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Abstract

Generating labeled training datasets has become a major bottleneck in Machine Learning
(ML) pipelines. Active ML aims to address this issue by designing learning algorithms that
automatically and adaptively select the most informative examples for labeling so that human
time is not wasted labeling irrelevant, redundant, or trivial examples. This paper proposes a
new approach to active ML with nonparametric or overparameterized models such as kernel
methods and neural networks. In the context of binary classification, the new approach is shown
to possess a variety of desirable properties that allow active learning algorithms to automatically
and efficiently identify decision boundaries and data clusters.

1 Introduction

The field of Machine Learning (ML) has advanced considerably in recent years, but mostly in
well-defined domains using huge amounts of human-labeled training data. Machines can recognize
objects in images and translate text, but they must be trained with more images and text than a
person can see in nearly a lifetime. The computational complexity of training has been offset by
recent technological advances, but the cost of training data is measured in terms of the human effort
in labeling data. People are not getting faster nor cheaper, so generating labeled training datasets
has become a major bottleneck in ML pipelines. Active ML aims to address this issue by designing
learning algorithms that automatically and adaptively select the most informative examples for
labeling so that human time is not wasted labeling irrelevant, redundant, or trivial examples. This
paper explores active ML with nonparametric or overparameterized models such as kernel methods
and neural networks.

Deep neural networks (DNNs) have revolutionized machine learning applications, and theoreticians
have struggled to explain their surpising properties. DNNs are highly overparameterized and often
fit perfectly to data, yet remarkably the learned models generalize well to new data. A mathematical
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understanding of this phenomenom is beginning to emerge [1, 2, 3, 4, 5, 6, 7, 8]. This work suggests
that among all the networks that could be fit to the training data, the learning algorithms used in
fitting favor networks with smaller weights, providing a sort of implicit regularization. With this in
mind, researchers have shown that shallow (but wide) networks and classical kernel methods fit to
the data but regularized to have small weights (e.g., minimum norm fit to data) can generalize well
[2, 9, 8, 10].

Despite the recent success and new understanding of these systems, it still is a fact that learning
good neural network models can require an enormous number of labeled data. The cost of obtaining
labels can be prohibitive in many applications. This has prompted researchers to investigate active
ML for kernel methods and neural networks [11, 12, 13, 14, 15, 16]. None of this work, however,
directly addresses overparameterized and interpolating regime, which is the focus in this paper.
Active ML algorithms have access to a large but unlabeled dataset of examples and sequentially
select the most “informative” examples for labeling [17, 18] . This can reduce the total number of
labeled examples needed to learn an accurate model.

Broadly speaking, active ML algorithms adaptively select examples for labeling based on two
general strategies [19]. The first is to select examples that rule-out as many (incompatible) classifiers
as possible at each step. In effect, this leads to algorithms that tend to label examples near decision
boundaries. The second strategy involves discovering cluster structure in unlabeled data and labeling
representative examples from each cluster. We show that our new MaxiMin active learning approach
automatically exploits both these strategies, as depicted in Figure 1.

Figure 1: MaxiMin Active Learning strategically selects examples for labeling (red points). (a)
reduces to binary search in simple 1-d threshold problem setting; (b) labeling is focused near decision
boundary in multidimensional setting; (c) automatically discovers clusters and labels representative
examples from each.

This paper builds on a new framework for active learning in the overparameterized and interpo-
lationg regime, focusing on kernel methods and two-layer neural networks in the binary classification
setting. The approach, called MaxiMin Active Learning, is based on mininum norm interpolating
models. Roughly speaking, at each step of the learning process the maximin criterion requests a
label for the example that is most difficult to interpolate. A minimum norm interpolating model is
constructed for each possible example and the one yielding the largest norm indicates which example
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to label next. The rationale for the maximin criterion is that labeling the most challenging examples
first may eliminate the need to label many of the other examples.

The maximin selection criterion is studied through experiments and mathematical analysis. We
prove that the criterion has a number of desirable properties:

• It tends to label examples near the current (estimated) decision boundary and close to
oppositely labeled examples, allowing the active learning algorithm to focus on learning
decision boundaries.

• It reduces to optimal bisection in the one-dimensional linear classifier setting.

• A data-based form of the criterion also provably discovers clusters and also automatically
generates labeled coverings of the dataset.

Experimentally, we show that these properties generalize in several ways. For example, we find
that in multiple dimensions the maximin criterion leads to a multidimensional bisection-like process
that automatically finds a portion of the decision boundary and then locally explores to efficiently
identify the complete boundary. We also show that MaxiMin Active Learning can learn hand-written
digit classifiers with far fewer labeled examples than traditional passive learning based on labeling a
randomly selected subset of examples.

2 A New Active Learning Criterion

At each iteration of the active learning algorithm, looking at the currently labeled set of samples, a
new unlabeled point is selected to be labeled. The criterion we are proposing to pick the samples to
be labeled is based on a ‘maximin’ operator. We will describe the criterion in its most general form
along with the intuition behind this choice of criterion. In the remainder of the paper, we will go
through some theoretical results about the properties of variations of this criterion in various setups
along with some additional descriptive numerical evaluations and simulations.

2.1 Nonparametric Pool-based Active Learning

At each time step, the algorithm has access to a pool of labeled samples and a set of unlabaled
samples. In other words, we have a partially labeled training set. Let L = {(x1, y1), · · · , (xL, yL)}
be the set of labeled examples so far. We assume xi ∈ X where X is the input/feature space and
binary valued labels yi ∈ {−1,+1}. Let U ⊆ X be the set of unlabeled samples.

In the interpolating regime, the goal is to correctly label all the points in U so that the training error
is zero. Passive learning generally requires labeling every point in U . Active learning sequentially
selects points in U for labeling with the aim of learning a correct classifier without necessarily labeling
all of U . Our setting can be viewed as an instance of pool-based active learning.

At each iteration, one unlabeled sample, u∗ ∈ U is selected, labeled and added to the pool of
labeled samples. The selection process is designed to pick the samples which are most informative
upon being labeled. The proposed notion of score is the measure of informativeness of each sample
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u ∈ U at each time: the score of each unlabaled sample is computed, and the sample with the largest
score is selected to be labeled.

u∗ = argmaxu∈U score(u) . (1)

If there are multiple maximizers, then one is selected uniformly at random. Note that for any
unlabeled sample u ∈ U , the value of score(u) depends implicitly on the set of currently labeled
points, L. That is, information gained by labeling u depends on the current knowledge of the learner.
To define our proposed notion of score, we define minimum norm interpolating function and introduce
some notations next.

2.2 Minimum norm interpolating function

Let F be a class of functions mapping X to R, where X is the input/feature space,. We assume the
class F is rich enough to interpolate the training data. For example, F could be a nonparametric
infinite dimensional Reproducing Kernel Hilbert Space (RKHS) or an overparameterized neural
network representation.

Given the set of labeled samples, L, and a class of functions F , let f ∈ F be the interpolating
function such that f(xi) = yi for all (xi, yi) ∈ L. Note that there may be many functions that
interpolate a discrete set of points such as L. Among these, we choose f to be the minimum norm
interpolator:

f(x) := argming∈F ‖g‖F (2)

s.t. g(xi) = yi, for all (xi, yi) ∈ L .

Clearly, the definition of f depends on the set of currently labeled samples L and the function norm
‖ · ‖F , although we omit these dependencies for ease of notation. The choice of F and the norm
‖ · ‖F is application dependent. In this paper, we focus on (1) function classes represented by an
overparameterized neural network representation with the `2 norm of the weight vectors and (2)
reproducing kernel Hilbert spaces with the corresponding Hilbert norm.

For unlabeled points u ∈ U and ` ∈ {−1,+1}, define fu` (x) is the minimum norm interpolating
function based on current set of labeled samples L and the point u ∈ U with label `:

fu` (x) := argming∈F ‖g‖F (3)

s.t. g(xi) = yi, for all (xi, yi) ∈ L

g(u) = ` .

We use this definition in the next subsection to define the notion of score.
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2.3 Definition of proposed notion of score

Roughly speaking, we want our selection criterion to prioritize labeling the most “informative”
examples. Since the ultimate goal is to correctly label every example in U , we design score(u) to
measure the how hard it is to interpolate after adding u to the set of labeled points. The intuition is
that attacking the most challenging points in the input space first may eliminate the need to label
other ‘easier’ examples later.

Note that we need to compute score(u) without knowing the label of u. To do so, we come up
with an estimate of label of u, denoted by `(u) ∈ {−1,+1} and compute score(u) assuming that
upon labeling, u will be labeled `(u). We propose the following criterion for choosing `(u):

`(u) := argmin`∈{−1,+1}‖fu` (x)‖F . (4)

Operating in the interpolating regime, we estimate the label of any unlabeled sample, u, to be the
one that yields the minimum norm interpolant (i.e., the “smoother” of the two interpolants among
the two possible functions fu+(x) and fu−(x)).

Define
fu(x) := fu`(u)(x) (5)

to be the interpolating function after adding the sample u with the label `(u), defined in (4).
We propose two notions of score. For u ∈ U , define

scoreF (u) = ‖fu(x)‖F (6)

scoreD(u) = ‖fu(x)− f(x)‖D (7)

where ‖ · ‖F is the norm associated the the function space F . The function f is the minimum norm
interpolator of the labeled examples in L (defined in (2)), and fu(x) is defined (5) as the minimum
norm interpolator after adding u with the estimated label `(u) to the set of labeled points. Also,
define

‖g‖D =

∫
X
|g(x)|2 dPX(x) , (8)

where PX is the distribution of x. In practice, PX is the empirical distribution of U . We refer to the
(6) as the function norm score and (7) as the data-based norm score1.

The distinction between the two definitions of the score function is as follows. Scoring unlabeled
points according to the definition scoreF priotorizes labeling the examples which result in minimum
norm interpolating functions with largest norm. Since the norm of the function can be associated
with its smoothness, roughly speaking, this means that this criterion picks the points which give the
least smooth interpolating functions. However, scoreF is insensitive to the distribution of data. The

1Operationally, to compute the data-based norm of any function, the algorithm uses the probability mass function of
set of unlabeled points as a proxy for the input probability density function over the feature space X . In particular, the
algorithm approximates ‖g‖D by the average of the function over the set of unlabeled points: ‖g‖D ≈ 1

|U|
∑

u∈U |g(u)|
2.

High density of set of unlabeled points and some mild regularity conditions guarantee that this is a good approximation.
Throughout the paper, we use (8) to prove theoretical statements and its approximation in the numerical simulations.
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data-based scoreD, in contrast, is sensitive to the distribution of the data. Measuring the difference
between the new interpolation fu and the previous one makes this also sensitive to the structure of
the function class.

With these definitions in place, we state the MaxiMin Active Learning criterion as follows. Given
labeled data L, the next example u∗ ∈ U to label is selected according to

fu = arg min
f∈{fu

+,fu
−}
‖f‖F , ∀u ∈ U

u∗ = arg max
u∈U

score(u)

with either scoreF or scoreD.

