
Journal of Machine Learning Research 1 (2020) pp Submitted mm/dd; Published mm/dd

Cautious Reinforcement Learning
via Distributional Risk in the Dual Domain

Junyu Zhang∗ zhan4393@umn.edu
Department of Industrial and Systems Engineering
University of Minnesota
Minneapolis, Minnesota, 55455

Amrit Singh Bedi∗ amrit0714@gmail.com
Computational and Information Sciences Directorate
US Army Research Laboratory
Adelphi, MD, USA 20783

Mengdi Wang mengdiw@princeton.edu
Department of Electrical Engineering
Center for Statistics and Machine Learning
Princeton University
Princeton, NJ 08544

Alec Koppel alec.e.koppel.civ@mail.mil

Computational and Information Sciences Directorate

US Army Research Laboratory

Adelphi, MD 20783

Editor:

Abstract
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a

Markov Decision Process (MDPs) whose state and action spaces are countably finite. Prior efforts
are predominately afflicted by computational challenges associated with the fact that risk-sensitive
MDPs are time-inconsistent. To ameliorate this issue, we propose a new definition of risk, which
we call caution, as a penalty function added to the dual objective of the linear programming
(LP) formulation of reinforcement learning. The caution measures the distributional risk of a
policy, which is a function of the policy’s long-term state occupancy distribution. To solve this
problem in an online model-free manner, we propose a stochastic variant of primal-dual method
that uses Kullback-Lieber (KL) divergence as its proximal term. We establish that the number of
iterations/samples required to attain approximately optimal solutions of this scheme matches tight
dependencies on the cardinality of the state and action spaces, but differs in its dependence on
the infinity norm of the gradient of the risk measure. Experiments demonstrate the merits of this
approach for improving the reliability of reward accumulation without additional computational
burdens.

1. Introduction

In reinforcement learning (RL) (Sutton and Barto, 2018), an autonomous agent in a given state
selects an action and then transitions to a new state randomly depending on its current state and
action, at which point the environment reveals a reward. This framework for sequential decision
making has gained traction in recent years due to its ability to effectively describe problems where
the long-term merit of decisions does not have an analytical form and is instead observed only in
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increments, as in recommender systems (Karatzoglou et al., 2013), videogames (Mnih et al., 2013;
Vinyals et al., 2019), control amidst complicated physics (Schulman et al., 2015), and management
applications (Peidro et al., 2009).

The canonical performance metric for RL is the expected value of long-term accumulation
of rewards. Unfortunately, restricting focus to expected returns fails to encapsulate many well-
documented aspects of reasoning under uncertainty such as anticipation (Roca et al., 2011), inattention
(Sims, 2003), and risk-aversion (Tom et al., 2007). In this work, we focus on risk beyond expected
rewards, both due to its inherent value in behavioral science and in pursuit of improving the reliability
of RL in safety-critical applications (Achiam et al., 2017).

Risk-awareness broadens the focus of decision making from expected outcomes to other quantifiers
of uncertainty. Risk, originally quantified using the variance in portfolio management (Markowitz,
1952), has broaden to higher-order moments or quantiles (Rockafellar and Uryasev, 2002), and gave
rise to a rich theory of coherent risk (Artzner et al., 1999), which has gained attention in RL in recent
years (Chow et al., 2017; Jiang and Powell, 2018) as a frequentist way to define uncertainty-aware
decision-making.

Incorporating risk gives rise to computational challenges in RL. In particular, if one replaces the
expectation in the value function by a risk measure, the MDP becomes time-inconsistent (Bjork and
Murgoci, 2010), that is, Bellman’s principle of optimality does not hold. This issue has necessitated
modified Bellman equations (Ruszczyński, 2010), multi-stage schemes (Jiang and Powell, 2018), or
policy search (Tamar et al., 2015), all of which do not attain near-optimal solutions in polynomial time,
even for finite MDPs. Alternatively, one may impose risk as a probabilistic constraint (Krishnamurthy
et al., 2003; Prashanth, 2014; Chow et al., 2017; Paternain et al., 2019; Yu et al., 2019) in the spirit
of chance-constrained programming (Nemirovski and Shapiro, 2007) common in model predictive
control.

An additional approach is Bayesian (Ghavamzadeh et al., 2015) and distributional RL (Bellemare
et al., 2017), which seeks to track a full posterior over returns. These approaches benefit from the
fact that with access to a full distribution, one may define risk specifically, with, e.g., conditional
value at risk (CVaR)(Keramati et al., 2019). One limitation is that succinctly parameterizing the
value distribution intersects with approximate Bayesian computation, an active area of research
(Yang et al., 2019).

In this paper, we seek to define risk in sequential decision making that (1) provides a tunable
tradeoff between the mean return and uncertainty of a decision; (2) captures long-term behaviors of
policies that cannot be modeled using cumulative functions; (3) can be solved efficiently in polynomial
time, depending on the choice of risk. To do so, we formulate a class of distributional risk-averse
policy optimization problems to address risks involving the long-term behaviors that permit the
derivation of efficient algorithms. More specifically, we:

• propose a new definition of the risk of a policy, which we call caution, as a function of the
policy’s long-term state-action occupancy distribution. We formulate a caution-sensitive policy
optimization problem by adding the caution risk as a penalty function to the dual objective of
the linear programming (LP) formulation of RL. The caution-sensitive optimization problem is
often convex, allowing us to directly design the policy’s long-term occupancy distribution (Sec.
3).

• derive an online model-free algorithm based on a stochastic variant of primal-dual policy
gradient method that uses Kullback-Lieber (KL) divergence as its proximal term, and extend
the method to nonconvex caution risks by using a block coordinate ascent (BCA) scheme (Sec.
4).

• establish that the number of sample transitions required to attain approximately optimal
solutions of this scheme matches tight dependencies on the cardinality of the state and action
spaces, as compared to the typical risk-neutral setting (Sec. 5).
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Further, we demonstrate the experimental merits of this approach for improving the reliability of
reward accumulation without additional computational burdens (Sec. 6)

2. Preliminaries

2.1 Discounted Markov Decision Process

We consider the problem of reinforcement learning (RL) with finitely many states and actions as
mathematically described by a Markov Decision Process (MDP) (S,A,P, r, γ). For each state i ∈ S,
a transition to state j ∈ S occurs when selecting action a ∈ A according to a conditional probability
distribution j ∼ P(·|a, i), for which we define the short-hand notation Pa(i, j). Moreover, a reward
r̂ : S×S×A 7→ R is revealed and is denoted as r̂ija. Without loss of generality, we assume r̂ija ∈ [0, 1]
with probability 1 for ∀i, j ∈ S and ∀a ∈ A throughout the paper. For future reference, we denote
the expected reward with respect to transition dynamics as ria := E [r̂ija|i, a] =

∑
j∈S

Pa(i, j) · r̂ija and

the vector of rewards for each action a as ra = [r1a, · · · , r|S|a]T ∈ R|S|.
In standard (risk-neutral) RL, the goal is to find the action sequence which yields the most

long-term reward, or value:

v∗(s) := max
{at∈A}

E

[ ∞∑
t=0

γtr̂itit+1at

∣∣∣∣ i0 = s

]
, ∀s ∈ S. (2.1)

