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Secure Computation-and-Forward with Linear
Codes

Masahito Hayashi, Tadashi Wadayama, and Ángeles Vazquez-Castro

Abstract

We discuss secure transmission via an untrusted relay when we have a multiple access phase from two nodes
to the relay and broadcast phase from the relay to the two nodes. To realize the security, we construct a code that
securely transmits the modulo sum of the messages of two nodes via a multiple access channel. In this code, the
relay cannot obtain any information for the message of each node, and can decode only the messages of the two
nodes. Our code is constructed by simple combination of an existing liner code and universal2 hash function.

Index Terms

secrecy analysis, secure communication, interference, relay, multiple access channel, computation and forward

I. INTRODUCTION

The two-way relay network model is a cooperative communication network that consists of two nodes 1 and 2
that want to communicate to each other but there is no direct link between them [3], [1]. The intermediate relay
node R assists the communication between the two nodes. Communication takes place in two phases, a multiple
access (MAC) phase and a broadcasting phase as Fig. 1. Transmissions are assumed perfectly synchronised and
the communication in the MAC and broadcasts phases are orthogonal. The relay node decodes the sum of the
messages from the two nodes in the uplink, and broadcasts it to the two nodes in the downlink. However, a part
of information from each message is leaked to the relay node. When the relay node is untrusted, it is needed to
keep the secrecy of both message from the relay node. That is, the following task is required. When Nodes 1 and
2 have the messages M1 and M2, the relay node decodes the module sum M1 +M2 without obtaining information
for M1 and M2. We call this task secure computation-and-forward. The preceding papers [4], [5], [6], [7], [8]
discussed secure computation-and-forward by using the lattice code with computation-and-forward. However, the
lattice code has large cost for its implementation because the number of constellation points increases when the
size of code increase. Even if multilevel implementations have been proposed [2], it is better to employ a linear
code with fixed constellation points. Moreover, it is desirable that the employed code has encoding and decoding
with small computational complexity.

For this aim, as a typical scenario, we focus on a multiple access channel and address use of the channel n times
when two users’ input alphabets are given as Fq and their constellation points are fixed. Then, we fix a sequence of
general linear codes in Fnq . Similar to [16], [17], using the sequence of linear codes and attaching universal2 hash
function, we construct a sequence of codes with strong secrecy for the untrusted relay. For a practical use, we can
choose error correcting codes with efficient decoder, e.g., LDPC codes, as the general linear codes. Then, we derive
the amount of the leaked information in the finite-length setting, which is required to guarantee the secrecy in an
implemented system. Recently, Takabe et al. [11] addressed this kind of Gaussian multiple access channel with F2

when the sum of the messages of both nodes is decoded. Then, using density evolution method, they derived the
threshold of standard deviation of noises of spatially coupled LDPC codes with belief propagation decoding, which
implies the threshold of decodable rate. Hence, it is useful to apply these error correcting codes to our secure code
construction. In this paper, we derive the asymptotic transmission rate of this practical code. Then, we apply our
finite-length secrecy evaluation to this practical code.
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Fig. 1. MAC phase and broadcast phase.

As another application of secure computation-and-forward, we consider butterfly network coding, which is a
coding method that efficiently transmits the information in the crossing way as Fig. 2. However, when the secrecy
of the message is required, this conventional butterfly network coding has the following problem. The intermediate
node V2 can obtain the information of the messages. Also, the receiver nodes V5 and V6 can obtain the information
of the other message, respectively. Although secure network coding is known, it cannot realize this kind of secrecy
in the butterfly network. When we apply secure computation-and-forward to the communications to nodes V2, V5,
and V6, the desired secrecy is realized.

The remaining of this paper is organized as follows. Using a linear code for computation-and-forward, Section II
constructs our secure code that has no information leakage to the relay node. Section III gives security analyses with
the finite-length setting. Section IV numerically evaluates the asymptotic achievable rate in the cases of random
coding and spatial coupling LDPC code with BPSK scheme.

II. CODE CONSTRUCTION

When we use the channel n times, we discuss a secure protocol to exchange their messages M1 and M2 without
information leakage to the relay R. In the MAC phase protocol, given an arbitrary map σ from Fq to R or C, we
assume the following MAC channel W

YR = h1σ(X1) + h2σ(X2) + ZR, (1)

where h1, h2 ∈ R or C are the channel fading coefficients and ZR ∼ N (0, N0In) is a vector of jointly Gaussian
real random variables. Here, YR is an n-dimensional real or complex value, and X1 and X2 are n-dimensional
vectors of Fq.