3 MaxiMin Active Learning with Neural Networks

3.1 Overparameterized Neural Networks and Interpolation

Neural networks are often highly overparameterized and exactly fit to training data, yet remarkably
the learned models generalize well to new data. A mathematical understanding of this phenomenom
is beginning to emerge [1, 2, 3, 4, 5, 6, 7, 8]. This work suggests that among all the networks that
could be fit to the training data, the learning algorithms used in training favor networks with smaller
weights, providing a sort of implicit regularization. With this in mind, researchers have shown that
even shallow networks and classical kernel methods fit to the data but regularized to have small
weights (e.g., minimum norm fit to data) can generalize well [2, 9, 8, 10]. The functional mappings
generated by wide, two-layer neural networks with Rectified Linear Unit (ReLU) activation functions
were studied in [20]. It is shown that exactly fitting such networks to training data subject to
minimizing the `2-norm of the network weights results in a linear spline interpolation. This result was
extended to a broad class of interpolating splines by appropriate choices of activation functions [21].
Our analysis of the MaxiMin active learning with neural networks will leverage these connections.

3.2 Neural Network Regularization

It has been long understood that the size of neural network weights, rather than simply the number
of weights/neurons, characterizes the complexity of neural networks [22]. Here we focus on two-layer
neural networks with ReLU activation functions in the hidden layer. If x ∈ Rd is input to the
network, then the output is computed by the function

fw,b,c(x) =

N∑
n=1

vn σ(uT
nx + bn) + c , (9)

where σ(·) = max{0, ·} is the ReLU activation, w := {vn,un}Nn=1 are the “weights” of the network,
and b := {bn} and c are constant “bias” terms. The “norm” of fw,b,c is defined as ‖fw,b,c‖ := ‖w‖2,
the `2-norm of the vector of network weights. We use the term norm in quotes because technically
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the weight norm does not correspond to a true norm on the function fw,b,c since, for example,
constant functions fw,b,c = c have ‖w‖2 = 0. From now on we will drop the subscripts and just
write f for ease of notation. Let {(xi, yi)}Mi=1 be a set of training data. The minimum “norm” neural
network interpolation of these data is the solution to the optimization

min
w
‖w‖2 subject to f(xi) = yi, i = 1, . . . ,M.

A solution exists if the number of neurons N is sufficiently large (see Theorem 5.1 in [23]).
In Section 5 we explore the behavior of MaxiMin active learning through numerical experiments

using both the function “norm” score and the data-based norm score. In all our experiments and
theory, we assume the binary classification setting where yi = ±1. Broadly speaking, we observe the
following behaviors.

• With the function “norm” score the MaxiMin active learning algorithm tends to sample
aggressively in the vicinity of the boundary, prefering to gather new labels between the closest
oppositely labeled examples.

• The data-based norm score is sensitive to the distribution of the data. It strikes a balance
between exploiting regions between oppositely labeled examples (as in the function-based case)
and exploring regions further away from labeled examples. Thus we see evidence that the
data-based norm can effectively seek out the decision boundary and explore data clusters.

These behaviors are supported by a formal analysis of MaxiMin active learning in one dimension,
discussed next.

3.3 MaxiMin Active Learning in One-Dimension

Our analysis of MaxiMin active learning with neural networks will focus on the behavior in one-
dimension. We show that MaxiMin active learning with a two-layer ReLU netwok recovers optimal
bisection learning strategies. The following characterization of minimum “norm” neural network
interpolation in one-dimension follows from [20, 21] (see Theorem 4.4 and Proposition 6.1 in [21]).

Theorem 1. Let f : R→ R be a two-layer neural network with ReLU activation functions and N
hidden nodes as in (9). Let {(xi, yi)}Mi=1 be a set of training data. If N ≥M , then a solution to the
optimization

min
w
‖w‖2 subject to f(xi) = yi, i = 1, . . . ,M

is a minimal knot linear spline interpolation of the points {(xi, yi)}Mi=1.

In our analysis, we exploit the equivalence between minimum “norm” neural networks and linear
splines. Specifically, a solution to the optimization is an interpolating function that is linear between
each pair of neighboring points. This ensures that given a pair of neighboring labeled points x1 and
x2 and any unlabeled point x1 < u < x2, adding u to the set of labeled points can only potentially
change the interpolating function between x1 and x2. To eliminate uncertainty in the boundary
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conditions of the interpolation, we assume that the neural network is initialized by labeling the
leftmost and rightmost points in the dataset and forced to have a constant extension to the left and
right of these points (this can be accomplished by adding two artificial points to the left and right
with the same labels as the true endpoints).

The main message of our analysis is that MaxiMin active learning with two-layer ReLU networks
recovers optimal bisection (binary search) in one-dimension. This is summarized by the next corollary
which follows in a straightforward fashion from Theorems 2 and 3.

Corollary 1. Consider N points uniformly distributed in the interval [0, 1] labeled according to a
k-piecewise constant function f so that yi = f(xi) ∈ {−1,+1}, i = 1, . . . , N , and length of the pieces
are Θ(1/K). Then after labeling O(k logN) examples, the MaxiMin active learning with a two-layer
ReLU network correctly labels all N examples (i.e., the training error is zero).

The corollary follows from the fact that the MaxiMin criteria (both function norm and data-based
norm) selects the next example to label at the midpoint between neighboring and oppositely labeled
examples (i.e., at a bisection point). This is characterized in the next two theorems. First we consider
the function “norm” criterion. The proof of the following theorem appears in Appendix A.1.

Theorem 2. Let L be a set of labeled examples and let u be an unlabeled example. Let fu+ be the
minimum “norm” interpolator of L ∪ (u,+1) and let fu− be the minimum “norm” interpolator of
L ∪ (u,−1). Define the score of an unlabeled example u as scoreF(u) = min{‖fu+‖, ‖fu−‖}, where
‖f‖ = ‖w‖2, the neural network weight norm. Then, the selection criterion based on scoreF has the
following properties

1. Let x1 and x2 be two oppositely labeled neighboring points in L, i.e., no other points between x1

and x2 have been labeled and y1 6= y2. Then for all x1 < u < x2, scoreF
(
x1+x2

2

)
≥ scoreF (u).

2. Let x1 < x2 and x3 < x4 be two pairs of oppositely labeled neighboring points (i.e., y1 6= y2 and
y3 6= y4) such that x2 − x1 ≥ x4 − x3. Then,

scoreF

(
x1 + x2

2

)
≤ scoreF

(
x3 + x4

2

)
.

3. Let x5 and x6 be two identically labeled neighboring points in L, i.e., y5 = y6. Then for all
x5 < u < x6, the function scoreF (u) is constant.

4. For any pair of neighboring oppositely labeled points x1 and x2, any pair of neighboring
identically labeled points x5 and x6, any x1 < u < x2 and any x5 < v < x6, we have

scoreF (v) ≤ scoreF (u) .

Now we turn to the data-based norm. Here we observe the effect of the data distribution on
the bisection properties. The properties mirror those in Theorem 2 except in the case of the second
property. The data-based norm criterion tends to sample in the largest (most data-massive) interval
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between oppositely labeled points, whereas the function-based norm criterion favors points in the
smallest interval.

Theorem 3. Let the distribution P(X) be uniform over an interval. Let L be a set of labeled examples
and let u be an unlabeled example. Let fu+ be the minimum “norm” interpolator of L ∪ (u,+1) and
let fu− be the minimum “norm” interpolator of L ∪ (u,−1) and let fu = argg∈{fu

+,fu
−} ‖g‖ consistent

with notations in (3) and (5). Then scoreD(u) =
∫
|fu(x)− f(x)|2 dPX(x), where f is the minimum

“norm” interpolator based on the labeled data L. Then, the selection criterion based on scoreD has the
following properties.

1. Let x1 and x2 be two oppositely labeled neighboring points in L, i.e., y1 6= y2. Then for all
x1 < u < x2 scoreD

(
x1+x2

2

)
≥ scoreD(u).

2. Let x1 < x2 and x3 < x4 be two pairs of oppositely labeled neighboring labeled points (i.e.,
y1 6= y2 and y3 6= y4) such that x2 − x1 ≥ x4 − x3. If the unlabeled points are uniformly
distributed in each interval and the number of points is in (x1, x2) is less than the number in
(x4, x3), then

scoreD

(
x1 + x2

2

)
≥ scoreD

(
x3 + x4

2

)
.

3. Let x5 and x6 be two identically labeled neighboring points in L, i.e., y5 = y6. Then for all
x5 < v < x6, we have scoreD(v) = 0.

4. For any pair of neighboring oppositely labeled points x1 and x2, any pair of neighboring
identically labeled points x5 and x6, any x1 < u < x2 and any x5 < v < x6, we have

scoreD(v) ≤ scoreD(u) .

The proof appears in Appendix A.2.

4 Interpolating Active Learners in an RKHS

In this section, we will focus on minimum norm interpolating functions in a Reproducing Kernel
Hilbert Space (RKHS). We present theoretical properties for general RKHS settings, detailed
analytical results in the one-dimensional setting, and numerical studies in multiple dimensions.
Broadly speaking, we establish the following properties: the proposed score functions

• tend to select examples near the decision boundary of f , the current interpolator;

• the score is largest for unlabeled examples near the decision boundary and close to oppositely
labeled examples, in effect searching for the boundary in the most likely region of the input space;

• in one dimension the interpolating active learner coincides with an optimal binary search procedure;
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• using data-based function norms, rather than the RKHS norm, the interpolating active learner
executes a tradeoff between sampling near the current decision boundary and sampling in regions
far away from currently labeled examples, thus exploiting cluster structure in the data.

4.1 Kernel Methods

A Hilbert space H is associated with an inner product: 〈f, g〉H for f, g ∈ H. This induces a
norm defined by ‖f‖H =

√
〈f, f〉H. A symmetric bivariate function K : X × X → R is positive

semidefinite if for all n ≥ 1, and points {xi}ni=1, the matrix K with element Ki,j = K(xi, xj)

is positive semidefinite (PSD). These functions are called PSD kernel functions. A PSD kernel
constructs a Hilbert space, H of functions on f : X → R. For any x ∈ X and any f ∈ H, the
function K(·, x) ∈ H and 〈f,K(·, x)〉H = f(x). Throughout this section, we assume K(x, x) = 1.

For the set of labeled samples L = {(x1, y1), · · · , (xL, yL)} with yi ∈ {−1,+1}, let the function
f(x) be decomposed as

f(x) =
L∑
i=1

αik(xi, x) (10)

with α = K−1y,

where K =
[
Ki,j

]
i,j

is the L by L matrix such that Ki,j = k(xi, xj) and y = [y1, · · · , yL]T . Using
reproducible kernels implies that f(x) ∈ H for the a RKHS H. Then, f(x) defined above is the
minimum Hilbert norm interpolating function defined in (2). Using the property 〈K(xi, ·),K(xj , ·)〉 =

K(xi, xj), we have
‖f(x)‖2H = αT Kα = yT K−1 y .

For u ∈ U and ` ∈ {−1,+1}, the minimum norm interpolating unction fu` (x), defined in (3)
(based on currently labeled samples L and sample u with label `) is derived similarly :

fu` (x) =
L∑
i=1

α̃ik(xi, x) + α̃L+1k(u, x) (11)

with α̃ = K̃
−1

u ỹ`,

where

K̃u =

[
K au

aT
u b

]
, au =


k(x1, u)

...
k(xL, u)

 , ỹ` =

[
y
`

]
, and b = K(u, u) . (12)

Throughout this paper, we use kernel such that K(x, x) = 1 for all x ∈ X .
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4.2 Properties of General Kernels for Active Learning

We first show that using kernel based function spaces for interpolation, `(u) defined in (4) coincides
with the sign of value of current interpolator at u.