2.2 Bellman Equation and Duality

The optimal value function v∗ (2.1) satisfies Bellman’s optimality principle Bertsekas and Shreve
(2004):

v∗(i)=max
a∈A

{
γ
∑
j∈S

Pa(i, j)v∗(i)+
∑
j∈S

Pa(i, j)r̂ija

}
(2.2)

for all i ∈ S. Then, due to De Farias and Van Roy (2003), the Bellman optimality equation (2.2)
may be reformulated as a linear program (LP)

minv≥0 〈ξ, v〉 (2.3)

s.t. (I − γPa)v − ra ≥ 0, ∀a ∈ A

where ξ is an arbitrary positive vector. The dual of (2.3) is given as

maxλ≥0

∑
a∈A
〈λa, ra〉 (2.4)

s.t.
∑
a∈A

(I − γP>a )λa = ξ, ∀a ∈ A

where λa = [λ1a, · · · , λ|S|a]> ∈ R|A| is the a-th column of λ. Essential to the subsequent development
is the fact that λ is an unnormalized state-action occupancy measure and

∑
a∈A
〈λa, ra〉 = E

[ ∞∑
t=0

γtritit+1at

∣∣∣∣ i0 ∼ ξ, at ∼ π(·|it)

]

when ξ belongs to the probability simplex. Moreover, one can recover the policy parameters through
normalization of the dual variable as π(a|s) = λsa/

∑
a′∈A λsa′ for all a ∈ A and s ∈ S, as detailed in

Proposition A.1.
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3. Caution-Sensitive Policy Optimization

In this work, we prioritize definitions of risk in MDPs that capture long-term behavior of the policy
and permit the derivation of computationally efficient algorithms. We focus on optimizing the policy’s
long-run behaviors that cannot be described by any cumulative sum of rewards, for examples the
peak risk and variance.

3.1 Problem Formulation

We focus on directly designing the long-term state-action occupancy distribution, whose unnormalized
version is the dual variable λ := {λa}a∈A. Rather than only maximizing the expected cumulative
return, i.e., the typical objective in risk-neutral MDP (e.g., (2.4)), we seek policies that incorporate
risk functions concerning the full distribution λ.

We propose a non-standard notion of risk: in standard definitions, such as those previously
mentioned, they are typically risk measures of the cumulative rewards; by contrast, here we augment
the risk to be defined over the long-term state-action occupancy distributions, which we dub caution
measures. Specifically, denote as ρ(λ) a caution function that takes as input dual variables λ
(unnormalized state-action distributions) feasible to (2.4) and maps to the reals R. The caution risk
measures the fitness of the entire state path, rather than just a cumulative sum over the path.

In pursuit of computationally efficient solutions, we hone in on properties of the dual LP
formulation of RL. The caution-sensitive variant of (2.4) then takes the form:

maxλ≥0 〈λ, r〉 − cρ(λ)

s.t.
∑
a∈A

(I − γP>a )λa = ξ, (3.1)

‖λ‖1 = (1− γ)−1,

where c is a positive penalty parameter and we take ξ to be the vector of uniform distribution without
loss of generality, i.e., ξ = 1

|S||A| · 1; and ‖λ‖1 :=
∑
s,a |λsa|. The constraints require that λ be the

unnormalized state-action distribution corresponding to some policy. The last constraint is implied
by

∑
a∈A

(I − γP>a )λa = ξ, but we include it for clarity. When ρ is convex, problem (3.1) is a convex

optimization problem that facilitates computationally efficient solutions.
Denote by λ∗ the optimal solution to the cautious policy optimization problem (3.1). This λ∗

gives the optimal long-term state-action occupancy distribution under the caution risk. Let π∗ be
the mixed policy given by

π∗(a|s) =
λ∗(s, a)∑
a′ λ
∗(s, a′)

.

We call this π∗ the optimal caution-sensitive policy. We remark that with the introduction of the risk
measure into the dual form (3.1), the corresponding primal is no longer the LP problem (2.3) but
changes to one that incorporates risk. The optimal caution-sensitive policy π∗ differs from the optimal
policy in the typical risk-neutral setting. Since the LP structure is lost, the optimal risk-sensitive
policy π∗ is not guaranteed to be deterministic. Moreover, the Lagrangian multipliers, denoted by
v∗, for the risk-sensitive problem (3.1) is no longer the risk-neutral value vector, meaning that we
are solving a different problem than (2.1). Indeed, by defining caution in this way, we incorporate
long-term distributional risk into the dual domain of Bellman equation, while sidestepping the
computational challenges of time-inconsistency.

3.2 Examples of Caution Risk

Next, we discuss several examples of the caution risk ρ to clarify the problem setting (3.1).
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Example 3.1 (Barrier risks). Caution risk can take the form of barriers to guarantee that a
policy’s long-term behavior meets certain expectations. Two examples follow:
• Staying in safety set. Suppose we want to keep the state trajectory within a safety set S̄ ⊂ S

for more than 1 − δ fraction of all time. In light of the typical barrier risk used in constrained
optimization, we define

ρ(λ) = − log
(
λ(S̄)− (1− δ)

)
,

where λ(S̄) = (1− γ)
∑
s,a λ(s, a)1s∈S̄ . Since λ(S̄) is linear in λ, we can verify that the log barrier

risk ρ is convex.
• Meeting multiple job requirements. Further, suppose there are multiple tasks with strict

requirements on their expected returns 〈λ, rj〉 ≥ bj , j = 1, . . . ,m. One can transform these return
constraints into a log barrier given by

ρ(λ) = −
m∑
j=1

log (〈λ, rj〉 − bj) .

In this way, the optimal caution-sensitive policy will meet all the job requirements for large enough
penalty c.

Example 3.2 (Peak risk). Let f1, . . . , fm be risk functions of λ. Consider the peak risk defined as

ρ(λ) = sup
j∈[m]

fj(λ).

• Worst-case exposure to danger areas. For example, let S1, . . . Sm be known “danger” sets. If
we let fj(λ) = λ(Sj) quantify the long-term exposure to Sj , the peak risk ρ measures the long-run
exposure to the most acute danger.
• Worst-case multitask performance. For another example, suppose there are m different tasks

defined in the same environment with reward functions r1, . . . , rm. Let fj(λ) = −〈λ, rj〉 be the
negative cumulative return for task j, and an agent has to do well in all the tasks and be evaluated
based on her worst performance. Then the objective is a peak risk:

−ρ(λ) = sup
j∈[m]

−〈λ, rj〉.

In the preceding examples, fj ’s are linear, therefore ρ is always convex.

