for µ = 1
m , in our simulations, we

observed that changing the step size could in fact improve the performance. Therefore, using cross validation, in
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each setup, we optimize the value of µ. Potentially, one could further improve the performance by optimizing the

step size at each iteration. However, this comes at a great computational complexity.

A. MNIST

In our first set of experiments, we study the MNIST dataset. Each image in this dataset consists of 28 × 28

pixels. We use 35, 000 images for training and 300 images for testing. We consider an AE with fully-connected

layers with sigmoid activation functions, such that the hidden layers of the encoder and the decoder each consists

of 1, 500 hidden nodes. We set the size of the output layer of the encoder and the input layer of the GF (k) to 100.

The step size µ is set to 0.7.

Fig. 2 compares the performance of the AE-PGD recovery with Lasso [26] and BM3D-AMP [27] under different

sampling rates m/n, in both noise-free and noisy settings (middle plot corresponds to signal-to-noise-ratio (SNR)

of 10 dB). It can be seen that in the noise free case, when the sampling rate is low (e.g. 0.1 and 0.05), the AE-PGD

method outperforms the other methods. When the sampling rate is higher (e.g. 0.2 and 0.3), BM3D-AMP achieves

the best performance. In the noisy case, although BM3D-AMP still has the highest PSNR at high sample rates,

its performance drops significantly. Some reconstructed images by the three algorithms (under noise free case)

compared with the ground truth are shown in the right plot in Fig. 2.

Fig. 2: Comparing Lasso, BM3D-AMP and the proposed auto-encoder based inversion in the noise free case (left)
and noisy case (middle with SNR = 10dB). Right: reconstructed images at different sampling rate in the noise free
case.

B. X-ray Images

We next explore the performance of the AE-PGD method on chest X-ray images [23]. In this dataset, each image

is of size 128× 128. We use 35, 000 training images and 100 testing images. We compare the performance of the

AE-PGD method with BM3D-AMP and Lasso-DCT. This time, we consider two different NNs calling the results

NN1-PGD and NN2-PGD. In both cases, µ is set to 0.7. Both NNs are structured as before with different number

of nodes as follows:
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i) NN1, k = 2000 and there are 5000 hidden nodes in the first layer of the encoder and the second layer of the

decoder;

ii) NN2, k = 3000, there are hidden 8000 hidden nodes in the first layer of the encoder and the second layer of

the decoder.

In this case, all the activation functions, except those at the final layer of the decoder, are set to rectified linear unit

(ReLU) function. The activation functions of the final layer are set as the sigmoid function.

Fig. 3: PSNR of the reconstructed X-ray images under noise free (left) and noisy (middle with SNR = 10dB) cases
and some example images (right).

Fig. 3 shows the average PSNR on test images in both noiseless (left) and noisy (middle) settings, again at SNR

= 10 dB. The capacity of each NN refers to the average representation error corresponding to each NN. Clearly

the performance of the AE-PGD cannot exceed the capacity of the NN it employs. It can be observed that for

both NNs, the AE-PGD method in fact achieves the capacity. This implies that to improve the performance of the

AE-PGD method in high SNR regimes, one needs to design a NN with higher capacity, i.e., lower representation

error.

Recall that Theorem 2 proves that the AE-PGD method converges, given enough measurement samples. To better

understand the convergence behavior of the algorithm, Fig. 4 shows the average number of iterations of the NN1-

PGD and NN2-PGD methods, as a function of sampling rate. The step size is fixed to 0.7 as before. It can be seen

that in both cases typically no more than 20 iterations are required.

C. Parallel Block-wise Neural Networks

As shown in the previous section, the bottleneck in achieving high performance at higher sampling rates seem to

be the accuracy of the representation error of the AE. In other words, to improve the performance of the AE-PGD

method at higher sampling rates, we need to train AEs with representation error. On the other hand, the size of chest

X-ray images suggests that to achieve this goal one needs to train larger AEs. Given our computational limitations,

for example due to our GPU memory, we next design a block-wise AE neural network, which breaks images into
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Fig. 4: Average number of iterations versus sampling rate for NN1-PGD and NN2-PGD

Fig. 5: Average PSNR of block-wise NN (4NNS-PGD) and NN2-PGD.

smaller blocks as follows. Again, the goal is to train a NN with higher capacity. We crop each image into four

smaller 74 × 74 images. Then we train a separate AE consisting of fours parts working in parallel. Each part is

an AE with the same structure as the one shown in Fig. 1, with k = 3000, and 8000 hidden nodes for the other

hidden layers. We allow some overlap between the image segments to avoid any blocking effects. For the pixels

that are represented by more than one block, we take the average. As before, the step size is set to 0.7.