Proposition 1. For u ∈ X and ` ∈ {−,+}, define f(x) and fu` (x) according to (2) and (3) in
Section 2. Then, `(u) defined in (4) satisfies

`(u) =

+1 if f(u) ≥ 0

−1 if f(u) < 0 .

Proof. Let ỹ` = [y1, · · · , yn, `]T , au = [K(x1, u), · · · ,K(xn, u)]T and b = K(u, u) = 1. Let K be the
kernel matrix for the elements in L and K̃u be the kernel matrix for the elements in L ∪ {u}, as
defined in (12). Then, for ` ∈ {−1,+1}

‖fu` (x)‖2H = ỹT
` K̃

−1

u ỹ`
(a)
= yT

(
K− au aT

u

)−1
y− 2` yT

(
K− au aT

u

)−1
a +

(
1− aT

u K−1au

)−1

(b)
= yT K−1 y +

(
1− `yT K−1au

)2

1− aT
u K−1au

(c)
= ‖f(x)‖2H +

[
1− ` f(u)

]2
1− aT

u K−1au
.

where Schur’s complement formula gives (a) and Woodbury Identity with some algebra algebra gives
(b). We are using the property that K(x, x) = 1 and the diagonal elements of matrix K̃u are equal
to one. (c) uses (10) for the minimum norm interpolating function based on L, i.e., f(x). Hence,
‖fu+(x)‖H > ‖fu−(x)‖H if and only if f(u) < 0 which gives the statement of proposition.

4.3 Radial Basis Kernels

From here on, we will focus on minimum norm interpolating functions with radial basis kernels. The
kernel functions we use have the following form: For x, x′ ∈ Rd, h > 0 and p > 1, let

kh,p(x, x
′) = exp

(
− 1

h
‖x− x′‖p

)
, (13)

where ‖x‖p :=
(∑d

i=1 x
p
i

)1/p is the `p norm and ‖x− x′‖p is the Minkowski distance satisfying the
triangle inequality. For p = 1, 2 this category of kernels construct Reproducing Kernel Hilbert Spaces.
When the parameters h and p are specified, we denote the kernel function kh,p(x, y) by k(x, y).

4.4 Laplace Kernel in One Dimension

To develop some intuition, we consider active learning in one-dimension. The sort of target function
we have in mind is a multiple threshold classifier. Optimal active learning in this setting coincides
with binary search. We now show that the proposed selection criterion based on scoreH with Hilbert
norm associated with the Laplace kernels result in an optimal active learning in one dimension (proof
in Appendix B.1).
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Proposition 2. [Maximin criteria in one dimension with Laplace kernel] Define K(x, x′) =

exp(−|x − x′|/h) to be the Laplace kernel in one dimension and the minimum norm interpola-
tor function defined in Section 4.1. Let the selection criterion be based on scoreH(u) function defined
in (6) with the Laplace kernel Hilbert norm. Then the following statements hold for any value of
h > 0:

1. Let x1 and x2 be two neighboring labeled points in L. Then scoreH
(
x1+x2

2

)
≥ scoreH(u) for all

x1 < u < x2.

2. Let x1 < x2 and x3 < x4 be two pairs of neighboring labeled points such that x2− x1 ≥ x4− x3,
then

• if y1 6= y2 and y3 = y4. Then scoreH
(
x1+x2

2

)
≥ scoreH

(
x3+x4

2

)
.

• if y1 = y2 and y3 6= y4. Then scoreH
(
x1+x2

2

)
≤ scoreH

(
x3+x4

2

)
.

• if y1 6= y2 and y3 6= y4. Then scoreH
(
x1+x2

2

)
≤ scoreH

(
x3+x4

2

)
.

• if y1 = y2 and y3 = y4. Then scoreH
(
x1+x2

2

)
≥ scoreH

(
x3+x4

2

)
.

The key conclusion drawn from these properties is that the midpoints between the closest
oppositely labeled neighboring examples have the highest score. If there are no oppositely labeled
neighbors, then the score is largest at the midpoint of the largest gap between consecutive samples.
Thus, the score results in a binary search for the thresholds definining the classifier. Using the
proposition above, it is easy to show the following result, proved in the Appendix B.3.

Corollary 2. Consider N points uniformly distributed in the interval [0, 1] labeled according to a
k-piecewise constant function g(x) so that yi = g(xi) ∈ {−1,+1} and length of the pieces are roughly
on the order of Θ(1/K). Then by running the proposed active learning algorithm with Laplace Kernel
and any bandwidth, after O(k logN) queries the sign of the resulting interpolant f correctly labels all
N examples (i.e., the training error is zero).

This statement is true for N > 5/h. The proof is provided in Appendix B.3.

4.5 General Radial-Basis Kernels in One Dimension

In the next proposition, we look at the special case of radial basis kernels, defined in Equation(13)
applied to one dimensional functions with only three initial points. We show how maximizing scoreH

with the appropriate Hilbert norm is equivalent to picking the zero-crossing point of our current
interpolator.

Proposition 3 (One Dimensional Functions with Radial Basis Kernels). Assume that for any pair
of samples x, x′ ∈ L we have |x − x′| ≥ ∆. Assume ∆h−1/p ≥ D for a constant value of D. Let
x1 < x2 < x3 ∈ R, y1 = y2 = +1 and y3 = −1. For u such that x2 + ∆/2 < u < x3 −∆/2, we have
scoreH(u) ≤ scoreH(u∗) where u∗ is the point satisfying f(u∗) = 0.
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The proof is rather tedious and appears in Appendix C.1. But the idea is based on showing that
with small enough bandwidth, ‖fu+‖ is increasing in u in the interval [x2 + ∆/2, x3 −∆/2] and ‖fu−‖
is decreasing in u in the same interval. This shows that maxu min`∈{−1,+1} ‖fu` ‖ occurs at u∗ such
that ‖fu∗+ ‖ = ‖fu∗− ‖. We showed that this is equivalent to the condition f(u∗) = 0.

4.6 Properties of data based-norm criterion

Intuitively, scoreD measures the expected change in the squared norm over all unlabeled examples
if u ∈ U is selected as the next point. This norm is sensitive to the particular distribution of the
data, which is important if the data are clustered. This behavior will be demonstrated in the
multidimensional setting discussed next.

In this section, we present two theoretical results on the properties of data-based norm selection
criterion. To do so, we will prove the properties of the selected examples based on the data-based
norm in the context of the clustered data. In particular, if the support of the generative distribution
PX(x) is composed of several disjoint clusters, the data-based norm criterion prioritizes labeling
samples from bigger clusters first. Subsequently, it selects a sample from each cluster to be labeled.
If the clustering in the dataset is aligned with their labels (most of the samples in the same cluster
are in the same class), labeling one sample in each cluster ensures rapid decay in the probability of
error of the classifier as a function of number of labeled samples. This behavior is consistent with
numerical simulations presented in Section 5.

The next theorem will show that if the clusters are well-separated (the distance between the
clusters are sufficiently large), then the first example to be selected to for labeling is in the biggest
cluster.

Theorem 4 (First point in clustered data). Fix p > 1 and h > 0. Let the distribution P(X) be
uniform over M disjoint sets B1, · · · , BM such that Bi is an `p ball with radius ri and center ci, i.e.,

Bi = Bd,p(ri; ci) := {x ∈ Rd : ‖x− ci‖p ≤ ri} . (14)

Without loss of generality, assume r1 > r2 > · · · > rK . Define D = mini 6=j ‖ci − cj‖p − 2r1 as an
upper bound for the minimum distance between the clusters.

Assume L = ∅ and let the interpolating functions f be defined in (10) with kh,p (defined in (13)).
The selection criterion is based on the scoreD function defined in (7). If

D >
h

2

[
lnM − ln

(
1− (r2/r1)d

)]
and r1 ≤ h/2,

then the first point to be labeled is in the biggest ball, B1.

The proof is presented in Appendix C.1.
The next theorem shows that if the distance between the clusters are sufficiently large and the

radius of the clusters are not too large, then the active learning algorithm based on the notion of
score with data-based norm labels one sample from each cluster before zooming in inside the clusters.
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Theorem 5 (Cluster exploration). Let S be the support of PX . Assume S = ∪Mi=1Bi where Bi’s
are `p-balls with radii r and centers ci. Define D := mini 6=j ‖ci − cj‖p − 2r1 to be the minimum
distance between the clusters. Let L = {x1, x2, · · · , xL} be L < M labeled points such that x1 ∈
B1, x2 ∈ B2, · · · , xL ∈ BL. Let the selection criterion be based on the scoreD function defined in (7).
If r < h/3 and D ≥ 12h ln(2M), then the next point to be labeled is in a new ball (∪Mi=L+1Bi)
containing no labeled points.

As a corollary of the above theorem, one can see that if the ratio of the distance between the
clusters to the radius of clusters is sufficiently large (D/r > 36ln(2M)), then one can use a kernel
with proper bandwidth which picks one sample from each cluster initially. The proof is presented in
Appendix C.2.

5 Numerical Simulations of kernel based

In this Section, we present the outcome of numerical simulations of the proposed selection criteria on
synthetic and real data. In this section, scoreH is used to denoted the score function defined in (6)
with the Hilbert norm associated with the Laplace Kernel. Similarly, scoreD is the score function
defined in (7) with the data-based norm.

5.1 Bisection in one dimension

The bisection process is illustrated experimentally in the Figure 2 below. scoreH uses the RKHS norm.
For comparison, we also show the behavior of the algorithm using scoreD and the data-based norm.
Data selection using either score drives the error to zero faster than random sampling (as shown on
the left). We clearly see the bisection behavior of scoreH, locating one decision boundary/threshold
and then another, as the proof corollary above suggests. Also, we see that the data-based norm does
more exploration away from the decision boundaries. As a result, the data-based norm has a faster
and more graceful error decay, as shown on the right of the figure. Similar behavior is observed in
the multidimensional setting shown in Figure 5.

Figure 2: Uniform distribution of samples in unit interval, multiple thresholds between ±1 labels,
and active learning using Laplace Kernel, Bandwidth= .1. Probability of error of the interpolated
function shown on right.
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5.2 Multidimensional setting with smooth boundary

The properties and behavior found in the one dimensional setting carry over to higher dimensions.
In particular, the max-min norm criterion tends to select unlabeled examples near the decision
boundary and close to oppositely labeled examples, This is illustrated in Figure 3 below. The inputs
points (training examples) are uniformly distributed in the square [−1, 1]× [−1, 1]. We trained an
Laplace kernel machine to perfectly interpolate four training points with locations and binary labels
as depicted in Figure 3(a). The color depicts the magnitude of the learned interpolating function:
dark blue is 0 indicating the “decision boundary” and bright yellow is approximately 3.5. Figure 3(b)
denotes the score for selecting a point at each location based on RKHS norm criterion. Figure 3(c)
denotes the score for selecting a point at each location based on data-based norm criterion discussed
above. Both criteria select the point on the decision boundary, but the RKHS norm favors points
that are closest to oppositely labeled examples whereas the data-based norm favors points on the
boundary further from labeled examples.

Figure 3: Data selection of Laplace kernel active learner. (a) Magnitude of output map kernel
machine trained to interpolate four data points as indicated (dark blue is 0 indicating the learned
decision boundary). (b) Max-Min RKHS norm selection of next point to label. Brightest yellow is
location of highest score and selected example. (c) Max-Min selection of next point to label using
data-based norm. Both select the point on the decision boundary, but the RKHS norm favors points
that are closest to oppositely labeled examples.