As a typical example, we often employ the BPSK scheme, i..e, q = 2. Then, we fix a map σ from x ∈ F2 to R
as (−1)x. Then, our multiple input channel channel is given as the map W : (x1, x2) 7→ φh1σ(x1)+h2σ(x2),N0

, where
φa,N0

is the Gaussian distribution with average a and variance N0.
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Fig. 2. Butterfly network coding.

Now, we assume that node i encodes the information Vi ∈ Fknq instead of Mi and the relay R recovers V1+V2 ∈
Fknq . In this case, both nodes often employ the same linear map G : Fknq → Fnq with rank k as an encoder and relay
R employs a decoder D, which is a map from Rn or Cn to Fknq . Here, relay R is assumed to know the coefficients
h1, h2, the map σ, and N0.

Now, we discuss the scheme with shift vectors e1, e2 ∈ Fnq as follows. The encoder Φn
G,E1,1

of node 1 maps
V1 ∈ Fknq to the element G(V1) + e1 of the alphabet, and the encoder Φn

G,e2,2
of the node 2 maps V2 ∈ Fknq to the

element G(V2)+e2 of the alphabet. As decoding process, the relay R obtains VR := D(YR−h1σ(e1)−h2σ(e2)).
In the broadcast phase protocol, the relay R sends the information VR to nodes 1 and 2, which can be achieved

by a conventional channel coding. Since node 1 has the information V1, node 1 recovers the information V2 as
VR −V1. Similarly, node 2 recovers the information V1.

Our interest is information leakage to the relay R. Now, we discuss a secure protocol to exchange their messages
M1 and M2 without information leakage to R. To discuss this problem, we discuss a slightly different protocol.
When V1 and V2 are uniform random number, we have the relations I(VR;Vi) = 0 for i = 1, 2, i.e., VR is
independent of Vi with i = 1, 2. However, the relay R obtains the information

YR = h1σ(G(V1) + e1) + h2σ(G(V2) + e2) + ZR, (2)

which is more informative than VR. Further, the variable YR has correlation with Vi for i = 1, 2. This information
leakage can be removed when nodes 1 and 2 apply a linear hash function F : Fknq → Fkn−k̄nq whose rank is kn− k̄n.

Now, we prepare the auxiliary random variable Li ∈ Fk̄nq for i = 1, 2. We choose linear functions F1 :

Fkn−k̄nq → Fknq and F2 : Fk̄nq → Fknq such that F ◦ F1 is the identity map on Fkn−k̄nq and the image of the
map (m1, l2) ∈ Fkn−k̄nq ×Fk̄nq 7→ F1(m1)+F2(l2) is Fknq . Then, the encoders is given as Φn

G,e1,1
(F1(M1)+F2(L1))

and Φn
G,e2,2

(F1(M2) +F2(l2)). That is, the random variable Vi is given as F1(Mi) +F2(Li). The decoder is given
as F (D(YR − h1σ(e1)− h2σ(e2))). The relay R broadcasts it. Then, we denote the above protocol with a linear
map G and shift vectors e1, e2 of block length n by Φn

G,e1,e2
. In summary, the encoding and decoding processes

are illustrated as Fig. 3.



4

Fig. 3. Encoding and decoding process.

III. SECRECY ANALYSIS WITH TRANSMISSION RATE

In this section, we derive a finite-length bound for leaked information when X = Fq. To discuss the information
leakage for Mi, we introduce the security criterion for i = 1, 2

d(Φn
G,e1,e2)i

:=‖PMiY|E1=e1,E2=e2,n − PY|E1=e1,E2=e2,n × PMi,mix‖1

=
∑
mi

PMi
(mi)

∫
C

∣∣∣pY|Mi,E1=e1,E2=e2,n(y|mi)

− pY|E1=e1,E2=e2,n(y)
∣∣∣dy, (3)

where PMi,mix expresses the uniform distribution for Mi.
In the following, for security analysis, priorly, the shift vectors e1 and e2 are chosen randomly. So, they are

treated as random variables, and are denoted by E1 and E2. We consider the case when G is chosen as a code
with efficient decoder.