Example 3.3 (Variance risk). In finance applications, one canonical risk concern is the variance
of return. To formulate risk as variance, we first note that λ is an unnormalized distribution, whose
normalized counterpart is denoted as λ̂ := (1− γ)λ. Then it holds that 〈λ̂, r〉 is the expected reward
accumulation. Then, the variance of return per timestep takes the form

ρ(λ) = V ar(r̂ss′a|λ) = Eλ̂
[(
Eλ̂ [r̂ss′a]− r̂ss′a

)2]
(3.2)

where Eλ̂ := E(s,a,s′)∼λ̂×P(·|a,s). For ease of notation, denote R ∈ R|S|×|A| with R(s, a) =

Es′∼P(·|a,s)[r̂
2
ss′a]. Substituting in these definitions, we may write

ρ(λ) = 〈λ̂, R〉 − 〈λ̂, r〉2, (3.3)

which is a quadratic function of the variable λ. Note that the variance risk ρ(λ) is non-convex with
respect to λ.

Example 3.4 (Divergence for incorporating priors). Often in applications, we have access to
demonstrations, which can be used to learn a prior on the policy for ensuring baseline performance. Let
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λ̄ be a prior state-action distribution learned from demonstrations. Maintaining baseline performance
with respect to this prior, or demonstration distribution, then can be encoded as the Kullback-Liebler
(KL) divergence between the normalized distribution λ̂ = (1− γ)λ and the prior λ̄ stated as

ρ(λ) = KL
(
(1− γ)λ||λ̄

)
(3.4)

which is substituted into (3.1) to obtain a framework for efficiently incorporating a baseline policy.
In some scenarios, existing demonstrations are only state trajectories without revealing the actions
taken. Then one may estimate the long-term state-only distribution µ and define the risk as

ρ(λ) = KL

(
(1− γ)

∑
a

λa||µ

)
,

which measures the divergence between the marginalized state occupancy distribution and the prior.
In addition to KL, one can also use other convex distances such as Wasserstein, total variation, or
even a simple quadratic.

4. Stochastic Primal-Dual Policy Gradient

We shift focus to developing an algorithmic solution to the caution-sensitive policy optimization
problem (3.1). While the problem upon first glance appears deterministic, the transition matrices Pa
are a priori unknown and we assume the presence of a generative model. Such a generative model is
fairly common in control/RL applications where a system simulator is available. For a given state
action pair (s, a), the generative model provides the next state s′ and the stochastic reward r̂ss′a
according to the unknown transition dynamics.

Thus, we propose methodologies based on Lagrangian duality together with stochastic approxi-
mation. Given the convexity of ρ, by virtue of duality, (3.1) admits an equivalent formulation as a
saddle point problem:

max
λ∈L

min
v∈V

L(v,λ)=〈λ,r〉 − cρ(λ) + 〈ξ,v〉+
∑
a∈A

λ>a(γPa −I)v, (4.1)

where V should be R|S| in principle. However, we can later on find a large enough compact set to
replace the whole space without loss of optimality. By choosing ξ to satisfy ξ ≥ 0 and ‖ξ‖1 = 1, we
define the dual feasible set L as

L := {λ : λ ≥ 0, ‖λ‖1 = (1− γ)−1}. (4.2)

Given distribution ζ over S ×A, define the stochastic approximation of the risk-neutral component
of the Lagrangian:

Lζ(s,a,s′),s̄(v, λ) := vs̄ + 1{ζsa>0} ·
λsa(r̂ss′a + γvs′ − vs)

ζsa
(4.3)

where s̄ ∼ P(ξ) is a sample from the discrete distribution defined by probability vector ξ. Then by
direct computation, when the support of ζ contains that of λ, i.e., supp(λ) ⊂ supp(ζ), we may write

L(v, λ)=E(s,a,s′)∼ζ×P(·|a,s),s̄∼ξ

[
Lζ(s,a,s′),s̄(v, λ)

]
−cρ(λ). (4.4)

Thus, we view (4.1) as a stochastic saddle point problem.
We propose variants of stochastic primal-dual method applied to (4.1). To obtain the primal

descent direction, we note that if ζ is chosen such that supp(λ) ⊂ supp(ζ), an unbiased estimator of

6
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Algorithm 1 Stochastic Risk-Averse (Cautious) RL

Input: Sample size T . Parameter ξ = 1
|S| ·1. Stepsizes α, β>0. Discount γ ∈ (0, 1). Constants

M1,M2 >0, δ∈(0, 1).
Initialize: Arbitrary v1 ∈ V and λ1 := 1

|S||A|(1−γ) · 1 ∈ L.
for t = 1, 2, · · · , T
Set ζt := (1− δ)(1− γ)λt + δ

|S||A|1.

Sample (st, at) ∼ ζt and s̄t ∼ ξ.
Generate s′t ∼ P(·|at, st) & r̂sts′tat from generative model.

Construct ∇̂vL(vt, λt) [cf. (4.8)] and ∂̂λL(vt, λt) [cf. (4.9)] .
Update v and λ as

vt+1 = ΠV(vt − α∇̂vL(vt, λt)) (4.5)

and

λt+
1
2 =argmax

λ
〈∂̂λL(vt,λt),λ−λt〉 (4.6)

− 1

(1−γ)β
KL

(
(1− γ)λ||(1− γ)λt

)
.

λt+1 =
λt+

1
2

(1− γ)‖λt+ 1
2 ‖1

. (4.7)

Output: λ̄ := 1
T

∑T
t=1 λ

t and v̄ := 1
T

∑T
t=1 v

t.

the gradient of L w.r.t. v ∈ V is

∇̂vL(v, λ) := ∇vLζ(s,a,s′),s̄(v, λ) (4.8)

= es̄ + 1{ζsa>0} ·
λsa
ζsa

(γes′ − es),

where es ∈ R|S| is a column vector with only the s-th entry equaling to 1 and all other entries being
0. Moreover, a dual subgradient of the instantaneous Lagrangian is given as

∂̂λL(v, λ) := 1{ζsa>0} ·
r̂ss′a + γvs′ − vs −M1

ζsa
·Es,a

−c∂̂ρ(λ)−M2 · 1, (4.9)

where Es,a ∈ R|S|×|A| is a matrix with (s, a)-th entry equal to 1 and all other entries equal to 0.

∂̂ρ(λ) is an unbiased subgradient estimate of the convex but possibly non-smooth function ρ, i.e.

E[∂̂ρ(λ)] ∈ ∂ρ(λ). In (4.9), M1 and M2 are the “shift” parameters specified in Theorem 5.3 by
the convergence analysis in Section 5. Note that since the function ρ is often known in practice,
a full subgradient u ∈ ∂ρ(λ) may be used instead of an instantaneous approximate ∂̂ρ(λ). With
appropriately defined shift parameters M1,M2 in the subgradient estimator, if ζ > 0, then the dual
subgradient is biased with a constant shift:

E[∂̂λL(v, λ)] ∈ ∂λL(v, λ)− (M1 +M2) · 1.

With these estimates for the primal gradient and dual subgradient of the Lagrangian (4.4), we
propose executing primal-dual stochastic subgradient iteration (Chen and Wang, 2016; Chen et al.,
2018) with the KL divergence in the dual domain. The detailed steps are summarized in Algorithm
1. Employing KL divergence in defining the dual update permits us to leverage the structure of λ as
a distribution to derive tighter convergence rates, as detailed in Section 5.
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Algorithm 1 provides a model-free method for learning cautious-optimal policies from transition
samples. Each primal and dual update can be computed easily based on a single observation.
Although Algorithm 1 is given in the tabular form, its spirit of primal-dual stochastic approximation
can be generalized to work with function approximations in the primal and dual spaces as the subject
of future work.