In Fig. 5, we compare the performance of the block-wise AE (referred to as 4NNs-PGD) with that of NN2-PGD

(described in the previous section). It can be observed that, when the sampling rate is larger than 0.03, 4NNs-PGD

achieves a better performance than NN2-PGD. On the other hand, at lower sampling rates, the network with a

lower capacity (i.e., NN2) outperforms the 4NN network. We also saw earlier that at lower sampling rates, the NN2
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Fig. 6: U-Net to refine the reconstruction results of the proposed PGD algorithm.

network outperforms BM3D-AMP. All these results show the power of AEs, as they can be designed to operate at

different accuracies. In summary, the simulation results suggest that as the CS sampling rate grows, to achieve the

best performance, one needs to adjust the accuracy of the employed AE accordingly.

D. U-net Refinement

As shown in the previous section, training high-accuracy AEs is key to improving the performance of the AE-

PGD algorithm at higher sampling rates. Instead of directly improving the performance of the AE, in this section

we explore a detour strategy as follows: We train a U-Net [28] as a refinement function to improve the reconstructed

image quality. To train the U-Net, we first train an AE (As described earlier) and then pass the original training

dataset through the trained AE to generate a new training dataset for U-Net. Then we use the original images and

their reconstructions of the AE to train the U-Net such that the output is close to the original images. In other

words, the U-NET receives the output of the AE and is expected to regenerate the input of the AE, as much as

possible. After training the U-Net, we first use the PGD-AE method to find x̂ as before, and then refine it by

passing it through the trained U-Net. (The U-Net structure is shown in Fig. 6.)

Fig. 7 compares the performance of the AE-PGD with and without U-NET refinement. Here, the AE is the

blocked AE referred to as 4NN earlier. It can be observed that this refinement step improves the performance of

the 4NNs-PGD method significantly at higher sampling rates, e.g., almost 3 dB at sampling rate 0.2. However, the

achieved performance is still below that of BM3D-AMP when sampling rate is high.

It is worth noting that since the images in this dataset are rather noisy, and the U-Net seems to perform some

denoising of the original images. On the other hand, the PSNR is calculated by comparing a reconstructed image

with the original one. Therefore, PSNR might not be an optimal measure to compare the performance of the
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Fig. 7: Average PSNR of the two stage NN (AE + U-Net).

Fig. 8: Exemplar reconstructed X-ray images by different algorithms compared with the original noisy images.

algorithms. Inspecting the recovered images shown in Fig. 8 reveals that at high sampling rates, BM3D-AMP

reconstructs images that are very close to the original ones, by even recovering the noise. But the AE-PGD method

with refinement reconstructs less-noisy images, which arguably include almost all the details of the original images.

E. Facial Images

The small size of the digit images and the noisy nature of the X-ray images potentially pose as some limitations

into the performance of any recovery method. As the final example, we test the AE-PGD method on some clean

facial images from the CelebA dataset [24]. This time, each image consists of three 64 × 64 frames. We use

50, 000 images for training, and 100 images for test. We compare the performance of the NN-PGD method (with

and without U-Net refinement) with that of BM3D-AMP. For the AE, the input and output dimensions are set to

3×64×64 and k = 3000. The number of hidden nodes in the encoder and the decoder are set to 12, 000. All nodes
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Fig. 9: Average PSNR of 100 testing images in the CelebA dataset using different algorithms.

in the AE are set to use the sigmoid activation function. As before, the U-Net is trained by using the images that

are passed through the AE.

Fig. 9 show the performance of i) the AE-PGD method without refinement, and ii) the BM3D-AMP method.

For the AE-PGD, the step size µ is set to (0.2, 0.5, 0.7, 0.9) at sampling rates (0.01, 0.05, 0.1, 0.2), respectively. As

before, the BM3D-AMP outperforms the AE-PGD method at higher sampling rates. The figure does not show the

performance of the U-Net refinement as it has negligible effect in terms of PSNR. However, while the refinement

algorithm does not improve the performance much in terms of PSNR, as shown in Fig. 10, it makes a considerable

visual impact on the quality of the recovered images.