Next we present a modified scenario in which the examples are not uniformly distributed over
the input space, but instead concentrated only in certain regions indicated by the magenta highlights
in Figure 4(a). In this setting, the example selection criteria differ more significantly for the two
norms. The weight norm selection criterion remains unchanged, but is applied only to regions where
there are examples. Areas with out examples to select are indicated by dark blue in Figure 4(b)-(c).
The data-based norm is sensitive to the non-uniform input distribution, and it scores examples near
the lower portion of the decision boundary highest.

The distinction between the max-min selection criterion using the RKHS vs. data-based norm is
also apparent in the experiment in which a curved decision boundary in two dimensions is actively
learned using a Laplace kernel machine, as depicted in Figure 5 below. scoreH is the max-min RKHS
norm criterion at progressive stages of the learning process (from left to right). The data-based norm
is used in scoreD defined in Equation (7). Both dramatically outperform a passive (random sampling)
scheme and both demonstrate how active learning automatically focuses sampling near the decision
boundary between the oppositely labeled data (yellow vs. blue). However, the data-based norm
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Figure 4: Data selection of Laplace kernel active learner. (a) Unlabeled examples are only available
in magenta shaded regions. (b) Max-Min selection map using RKHS norm (6). (c) Max-Min selection
map using data-based norm defined in Equation (7).

does more exploration away from the decision boundary. As a result, the data-based norm requires
slightly more labels to perfectly predict all unlabeled examples, but has a more graceful error decay,
as shown on the right of the figure.

Figure 5: Uniform distribution of samples, smooth boundary, Laplace Kernel, Bandwidth= .1. On
left, sampling behavior of scoreH and scoreD at progressive stages (left to right). On right, error
probabilities as a function of number of labeled examples.

5.3 Multidimensional setting with clustered data

To capture the properties of the proposed selection criteria in clustered data, we implemented the
algorithm on synthetic clustered data in Figures 6 and 7. We demonstrate how the data-based
norm also tends to automatically select representive examples from clusters when such structure
exists in the unlabeled dataset. Figure 6 compares the behavior of selection based on scoreHIn

with the RKHS norm and scoreD with data-based norm, when data are clusters and each cluster is
homogeneously labeled. We see that the data-based norm quickly identifies the clusters and labels a
representative from each, leading to faster error decay as shown on the right.

In the setup in Figure 7, the samples are generated based on a uniform distribution on 13 clusters.
Points in blue and yellow clusters are labeled +1 and −1, respectively. We run the two variations of
proposed active learning algorithms and compare their sampling strategy in this setup. The left
figure uses scoreH to be the score function defined in (6) with the Hilbert norm associated with the
Laplace Kernel. Similarly, scoreD is the score function defined in (7) with the data-based norm.
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Figure 6: Uniform distribution of samples, smooth boundary, Laplace Kernel, Bandwidth= .1. On
left, sampling behavior of scoreH and scoreD at progressive stages (left to right). On right, error
probabilities as a function of number of labeled examples.

Figure 7: Points in blue and yellow clusters are labeled +1 and −1, respectively. The left figure uses
scoreH to be the score function defined in (6) with the Hilbert norm associated with the Laplace
Kernel. Similarly, scoreD is the score function defined in (7) with the data-based norm. The first
13 samples selected by scoreH and scoreD are depicted as black dots. scoreD has labeled one sample
from each cluster, but scoreH has not labeled any samples from 5 clusters. Note that scoreH has
spent some of the sample budget to discriminate between nearby clusters with opposite labels.

The selection criterion based on scoreH prioritizes sampling on the decision boundary of the
current classifier where the currently oppositely labeled samples are close to each other. This behavior
of the algorithm based on scoreH in one dimension is proved in Sections 4.4 and 4.5. Alternatively,
scoreD prioritizes labeling at least one sample from each cluster. Hence, after labeling 13 samples,
the active learning algorithm based on scoreD has one sample in each cluster, but the active learning
algorithm based on scoreD has not labeled any samples in 5 clusters.

5.4 MNIST experiments

Here we illustrate the performance of the proposed active learning method on the MNIST dataset.
We ran algorithms based on our proposed selection criteria for a binary classification task on MNIST
dataset. The binary classification task used in this experiment assigns a label −1 to any digit in
set {0, 1, 2, 3, 4} and label +1 to {5, 6, 7, 8, 9}. The goal of the classifier is detecting whether an
image belongs to the set of numbers greater or equal to 5 or not. We used Laplace kernel as defined
in (13) with p = 2 and h = 10 on the vectorized version of a dataset of 1000 images. In Figures 8,
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scoreH is the score function defined in (6) with the Hilbert norm associated with the Laplace Kernel.
Similarly, scoreD is the score function defined in (7) with the data-based norm.

To asses the quality of performance of each of the selection criteria, we compare the probability
of error of the interpolator at each iteration. In particular, we plot the probability of error of the
interpolator as a function of number of labeled samples, using the scoreH and scoreD functions on
the training set and test set separately. For comparison, we also plot the probability of error when
the selection criterion for picking samples to be labeled is random.

Figure 8 (a) shows the decay of probability of error in the training set. When the number of
labeled samples is equal to the number of samples in the training set, it means that all the samples
in training set are labeled and used in constructing the interpolator. Hence, the probability of error
on the training set for any selection criterion is zero when number of labeled samples is equal to the
number of samples in the training set. Figure 8 (b) shows the probability of error on the test set as
a function of the number of labeled samples in the training set selected by each selection criterion.
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Figure 8: Probability of error for learning a classification task on MNIST data set. The performance
of three selection criteria for labeling the samples: random selection, active selection based on scoreH,
and active selection based on scoreD. The first curve depicts the probability of error on the training
set and the second curve is the probability of error on the test set.

5.4.1 Clustering in MNIST

The binary classification task used in the MNIST experiment assigns a label −1 to any digit in
set {0, 1, 2, 3, 4} and label +1 to {5, 6, 7, 8, 9}. We expect that the images are clustered where each
cluster would correspond to the images of a digit. We expect that the advantageous behavior of
using data-based norm criterion in clustered data is one of the reasons for faster decay of probability
of error of the scoreD in Figure 8.

To verify this intuition, we look at the samples that were chosen by each criterion and the digit
corresponding to that sample. Note that this digit is the number represented in the image and not
the label of the sample since the label of each sample is +1 or −1 depending whether the number is
greater than 4 or not. After labeling 100 samples, we look at histogram of the digits associated with
the labeled samples with each criterion scoreH and scoreD. If samples of each cluster are chosen to be
labeled uniformly among clusters, we would see about 10 labeled samples in each cluster. Figure 9
shows the histogram described above for two variations of the selection criteria based on scoreH or
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scoreD. We observe that selecting samples based on scoreD is much more uniform among the clusters.
On the contrary, selecting samples based on scoreH gives much less uniform samples among clusters.
In the particular example given in Figure 9, we see that even after selecting 100 samples to be
labeled, no sample in the cluster of images of number 0 has been labeled in this instance of execution
of the selection algorithm based on notion of scoreH.

To quantify the uniformity of selecting samples in different clusters, we ran this experiment
20 times and estimated the standard deviation of number of labeled samples in each cluster after
labeling 100 samples. Note that since we have 10 clusters, the mean of the number of labeled samples
in each cluster is 10. The standard deviation using scoreH is 4.1 whereas standard deviation using
scoreH is 2.7. This shows that selection criterion based on scoreD samples more uniformly among the
clusters.
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Figure 9: The histogram of the handwritten digits associated with the labeled samples after labeling
100 samples. The first histogram is for the selection criterion scoreH and the second histogram is for
the selection criterion scoreD. Notably, scoreH has not labeled any of the images of the digit 0.

6 Interpolating Neural Network Active Learners

Here we briefly examine the extension of the max-min criterion and its variants to neural network
learners. Neural network complexity or capacity can be controlled by limiting magnitude of the
network weights [24, 25, 26]. A number of weight norms and related measures have been recently
proposed in the literature [27, 28, 29, 30, 31]. For example, ReLU networks with a single hidden
layer and minimum `2 norm weights coincide with linear spline interpolation [32]. With this in mind,
we provide empirical evidence showing that defining the max-min criterion with the norm of the
network weights yields a neural network active learning algorithm with properties analagous to those
obtained in the RKHS setting.

Consider a single hidden layer network with ReLU activation units trained using MSE loss.
In Figure 10 we show the results of an experiment implemented in PyTorch in the same settings
considered above for kernel machines in Figures 3 and 4. We trained an overparameterized network
with 100 hidden layer units to perfectly interpolate four training points with locations and binary
labels as depicted in Figure 10(a). The color depicts the magnitude of the learned interpolating
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function: dark blue is 0 indicating the “decision boundary” and bright yellow is approximately 3.5.
Figure 10(b) denotes the scoreH with the weight norm (i.e., the `2 norm of the resulting network
weights when a new sample is selected at that location). The brightest yellow indicates the highest
score and the location of the next selection. Figure 10(c) denotes the scoreD with the data-based
norm defined in Equation (7). In both cases, the max occurs at roughly the same location, which is
near the current decision boundary and closest to oppositely labeled points. The data-based norm
also places higher scores on points further away from the labeled examples. Thus, the data selection
behavior of the neural network is analagous to that of the kernel-based active learner (compare with
Figure 3).

Figure 10: Data selection of neural network active learner. (a) Magnitude of output map of single
hidden layer ReLU network trained to interpolate four data points as indicated (dark blue is 0
indicating the learned decision boundary). (b) Max-Min selection of next point to label using network
weight norm. (c) Max-Min selection of next point to label using data-based norm. Both select the
point on the decision boundary that is closest to oppositely labeled examples.

Next we present a modified scenario in which the examples are not uniformly distributed over
the input space, but instead concentrated only in certain regions indicated by the magenta highlights
in Figure 11(a). In this setting, the example selection criteria differ more significantly for the two
norms. The weight norm selection criterion remains unchanged, but is applied only to regions where
there are examples. Areas without examples to select are indicated by dark blue in Figure 11(b)-(c).
The data-based norm is sensitive to the non-uniform input distribution, and it scores examples near
the lower portion of the decision boundary highest. Again, this is quite similar to the behavior of
the kernel active learner (compare with Figure 4).

Figure 11: Data selection of neural network active learner. (a) Unlabeled examples are only available
in magenta shaded regions. (b) Max-Min selection map using network weight norm. (c) Max-Min
selection map using data-based norm.
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7 Conclusion and Future Work

The question of designing active learning algorithms in the regime of nonparametric and overparam-
eterized models become more essential as we look at larger models which require bigger training sets.
To reduce the human cost of labeling all samples, we can use a pool-based active learning algorithm
to avoid labeling non-informative examples.

Our algorithm does not exploit any assumption about the underlying classifier in selecting the
samples to label. Yet, for a wide range of classifiers, it performs well with provable guarantees. It
is designed for the extreme case of the nonparametric setting in which no assumption about the
smoothness of the boundary between different classes is made by the learner.

There are many interesting questions remaining: the behavior of our proposed criterion applied
to other classifiers such as kernel SVM instead of minimum norm interpolators, generalization of
the criterion to multi-class settings and regression algorithms. The computational complexity of
our criterion can also be a serious bottleneck in applications with bigger data-sets and should be
addressed in future. Additional numerical simulations, especially with more complex architecture of
Neural Networks can also be insightful.
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A Maximin active learning with neural networks

We present the proof of Theorems 2 and 3 assuming the solutions to (2) and (3) – minimum norm
interpolating functions – are linear spline functions with knots at each data point. According to
Theorem 1, there are other solutions to the minimum “norm” neural network; but since score

(1)
F

only depends on the “norm” it suffices to just consider the spline case. Moreover, as shown in [21],
the weight norm ‖f‖F := ‖w‖2 is equal to the total variation of f . The total variation of a linear
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spline is the sum of the absolute values of the slopes of each linear piece. We use this equivalence
throughout the proof.