5. Convergence Analysis

In this section, we establish the convergence of Algorithm 1 when the caution (risk) ρ in (3.1) is
convex in λ, after which we present extensions of Algorithm 1 to address the non-convex variance
risk, with its associated convergence presented thereafter. We provide sample complexity results for
finding near-optimal solutions whose dependence on the size of the state and action spaces is tight.

Before delving into these details, we state a technical condition on the caution function ρ required
for the subsequent analysis, which is that we have access to a first-order oracle providing noisy
samples of its subgradient, and that the infinity norm of these samples is bounded.

Assumption 5.1. The caution function ρ(λ) is convex but possibly non-smooth, and it has bounded
subgradients as

sup
λ∈L

sup
u∈∂ρ(λ)

‖u‖∞ ≤ σ <∞. (5.1)

Further, samples ∂̂ρ(λ) of its subgradients are unbiased and have finite infinity norm:

E[∂̂ρ(λ)] ∈ ∂ρ(λ) , sup
λ∈L
‖∂̂ρ(λ)‖∞ ≤ σ. (5.2)

In our subsequent analysis, we treat σ as a known constant. In all of Examples 3.1-3.4, the
caution function ρ is explicitly known, which yields ∂̂ρ(λ) ∈ ∂ρ(λ). For an instance, in Example 3.2,

if we let ρ(λ) = supj∈[m]〈cj , λ〉, then any subgradient is bounded by |∂̂ρ(λ)| ≤ supj ‖cj‖∞ = O(1).

For another instance, in Example 3.4, ρ(λ) = KL(λ̂ ||µ) for some fixed µ [cf. (3.4)], the gradient
takes the form

|∇λsa
ρ(λ)| =

∣∣∣(1− γ)
(

1 + log
(
λ̂sa/µsa

))∣∣∣
for any s ∈ S and a ∈ A. Then, we can ensure Assumption 5.1 by imposing an elementwise lower
bound δ0 on µ and λ s.t. µ ≥ δ0 · 1 and λ ≥ δ0 · 1. The constant δ0 may be chosen extremely small,
for instance, δ0 = min{10−15, |S|−1|A|−1}. Consequently, we have

σ ≤ O
(
(1− γ)

(
1 + log

(
δ−1
0

)))
= O(1).

5.1 The Case of Convex Caution Risk

In this subsection, we characterize the performance of Algorithm 1 when the caution ρ is convex.
We begin by noting that the saddle point problem (4.1) does not specify the feasible region V for
the variable v. However, the convergence necessitates V to be a compact set rather than the entire
R|S|. To disambiguate the domain of v, next we derive a bounded region that contains the primal
optimizer v∗.

Lemma 5.2. If ξ > 0, then the primal optimizer v∗ satisfies

‖v∗‖∞ ≤ (1− γ)−1(1 + cσ). (5.3)

Therefore, we can define the feasible region V to be the compact set

V :=

{
v ∈ R|S| : ‖v‖∞ ≤ 2

1 + cσ

1− γ

}
. (5.4)

8
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The proof of Lemma 5.2 is provided in Appendix B. We note that the factor of 2 is incorporated
to simplify the analysis.

Subsequently, we analyze the primal-dual convergence of Algorithm 1 for solving (4.1) (and
the equivalently (3.1)). Before providing the main theorem, we introduce a technical result which
defines convergence in terms of a form of duality gap. The duality gap measures the distance of the
Lagrangian evaluations to a saddle point as defined by (4.1).

Theorem 5.3 (Convergence of duality gap). For Algorithm 1, select shift parameters M1 =
4(1+cσ)

1−γ and M2 = cσ, δ ∈ (0, 1
2 ), β = 1−γ

1+cσ

√
log(|S||A|)
T |S||A| , and α =

√
|S|
T (1 + cσ). Let λ̄ and v̄ be the

output of Algorithm 1 and let λ∗ be the optimum. Then for the output of Algorithm 1, we have

E[L(v̄,λ∗)−min
v∈V

L(v, λ̄)] (5.5)

≤ O

(√
|S||A| log(|S||A|)

T
· 1 + 2cσ

(1− γ)2

)
.

As a result, to guarantee E[L(v̄, λ∗)−minv∈V L(v, λ̄)] ≤ ε, the amount of samples needed is

T = Θ

(
|S||A| log(|S||A|)(1 + 2cσ)2

(1− γ)4ε2

)
. (5.6)

The proof of this Theorem is provided in Appendix C.
We may then use the convergence of duality gap to characterize the sub-optimality and constraint

violation attained by the output of Algorithm 1 for the problem (3.1).

Theorem 5.4 (Convergence to optimal caution-sensitive policies). Let the parameters M1,
M2, δ, β, and α, as defined in Theorem 5.3, if λ̄ is the output of Algorithm 1 after T iterations, then
the constraint violation of the original problem (3.1) satisfies

λ̄ ≥ 0,
∥∥λ̄∥∥

1
= (1− γ)−1

∥∥∑
a∈A(I − γP>a )λ̄a − ξ

∥∥
1
≤ (1−γ)ε

1+cσ ≤ (1− γ)ε.

(5.7)

Moreover, the sub-optimality of (3.1) is given as

E[(〈λ∗, r〉 − cρ(λ∗))− (〈λ̄, r〉 − cρ(λ̄))] ≤ ε (5.8)

Eqs. (5.7) and (5.8) showed the output solution is ε-feasible and ε-optimal. Note that ε determines
the number of samples T as given in (5.6). The proof is provided in Appendix D.

Theorem 5.4 suggests that to get ε-optimal policy and its corresponding state-action distribution,
the sample complexity has near-linear dependence (up to logarithmic factors) on the sizes of S and
A. This matches the optimal dependence in the risk-neutral case, see e.g. (Chen et al., 2018; Wang,
2017a,b) which proves that Algorithm 1 is sample-efficient.

Further, consider the case where ρ is a KL divergence as in Example 3.4. This ρ acts as a
regularization term to keep λ close to a prior long-term behavior. In this case, we can show that
the primal-dual algorithm enjoys better convergence rates. In particular, we show a tighter KL
divergence bound between the estimated λ̄ and the optimal state-action distribution.

Corollary 5.5 (The case when ρ is a KL divergence). If λ̄ is the output of Algorithm 1, with
parameters M1, M2, δ, β, α and T chosen as in Theorem 5.3, with ρ(λ) := KL

(
(1− γ)λ ||µ

)
is the

KL divergence from given prior µ, we have E
[
KL

(
(1− γ)λ̄ || (1− γ)λ∗

)]
≤ ε

c .

Corollary 5.5 explicitly gives a dependence of the risk in terms of penalty parameter c, which may
be made small as the penalty parameter grows large. Next, we discuss the case where the caution ρ
is not necessarily convex.