Carefully inspecting the figures shown in Fig. 10 simultaneously reveals some the strengths and some of the

weaknesses of the AE-PGD method. The AE is essentially trained on human faces and therefore is capable of

representing figures. On the other hand, its ability to capture the other details such as the background or accessories

is limited. Therefore, comparing the images recovered by the AE-PGD method with those recovered by the BM3D-

AMP reveals that while the former ones have better visual qualities in terms of the faces themselves, still the overall

PSNR of the latter group is better as they have a more uniform performance across the whole figure.

VI. PROOFS

The following lemma from [29] on the concentration of Chi-squared random variables is used in the proof.

Lemma 1 (Chi-squared concentration). Assume that U1, . . . , Un are i.i.d. N (0, 1). For any τ ≥ 0 we have

P

(
m∑
i=1

U2
i > m(1 + τ)

)
≤ e−

m
2 (τ−ln(1+τ)), (14)
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Fig. 10: Reconstructed facial images by different algorithms at various sampling rates.

and for τ ∈ (0, 1),

P(

m∑
i=1

U2
i < m(1− τ)) ≤ e

m
2 (τ+ln(1−τ)). (15)

Also, the following lemma from [30] are used in the proof of Theorem 2.

Lemma 2. Consider u ∈ Rn and v ∈ Rn such that ‖u‖ = ‖v‖ = 1. Let α , 〈u,v〉. Consider matrix A ∈ Rm×n

with i.i.d. standard normal entries. Then, for any τ > 0,

P
(
〈u,v〉 − 1

m
〈Au, Av〉 ≥ τ

)
≤ em((α−τ)s)−m2 ln((1+sα)2−s2), (16)

where s > 0 is a free parameter smaller than 1
1−α . Specifically, for τ = 0.45,

P
(
〈u,v〉 − 1

m
〈Au, Av〉 ≥ 0.45

)
≤ 2−0.05m. (17)

Lemma 3. Consider u and v, where u1, . . . , un, v1, . . . , vn are i.i.d. N (0, 1). Then the distribution of 〈u,v〉 =∑n
i=1 uivi is the same as the distribution of ‖u‖G, where G ∼ N (0, 1) is independent of ‖u‖.

A. Proof of Theorem 1

Define ũ and x̃ as (2) and (3), respectively. Since û is the minimizer of ‖Ag(u)−y‖, over all u ∈ Uk, we have

‖Ag(û)− y‖ ≤ ‖Ag(ũ)− y‖. Moreover, by the triangle inequality,

‖Ag([û]b)− y‖ ≤ ‖Ag(û)− y‖+ ‖Ag(û)−Ag([û]b)‖. (18)
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Recall that y = Ax + z. Therefore,

‖A(g([û]b)− x)− z‖ ≤ ‖A(g(ũ)− x)− z‖+ ‖A(g(û)− g([û]b))‖

≤ ‖A(g(ũ)− x)− z‖+ σmax(A)L‖û− [û]b‖

≤ ‖A(g(ũ)− x)− z‖+ 2−b
√
kσmax(A)L. (19)

Define e1 and e2 as e1 = g(ũ) − x and e2 = g([û]b) − x, respectively. Define their normalizer versions as

ēi = ei/‖ei‖, i = 1, 2. Given τ1 > 0 and τ2 ∈ (0, 1), define events E1 and E2 as E1 , {‖Aē1‖ ≤
√

m
n (1 + τ1)},

and E2 , E2 = {‖A(g(u) − x)‖ ≥
√

m
n (1− τ2)‖g(u) − x‖ : ∀u ∈ Ukb }, respectively. Furthermore, given τz >,

τ3 > 0 and τ4 > 0, define events Ea, Ez , E3 and E4 as

EA ,
{
σmax(A) ≤ 1 + 2

√
m

n

}
, (20)

Ez , {‖z‖ ≤ σ
√
m(1 + τz) }, (21)

E3 , {|〈Aē1, z〉| ≤ στ3
√
m

n
}, (22)

and

E4 , {|〈Aē, z〉| ≤ στ4
√
m

n
: ē =

g(u)− x

‖g(u)− x‖
,u ∈ Ukb }, (23)

respectively. From Lemma 1, P(Ec1) ≤ e−
m
2 (τ1−ln(1+τ1)), and, for a fixed u ∈ Unb , with a probability larger than

e
m
2 (τ2+ln(1−τ2)),

‖A(g(u)− x)‖ ≥ m(1− τ2)‖g(u)− x‖. (24)

Therefore, applying the union bound, it follows that

P(Ec2) ≤ |Ub|ke
m
2 (τ2+ln(1−τ2)).