For a linear spline function f(x) with knots at each data point, the assumption f(∞) = f(−∞) =

0 guarantees that for any xi such that yi = +1, we have

lim
x→x−i

d

dx
f(x) ≥ 0, lim

x→x+
i

d

dx
f(x) ≤ 0

Similarly, for any xi such that yi = +1, we have

lim
x→x−i

d

dx
f(x) ≤ 0, lim

x→x+
i

d

dx
f(x) ≥ 0

The assumption f(∞) = f(−∞) = 0 also guarantees that f ′(∞) = f ′(−∞) = 0.
Also, if a point u is between two labeled points x1 and x2 such that x1 < x2, then for any label

` ∈ {−, 1 + 1} we know that fu` (x) = f(x) for x ≤ x1 or x ≥ x2. Using these properties, we find the
maximizer of scoreF (u) and scoreD(u) in various cases.

A.1 Maximin Criterion with Function Norm and Neural Networks (Proof of
Theorem 2)

To prove Theorem 1, [20] shows that optimizing the parameters of a two layer Neural Network as
described in Theorem 1 to find minw ‖w‖2 such that f(xi) = yi for all i is the same as minimizing
the R(f) such that f(xi) = yi for all i where R(f) is defined as

R(f) = max
(∣∣f ′(+∞) + f ′(−∞)

∣∣, ∫ |f ′′(x)| dx
)
.

Hence, we can use R(f), as a proxy for a function norm in the context of Neural Networks.
In our setup, adding two artificial points to the left and right with the same labels as the true end

points ensures that the function R(f) =
∫
|f ′′(x)| dx since f ′(+∞) = f ′(−∞) = 0 for the minimum

norm interpolating functions.
Hence, for a set of points {(xi, yi)}i, the norm of minimum norm interpolating function is the

same as R(f) =
∫
|f ′′(x)|dx, i.e., “the summation of changes in the slope of minimal knot linear

spline interpolation of points”. This quantity is used to compute the score of each unlabeled point.
Note that clearly to compute the score of a point u such that xj < u < xj+1, we only need to
compute how much the slope of interpolating function changes by adding u in the interval xj to
xj+1. In particular,

‖fu` (x)‖F − ‖f(x)‖F = 2
1− `yj
u− xj

+ 2
1− `yj+1

xj+1 − u
− 2

1− yjyj+1

xj+1 − xj
.
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1. Without loss of generality, assume y1 = +1 and y2 = −1. Hence,

lim
x→x−1

d

dx
f(x) ≥ 0

and
lim

x→x+
2

d

dx
f(x) ≥ 0 .

Looking at f(x), we also have the slope of function between x1 and x2 to be − 2
x2−x1

.

The same statements hold for fu` (x) for any x1 < u < x2 and ` ∈ {−1,+1}.

lim
x→x−1

d

dx
fu` (x) ≥ 0 , lim

x→x+
2

d

dx
fu` (x) ≥ 0 .

For ` = +1, the slope of fu` (x) for x1 < x < u is zero and the slope of fu` (x) for u < x < x2 is
− 2

x2−u . Since f
u
+(x) = f(x) for x ≤ x1 or x ≥ x2,

‖f(x)‖F −
4

x2 − x1
= ‖fu+(x)‖F −

4

x2 − u
.

Using a similar calculation for ` = −1 we get

‖fu+(x)‖F = ‖f(x)‖F −
4

x2 − x1
+

4

x2 − u
,

‖fu−(x)‖F = ‖f(x)‖F −
4

x2 − x1
+

4

u− x1
.

Hence, ‖fu+(x)‖F ≥ ‖fu−(x)‖F if and only if u ≥ x1+x2
2 and

scoreF (u) = ‖fu(x)‖F = ‖f(x)‖F −
4

x2 − x1
+ min

{ 4

x2 − u
,

4

u− x1

}
. (15)

This gives
u∗ := argmaxx1<u≤x2

score
(1)
F (u) =

x1 + x2

2
.

and
scoreF (u∗) = ‖f(x)‖F +

4

x2 − x1
.

2. Above computation shows that pair of neighboring oppositely labeled points x1 < x2 and
x3 < x4, if x2 − x1 ≥ x4 − x3, then

scoreF
(x3 + x4

2

)
≥ scoreF

(x1 + x2

2

)
.

3. Assume y5 = y6 = y. Then, for x5 ≤ v ≤ x6 we have fvy (x) = f(x) for all x. For ` = −y, we
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have
‖fv−y(x)‖F = ‖f(x)‖F +

4

u− x5
+

4

x6 − u
.

Hence, ‖fvy (x)‖F ≤ ‖fv−y(x)‖F and fv(x) = fvy (x). Hence, for a pair of identically labeled
points x5 and x6 and all x5 ≤ v ≤ x6, we have

scoreF (v) = ‖fv(x)‖F = ‖f(x)‖F (16)

which is a constant independent of v.

4. Equations (15) and (16), show that in this setup

scoreF (v) = ‖f(x)‖F ≤ score
(1)
F (u) .

A.2 Proof of Theorem 3

Without loss of generality, assume x1 = 0 and x2 = 1. Then, if y1 = y2, the statement of theorem is
trivial.

Hnce,

f(x) =
x2 + x1 − 2x

x2 − x1
, for all x1 < x < x2 .

For x1 < u < x2, we have `(u) = +1 if x1 < u < (x1 + x2)/2 and `(u) = −1 if (x1 + x2)/2 < u < x2.
First, we look at x1 < u < (x1 + x2)/2:

fu(x) =

1 , for all x1 < x < u

x2+u−2x
x2−u , for all u < x < x2 .

Hence, for x1 < u < (x1 + x2)/2

‖f − fu‖D =

∫ x2

x1

[
fu(x)− f(x)

]2
dx

=
4

(x2 − x1)2

∫ u

x1

(x− x1)2dx+
4(u− x1)2

(x2 − x1)2(x2 − u)2

∫ x2

u
(x2 − x)2dx

d

du
‖f − fu‖D =

4

(x2 − x1)2
(u− x1)2 − 4(u− x1)2

(x2 − x1)2(x2 − u)2
(x2 − u)2

+
8(u− x1)

3(x2 − x1)(x2 − u)3
(x2 − u)3

=
8

3

u− x1

x2 − x1
≥ 0 .
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Similarly, we can show that for x1+x2
2 ≤ u ≤ x2, fu(x) = fu−(x) and

d

du
‖f − fu‖D ≤ 0 .

B Maximin kernel based active learning in one dimension

B.1 Minimum norm interpolating function with Laplace Kernel in one dimen-
sion

We want to find the minimum norm interpolating function based on set of labeled samples L =

{(x1, y1), · · · , (xn, yn)} such that x1 < x2 < · · · , xn.
First, let us look at the Kernel matrix for three neighboring points x1 < x2 < x3 according to

the Laplace Kernel.

K =

 1 e−(x2−x1)/h e−(x3−x1)/h

e−(x2−x1)/h 1 e−(x3−x2)/h

e−(x3−x1)/h e−(x3−x2)/h 1

 .
We define d1 = e−(x2−x1)/h and d2 = e−(x3−x2)/h. It can be shown that with the above structure

K−1 =


1

1−d21
−d1
1−d21

0

−d1
1−d21

1
1−d21

+ 1
1−d22

− 1 −d2
1−d22

0 −d2
1−d22

1
1−d22

 .
In general, if we look into the Kernel matrix for the set of points x1 < x2 < · · · < xn, and define
di = e−(xi+1−xi)/h for 1 ≤ i ≤ n− 1. We define d0 = dn = 0. Using induction, on can show that the
inverse of the Kernel matrix has a block diagonal form such that

(K−1)1,1 =
1

1− d2
1

, (K−1)n,n =
1

1− d2
n−1

(K−1)i,i =
1

1− d2
i−1

+
1

1− d2
i

− 1, ∀1 < i < n

(K−1)i,i+1 = (K−1)i+1,i =
−di

1− d2
i

, ∀1 ≤ i < n (17)

and the remaining elements of matrix of matrix K−1 is zero, i.e., (K−1)i,j for |j − i| ≥ 2.
Using (10) and the above characterization of matrix K−1, we can show that the the minimum

norm interpolating function based on set of labeled samples L = {(x1, y1), · · · , (xn, yn)} such that

27



x1 < x2 < · · · , xn has the following form:

f(x) =
1

1 + y1y2 d1
y1k(x1, x) +

1

1 + ynyn1 dn−1
ynk(xn, x)

+
n−1∑
i=2

[ 1

1 + yiyi−1di−1
+

1

1 + yiyi+1di
− 1
]
yik(xi, x) . (18)

B.2 Criterion scoreH with Laplace Kernel in one dimension (Proposition 2)

Proof of Proposition 1. Looking at three neighboring points x1 < x2 < · · · < xn labeled y =

{y1, y2, · · · , yn}, let K be the kernel matrix corresponding to {x1, x2, · · · , xn}. Then, using the block
diagonal structure given in Equation (17), we compute ‖f(x)‖H:

‖f(x)‖H = yTK−1y

= trace(K−1) +

n−1∑
i=1

2yiyi+1(K−1)i,i+1

= −(n− 2) + 2
n−1∑
i=1

1− yiyi+1 exp(−(xi+1 − xi)/h)

1− exp(−2(xi+1 − xi)/h)

= −(n− 2) + 2
n−1∑
i=1

1

1 + yiyi+1 exp(−(xi+1 − xi)/h)
. (19)

This factorization of ‖f(x)‖H implies that if xi < u < xj+1, we have

‖fu` (x)‖H =‖f(x)‖H − 1− 2

1 + yjyj+1 exp(−(xj+1 − xj)/h)

+
2

1 + `yj exp(−(u− xj)/h)
+

2

1 + `yj+1 exp(−(xj+1 − u)/h)
. (20)

This factorization of ‖fu` (x)‖H implies that given n labeled points, to find the global maximizer
of scoreH(u), the following strategy works:

Step 1: For each j, we find the maximizer of scoreH(u) for the unlabeled points u such that
xj < u < xj+1. We define

u∗j = arg max
xj<u<xj+1

scoreH(u) (21)

The above factorization (20) shows that to find u∗j , we can alternatively find the maximizer of the
sore given a configuration of only two labeled points L′ = {(xi, yj), (xj+1, yj+1)} and unlabeled
points xj < u < xj+1 to find the maximizer of the last two terms of the above factorization. The
maximzer of scoreH(u) for u such that xj < u < xj+1 given L′ is the same as the maximizer of
scoreH(u) for u such that xj < u < xj+1 given L.