For finite-length analysis, we prepare other notations and information quantities used in this paper. Given a joint
distribution channel PY,Z1,Z2

over the product system of a finite discrete set Z1 × Z2 and a continuous set Y , we
denote the conditional probability density function of PY |Z1,Z2

by pY |Z1,Z2
(y|z1, z2). Then, we define the conditional

distribution PY |Z1
over a continuous set Y conditioned in the discrete set Z1 by the conditional probability

density function pY |Z1
(y|z1) :=

∑
z2∈Z2

PZ2
(z2)pY |Z1,Z2

(y|z1, z2). Then, we define the Renyi conditional mutual
information I↓1+s(Y ;Z1|Z2)

s

1 + s
I↓1+s(Y ;Z1|Z2)

:= log
∑
z2

PZ2
(z2)

∫
Y

(∑
z1

PZ1|Z2
(z1|z2)pY |Z1,Z2

(y|z1, z2)1+s
) 1

1+s

dy (4)

for s > 0. Since lims→0 sI
↓
1+s(Y ;Z1|Z2) = 0, taking the limit s→ 0, we have

lim
s→0

sI↓1+s(Y ;Z1|Z2)

s
= I(Y ;Z1|Z2), (5)

where I(Y ;Z1|Z2) expresses the conditional mutual information. The concavity of the function x 7→ x
1

1+s yields

e
s

1+s
I↓1+s(Y ;Z1|Z2,Z3) ≤ e

s

1+s
I↓1+s(Y ;Z1,Z2|Z3). (6)

Given a channel PY |Z1,Z2,Z3
from the finite discrete set Z1 × Z2 × Z3 to a continuous set Y , when the

random variables Z1, Z2, Z3 are generated subject to the uniform distributions, we have a joint distribution among
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Y,Z1, Z2. In this case, we denote the mutual information I(X1;Y )[PY |Z1,Z2,Z3
]. This rule is applied to the

Rényi conditional mutual information and the conditional mutual information as I↓1+s(Y ;Z1|Z2)[PY |Z1,Z2,Z3
] and

I(Y ;Z1|Z2)[PY |Z1,Z2,Z3
], respectively. In the following, we use this notation to the channel W defined by

Y = h1σ(X1) + h2σ(X2) + ZR, (7)

where ZR is the Gaussian variable with average 0 and the variance N0 on R or C. Here, the choice of random
variables Z1, Z2, and Z3 depends on the context.

Theorem 1: Given a map G = g, using Bi,n,s,1 := 3qs(n−kn−k̄n)e
snI↓ 1

1−s

(Y ;Xi)[W ]
, we have

EE1,E2
d(Φn

g,E1,E2
)i ≤ min

s∈[0, 1
2
]
Bi,n,s,1, . (8)

To improve the bound (8), we focus on the ensemble of injective linear codes G : Fknq → Fnq . We consider the
permutation-invariance for the ensemble as follows. We say that the ensemble G is permutation-invariant when
Pr(x ∈ ImG) = Pr(g(x) ∈ ImG) for any x ∈ X n and any permutation g among {1, . . . , n}. In addition, we
often consider the following condition. We say that the ensemble G is universal 2 when the ensemble G satisfies
the condition

Pr{x ∈ ImG} ≤ qkn−n (9)

holds for any x(6= 0) ∈ Fnq [14], [15].
Let ~λ be an integer-valued vector (λt)t∈Fq

such that
∑

t∈Fq
λt = n, λ0 6= n, and λt ≥ 0. We denote the set of

such integer-valued vectors by Tn(Fq). For a code g, we define

N(~λ, g) := |{x ∈ Im g|~n(x) = ~λ}|, (10)

where nt(x) expresses the number of t in the vector x. Then, using the above number, we define the value

A := max
~λ

A(~λ), (11)

A(~λ) := max
~λ( 6=~0n)∈Tn(Fq)

EG
N(~λ,G)qn−kn(n

~λ

) , (12)

where
(n
~λ

)
expresses the multi-nomial combination, and ~0n expresses the vector satisfying that (~0n)0 = n and

(~0n)t = 0 for t( 6= 0) ∈ Fq. When the ensemble G is universal 2, that is, the ensemble G has no deviation, we have
A ≤ 1. Hence, A expresses the degree of deviation.

Theorem 2: When the ensemble G is permutation-invariant,

EE1,E2,Gd(Φn
G,E1,E2

)i ≤ min
s∈[0, 1

2
]
Bi,n,s,2[A], (13)

where Bi,n,s,2[A] is defined to be

3q−s(kn+k̄n)e
snI↓ 1

1−s

(Y ;X1,X2)[W ]
+ 3Asq−sk̄ne

snI↓ 1
1−s

(Y ;Xi)[W ]
. (14)

Although Theorem 2 assumes the permutation-invariance, we do not need this condition because of the following
reason. We focus on a code g. When the ensemble G is given as the ensemble given by the application of the
random permutation to the code g, EGd(Φn