Given a unit-norm vector ē ∈ Rn,
√
nAē is a random vector in Rm with i.i.d. N (0, 1) entries. Therefore, according

to Lemma 3,
√
n〈Aē, z〉 has the same distribution as ‖z‖G, where G ∼ N (0, 1) is independent of ‖z‖. On the

other hand, using the law of total probability, P(E3 ∩ E4) ≥ 1− P(Ecz)− P(E3, Ez)− P(E4, Ez), i ∈ {3, 4}. Also

P(Ecz) ≤ e−
m
2 (τz−ln(1+τz)),
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and

P(Ec3 , Ez) = P(|G|‖z‖ > τ3σ
√
m, ‖z‖ ≤ σ

√
m(1 + τz))

≤ P
(
|G| > τ3√

1 + τz

)
≤ 2e−

τ23
1+τz .

Similarly, using the union bound, P(Ec4 , Ez) ≤ 2|Ub|ke−
τ24

1+τz .

Conditioned on EA, 2−b
√
kσmax(A)L ≤ ∆, where

∆ , 2−b
√
kL
(

1 + 2

√
m

n

)
, (25)

Therefore, conditioned on EA, raising both sides of (19) to power two and cancelling the common ‖z‖2 term, it

follows that

‖Ae2‖2 − 2〈Ae2, z〉 ≤ ‖Ae1‖2 − 2〈Ae1, z〉+ 2∆‖Ae1 + z‖+ ∆2

≤ ‖Ae1‖2 − 2〈Ae1, z〉+ 2∆(‖Ae1‖+ ‖z‖) + ∆2, (26)

where the last line follows from the triangle inequality. Therefore,

‖e2‖2‖Aē2‖2 ≤ ‖e1‖2‖Aē1‖2 + 2‖e1‖|〈Aē1, z〉|+ 2‖e2‖|〈Aē2, z〉|+ 2∆(‖e1‖‖Aē1‖+ ‖z‖) + ∆2. (27)

Conditioned on E1 ∩ E2 ∩ E3 ∩ E4, noting that 1√
n
‖e1‖ ≤ δ, it follows from (27) that

‖e2‖2m(1− τ2)− 2‖e2‖στ4
√
mn− n(γ1 + γ2) ≤ 0, (28)

where

γ1 , (1 + τ1)δ2m+ 2στ3δ
√
m, (29)

and

γ2 , ∆2 + 2∆
√
m
(
σ
√

1 + τz + δ
√

1 + τ1

)
. (30)

Since (28) is a second order equation, (36) implies that ‖e2‖ should be smaller than the largest root of this equation.

Noting that
√
a2 + b2 + c2 ≤ |a|+ |b|+ |c|, for all a, b, and c in R, it follows that

1√
n
‖x̂b − x‖ ≤ 1√

m

( 2στ4
1− τ2

+

√
γ1

1− τ2
+

√
γ2

1− τ2

)
. (31)

To finish the proof, we need to set the free parameters appropriately, such that the error probabilities converge

to zero.
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• Set b = d(1− υ) log 1
δ e.

• Let τ1 = 3. Therefore, P(Ec1) ≤ e−
m
2 (3−ln 4) ≤ e−0.8m.

• Let τ2 = 1 − δ
2
η . Since U is a compact set, there exist integer numbers a1 and a2, such that U ⊆ [a1, a2].