Step 2: Note that arg maxu scoreH(u) = u∗j∗ such that j∗ = arg maxj scoreH(u∗j ). We can
use (20) to compare scoreH(u∗j ) for various values of j.
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In what follows, we show that using Laplace Kernel, whether yj = yj+1 or yj 6= yj+1, we always
have u∗j = (xj + xj+1)/2 and `(u∗j ) = yj . Hence, using (20), we have

scoreH(u∗j ) =‖f(x)‖H − 1− 2

1 + yjyj+1 exp(−(xj+1 − xj)/h)

+
2

1 + exp(−(xj+1 − xj)/2h)
+

2

1 + yjyj+1 exp(−(xj+1 − xj)/2h)
. (22)

Step 1:

1. Consider two neighboring points x1 < x3 labeled y = {−,+}. Let u be such that x1 < u < x3

and t = y3. Define A = e−(u−x1)/h and B = e−(x3−u)/h. Define the matrix K to be the kernel
matrix corresponding to the points x1, u, x3. Then using (19)

‖fu` (x)‖2 =
2

1− `A
+

2

1 + `B
− 1

Hence,

`(u) = argmin`‖fu` (x)‖2 =

+1, if u > x1+x3
2 or B > A

−1, if u ≤ x1+x3
2 or B ≤ A

Without loss of generality, assume A ≥ B or u ≤ x1+x3
2 , then the block diagonal structure

given in Equation (17) implies

scoreH(u) = 2

{
1

1 +A
+

1

1−B

}
− 1

Note that for all u such that x1 < u < x3, we have AB = e−(x3−x1)/h = C and is constant. So

max
u≤x1+x3

2

scoreH(u) = max
A,B, s.t. AB=C,A≥B

2

{
1

1 +A
+

1

1−B

}
− 1

=
4

1− C
− 1 =

4

1− e−(x3−x1)/h
− 1

which is attained when A = B or u = x1+x3
2 .

This gives the following statement: For neighboring labeled points x1 < x3 such that y1 6= y3,
we have

max
s1≤u≤x3

scoreH(u) = scoreH(
x1 + x3

2
) =

4

1− e−(x3−x1)/h
− 1 . (23)

Note that the above function is decreasing in x3 − x1.

2. Consider two neighboring points x1 < x3 labeled y = {+,+}. Let u such that x1 < u < x3
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and t = y3. Define A = e−(u−x1)/h and B = e−(x3−u)/h.

max
x1<u<x3

scoreH(u) = max
A,B, s.t. AB=C

2

{
1

1 +A
+

1

1 +B

}
− 1

=
4

1 +
√
C
− 1 =

4

1 + e−(x3−x1)/2h
− 1

This gives the following statement: For neighboring labeled points x1 < x3 such that y1 = y3,
we have

max
s1≤u≤x3

scoreH(u) = scoreH(
x1 + x3

2
) =

4

1 + e−(x3−x1)/2h
− 1 . (24)

Note that the above function is increasing in x3 − x1.

Step 2: In Step 1, we showed that the maximizer of score at each interval between two neighboring
points is achieved in the center of the interval, i.e., u∗j =

xj+xj+1

2 with notation defined in (21). Now
to compare scoreH(u∗j ) for various j, we look at the following properties derived from the formulation
in (22):

• If yj 6= yj+1, then

scoreH(u∗j ) = ‖f(x)‖H − 1 +
2

1− exp(−(xj+1 − xj)/h)
≥ ‖f(x)‖H + 1 .

Note that if yj 6= yj+1, then scoreH(u∗j ) is increasing in xj+1 − xj .

• If yj = yj+1, then

scoreH(u∗j ) = ‖f(x)‖H−1− 2

1 + exp(−(xj+1 − xj)/h)
+

4

1 + exp(−(xj+1 − xj)/2h)
≤ ‖f(x)‖H+1 .

Note that if yj = yj+1, then scoreH(u∗j ) is decreasing in xj+1 − xj .

The above two properties give the statement of the second part of proposition.

B.3 Max Min criteria Binary Search (Corollary 2)

According to the last property in Proposition 2 the first sample selected will be at the midpoint of
the unit interval and the second point will be at 1/4 or 3/4. If the labels agree, then the next sample
will be at the midpoint of the largest subinterval (e.g., at 3/4 if 1/4 was sampled first). Sampling
at the midpoints of the largest subinterval between a consecutive pairs labeled points continues
until a point with the opposite label is found. Once a point the with opposite label have been
found, Proposition 2 implies that subsequent samples repeatedly bisect the subinterval between the
closest pair of oppositely labeled points. This bisection process will terminate with two neighboring
points having opposite labels, thus identifying one boundary/threshold of g. The total number of
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labels collected by this bisection process is at most log2N . After this, the algorithm alternates
between the two situations above. It performs bisection on the subinterval between the close pair of
oppositely labeled points, if such an interval exists. If not, it samples at the midpoint of the largest
subinterval between a consecutive pairs of labeled points. The stated label complexity bound follows
from the assumptions that there are K thresholds and the length of each piece (subinterval between
thresholds) is on the order of 1/K.

B.4 One Dimensional Functions with Radial Basis Kernels (Proposition 3)

Proof of Proposition 3 on maximum score with radial basis kernels. For the ease of notation, for
fixed p and h, we define a, b > 0 as the normalized distance between samples such that x2−x1 = bh1/p

and x3− x2 = ah1/p. For x2 < u < x3, we define 0 < c < a such that the distance between the point
u and x2 is u− x2 = ch1/p, as in Figure 12. The proposition is based on the assumption that for
any pair of points, |x− x′| ≥ ∆ and h is sufficiently small that a, b, c, a− c ≥ ∆h−1/p.

We want to show that the max score happens at the zero crossing of function f(u). Since we
normalized all pairwise distances by h1/p, instead we will show that there exists a constant D such
that if a, b, c, a− c ≥ D, then the max score is achieved at the zero crossing.

Figure 12: The samples x1, x2 and x3 are the labeled samples such that y1 = y2 = +1 and y3 = −1.

Note that ‖f (u)
+ ‖ depends on the location of point u, characterized by the normalized distance

between u and x2 denoted by c. We want to prove that for small enough bandwidth, ‖f (u)
+ ‖ is

increasing in c for ∆h−1/p < c < a−∆h−1/p. We can use similar argument to show that ‖f (u)
− ‖ is

decreasing in c. This implies

max
∆h−1/p<c<a−∆h−1/p

min
`∈{,+}

‖f (u)
` ‖ = ‖f (u∗)

+ ‖ = ‖f (u∗)
− ‖

with u∗ defined to be the point in which f(u∗) = 0.
To do so, we will show that d

dc‖f
(u)
+ ‖ > 0 in the interval ∆h−1/p < c < a−∆h−1/p.

In the proof of Proposition 1, we showed the following form for the function ‖f (u)
+ ‖,

‖fu+(x)‖ =

[
1− f(u)

]2
1− aT

u K−1au

where K is the kernel matrix for the points x1, x2 and x3. The vector av is defined to be av =

[K(x1, u),K(x2, u),K(x3, u)]T . The term f(u) is the minimum norm interpolating function based
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on the points x1, x2 and x3 and their labels evaluated at u. Equation 10 shows that

f(u) = yTK−1au .

First, we look at K and its inverse in the setup explained above. Using the definition of Radial
basis kernels in Equation (4),

K =

 1 exp(−bp) exp[−(a+ b)p]

exp(−bp) 1 exp(−ap)
exp[−(a+ b)p] exp(−ap) 1

 (25)

Hence,

K−1 =
1

|K|


1− e−2ap −e−bp + e−a

p−(b+a)p e−a
p−bp − e−(a+b)p

−e−bp + e−a
p−(b+a)p 1− e−2(a+b)p −e−ap + e−b

p−(a+b)p

e−a
p−bp − e−(a+b)p −e−ap + e−b

p−(a+b)p 1− e−2bp



=
1

|K|


1− e−2ap −e−bp [1− ε1] e−a

p−bp [1− ε2]

−e−bp [1− ε1] 1− e−2(a+b)p −e−ap [1− ε3]

e−a
p−bp [1− ε2] −e−ap [1− ε3] 1− e−2bp


The determinant of matrix K is

|K| = 1 + 2 exp[−ap − bp − (a+ b)p]− exp[−2(a+ b)p]− exp(−2ap)− exp(−2bp) = 1− ε′

where we defined

ε′ = exp[−2(a+ b)p] + exp(−2ap) + exp(−2bp)− 2 exp[−ap − bp − (a+ b)p]

ε1 = exp
(
bp − ap − (b+ a)p

)
ε2 = exp

(
bp + ap − (b+ a)p

)
ε3 = exp

(
ap − bp − (b+ a)p

)
Note that since for p ≥ 1, we have (a + b)p ≥ ap + bp, then ε′, ε1, ε2, ε3 ≥ 0. Also, there exists a
constant D such that if a, b > D, then |K| ≥ 0.9.
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The vector av is

av = [K(x1, u),K(x2, u),K(x3, u)]T =
[
exp[−(c+ b)p] exp(−cp) exp[−(a− c)p]

]T
Next, we compute f(u)

f(u) = yTK−1au

=
1

|K|

[
1 1 −1

]


1− e−2ap −e−bp [1− ε1] e−a
p−bp [1− ε2]

−e−bp [1− ε1] 1− e−2(a+b)p −e−ap [1− ε3]

e−a
p−bp [1− ε2] −e−ap [1− ε3] 1− e−2bp




e−(c+b)p

e−c
p

e−(a−c)p



=
1

|K|

{
e−(c+b)p [1− ε4] + e−c

p
[1− ε5]− e−(a−c)p [1− ε6]

}
where we defined

ε4 = e−2ap + e−b
p
[1− ε1] + e−a

p−bp [1− ε2]

ε5 = e−b
p
[1− ε1] + e−2(a+b)p − e−ap [1− ε3]

ε6 = e−a
p−bp [1− ε2]− e−ap [1− ε3] + e−2bp

So there exists a constant D such that if a, b, c, a− c > D, then |f(u)| ≤ 1 and ε4, ε5, ε6 ≤ 0.1.
Next, we derive the derivative of f(u) as a function of c

|K| d

dc
f(u) = −p(c+ b)p−1e−(c+b)p [1− ε4]− p .cp−1e−c

p
[1− ε5]− p(a− c)p−1e−(a−c)p [1− ε6] .

≤ −0.9
{
p .cp−1e−c

p
+ p(a− c)p−1e−(a−c)p}

where the last inequality uses ε4, ε5, ε6 ≤ 0.1.
Next, we compute aT

uK−1au and its derivative with respect to c. To use the formulation computed
in the proof of Proposition 1, we compute aT

uK
−1au to be

|K|aT
uK−1au = e−2(b+c)p

[
1− e−2ap

]
+ e−2cp

[
1− e−2(a+b)p

]
+ e−2(a−c)p [1− e−2bp

]
− 2 exp

(
− bp − cp − (b+ c)p

)
[1− ε1]

+ 2 exp
(
− bp − ap − (c+ b)p − (a− c)p

)
[1− ε2]

− 2 exp
(
− ap − cp − (a− c)p

)
[1− ε3]

1− aT
uK−1au ≥ 0.9

where the last inequality holds for large enough constant D such that a, b, c, a− c > D. Hence,
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|K| d

dc
aT
uK−1au = −2p (b+ c)p−1e−2(b+c)p

[
1− e−2ap

]
− 2pcp−1e−2cp

[
1− e−2(a+b)p

]
+ 2p(a− c)p−1e−2(a−c)p [1− e−2bp

]
+ 2p[cp−1 + (b+ c)p−1] exp

(
− bp − cp − (b+ c)p

)
[1− ε1]

− 2p[(c+ b)p−1 − (a− c)p−1] exp
(
− bp − ap − (c+ b)p − (a− c)p

)
[1− ε2]

+ 2p[cp−1 − (a− c)p−1] exp
(
− ap − cp − (a− c)p

)
[1− ε3]∣∣ d

dc
aT
uK−1au

∣∣ ≤ 8pcp−1e−2cp + 8p(a− c)p−1e−2(a−c)p

The remaining of the proof is based on the assumption that there exists a constant large enough
value D such that a, b, c, a − c > D. As we saw, this implies f(u) < 1. Plugging in the above
computations in to the derivative of the function ‖fu+(x)‖ with respect to c, after doing some algebra,
we see that this function is increasing in c. We give the sketch of this algebra here:

d

dc
‖fu+(x)‖ =

(
1− f(u)

)−2(1− aT
uK−1au) d

dcf(u) +
(
1− f(u)

)
d
dca

T
uK−1au

(1− aT
uK−1au)2

≥
(
1− f(u)

)1.5
{
p .cp−1e−c

p
+ p(a− c)p−1e−(a−c)p}+

(
1− f(u)

)
d
dca

T
uK−1au

(1− aT
uK−1au)2

≥ 0 .