G,E1,E2
)i = d(Φn

g,E1,E2
)i because the amount of leaked information

d(Φn
g,E1,E2

)i does not change under the application of permutation.
As the comparison between (8) and (13), we have the following lemma, whose proof is given in Appendix A.
Lemma 1: We have

2Bi,n,s,1 ≥ Bi,n,s,2[A]. (15)

That is, the bound (13) is smaller than the twice of the bound (8).
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In the following, we derive the achievable rates based on the upper bounds (8) and (13). For this aim, we
introduce the parameter r2 for our sequence of code ensembles satisfying

lim
n→∞

logA

n
=

r2

log q
. (16)

Also, we introduce the parameter r1 for the sacrifice rate as

lim
n→∞

k̄n
n

=
r1

log q
. (17)

Since N(~λ,G) ≤
(n
~λ

)
, r2 is bounded as

r2 ≤ (log q) lim
n→∞

n− kn
n

= log q − r0. (18)

TABLE I
SUMMARY OF RATES

r0 Rate of error correcting code limn→∞
kn
n

log q

r1 Sacrifice rate limn→∞
k̄n
n

log q

r2 Rate of A limn→∞
log A
n

log q

Then, (8) implies

lim
n→∞

−1

n
log( min

s∈[0, 1
2
]
Bi,n,s,1) ≥ max

s∈[0, 1
2
]
s(r1 + r0 − log q − I↓1

1−s

(Y ;X1)[W ]), (19)

and (13) implies

lim
n→∞

−1

n
log( min

s∈[0, 1
2
]
Bi,n,s,2[A]) ≥ max

s∈[0, 1
2
]
min(s(r0 + r1 − I↓1

1−s

(Y ;X1, X2)[W ]),

s(r1 − r2 − I↓1
1−s

(Y ;X1)[W ])). (20)

Thus, the condition for the exponential decay of the upper bound mins∈[0, 1
2
]Bi,n,s,1 is the condition r1 > log q +

I(Y ;X1)[W ]− r0. That is, when we use the upper bound mins∈[0, 1
2
]Bi,n,s,1 and the rate of error correcting code

is fixed to r0, the achievable rate is the following value

r0 − (log q + I(Y ;X1)[W ]− r0) = 2r0 − log q − I(Y ;X1)[W ], (21)

which is called the 1st type of rate. Also, the condition for the exponential decay of mins∈[0, 1
2
]Bi,n,s,2[A] is the

condition r1 > max(I(Y ;X1, X2)[W ]− r0, I(Y ;X1)[W ] + r2). When we use the upper bound mins∈[0, 1
2
]Bi,n,s,1

and the rate of error correcting code is fixed to r0, the achievable rate is the following value

r0 −max(I(Y ;X1, X2)[W ]− r0, I(Y ;X1)[W ] + r2) = min(2r0 − I(Y ;X1, X2)[W ], r0 − r2 − I(Y ;X1)[W ]),
(22)

which is called the 2nd type of rate. Since it is not so easy to calculate r2 in the general case, we have the following
lower bound of (22) by substituting r2 = 0;

min(2r0 − I(Y ;X1, X2)[W ], r0 − I(Y ;X1)[W ]), (23)

which is called the 3rd type of rate. In fact, when these rates are negative, the achievable rates are zero. However,
to see the mathematical behaviors of the above differences, we address these values directly in this paper.
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Fig. 4. Achievable rates with BPSK when the variance N0 is = 1. The base of logarithm is chosen to be e. The horizontal axis expresses
the intensity h. The vertical axis expresses transmission rate. The solid black line express the 2nd type of rate with random coding given as
(28). This value is positive with h ≥ 2.443 and approaches 1

2
log 2. The dashed blue line express the 1st type of rate with random coding

given as (29). This value is positive with h ≥ 2.518 and approaches 1
2
log 2. The black points express the 3rd type of rate with (dl, dr, L)

spatial coupling LDPC code with sufficiently large L, whose rate is (30). The blue points express the 1st type of rate with (dl, dr, L) spatial
coupling LDPC code with sufficiently large L, whose rate is (31). According to these formulas, the value is negative when h is less than a
certain threshold. In this case, the secure transmission of M1 +M2 is impossible in these methods.