9
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Algorithm 2 A Block Coordinate Ascent (PCA) framework for Policy Optimization with Nonconvex
Caution

Initialize: λ0, µ0.
for k = 0, 1, ...,K − 1
Update µk+1 by solving

µk+1= arg max Φ(λk, µ) s.t. µ≥0, ‖µ‖1 = 1 (5.9)

with a known closed form solution.
Update λk+1 by solving the following to ε-sub-optimality

max
λ

Φ(λ, µk−1) s.t.
∑
a∈A

(I − γP>a )λa = ξ, λ ≥ 0 (5.10)

using Algorithm 1.
Output: Select (λk

∗
, µk

∗
) randomly from (λ1, µ1), ..., (λK , µK).

5.2 Extension to Nonconvex Variance Risk

In this subsection, we specify the caution as variance as in Example 3.3, which is nonconvex unlike
other examples. For this instance, our strategy of addressing the constraints of problem (3.1) via
Lagrangian relaxation fails here due to the nonconvexity of the variance in terms of λ. Therefore, we
propose to approximately solve the nonconvex saddle point problem by solving a blockwise convex
surrogate problem. Consider the following surrogate problem for some M > 0:

max
λ∈Λ

max
µ∈U

Φ(λ, µ) :=〈λ, r〉−cρ(λ, µ)−M
2
‖µ−λ̂‖2 (5.11)

where Λ :=
{
λ :

∑
a∈A

(I − γP>a )λa = ξ, λa ≥ 0, a ∈ A
}

,

U : =
{
µ : µ ≥ 0, ‖µ‖1 = 1

}
, λ̂ = (1− γ)λ,

ρ(λ, µ) = 〈λ̂, r〉2 − 2〈µ, r〉〈λ̂, r〉+ 〈µ,R〉.

Note that the surrogate problem (5.11) is not equivalent to the original problem (3.1) when risk ρ is
chosen to be variance. However, in this alternative formulation a quadratic penalty is applied to push
distribution µ towards λ̂. Observe that when µ = λ̂, we have ρ(λ, µ) = 〈λ̂, R〉 − 〈λ̂, r〉2, which equals
exactly to the variance function. Therefore, the problem (5.11) will be close to the original problem
(3.1) when the penalty parameter M is reasonably large. In what follows we propose algorithmic
solution to the surrogate problem, assuming that a sufficiently large M is chosen.

The surrogate objective Φ is strongly concave in λ for any fixed µ and is strongly concave in µ
for any fixed λ. But Φ is not jointly concave in λ and µ. Therefore, we can employ block-coordinate
ascent (BCA) to solve problem (5.11). The BCA method alternates between the two steps: First we
fix λ and optimize the problem over µ - this subproblem is a projection onto a simplex and has a
closed form solution (see (Wang and Carreira-Perpinán, 2013)); Second we fix µ and optimize over λ,
which is a convex problem and can be solved by using Algorithm 1. The full scheme is presented
in Algorithm 2. Finally, we establish the sample complexity of Algorithm 2 to find a first-order
stationary point of (5.11).

Theorem 5.6 (Convergence to approximate stationarity). Suppose we apply Algorithm 1 to
solve the subproblem (5.10) with T satisfying

T = Θ

(
|S||A| log(|S||A|)

(1− γ)4ε2
(
1 + (1− γ)2(c2 +M2)

))
.

10
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(a) Reward dist. (b) Risk neutral (c) Risk averse

Figure 1: Experiment on grid world with variance as the risk. (a) Reward distribution for the Maze
environment; (b) Risk neutral and (c) Risk averse trajectories, respectively, from start to
goal. The trajectory resulting from greedily following the risk-averse policy avoids negative
reward states.

And we solve the subproblem (5.9) with a closed form solution (Wang and Carreira-Perpinán, 2013).
Let the number of outer iterations be

K ≥ maxλ,µ Φ(λ, µ)− Φ(λ0, µ0)

ε
.

Then the output (λk
∗
, µk

∗
) of Algorithm 2 is an approximate-stationary solution to problem (5.11),

which satisfies

E
[
‖ΠΛ(∇λΦ(λ, µ))‖2 + ‖ΠU (∇µΦ(λ, µ))‖2

]
≤ O

(
(1− γ)2

(
c2|S|2|A|2

M
+M

)
ε

)
(5.12)

and 
E[‖

∑
a∈A

(I − γP>a )λk
∗

a − ξ‖1] ≤ (1− γ)ε,

λk
∗ ≥ 0, ‖λk∗‖1 = (1− γ)−1,

µk
∗ ≥ 0, ‖µk∗‖1 = 1.

(5.13)

Eqs. (5.12), (5.13) suggest that both the projected gradient norm and the level of constraint
violation are O(ε) small. They imply that the output solution is nearly feasible and nearly stationary.
See Appendix F for the proof of theorem.

6. Experimental Results

In this section, we experimentally evaluate the proposed technique for incorporating risk or other
sources of exogenous information into RL training. In particular, we consider a setting in which
an agent originally learns in the risk-neutral sense of (2.2), i.e., focusing on expected returns. The
MDP we focus on is a 10 × 10 grid with each state permitting for four possible actions (moving
A := {up, down, left, and right}). For the transition model, given the direction of the previous
action selection, the agent movies in the same direction with probability p and moves in the different
direction with probability 1− p, and moves backwards with null probability. For instance, in a given
state action pair (s, a), suppose the action a selected is up. Then, the next action will be up with
prob p and {left, or right} with prob 1− p, and down with null probability. Overall, this means

11
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Figure 2: (a) Convergence of the dual objective [cf. (3.1)]; Sample mean return (b) and variance (c)
over 100 simulated trajectories. Observe the expected reward return is comparable while
the risk-averse policy attains lower variance, and is thus more reliable.

(a) µ (b) Risk neutral (c) Risk averse

Figure 3: Results for the learning with demonstration µ. We have used KL divergence as the risk
function for these results. (a) The given demonstration, (b) Risk neutral solution, (c)
Risk averse solution. Note that incorporating KL divergence yields a policy that avoids
unrewarding states (red block in (b) and (c)).

that the transition matrix has four nonzero sequences of likelihoods along the main diagonal, i.e., it
is quad-diagonal. For the experiments, we consider the caution-sensitive formulation presented in
Examples 3.3 and 3.4 which respectively correspond to quantifying risk via the variance and the KL
divergence to a previously learned policy which serves as a prior. We append videos (links in the
footnote12) to the submission which visualize the safety of risk-awareness during training.