Therefore, |Ub| ≤ a2−b, where a , a2 − a1. Therefore, since, for τ2 ∈ (0, 1), (τ2 + ln(1 − τ2)) ≤ 0 and

m ≥ ηk by assumption, it follows that

k ln |Ub|+
m

2
(τ2 + ln(1− τ2))

≤ k(ln a+ b ln 2) +
ηk

2
(τ2 + ln(1− τ2))

≤ k(ln a− (1− v) ln δ) +
ηk

2
(τ2 + ln(1− τ2)), (32)

where the last line follows because b = d(1− υ) log 1
δ e and hence b ln 2 ≤ (1− υ) log 1

δ ln 2 = −(1− υ) ln δ.

Therefore, from (32), inserting the value of τ2, we have

k ln |Ub|+
m

2
(τ2 + ln(1− τ2))

≤ k(ln a− (1− υ) ln δ) +
ηk

2
(1−δ

2
η +

2

η
ln δ)

= −k(υ − ζ) ln
1

δ
, (33)

where

ζ =
ln a+ η

2 (1− δ
2
η )

ln 1
δ

. (34)

Note that ζ only depend on a, η and δ and ζ = O(1/ ln 1
δ ). Therefore, P(E2) ≤ e−(υ−ζ)k ln 1

δ .

• Set τz = 1. Then, P(Ecz) ≤ e−
m
2 (1−ln 2) ≤ e−0.15m.

• Set τ3 =
√
m. As proved earlier, P(E3, Ecz) ≤ 2e−

τ23
1+τz . Hence, for τ3 =

√
m and τz = 1, P(E3, Ecz) ≤ e−

m
2 .

• Set τ4 = 2
√
k ln 1

δ . We need to set τ4 such that |Ub|ke−
τ24

1+τz converges to zero, as the dimensions of the

problems grow. Note that ln(|Ub|ke−
τ24

1+τz ) = kb ln 2 − 1
2τ

2
4 = kd(1 − υ) log 1

δ e ln 2 − 1
2τ

2
4 ≤ k ln 1

δ −
1
2τ

2
4 .

Setting τ4 = 2
√
k ln 1

δ , it follows that ln(|Ub|ke−
τ24

1+τz ) ≤ −k ln 1
δ .

For the selected values of the parameters, we have

γ1 = 2(2δ + σ)δm, (35)

and

γ2 = ∆2 + 2∆
√
m(σ
√

2 + 2δ). (36)
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But, since by assumption, m ≤ n, ∆ ≤ 32−b
√
kL ≤ 3

√
kLδ1−υ . Therefore,

γ2 ≤ 9kL2δ2−2υ + 6
√
kmLδ1−υ(σ

√
2 + 2δ).

In summary, combining the bounds on γ1 and γ2 with (31), it follows that

1√
n
‖x̂b − x‖ ≤ 4σδ−

2
η

√
k ln 1

δ

m
+ δ

1
2−

1
η

√
2(2δ + σ) + δ

1
2−

υ
2−

1
η

√
9(
k

m
)L2δ1−υ + 6

√
k

m
L(σ
√

2 + 2δ). (37)

Finally, to finish the proof, note that

‖x̂− x‖ ≤ ‖x̂− x̂b‖+ ‖x̂b − x‖ ≤ L‖u− [u]b‖+ ‖x̂b − x‖ ≤ L2−b
√
k + ‖x̂b − x‖. (38)

Therefore, since
√
a2 + b2 + c2 ≤ |a|+ |b|+ |c|, we have

1√
n
‖x̂− x‖ ≤4σδ−

2
η

√
k ln 1

δ

m
+ 2δ1−

1
η + δ

1
2−

1
η

√
2σ

+ 3Lδ1−υ−
1
η

√
k

m
+
√

6Lσ(
2k

m
)

1
4 δ

1
2−

υ
2−

1
η + 2

√
3(
k

m
)

1
4 δ1−

υ
2−

1
η + Lδ1−υ

√
k

n
, (39)

where concludes the proof as α , 2δ1−
1
η + δ

1
2−

1
η
√

2σ + 3Lδ1−υ−
1
η

√
k
m + Lδ1−υ

√
k
n = o(δ

1
2−

υ
2−

1
η ).

B. Proof of Theorem 2

Recall that û = argminu∈Uk‖g(u)− x‖ and x̂ = g(û). Since x̂t+1 = argminuk∈Uk‖st+1 − g(u)‖,

‖st+1 − x̂t+1‖ ≤ ‖st+1 − x̂‖.