The last inequality uses the bounds proved above.
Similarly, we can prove that ‖fu−(x)‖ is decreasing in c. this implies that the score function is

maximize in the zero crossing of function f(x).

C Maximin kernel based active learning with clustered data

To prove the statement of theorems presented in Section 4.6, we introduce some notations consistent
with the notation introduced in Section 4.1. Given a set of labeled samples L = {(x1, y1), · · · , (xL, yL)},
define the L by L matrix K = [k(xi, xj)]1≤i,j≤L and vector y = [y1, · · · , yL]T .

Recall that U is a set of unlabled examples. For u ∈ U and ` ∈ {−1,+1}, let au =

[k(x1, u), · · · , k(xL, u)]T and K̃u be the L+ 1 by L+ 1 matrix such that

K̃u =

[
K au

aT
u 1

]
and ỹ` =

[
y
t

]
.

Let Bd,p(r; c) be the d dimensional `p ball with radius r centered at c (defined in (14)). Let Vd,p(r)
be the volume of Bd,p(r; 0) with respect to the Lebesgue measure.
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C.1 Proof of Theorem 4

The statement of theorem implies that when the data is clustered and distributed uniformly in `p
balls, with centers far enough from each other, the first selected point using the scoreD function
defined in (7) is in the largest ball. To prove this, we will show that the scoreD(c1), as defined in (7)
is larger than scoreD(v) for any v /∈ B1 where c1 is the center of B1. Note that this does not imply
that the first selected point coincides with the center of B1. It guarantees that the largest ball
contains at least one point with a score larger than that of every point in other balls.

Since L = ∅, the empty set, the current interpolating function is uniformly zero everywhere
f(x) = 0 (according to the definition (10)). According to the Equations (3) and (4), for all u ∈ U ,
we can choose `(u) to be equal to +1 or −1. We choose `(u) = +1 without loss of generality for all
u ∈ U .

Using (10), adding any point u ∈ U with label `(u) to L would give the new interpolating function

fu(x) := fu`(u)(x) = k(u, x) = exp
(
− 1

h
‖x− u‖p

)
.

Hence, since PX(x) is uniform over X = ∪Mi=1Bi

scoreD(u) =

∫
x∈X

exp
(
− 2

h
‖x− u‖p

)
dPX(x) =

1

V

M∑
i=1

∫
x∈Bi

exp
(
− 2

h
‖x− u‖p

)
dx

where we defined V =
∑M

i=1 Vd,p(ri) to be the total volume of X . So, to compute scoreD(c1),

V scoreD(c1) =
M∑
i=1

∫
x∈Bi

exp
(
− 2

h
‖x− c1‖p

)
dx ≥

∫
x∈B1

exp
(
− 2

h
‖x− c1‖p

)
dx

=

∫ r1

s=0
exp

(
− 2s

h

)
dVd,p(s) (26)

where we used the change of variable s = ‖x− c1‖p in the last line.
For v /∈ B1, we want to show that scoreD(v) ≤ scoreD(c1). Let v ∈ Bj such that j 6= 1.

V scoreD(v) =

∫
x∈Bj

exp
(
− 2

h
‖x− v‖p

)
dx+

M∑
i=1,i 6=j

∫
x∈Bi

exp
(
− 2

h
‖x− v‖p

)
dx (27)

We will bound each of above terms separately.
For any i 6= j and x ∈ Bi application of triangle inequality gives

‖x− v‖p ≥ ‖ci − cj‖ − ‖x− ci‖ − ‖v − cj‖ ≥ D
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since v ∈ Bj , x ∈ Bi and ‖ci − cj‖p ≥ D + 2r1, ‖x− ci‖p ≤ ri ≤ r1 and ‖v − cj‖p ≤ rj ≤ r1. Hence,

M∑
i=1,i 6=j

∫
x∈Bi

exp
(
− 2

h
‖x− v‖p

)
dx ≤

M∑
i=1,i 6=j

∫
x∈Bi

e−2D/hdx ≤ e−2D/h
M∑

i=1,i 6=j

Vi . (28)

Lemma 1 shows that the first term in (27) is largest when v coincides with cj . Hence,∫
x∈Bj

exp
(
− 2

h
‖x− v‖p

)
dx ≤

∫
x∈Bj

exp
(
− 2

h
‖x− cj‖p

)
dx =

∫ rj

s=0
e−2s/h dVd,p(s) . (29)

Equations (26), (27), (28), and (29) give

V scoreD(c1)− V scoreD(v) ≥
∫ r1

s=rj

exp
(
− 2s

h

)
dVd,p(s)− exp

(
− 2

h
D
) M∑
i=1,i 6=j

Vi

≥ exp
(
− 2r1

h

) [
V1 − Vj

]
−M V1 exp

(
− 2D

h

)
.

Hence,

V

V1

[
scoreD(c1)− scoreD(v)

]
≥ exp

(
− 2r1

h

) [
1− Vj

V1

]
−M exp

(
− 2

D

h

)
(a)

≥ exp
(
− 2r1

h

) [
1−

(r2

r1

)d]−M exp
(
− 2

D

h

)
≥ 0 ,

where inequality (a) is due to the property that

Vd,p(r) =

[
2r Γ(1 + 1/p)

]d
Γ(1 + d/p)

and rj ≤ r2 for all j 6= 1. Also, the assumption

D >
h

2

[
lnM − ln

(
1− (r2/r1)d

)]
,

and r1 ≤ h/2 made in the statement of the theorem, yields the last inequality.

Lemma 1. For any v ∈ B = Bd,p(r, c), we have∫
x∈B

exp
(−‖x− v‖

h

)
dx ≤

∫
x∈B

exp
(−‖x− c‖

h

)
dx .

Proof. To prove the statement of lemma, instead of looking at the integration of two different
functions exp

(
−‖x−v‖

h

)
and exp

(
−‖x−c‖

h

)
on one ball, we look at two balls each centered on v and

c. This intermediate steps helps up prove the statement of lemma.
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Let B1 = Bd,p(r, c) and B2 = Bd,p(r, v). Then,∫
x∈B1

exp
(−‖x− c‖

h

)
dx =

∫
x∈B2

exp
(−‖x− v‖

h

)
dx .

Hence, to prove the statement of the lemma, we upper bound the following:∫
x∈B1

exp
(−‖x− v‖

h

)
dx−

∫
x∈B1

exp
(−‖x− c‖

h

)
dx

=

∫
x∈B1

exp
(−‖x− v‖

h

)
dx−

∫
x∈B2

exp
(−‖x− v‖

h

)
dx

=

∫
x∈B1\B2

exp
(−‖x− v‖

h

)
dx−

∫
x∈B2\B1

exp
(−‖x− v‖

h

)
dx

(a)

≤ e−r/h
∫
x∈B1\B2

dx− e−r/h
∫
x∈B2\B1

dx
(b)
= 0 .

Inequality (a) is due to the fact that since v is the center of B2, for x ∈ B1 \B2, ‖x− v‖ ≥ r and
for x ∈ B2 \B1, ‖x− v‖ ≤ r. Equality (b) is due to the fact that volume of B2 \B1 is equal to the
volume of B1 \B2.

C.2 Proof of Theorem 5

The statement of theorem shows that if the data is clustered, and few of the clusters has been labeled
so far, the algorithm selects a sample from a cluster which has not been labeled so far. To do so,
without loss of generality, we show that for any u ∈ BL, and there exists a v ∈ BL+1 such that
scoreD(v) > scoreD(u). The same argument shows that for any i ≤ L and any u ∈ Bi, there exists a
v ∈ BL+1 such that scoreD(v) > scoreD(u). This proves that the score of any point in the labeled
balls so far is smaller than at least one point in the unlabeled clusters and hence the next point to
be selected is in one of currently unlabeled balls.

We will show that for any u ∈ BL, and there exists a v ∈ BL+1 such that scoreD(v) > scoreD(u).
In particular, for any fixed u ∈ B1, we choose

v = cL+1 + (u− c1) . (30)

We break the rest of the proof into five steps.
Step 1: First, we will look into the interpolator function f(x) such that f(xi) = yi for (xi, yi) ∈ L,
defined in (10).

Since xi ∈ Bi for i = 1, · · · , L, and ‖ci − cj‖p > D + 2r, we have ‖xi − xj‖p ≥ D and
k(xi, xj) ≤ e−D/h. Hence, matrix K can be decomposed as

K = IL + e−D/hE

where IL is the identity L × L matrix and matrix E = [Ei,j ]1≤i,j≤L satisfies 0 ≤ Ei,j ≤ 1. Hence,
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using Taylor series,

K−1 = IL +
∞∑
n=1

(−1)ne−nD/hEn (a)
= IL + Ẽ(1)

∞∑
n=1

e−nD/hLn−1

(b)
= IL +

e−D/h

1− Le−D/h
Ẽ(1) (c)

= IL + 2 e−D/hẼ(2) (31)

The matrices Ẽ(1) = [Ẽi,j ]1≤i,j≤L and Ẽ(2) also satisfy |Ẽ(1)|i,j ≤ 1 and |Ẽ(2)|i,j ≤ 1. For any n ≥ 1,
the matrix En has elements smaller than Ln−1 (This can be proved using induction over n). This
gives (a). (b) is the summation of a geometric series (which holds since D > h logL). (c) is due to
the assumption D > h ln(2L). Plugging this into (10) gives

f(x) =

L∑
i=1

(yi + ε(f)γi)k(xi, x)

where ε(f) = 2Le−D/h. To make the notation easier, from now on, we will use the variables γi with
possibly different values in each line. Note that the values of γi depend on the elements of matrix
Ẽ(2) and realization of yi for i = 1, · · · , L. But we always have |γi| ≤ 1.
Step 2: For any v ∈ BL+1, we have ‖v − xi‖p ≥ D for all i = 1, · · · , L. Hence, the matrix K̃v

defined in (12) takes the form

K̃v = IL+1 + e−D/hE

where matrix E = [Ei,j ]1≤i,j≤L+1 satisfies |Ei,j | ≤ 1. Similar analysis as in step 1 and (31) shows
that for v ∈ BL+1 and any ` ∈ {−1,+1}, (using definition of f `(v)

v (x) in (3)) we have

f `v(x) =
L∑
i=1

[yi + ε(v)γi] k(xi, x) + [`+ ε(v)γL+1] k(v, x)

where ε(v) = 2(L+ 1) e−D/h. Hence,

fv` (x)−f(x) = ` k(x, v) +
(
ε(v) + ε(f)