6.1 Variance-Sensitive Policy Optimization

The variance risk given in Example 3.3 characterizes the statistical robustness of the rewards from
a policy. To evaluate the merit of this definition, consider the maze example with the rewards
distribution as described in Fig. 1(a). There are two ways to go from start to destination. The
reward of dark green areas is more negative than lighter shades of green, and thus it is riskier to be
near darker green in terms of the returns of a trajectory. We display a sample path of the Markov
chain obtained by solving the variance-sensitive policy optimization problem as Fig. 1(c), whereas
the one based on the risk-neutral (classical) formulation is shown in Fig. 1(b). Clearly, the risk-averse
one avoids the dark green areas and collects a sequence of more robust rewards, yet still reaches

1. https://tinyurl.com/sk4lddb
2. https://tinyurl.com/tlcl3m2
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Figure 4: We plot the running average of (a) Expected reward return, (b) percentage of time we visit
the unrewarding states. Note that the prior demonstration helps in the faster convergence
as clear from (a). Further, the KL divergence based risk helps to avoid the visitation of
the unrewarding states as clear from the result in (b).

the goal. The convergence of objective is plotted in Fig. 2(a) for the proposed algorithm. Further,
we plot the associated sample mean and variance of the discounted return over number of training
indices in Figs. 2(b) and 2(c), respectively. Observe that the risk-averse policy yields comparable
mean reward accumulation with reduced variance, meaning it more reliably reaches the goal without
visiting unwanted states whose rewards are negative.

6.2 Caution as Proximity to a Prior

When a prior is available in the form of some baseline state-action distribution µ , KL divergence to
the baseline makes sense as a measure of caution [cf. (3.4)] as stated in Example 3.4. To evaluate
this definition, consider the setting where the baseline µ is a risk-neutral policy (shown in Fig. 3(a))
learned by solving (2.4) with a reward that is highly negative r = −5 in the dark green area, strictly
positive r = 0.3 in the light green area, and r = 1 at the goal in the bottom right denoted by G in
Fig. 3(a). The transition probabilities are defined by p = 0.4. Then, the resulting risk-neutral policy
is used as a baseline policy for a drifted MDP whose reward is r = 0 for the dark green area while
identical elsewhere, and whose transition dynamics are defined by likelihood parameter p = 0.6. The
overarching purpose is that although the reward landscape and transition dynamics changed, the
“lessons” of past learning may still be incorporated.

The resulting policy learned from this procedure, as compared with the risk-neutral policy, are
visualized in Figures 3(b) and 3(c), respectively. Observe that the policy associated with incorporating
past experience in the form of policy µ has explicitly pushed avoidance of the dark green region,
whereas the risk-neutral policy resulting from (2.4) does not. Thus, past (negative) experiences may
be incorporated into the learned policy. This hearkens back to psychological experiments on mice: if
its food supply is electrified, then a mouse will refuse to eat, even after the electricity is shut off, a
form of fear conditioning. Further, we plot the associated discounted return and empirical occupancy
of negative reward states with the iteration index of the optimization procedure in Algorithm 1 in
Fig. 4. Overall, then, the incorporation of prior demonstrations results in the faster learning (see Fig.
4(a)) and reduces the proportion of time spent in unrewarding states as evidenced by Fig. 4(b).

7. Conclusions

In this work, we proposed a new definition of risk named caution which takes as input unnormalized
state-action occupancy distributions, motivated by the dual of the LP formulation of the MDP. To
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solve the resulting risk-aware RL in an online model-free manner, we proposed a variant of stochastic
primal-dual method to solve it, whose sample complexity matches optimal dependencies of risk-neutral
problem. Experiments illuminated the usefulness of this definition in practice. Future work includes
deriving the Bellman equations associated with cautious policy optimization (3.1), generalizations to
continuous spaces, and broadening caution to encapsulate other aspects of decision-making such as
inattention and anticipation.
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Supplementary Material for “Cautious Reinforcement Learning via
Distributional Risk in the Dual Domain”

Appendix A. The Physical Meaning of Dual LP

The dual LP formulation (2.4) has a clear physical meaning. Suppose ξ ≥ 0 and ‖ξ‖1 = 1 is a
distribution over the state space S. Then the following proposition explains the meaning of the dual
problem.

Proposition A.1. Suppose the variable λ ∈ R|S|×|A|+ satisfies the conditions

λ ≥ 0 and
∑
a∈A

(I − γP>a )λa = ξ, (A.1)

Then λ is an unnormalized distribution, or flux, under the randomized policy π:

π(a|s) =
λsa∑

a′∈A λsa′
, for ∀a ∈ A,∀s ∈ S. (A.2)

Furthermore, it satisfies

λsa =

∞∑
t=0

γt · P
(
it = s, at = a

∣∣∣∣ i0 ∼ ξ, at ∼ π(·|it)
)

(A.3)

and

〈λ, r〉 = E

[ ∞∑
t=0

γtritit+1at

∣∣∣∣ i0 ∼ ξ, at ∼ π(·|it)

]
. (A.4)

Proof. Under the initial distribution ξ and the randomized policy π : S 7→ ∆|A| defined in (A.2), we

define a new initial distribution ξ̂ as

ξ̂sa = ξs · π(a|s) for ∀s ∈ S, a ∈ A

as the distribution of the initial state-action pair (s0, a0). Therefore the dynamics of the state-action

pairs (st, at) form another Markov chain with transition matrix P̂ ∈ R|S||A|×|A||S|+ defined as

P̂π(s, a; s′, a′) = Pa(s, s′) · π(a′|s′).

First, let us prove that (A.1) is equivalent to (A.3). For the ease of notation, we used the multi-indices.
Let us view both r and λ as vectors with s, a being a multi-index. Note that (A.1) implies that for
all s ∈ S

ξs =
∑
a′∈A

λsa′ − γ
∑
a′∈A

∑
s′∈S

Pa′(s
′, s)λs′a′ .

Multiplying both sides by π(a|s) = λsa∑
a′∈A λsa′

, we get

ξ̂sa = λsa − γ
∑
a′∈A

∑
s′∈S

Pa′(s
′, s) · π(a|s) · λs′a′

= λsa − γ
∑
a′∈A

∑
s′∈S

P̂π(s′, a′; s, a)λs′a′

for any s ∈ S, a ∈ A. If we write this equation in a compact matrix form, we get

ξ̂ = (I − γP̂>π )λ.
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Note that ‖γP̂>π ‖2 ≤ γ < 1, we know (I − γP̂>π )−1 =
∑∞
i=0 γ

i(P̂ iπ)>. Consequently,

λ> = ξ̂>(I − γP̂π)−1 = ξ̂> + γξ̂>P̂π + γ2ξ̂>P̂ 2
π + · · ·

If we write the above equation in an elementwise way, we get (A.3). Consequently, we also have

λ>r = ξ̂>r + γξ̂>P̂πr + γ2ξ̂>P̂ 2
πr + · · ·

= E

[ ∞∑
t=0

γtr̂itit+1at

∣∣∣∣ i0 ∼ ξ, at ∼ π(·|it)

]
,

which is as stated in (A.4)

Appendix B. Proof of Lemma 5.2

Proof. Consider the min-max saddle point problem,

max
λ≥0

min
v∈R|S|

L(v,λ)=〈λ,r〉 − cρ(λ) + 〈ξ,v〉+
∑
a∈A

λ>a(γPa −I)v, (B.1)

Then (λ∗, v∗) solves this saddle point problem if and only if

λ∗ = argmax
λ≥0

L(v∗, λ) and
∑
a∈A

(I − γP>a )λ∗a − ξ = 0. (B.2)

A remark is that, this is also the KKT condition for the original convex problem (3.1). Due to
the concavity of L(v∗, λ) for any fixed v∗, the condition λ∗ = argmax

λ≥0
L(v∗, λ) is equivalent to the

existence of a subgradient w∗ ∈ ∂λL(v∗, λ∗) s.t.