But ‖st+1 − x̂t+1‖2 = ‖st+1 − x̂+ x̂− x̂t+1‖2 = ‖st+1 − x̂‖2 + ‖x̂− x̂t+1‖2 + 2〈st+1 − x̂, x̂− x̂t+1〉. Therefore,

‖x̂− x̂t+1‖2 ≤2〈x̂− st+1, x̂− x̂t+1〉

=2〈x̂− x̂t, x̂− x̂t+1〉 − 2µ〈A(x̂− x̂t), A(x̂− x̂t+1)〉

− 2µ〈A(x− x̃), A(x̂− x̂t+1)〉 − µ〈AT z, x̂− x̂t+1〉. (40)

For t = 1, 2, . . ., define a normalized error vector as follows

et =
x̂− x̂t

‖x̂− x̂t‖
. (41)
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Using this definition, the triangle inequality and the Cauchy-Schwartz inequality, we rewrite (40) as follows

‖x̂− x̂t+1‖ ≤2
(
〈et+1, et〉 − µ〈Aet+1, Aet〉

)
‖x̂− x̂t‖+ 2µ‖A(x− x̂)‖‖Aet+1‖

+ 2µ
∣∣〈AT z, et+1〉

∣∣
≤2
(
〈et+1, et〉 − µ〈Aet+1, Aet〉

)
‖x̂− x̂t‖+ 2µ(σmax(A))2‖x− x̂‖

+ 2µ
∣∣〈AT z, et+1〉

∣∣ . (42)

To prove the desired result that connects the error at iteration t+1, ‖x̂− x̂t+1‖, to the error at iteration t, ‖x̂− x̂t‖,

we first define the quantized versions of the error and the reconstruction vectors. The reason for this discretization

becomes clear later when we use them to prove our concentration results.

For t = 1, 2, . . ., define utb , [ut]b and

x̂tb , g(utb).

Also, let

ηt , x̂t − x̂tb.

Assume that the quantization level b is selected as follows

b =

⌈
(1 + α) log

1

δ

⌉
. (43)

Since by assumption g is a Lipschitz function, we have

‖ηt‖ = ‖g(ut)− g(utb)‖ ≤ L‖ut − utb‖ ≤ L2−b
√
k

≤ Lδ1+α
√
k (44)

where the last line follow from (43). Let

etb ,
x̂− x̂tb
‖x̂− x̂tb‖

.

We next bound ‖et − etb‖, the distance between etb and et, where et is defined in (41). Note that

et =
x̂− x̂t

‖x̂− x̂t‖
=

x̂− x̂tb − ηt

‖x̂− x̂tb − ηt‖

= etb −
x̂− x̂tb
‖x̂− x̂tb‖

+
x̂− x̂tb − ηt

‖x̂− x̂tb − ηt‖
. (45)
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Therefore, by the triangle inequality, it follows that

‖et − etb‖ ≤
|‖x̂− x̂tb‖ − ‖x̂− x̂tb − ηt‖|

‖x̂− x̂tb − ηt‖
+

‖ηt‖
‖x̂− x̂tb − ηt‖

≤ 2‖ηt‖
‖x̂− x̂tb − ηt‖

=
2‖ηt‖
‖x̂− x̂t‖

(a)

≤ 2L2−b
√
k

‖x̂− x̂t‖
(b)

≤ 2Lδ1+α
√
k√

nδ
= 2Lδα

√
k

n
, (46)

where (a) and (b) follow from (44) and our assumption that ‖x̂− x̂t‖ ≥
√
nδ.

Using the introduced quantizations, in the following, we bound the three terms on the RHS of (42).

• 2
(
〈et+1, et〉 − µ〈Aet+1, Aet〉

)
‖x̂− x̂t‖: First, note that

〈et+1, et〉 − µ〈Aet+1, Aet〉 = 〈et+1 − et+1
b + et+1

b , et − etb + etb〉

− µ〈A(et+1 − et+1
b + et+1

b ), A(et − etb + etb)〉

= 〈et+1
b , etb〉 − µ〈Aet+1

b , Aetb〉

+ 〈et+1 − et+1
b , et − etb〉 − µ〈A(et+1 − et+1

b ), A(et − etb)〉. (47)

Therefore, applying the Cauchy-Schwarz inequality and the triangle inequality, it follows that

∣∣(〈et+1, et〉 − µ〈Aet+1, Aet〉
)
−
(
〈et+1
b , etb〉 − µ〈Aet+1

b , Aetb〉
)∣∣

≤ |〈et+1 − et+1
b , et − etb〉|+ µ|〈A(et+1 − et+1

b ), A(et − etb)〉|

≤ (1 + µ(σmax(A))2)‖et+1 − et+1
b ‖‖e

t − etb‖. (48)

Define event E1 as

E1 , {σmax(A) ≤ 2
√
m+

√
n}.