IV. EXAMPLES

A. Random coding with universal2 condition

For simplicity, we ignore the decoding time, and discuss the asymptotic transmission rate. Then, the generating
matrix G ∈ Fn×knq is assumed to be generated subject to the universal2 condition (9). We employ the channel
decoding for the degraded channel [12]. That is, the decoder is given as

argmax
v∈Fkn

q

n∑
i=1

log φ̂h(G(v)i−e1−e2),N0
(Yi), (24)

where φ̂x,N0
(y) :=

∑
x′∈Fq

1
qφh1σ(x′)+h2σ(x−x′),N0

(y). Then, the optimal kn satisfies [13]

r0 = lim
n→∞

kn
n

log q =I(Y ;X1 +X2)[W ]. (25)

Then, the 1st type of rate is

2r0 − log q − I(Y ;X1)[W ] = 2I(Y ;X1 +X2)[W ]− log q − I(Y ;X1)[W ]. (26)

Since r2 = 0, the 2nd type of rate equals the 3rd type of rate, which is calculated as

2I(Y ;X1 +X2)[W ]− I(Y ;X1, X2)[W ]. (27)

See Appendix C. Next, We consider the BPSK scheme, and assume that h1 = h2 = h. Then, φ̂x,N0
is simplified

as φ̂0,N0
(y) = (φ0,N0

(y) + φ2h,N0
(y))/2 and φ̂1,N0

(y) = φh,N0
(y). Then, by using the differential entropy H , r0 is

calculated to be I(h) := H(
φ0,N0

+2φh,N0
+φ2h,N0

4 )− 1
2H(

φ0,N0
+φ2h,N0

2 )− 1
2H(φh,N0

), and the 2nd type of rate (23) is

2I(Y ;X1 +X2)[W ]− I(Y ;X1, X2)[W ] =H(
φ0,N0

+ 2φh,N0
+ φ2h,N0

4
)

−H(
φ0,N0

+ φ2h,N0

2
). (28)

In this case, since I(Y ;X1)[W ] = H(
φ0,N0

+2φh,N0
+φ2h,N0

4 )−H(
φ0,N0

+φ2h,N0

2 ), due to (26), the 1st type of rate (21)
is

H(
φ0,N0

+ 2φh,N0
+ φ2h,N0

4
)−H(φh,N0

)− log 2. (29)

That is, the difference between the 1st type and 2nd type of rates are the value log 2−(H(
φ0,N0

+φ2h,N0

2 )−H(φh,N0
)).

This value becomes very small when h is sufficiently large in comparison with N0 as Fig. 4 because the two
distributions φ0,N0

and φ2h,N0
can be distinguished with high probability.
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B. LDPC code

In fact, it is not so easy to calculate the coefficient A in a real code, e.g., an LDPC code. In this case, we employ
the finite-length security formula (8) of Theorem 1. Hence, we focus on the 1st type of rate (21) as the asymptotic
transmission rate with the security guarantee of the finite-length setting. Since it is not so easy calculate the 2nd
type of rate, we address the 3rd type of rate as its lower bound. When the difference between the 1st and the 3rd
types of rates is small, we can conclude that the 2nd type of rate is close to the 1st type of rate.

Now, we consider the BPSK case with h1 = h2 = h when G is a (dl, dr, L) spatial coupling LDPC code with
large L. According to the preceding papers [19], [11], we employ belief propagation in decoder. Applying density
evolution to the channel x 7→ φ̂x,N0

, the paper [11] calculated the transmission rate Isc(h) in the code. By using
the difference ∆I(h) := I(h)− Isc(h), the 3rd type of rate (23) is calculated to

lim
n→∞

kn − k̄n
n

log 2 =H(
φ0,N0

+ 2φh,N0
+ φ2h,N0

4
)

−H(
φ0,N0

+ φ2h,N0

2
)− 2∆I(h). (30)

The 1st type of rate (21) is

2I(Y ;X1 +X2)[W ]− log 2− I(Y ;X1)[W ]− 2∆I(h)

=H(
φ0,N0

+ 2φh,N0
+ φ2h,N0

4
)−H(φh,N0

)− log 2− 2∆I(h). (31)

Fig. 4 shows that the difference between the 1st and the 3rd types of rates is small.

V. CONCLUSION

In order to make secure transmission via untrusted relay, we have derived a code that securely transmits the XOR
of the messages of two nodes via a multiple access channel. In this code, the relay cannot obtain any information
for the message of each node, and can decode only the messages of two nodes. Since our code is constructed by
simple combination of an existing liner code and universal2 hash function, it can be realizable in practice.

To apply this system to a real secure satellite communication, we need to study the following items. First, we
need to evaluate the performance of the proposed LDPC codes with a finite-length setting, which requires computer
simulation. Then, it is needed to combine the result of this computer simulation and the security evaluation based
on (8) of Theorem 1.