〈w∗, λ− λ∗〉 ≤ 0 for ∀λ ≥ 0. (B.3)

If we use u∗ to denote the specific subgradient in ∂ρ(λ∗) that consists w∗. For any fixed s, a, we know
w∗sa = −(es − γPas)>v∗ + rsa − cu∗sa. If we choose λs′a′ = λ∗s′a′ for ∀(s′, a′) 6= (s, a), (B.3) further
implies (

(es − γPas)>v∗ − rsa + cu∗sa
)
(λsa − λ∗sa) ≥ 0,

where Pas is a column vector, with Pas(s
′) = P(s′|a, s). Combine this inequality with (B.2), we can

formally write the final optimality condition as follows.

∃u∗ ∈ ∂ρ(λ∗) s.t.


∑
a∈A

(I − γP>a )λ∗a = ξ, λ∗ ≥ 0,(
(es − γPas)>v∗ − rsa + cu∗sa

)
(λsa − λ∗sa) ≥ 0, ∀s ∈ S,∀a ∈ A,∀λsa ≥ 0.

(B.4)
By (A.3) of Proposition A.1, we know that∑

a∈A
λ∗sa ≥

∑
a∈A

Prob
(
i0 = s, a0 = a|i0 ∼ ξ, a0 ∼ π(·|i0)

)
= ξs > 0 for ∀s ∈ S.

Therefore, for any s ∈ S, there exists an as such that λ∗sas > 0. Therefore, the second inequality of
the optimality condition (B.4) implies that,

(es − γPass)>v∗ − rsas + cu∗sas = 0 for ∀s ∈ S.

Let us denote r̃ := [r1a1 , · · · , r|S|a|S| ]> ∈ R|S|, ũ := [u∗1a1 , · · · , u
∗
|S|a|S| ]

> ∈ R|S| and P̃ := [Pa11, · · · , Pa|S||S|] ∈
R|S|×|S|. Then we can write (

I − γP̃>
)
v∗ = r̃ − cũ.
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As a result,

1 + cσ ≥ ‖r̃ − cũ‖∞ = ‖(I − γP̃>)v∗‖∞ ≥ ‖v∗‖∞ − ‖γP̃>v∗‖∞ ≥ (1− γ)‖v∗‖∞,

which implies the statement of Lemma 5.2.

Appendix C. Proof of Theorem 5.3

Proof. To make the proof of this result clearer, we will separate part of the major steps into several
different lemmas.

Lemma C.1. Suppose the iterate sequence {vt} is updated according to the rule (4.5) in Algorithm
1. Then for any t,

〈∇vL(vt, λt), vt − v〉 ≤ 1

2α
(‖vt − v‖2 − ‖vt+1 − v‖2) +

α

2
‖∇̂vL(vt, λt)‖2

+ 〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v〉. (C.1)

The proof of this lemma is provided in Appendix C.1.

Lemma C.2. Suppose the iterate sequence {λt} is updated according to the rule (4.6) and (4.7) in
Algorithm 1. For ∀t,

−〈wt, λt − λ〉 ≤ 1

(1− γ)β

(
KL

(
(1− γ)λ || (1− γ)λt

)
−KL

(
(1− γ)λ || (1− γ)λt+1

))
+
β

2

∑
s,a

λtsa(∆t
sa)2 + 〈∂̂λL(vt, λt)− wt, λt − λ〉, (C.2)

where wt := E
[
∂̂λL(vt, λt)

∣∣λt, vt]+ (M1 +M2) · 1 ∈ ∂λL(vt, λt) is a subgradient vector.

The proof of this lemma is provided in Appendix C.2. Based on these two lemmas, we start
the proof of Theorem 5.3. Note that by definition, v̄ = 1

T

∑T
t=1 v

t and λ̄ = 1
T

∑T
t=1 λ

t. Define
v̄∗ := argminv∈V L(v, λ̄). Then by the convex-concave structure of L we have

L(v̄, λ∗)− L(v̄∗, λ̄) ≤ 1

T

T∑
t=1

(
L(vt, λ∗)− L(v̄∗, λt)

)
(C.3)

=
1

T

T∑
t=1

(
L(vt, λ∗)− L(vt, λt) + L(vt, λt)− L(v̄∗, λt)

)
≤ 1

T

T∑
t=1

(
−〈wt, λt − λ∗〉+ 〈∇vL(vt, λt), vt − v̄∗〉

)
,

where the first line applies Jensen’s inequality and last line is due to the convexity of L(·, λt) and the
concavity of L(vt, ·). Note that by specifying v = v̄∗ in (C.1) and λ = λ∗ in (C.2), we can sum up
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the inequlities (C.1) and (C.2) for t = 1, ..., T to yield

1

T

T∑
t=1

(
−〈wt, λt − λ∗〉+ 〈∇vL(vt, λt), vt − v̄∗〉

)
≤
KL

(
(1−γ)λ∗||(1− γ)λ1

)
T (1− γ)β︸ ︷︷ ︸

T1

+
β

2T

T∑
t=1

∑
s,a

λtsa(∆t
sa)2

︸ ︷︷ ︸
T2

+
1

T

T∑
t=1

〈∂̂λL(vt, λt)−wt, λt−λ∗〉︸ ︷︷ ︸
T3

+
‖v1 − v̄∗‖2

2Tα︸ ︷︷ ︸
T4

+
α

2T

T∑
t=1

‖∇̂vL(vt, λt)‖2︸ ︷︷ ︸
T5

+
1

T

T∑
t=1

〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v̄∗〉︸ ︷︷ ︸
T6

.

Substitute this inequality into (C.3) and take the expectation on both sides, we get

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤
6∑
i=1

E[Ti]. (C.4)

For the E[Ti]’s, the following bounds hold with detailed derivation provided in Appendix C.3:

E[T1] ≤ log(|S||A|)
T (1− γ)β

, E[T2] ≤ 4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3
, E[T3] = 0,

E[T4] ≤ 8|S|(1 + cσ)2

Tα(1− γ)2
, E[T5] ≤ 27α

2(1− γ)2
, E[T6] ≤

3
√

3|S|(1 + cσ)√
T (1− γ)2

.

Substitute these bounds for E[Ti]’s into inequality (C.4) we get

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤ log(|S||A|)
T (1− γ)β

+
4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3

+
8|S|(1 + cσ)2

Tα(1− γ)2
+

27α

2(1− γ)2
+

3
√

3|S|(1 + cσ)√
T (1− γ)2

. (C.5)

If we choose β = 1−γ
1+cσ

√
log(|S||A|)
T |S||A| and α =

√
|S|
T (1 + cσ), we have

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤ O

(√
|S||A| log(|S||A|)

T
· 1 + cσ

(1− γ)2

)
,

which completes the proof.