As mentioned earlier,

P (Ec1) ≤ e−
m
2 .
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Hence, conditioned on E1,

∣∣(〈et+1, et〉 − µ〈Aet+1, Aet〉
)
−
(
〈et+1
b , etb〉 − µ〈Aet+1

b , Aetb〉
)∣∣

≤
(

1 + µm

(√
n

m
+ 2

)2 )
‖et+1 − et+1

b ‖‖e
t − etb‖

≤ 4k

n

(
1 +

(√
n

m
+ 2

)2 )
L2δ2α, (49)

where the last line follows from (46) and because µ = 1
m .

Next, we bound the quantized term 〈et+1
b , etb〉−µ〈Ae

t+1
b , Aetb〉. To do this, define the set of normalized error

vectors as

Fb ,
{

x̂− g(u)

‖x̂− g(u)‖
: u ∈ Ukb

}
. (50)

Clearly, |Fb| ≤ |Ub|k. Define event E1 as

E2 ,

{
〈eb, e′b〉 −

1

m
〈Aeb, Ae′b〉 ≤ 0.45 : ∀ (eb, e

′
b) ∈ F2

b

}
. (51)

Applying Lemma 2, and the union bound, it follows that

P(Ec2) ≤ |Ub|2k2−0.05m

≤22bk−0.05m

(a)

≤ 22k(1+α) log
1
δ−0.05m

(b)

≤ 2−2kυ log 1
δ , (52)

where (a) and (b) hold because b, defined in (43), is smaller than α log 1
δ + 1 and m is greater than k40(1 +

α+ υ) log 1
δ by assumption, respectively. Finally, conditioned on E1 ∩ E2, combining (47) and (49), it follows

that

2
(
〈et+1, et〉 − µ〈Aet+1, Aet〉

)
‖x̂− x̂t‖ ≤ (0.9 + η)‖x̂− x̂t‖, (53)

where η is defined in (10).
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• 2µ(σmax(A))2‖x− x̂‖: Note that

‖x̂− x‖ = min
u∈Ukb

‖g(u)− x‖ ≤ ‖g([ũ]b)− x‖

= ‖g([ũ]b)− g(ũ) + g(ũ)− x‖

≤ ‖g([ũ]b)− g(ũ)‖+ ‖g(ũ)− x‖

≤ L‖[ũ]b − ũ‖+
√
nδ

≤ L
√
k2−b +

√
nδ. (54)

Therefore, using (54), conditioned on E2, we have

2µ(σmax(A))2‖x− x̂‖ ≤
(

2 +

√
n

m

)2 (
L
√
k2−b +

√
nδ
)

≤
(

2 +

√
n

m

)2
(
Lδα

√
k

n
+ 1

)
√
nδ

= γ1δ
√
n, (55)

where γ1 is defined (11).

• 2µ
∣∣〈AT z, et+1〉

∣∣: First, note that 〈AT z, et+1〉 = 〈z, Aet+1〉, and

|〈AT z, et+1〉| = |〈z, Aet+1〉| = |〈z, A(et+1 − et+1
b + et+1

b )〉|
(a)

≤ |〈z, Aet+1
b 〉|+ |〈z, A(et+1 − et+1

b )〉|
(b)

≤ |〈z, Aet+1
b 〉|+ σmax(A)‖z‖‖et+1 − et+1

b ‖

(c)

≤ |〈z, Aet+1
b 〉|+ σmax(A)‖z‖Lδα

√
k

n
, (56)

where (a), (b) and (c) follow from the triangle inequality, the Cauchy-Schwarz inequality and (46), respectively.