Further, we need to consider the case when the relay does not inform the correct values of the strength of h and
N0 to both nodes. That is, there is a possibility that the true values of h/N0 is larger than the value informed by
the relay. In this case, both nodes can estimate the upper bound of h/N0 by using the spatial conditions. Then,
for evaluation of the decoding error probability, both nodes need to use the value of h/N0 informed by the relay.
For evaluation of the amount of leaked information, both nodes need to use the upper bound of h/N0. For real
implementation, it is needed to numerically simulate the security evaluation based on this observation.

Finally, we should remark that Theorems 1 and 2 cannot be shown by simple application of the result of wire-tap
channel [18] as follows. Consider the secrecy of the message M1 of node 1. In this case, if node 2 transmits
elements of Fnq with equal probability, the channel from node 1 to relay R is given as n-fold extension of the
degraded channel x 7→

∑
x′∈Fq

1
qφh1σ(x)+h2σ(x−x′),N0

, which enables us to directly apply the result of wire-tap
channel. However, node 2 transmits elements of the image of G, which is a subset of Fnq , with equal probability.
Hence, the channel from node 1 to relay R does not have the above simple form. Therefore, we need more careful
discussion. Finally, we point out that or proofs of Theorems 1 and 2 are still valid even when the channel is a
general multiple access channel whose input is given as Fq × Fq because our proofs employ only the property of
a general multiple access channel.
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APPENDIX A
PROOF OF LEMMA 1

For the proof of Lemma 1, we prepare the following lemma.
Lemma 2: When the conditional distribution PZ2|Z1

is the uniform distribution on Z2, we have

e
sI↓ 1

1−s

(Y ;Z1,Z2)
≤ |Z2|se

sI↓ 1
1−s

(Y ;Z1)
(32)

for s ∈ [0,∞).

Proof of Lemma 2: We have

e
sI↓ 1

1−s

(Y ;Z1,Z2)
=

∫
Y

(∑
z1

PZ1
(z1)

∑
z2

PZ2|Z1
(z2|z1)pY |Z1,Z2

(y|z1, z2)
1

1−s

)1−s
dy

=

∫
Y

(∑
z1

PZ1
(z1)|Z2|

s

1−s

∑
z2

PZ2|Z1
(z2|z1)

1

1−s pY |Z1,Z2
(y|z1, z2)

1

1−s

)1−s
dy

≤
∫
Y

(∑
z1

PZ1
(z1)|Z2|

s

1−s

(∑
z2

PZ2|Z1
(z2|z1)pY |Z1,Z2

(y|z1, z2)
) 1

1−s
)1−s

dy

=|Z2|s
∫
Y

(∑
z1

PZ1
(z1)pY |Z1

(y|z1)
1

1−s

)1−s
dy

=|Z2|se
sI↓ 1

1−s

(Y ;Z1)
.

�

Proof of Lemma 1: Since N(~λ,G) ≤
(n
~λ

)
, A is bounded as qn−kn . Hence,

3qs(n−kn−k̄n)e
snI↓ 1

1−s

(Y ;X1)[W ]
≥ 3Asq−sk̄ne

snI↓ 1
1−s

(Y ;X1)[W ]
.

Also, Lemma 2 guarantee that 3qs(n−kn−k̄n)e
snI↓ 1

1−s

(Y ;X1)[W ]
is less than the first term of RHS of (14). Hence, we

obtain (15).
�

APPENDIX B
PROOF OF THEOREMS 1 AND 2

Step (1): First, we notice the relation

Vi = F1(Mi) + F2(Li), Xi = (Vi, Ei). (33)

Since (E1, E2) is subject to the uniform distribution on F2(n−kn)
q , even when the map G is fixed to be g, (X1,X2)

is subject to the uniform distribution on X 2n. Receiver receives the random variable Y ∈ Yn that depends only on
(X1,X2). Once, G is fixed, we have the Markov chain (F,M1,M2, L1, l2, E1, E2) − (X1,X2) −Y. Due to (1),
the relay node can decode M1 +M2 and L1 + l2 from Y by using the knowledge E1 + E2 for the coset.
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Then, we focus on the randomness of the choice of F . Then, for s ∈ [0, 1
2 ], we have

EE1,E2,F ‖PM1Y|E1,E2,n − PY|E1,E2,n × PM1,mix‖1
(a)

≤3q−sk̄ne
sI↓ 1

1−s

(Y;V1|G=g,E1,E2)

(b)

≤3q−sk̄ne
sI↓ 1

1−s

(Y;V1,E1|G=g,E2)

(c)
=3q−sk̄ne

sI↓ 1
1−s

(Y;X1|G=g,E2)
(34)

(d)

≤3qs(n−kn−k̄n)e
sI↓ 1

1−s

(Y;X1)

=3qs(n−kn−k̄n)e
snI↓ 1

1−s

(Y ;X1)[W ]
, (35)

where (a) follows from Theorem 6 of [20] and the universal2 condition for F ; (b) follows from (32); (c) follows
from the fact that the pair (Ei, Fi) and Xi uniquely determine each other; and (d) will be shown in the next step.
Hence, we obtain (8) in Theorem 1.