)[ L∑
i=1

γik(x, xi) + γL+1k(x, v)
]

Note that the value of the variables γi above might be different from the previous lines, but there
exists parameters γi that satisfy the above equality and |γi| ≤ 1.
Step 3: For any u ∈ BL, we will show that, yLf(u) ≥ 0. According to Proposition 1 in Section 4.2,
this proves that `(u) = yL: our estimation of label of any sample in ball BL is yL, the label of the
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only currently labeled sample in BL.

yLf(u) = y1

L∑
i=1

(yi + ε(f)γi)k(xi, u)

= (1 + ε(f)yLγL)k(xL, u) + yL

L−1∑
i=1

(yi + ε(f)γi)k(xi, u)

(a)

≥ (1− ε(f))e−2r/h − L(1 + ε(f))e−D/h
(b)

≥ 0 ,

where (a) is due to the following facts: since xL ∈ BL and u ∈ BL, we have ‖xL − u‖ ≤ 2r and
k(xL, u) ≥ e−2r/h. Also, since u ∈ BL, for i ≤ L − 1 we have ‖xi − u‖ ≥ D and k(xi, u) ≤ e−D/h.
The assumptions D > 12h log(2M), L < M and the definition of ε(f) = 2Le−D/h give ε(f) ≤ 1/100.
Then using the assumption r < h/3 gives (b).
Step 4: Fix u ∈ BL and define d := ‖u−xL‖ ≤ 2r. Step 3 above proves `(u) = yL. Lemma 2 shows
that there exist parameters γi such that |γi| ≤ 1 and the interpolating function fu`(u)(x) defined in (3)
takes the form

fu`(u)(x) =
[ yL

1 + e−d/h
+ Lε(u)γL+1

]
k(x, u) +

[ yL

1 + e−d/h
+ Lε(u)γ1

]
k(x, xL)

+

L−1∑
i=1

(yi + ε(u)γi)K(x, xi)

where ε(u) = 4L3e−D/h. Hence,

fu`(u)(x)−f(x) =
yL

1 + e−d/h
k(x, u)− yLe

−d/h

1 + e−d/h
k(x, xL)

+
[
Lε(u) + ε(f)

][ L∑
i=1

γik(x, xi) + γL+1k(x, u)
]

Step 5: Hence, using the fact that k(x, x′) ≤ 1, we get

|fv` (x)− f(x)|2 − |fu`(u)(x)− f(x)|2

≥ k2(x, v)− 2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
− 1

(1 + e−d/h)2

[
k(x, u)− e−d/hk(x, xL)

]2

Since PX(x) is uniform over ∪Mj=1Bj , we want to show that

M∑
j=1

∫
x∈Bj

|fv` (x)− f(x)|2 − |fu`(u)(x)− f(x)|2 dx ≥ 0 . (32)
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To do so, we will bound the above term by

∫
x∈BL+1

k2(x, v) dx− 2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

] M∑
i=1

Vi

−
M∑
j=1

∫
x∈Bj

[
k(x, u)− e−d/hk(x, xL)

]2

(1 + e−d/h)2
dx

≥
∫
x∈BL+1

k2(x, v) dx−
∫
x∈B1

[
k(x, u)− e−d/hk(x, xL)

]2

(1 + e−d/h)2
dx

−
{

2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
+ e−2D/h

} M∑
i=1

Vi (33)

where the last inequality holds since for j 6= 1 and x ∈ Bj , we have k(x, u), k(x, xL) ≤ e−D/h.
Note that in (30) we defined v = cL+1 + (u− cL). This gives∫

BL+1

k2(x, v)dx =

∫
BL

k2(x, u)dx .

Hence,∫
x∈BL+1

(1 + e−d/h)2k2(x, v) dx−
∫
x∈BL

[
k(x, u)− e−d/hk(x, xL)

]2
dx

=

∫
BL

[
(1 + e−d/h)2k2(x, u)− k2(x, u)− e−2d/hk2(x, xL) + 2e−d/hk(x, u)k(x, xL)

]
dx

= e−d/h
∫
BL

[
(2 + e−d/h)k2(x, u)− e−d/hk2(x, xL) + 2k(x, u)k(x, xL)

]
dx

(a)

≥ e−2d/h

∫
BL

k2(x, xL)
[
1 + e−d/h(2 + e−d/h)

]
dx

(b)

≥ e−4r/h

∫
BL

k2(x, u)dx
(c)

≥ e−6r/hVL
(d)

≥ 1

10
VL .

We defined d = ‖u− x‖p. This implies k(x, u) ≥ k(x, xL)e−d/h which gives (a). (b) uses d ≤ 2r. For
x ∈ BL, we have ‖u− x‖p ≤ 2r. This gives inequality (c). The assumption h

3 implies r < h
6 ln 10

which gives (d).
The assumption D ≥ 12h ln(2M) implies D ≥ 6h ln(2LM) (since L < M) which gives

2(L+ 1)2
[
Lε(u) + ε(v) + 2ε(f)

]
+ e−2D/h <

1

15M
.

Plugging the above two statements in (33) gives the desired result.
So for any u ∈ ∪Li=1Bi, there exists a v ∈ ∪Mi=L+1Bi which has larger score. Hence, the selection

criterion based on scoreD would always pick a sample from a new ball to be labeled.
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Lemma 2. Let L = {(xi, yi)}i=1,··· ,L such that ‖xi − xj‖p ≥ D and let u be such that ‖u− xL‖ =

d ≤ 2r and `(u) = yL. Then there exists constants ε(u) = 8Le−D/h and {γi}L+1
i=1 satisfying |γi| ≤ 1

such that the interpolating function fu`(u)(x) defined in (3) may be expressed as

fu`(u)(x) =
[ yL

1 + e−d/h
+ Lε(u)γL+1

]
k(x, u) +

[ yL
1 + e−d/h

+ Lε(u)γL

]
k(x, xL)

+

L−1∑
i=1

(yi + ε(u)γi)K(x, xi) .

Proof. For fixed u ∈ BL, define d := ‖u− xL‖ ≤ 2r. Step 3 in the proof of Theorem 5 shows that
`(u) = yL. According to (11), we have

α̃ = K̃
−1

u

[
y1, · · · , yL−1, yL, yL

]T
.

Define y[1:L−1] = [y1, · · · , yL−1]T and α̃[1:L−1] = [α1, · · · , αL−1]. To prove the statement of the
lemma, we need to show that

α̃[1:L−1] = y[1:L−1] + ε(u)γ[1:L−1] (34)

for γ[1:L−1] = [γ1, · · · , γL−1]T and[
α̃L

α̃L+1

]
=

1

1 + e−d/h
yL

[
1

1

]
+ Lε(u)

[
γL

γL+1

]
. (35)

for parameters γi such that |γi| ≤ 1.
We will partition the matrix K̃u defined in (12) into the blocks corresponding to {x1, . . . , xL−1}

and {xL, xu},

K̃u =

[
A B
BT D

]

where A is a symmetric L − 1 by L − 1 matrix and D is a symmetric 2 by 2 matrix. The proof
essentially follows from the fact that the elements of B are k(xi, xL) and k(xi, xU ) for i = 1, . . . , L−1,
and hence very small, so that

K̃
−1

u ≈

[
A−1 0
0T D−1

]

To this end, first note that the diagonal elements of A are one. The off-diagonal elements of A are
Ai,j = k(xi, xj) ≤ e−D/h for i, j ≤ L− 1.
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Since d = ‖u− xL‖, we have D1,2 = D2,1 = k(xL, u) ≤ e−d/h, and

D =

[
1 e−d/h

e−d/h 1

]

The elements of L− 1 by 2 matrix B are Bi,1 = k(xi, xL) ≤ eD/h and Bi,2 = k(xi, u) ≤ eD/h for
i ≤ L− 1. Since d = ‖u− xL‖, the application of triangle inequality gives

‖u− xi‖ − ‖u− xL‖ ≤ ‖xL − xi‖ ≤ ‖u− xi‖+ ‖u− xL‖ .

Hence,

k(u, xi)e
−d/h ≤ k(xL, xi) ≤ k(u, xi)e

d/h . (36)

and consequently, Bi,1 ≤ Bi,2e
d/h.

Define F = BD−1. Using Schur complements, the inverse of K̃u can be expressed as

K̃
−1

u =

[ (
A− FBT

)−1 −
(
A− FBT

)−1F
−FT

(
A− FBT

)−1 (
I−BTA−1F

)−1D−1

]
.

Then, we have

α̃[1:L−1] =
(
A− FBT

)−1y[1:L−1] −
(
A− FBT

)−1F

[
1

1

]
yL[

α̃L

α̃L+1

]
= −FT

(
A− FBT

)−1y[1:L−1] +
(
I−BTA−1F

)−1D−1

[
1

1

]
yL

Note that

D−1 =
1

1− e−2d/h

[
1 −e−d/h

−e−d/h 1

]
which gives D−1

[
1

1

]
=

1

1 + e−d/h

[
1

1

]
.

Next, we will show that the elements of matrix F = BD−1 are all smaller than e−D/h. Observe that
for i ≤ L− 1,

Fi,1 =
1

1− e−2d/h

(
k(xi, xL)− k(xi, u)e−d/h

)
,

Fi,1

(a)

≥ k(xi, xL)

1− e−2d/h

(
1− 1

)
= 0 ,

Fi,1

(b)

≤ k(xi, xL)

1− e−2d/h

(
1− e−2d/h

)
≤ k(xi, xL)

(c)

≤ e−D/h .

(a) uses k(xi, u) ≤ ed/hk(xi, xL). (b) uses k(xi, u) ≥ e−d/hk(xi, xL). (c) uses ‖xi − xL‖p ≥ D.
Similary, Fi,2 satisfies the same bounds. Thus we have established that the elements of matrices
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B and F and off-diagonal elements of A are all smaller than e−D/h, and recall that the diagonal
elements of A are all one.

Next, using some algebra, the elements of matrix FBT are smaller than 2e−2D/h. Hence, the
elements of matrix A− FBT − I have magnitude smaller than 2e−D/h (since off-diagonal elements
of matrix A are smaller than e−D/h). Similar analysis as in (31), gives

(
A − FBT

)−1 − I have
elements smaller than 4e−D/h (using the assumption 2Le−D/h ≤ 1/2). Also, FT

(
A− FBT

)−1 and(
A− FBT

)−1B have elements smaller than 4Le−D/h.
Following analysis similar to (31), it is easy to show that A−1 has off-diagonal elements less

than 2e−D/h in magnitude and diagonal elements satisfying 1 − 2e−D/h ≤ A−1
ii ≤ 1 + 2e−D/h.

Thus the elements of matrix BTA−1F are smaller than L2e−2D/h. Again, similar to the analysis
in (31),

(
I −BTA−1F

)−1 − I both have elements smaller than 2L2e−2D/h (using the assumption
2L3e−D/h ≤ 1/2).

Thus we have established that the off-diagonal elements of matrix K̃
−1

u have magnitude smaller
than 4Le−D/h and the diagonal elements have magnitude between 1− 2Le−D/h and 1 + 2Le−D/h.
This fact with the definition of fu`(u)(x) in (3) gives

fu`(u)(x) =
[ yL
1 + e−d/h

+ Lε(u)γL+1

]
k(x, u) +

[ yL
1 + e−d/h

+ Lε(u)γ1

]
k(x, xL)

+
L−1∑
i=1

(yi + ε(u)γi)K(x, xi)

where ε(u) = 4L3e−D/h.
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