Next, to bound |〈z, Aet+1
b 〉|, we employ Lemma 3. For τ > 0 and τz > 0, define events E3 and E4 as

E3 , {|〈z, Aeb〉| ≤ σ
√

(1 + τ)m : eb ∈ Fb}, (57)

and

E4 , {‖z‖ ≤ σ
√
m(1 + τz) }, (58)
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respectively. By the law of total probability,

P(Ec3) = P(Ec3 ∩ E4) + P(Ec3 ∩ Ec4)

≤ P(Ec3 ∩ E4) + P(Ec4). (59)

For a fixed eb ∈ Fb, Aeb is i.i.d. N (0, 1) and independent of z. Therefore, by Lemma 3, 〈z, Aeb〉 has the

same distribution as ‖z‖Geb , where Geb is independent of z and is distributed as N (0, 1). Hence, for a fixed

eb,

P(〈z, Aet+1
b 〉 ≥ σ

√
(1 + τ)m, E4) = P

(
Geb‖z‖ ≥ σ

√
(1 + τ)m, E4

)
≤ P

(
Geb ≥

√
1 + τ

1 + τz
, Ec4

)
≤ P

(
Geb ≥

√
1 + τ

1 + τz

)
≤ e−

1+τ
2(1+τz) , (60)

where the last line holds because for G ∼ N (0, 1) and τ > 0, P(G > τ) ≤ e−τ
2/2. Therefore, applying the

union bound, it follows that

P(Ec3 ∩ E4) ≤ 22kbe−
1+τ

2(1+τz)

≤ 22k(1+(1+α) log 1
δ )e−

1+τ
2(1+τz) . (61)

Also, by Lemma 1,

P(Ec4) ≤ e−
m
2 (τz−ln(1+τz)).

Let τz = 1. Then, τz − ln(1 + τz) > 0.3 and

P(Ec4) ≤ e−0.15m. (62)

Choosing

τ = −1 + 6(1 + α)

(
log

1

δ

)
k,

the exponent of the RHS of (61) can be bounded as follows

2(ln 2)k(1 + (1 + α) log
1

δ
)− 1 + τ

2(1 + τz)
= 2(ln 2)k(1 + (1 + α) log

1

δ
)− 1.5(1 + α)

(
log

1

δ

)
k

≤ −0.1(1 + α)

(
log

1

δ

)
k + 2(ln 2)k. (63)
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Therefore,

P(Ec3 ∩ E4) ≤ e−0.1(1+α)(log
1
δ )k+2(ln 2)k. (64)

Moreover, for this choice of τ , conditioned on E3,

µ〈z, Aet+1
b 〉 ≤ σ

√
1 + τ

m
= σ

√
6(1 + α)

(
log 1

δ

)
k

m
. (65)

Also, conditioned on E1 ∩ E3 ∩ E3,

µσmax(A)‖z‖Lδα
√
k

n
≤ 2
√
m+

√
n

m
σ
√

2mLδα
√
k

n

= σ

√
2k

n

(
2 +

√
n

m

)
Lδα

= γ2σLδ
α, (66)

where γ2 is defined in (30). Hence, in summary, conditioned on E1 ∩ E3 ∩ E3,

2µ

σ

∣∣〈AT z, et+1〉
∣∣ ≤

√
6(1 + α)

(
log 1

δ

)
k

m
+ γ2Lδ

α (67)

Having the bounds on the three terms, combining (53), (55) and (67), conditioned on E1 ∩ E3 ∩ E3 ∩ E4, the

desired result follows from dividing both sides of (42) by 1√
n

.

VII. CONCLUSIONS

In this paper, we have theoretically studied the performance of an idealized CS recovery method that employs

exhaustive search over all the outputs of a GF corresponding to our desired class of signals Q. In the asymptotic

regime, where n (the ambient dimension of setQ) grows without bound, having a family of GFs with input dimension

k = kn and representation error δ = δn converging to zero, we have shown that, roughly, k measurements are

sufficient for almost lossless recovery. We have also studied the performance of an efficient algorithm based on

PGD that employs an AE at each iteration to project the updated signal onto the set of desired signals. We refer to

this method as AE-PGD and prove that given enough measurements, the algorithm converges to the vicinity of the

optimal solution even in the presence of additive white Gaussian noise. We have provided simulation results that

highlight both the power and the potential weaknesses of such recovery methods based on GFs.
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