Now, we proceed to the proof of Theorem 2.

3q−sk̄ne
sI↓ 1

1−s

(Y;X1|G,E2)

(e)

≤3q−s(kn+k̄n)e
sI↓ 1

1−s

(Y;X1,X2)
+ 3Asq−sk̄ne

sI↓ 1
1−s

(Y;X1)

=3q−s(kn+k̄n)e
snI↓ 1

1−s

(Y ;X1,X2)[W ]
+ 3Asq−sk̄ne

snI↓ 1
1−s

(Y ;X1)[W ]
, (36)

where (e) will be shown in the next step. Combing (34) and (36), we obtain (13) in Theorem 2.
Step (2): Now, we show (d) in (35). Given a code g : Fnq → Fknq , for an element x ∈ Fnq , we uniquely have a
coset [x] and its representative e ∈ Fnq . We denote the map from an element x ∈ Fnq to the representative e ∈ Fnq
by g2. We define the set S(g2, e) := {x ∈ Fnq |g2(xj) = e}. Definition of A implies∑

x′2∈S(g2,g2(x2))

PY |X1=x1,X2=x′2
(y)

≤
∑
x′2

PY |X1=x1,X2=x′2
(y)

=qnPY |X1=x1
(y). (37)
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Using (39), for s ∈ [0, 1
2 ], we have the following relations, where the explanations for steps is explained later.

e
sI↓ 1

1−s

(Y;X1|G=g,E2)

=EE2

∫
Yn

(
q−n

∑
x1

PY |X1=x1,E2,G=g(y)
1

1−s

)1−s
dy

=EE2

∫
Yn

(
q−n

∑
x1

(
q−kn

∑
x2∈S(g2,E2)

PY |X1=x1,X2=x2
(y)
) 1

1−s
)1−s

dy

(a)

≤
∫
Yn

(
q−n

∑
x1

EE2

(
q−kn

∑
x2∈S(g2,E2)

PY |X1=x1,X2=x2
(y)
) 1

1−s
)1−s

dy

=

∫
Yn

(
q−n

∑
x1

EE2
q−

kn
1−s

( ∑
x2∈S(g2,E2)

PY |X1=x1,X2=x2
(y)
(

∑
x′2∈S(g2,E2)

PY |X1=x1,X2=x′2
(y)
) s

1−s
))1−s

dy

=

∫
Yn

(
q−n

∑
x1

q−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)
( ∑

x′2∈S(g2,g2(x2))

PY |X1=x1,X2=x′2
(y)
) s

1−s
))1−s

dy

(b)

≤
(∫
Yn

q−n
∑
x1

q−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)
(
qnPY |X1=x1

(y)
) s

1−s
))1−s

dy

=

∫
Yn

(
q−n

∑
x1

q−
kn
1−s

(
qknPY |X1=x1

(y)
(
qnPY |X1=x1

(y)
) s

1−s
))1−s

dy

=qs(n−kn)

∫
Yn

(
q−n

∑
x1

PY |X1=x1
(y)

1

1−s

)1−s
dy

=qs(n−kn)e
sI↓ 1

1−s

(Y;X1)
, (38)

where (a) follows from the concavity of x 7→ x1−s with x ≥ 0. and (b) follows from the concavity of (37).
Step (3): Now, we show (e) in (36). Definition of A implies

EG
∑

x′2(6=x2)∈S(G2,G2(x2))

PY |X1=x1,X2=x′2
(y)

=
∑
~λ 6=~0n

∑
x′2:~n(x′2−x2)=~λ

P (x′2 − x2 ∈ ImG)PY |X1=x1,X2=x′2
(y)

=
∑
~λ 6=~0n

∑
x′2:~n(x′2−x2)=~λ

EG
N(~λ,G)(n

~λ

) PY |X1=x1,X2=x′2
(y)

≤Aqkn−n
∑
~λ6=~0n

∑
x′2:~n(x′2−x2)=~λ

PY |X1=x1,X2=x′2
(y)

≤AqknPY |X1=x1
(y). (39)
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Using (39), for s ∈ [0, 1
2 ], we have the following relations, where the explanations for steps is explained later.

e
sI↓ 1

1−s

(Y;X1|G,E2)

=EG,E2

∫
Yn

(
q−n

∑
x1

PY |X1=x1,E2,G(y)
1

1−s

)1−s
dy

=EG,E2

∫
Yn

(
q−n

∑
x1

(
q−kn

∑
x2∈S(G2,E2)

PY |X1=x1,X2=x2
(y)
) 1

1−s
)1−s

dy

(a)

≤
∫
Yn

(
q−n

∑
x1

EG,E2

(
q−kn

∑
x2∈S(G2,E2)

PY |X1=x1,X2=x2
(y)
) 1

1−s
)1−s

dy

=

∫
Yn

(
q−n

∑
x1

EG,E2
q−

kn
1−s

( ∑
x2∈S(G2,E2)

PY |X1=x1,X2=x2
(y)
(
PY |X1=x1,X2=x2

(y)

+
∑

x′2( 6=x2)∈S(G2,E2)

PY |X1=x1,X2=x′2
(y)
) s

1−s
))1−s

dy

=

∫
Yn

(
q−n

∑
x1

EGq−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)
(
PY |X1=x1,X2=x2

(y)

+
∑

x′2( 6=x2)∈S(G2,G2(x2))

PY |X1=x1,X2=x′2
(y)
) s

1−s
))1−s

dy (40)

(b)

≤
∫
Yn

(
q−n

∑
x1

q−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)
(
PY |X1=x1,X2=x2

(y)
s

1−s

+
(
EG

∑
x′2(6=x2)∈S(G2,G2(x2))

PY |X1=x1,X2=x′2
(y)
) s

1−s
)))1−s

dy

(c)

≤
∫
Yn

(
q−n

∑
x1

q−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)
(
PY |X1=x1,X2=x2

(y)
s

1−s

+
(
AqknPY |X1=x1

(y)
) s

1−s
)))1−s

dy

=

∫
Yn

(
q−n

∑
x1

q−
kn
1−s

(
qkn−n

∑
x2

PY |X1=x1,X2=x2
(y)

1

1−s +A
s

1−s q
skn
1−s

+knPY |X1=x1
(y)

1

1−s

))1−s
dy

=

∫
Yn

(
q−

skn
1−s q−2n

∑
x1,x2

PY |X1=x1,X2=x2
(y)

1

1−s +A
s

1−s q−n
∑
x1

PY |X1=x1
(y)

1

1−s

)1−s
dy

(d)

≤
∫
Yn

(
q−

skn
1−s q−2n

∑
x1,x2

PY |X1=x1,X2=x2
(y)

1

1−s

)1−s
dy +

∫
Yn

(
A

s

1−s q−n
∑
x1

PY |X1=x1
(y)

1

1−s

)1−s
dy

=q−skn
∫
Yn

(
q−2n

∑
x1,x2

PY |X1=x1,X2=x2
(y)

1

1−s

)1−s
dy +As

∫
Yn

(
q−n

∑
x1

PY |X1=x1
(y)

1

1−s

)1−s
dy

=q−skne
sI↓ 1

1−s

(Y;X1,X2)
+Ase

sI↓ 1
1−s

(Y;X1)
, (41)

where each step can be shown as follows. (a) follows from the concavity of x 7→ x1−s with x ≥ 0. (b) follows
from the concavity of x 7→ x

s

1−s with x ≥ 0. (c) follows from the inequality (39). (d) follows from the inequality
(x+ y)

s

1−s ≤ x
s

1−s + y
s

1−s with x, y ≥ 0.



13

APPENDIX C
PROOF OF (27)

min(2r0 − I(Y ;X1, X2)[W ], r0 − I(Y ;X1)[W ])

= min(2I(Y ;X1 +X2)[W ]− I(Y ;X1, X2)[W ], I(Y ;X1 +X2)[W ]− I(Y ;X1)[W ])

=2I(Y ;X1 +X2)[W ]− I(Y ;X1, X2)[W ], (42)

where (42) is shown as follows. Since X1 +X2 and X1 are independent of each other, we have I(Y ;X1, X2)[W ]−
I(Y ;X1 +X2)[W ] = I(Y ;X1|X1 +X2)[W ]. Therefore,

I(Y ;X1 +X2)[W ]− I(Y ;X1)[W ] ≥ I(Y ;X1 +X2)[W ]− I(Y ;X1|X1 +X2)[W ]

=2I(Y ;X1 +X2)[W ]− I(Y ;X1, X2)[W ], (43)

which implies (42).
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