C.1 Proof of Lemma C.1

Proof. Consider the update rule of v provided in (4.5). For any v ∈ V, it holds that

‖vt+1 − v‖2 = ‖ΠV(vt − α∇̂vL(vt, λt))− v‖2

≤ ‖vt − α∇̂vL(vt, λt)− v‖2

= ‖vt − v‖2 + α2‖∇̂vL(vt, λt)‖2 − 2α〈∇̂vL(vt, λt), vt − v〉
= ‖vt − v‖2 + α2‖∇̂vL(vt, λt)‖2 − 2α〈∇̂vL(vt, λt)−∇vL(vt, λt) +∇vL(vt, λt), vt − v〉.

Rearranging the above inequality yields

2α〈∇vL(vt, λt), vt−v〉 ≤ ‖vt−v‖2−‖vt+1−v‖2+α2‖∇̂vL(vt, λt)‖2−2α〈∇̂vL(vt, λt)−∇vL(vt, λt), vt−v〉.

Deviding both sides by 2α proves lemma.
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C.2 Proof of Lemma C.2

Proof. Now let us consider the update rule of λ given by (4.6) and (4.7). Note that in the subproblem
(4.6), the problem is separable for each component of λ and allows for a closed form solution, i.e.,

λ
t+ 1

2
sa =argmax

λsa

∆t
saλsa −

1

(1− γ)β
(1− γ)λsa log

(
(1− γ)λsa
(1− γ)λtsa

)
(C.6)

=λtsa · exp{β∆t
sa},

where we denote ∆t
sa to be the (s, a)-th component of ∂̂λL(vt, λt). Then the next iterate is constructed

as

λt+1 =
λt+

1
2

(1− γ)‖λt+ 1
2 ‖1

.

Or in a more elementary way, we define

λt+1
sa =

λtsa · exp{β∆t
sa}

(1− γ)
∑
s′,a′ λ

t
s′a′ · exp{β∆t

s′a′}
. (C.7)

It is straightforward that λt+1 ∈ L. As a result, for any λ ∈ L,

KL
(
(1− γ)λ || (1− γ)λt+1

)
−KL

(
(1− γ)λ || (1− γ)λt

)
(C.8)

=(1− γ)
∑
s∈S

∑
a∈A

(
λsa log

(
λsa

λt+1
sa

)
− λsa log

(
λsa
λtsa

))
=(1− γ)

∑
s∈S

∑
a∈A

λsa log

(
λtsa
λt+1
sa

)

=(1− γ)
∑
s∈S

∑
a∈A

λsa

log

(1− γ)
∑
s′,a′

λts′a′ · exp{β∆t
s′a′}

− β∆t
sa

 (C.9)

= log

(1− γ)
∑
s′,a′

λts′a′ · exp{β∆t
s′a′}

− (1− γ)β
∑
s∈S

∑
a∈A

λsa∆t
sa

= log

(
(1− γ)

∑
s,a

λtsa · exp{β∆t
sa}

)
− (1− γ)β〈∂̂λL(vt, λt), λ〉. (C.10)

The equality in (C.9) is obtained by using the elementary definition of λt+1
sa in (C.7); The last equality

of (C.10) is obtained by applying the definition of ∆t
sa. Note that

∆t
sa =


r̂sts′tat

+γvs′t
−vst−M1

ζtstat

− c
(
∂̂ρ(λt)

)
stat
−M2, if (s, a) = (st, at),

−c
(
∂̂ρ(λt)

)
stat
−M2, if (s, a) 6= (st, at).

When we choose M1 = 4(1 − γ)−1(1 + cσ) and M2 = cσ, we can guarantee that ∆t
sa ≤ 0 for all

s ∈ S, a ∈ A. Therefore, by the fact that ex ≤ 1 + x + x2

2 for all x ≤ 0 and log(1 + x) ≤ x for all
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x > −1, we have

log

(
(1− γ)

∑
s,a

λtsa · exp{β∆t
sa}

)
≤ log

(
(1− γ)

∑
s,a

λtsa ·
(
1 + β∆t

sa +
β2

2
(∆t

sa)2
))

= log

(
1 + (1− γ)β〈∂̂λL(vt, λt), λt〉+

(1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2

)

≤(1− γ)β〈∂̂λL(vt, λt), λt〉+
(1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2. (C.11)

Utilizing the upper bound of (C.11) into the right hand side of (C.8) results in

KL
(
(1− γ)λ || (1− γ)λt+1

)
−KL

(
(1− γ)λ || (1− γ)λt

)
≤ (1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2 + (1− γ)β〈∂̂λL(vt, λt)− wt + wt, λt − λ〉.

Rearranging the terms and deviding both sides by (1− γ)β proves this lemma.

C.3 Bounding the E[Ti]’s

Step 1. Bounding E[T1]. Note that λ1 = 1
(1−γ)|S||A| , we know

E[T1] =
1

T (1− γ)β

∑
s,a

(1− γ)λ∗sa
(
log(λ∗sa)− log(|S|−1|A|−1)

)
(C.12)

≤ 1

T (1− γ)β

∑
s,a

(1− γ)λ∗sa log(|S||A|)

=
log(|S||A|)
T (1− γ)β

.

Step 2. Bounding E[T2]. For each t, we have

E

[∑
s,a

λtsa(∆t
sa)2

∣∣vt, λt] = Est,at

[∑
s,a

λtsa

(
r̂ss′a + γvs′ − vs −M1

ζtsa
· 1(s,a)=(st,at) − c

(
∂̂ρ(λt)

)
sa
−M2

)2 ∣∣∣∣vt, λt
]

≤ 2Est,at

[∑
s,a

λtsa

(
c
(
∂̂ρ(λt)

)
sa

+M2

)2

+ λtst,at

(
r̂sts′tat + γvs′t − vst −M1

ζtstat

)2 ∣∣∣∣vt, λt
]

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

λtsaζ
t
sa

(
r̂ss′a + γvs′ − vs −M1

ζtsa

)2

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

λtsa (r̂ss′a + γvs′ − vs −M1)
2

(1− δ)(1− γ)λtsa + δ
|S||A|

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

64λtsa(1− γ)−2(1 + cσ)2

(1− δ)(1− γ)λtsa + δ
|S||A|

≤ 8(1− γ)−1c2σ2 +
128|S||A|(1 + cσ)2

(1− δ)(1− γ)3

≤ 8(1− γ)−1c2σ2 +
256|S||A|(1 + cσ)2

(1− γ)3
.
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The second row follows the definition of ∆t
sa; The 4-th row is due to the assumption that ‖∂̂ρ‖∞ ≤ σ;

In the 5-th we substitute the definition of ζtsa provided in Algorithm 1; In the 6-th row we substitute
the detailed value of M1; The 8-th row is because δ ∈ (0, 1

2 ). As a result, we have

E[T2] =
β

2T

T∑
t=1

E

[∑
s,a

λtsa(∆t
sa)2

]
≤ 4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3
. (C.13)

Step 3. Bounding E[T3], because λ∗ is a constant, for each t, we have

E[〈∂̂λL(vt, λt)− wt, λt − λ〉|vt, λt] = −〈(M1 +M2) · 1, λt − λ∗〉 = 0,

where we have applied the fact that
∑
s,a λ

t
sa =

∑
s,a λ

∗
sa, and wt = E[∂̂λL(vt, λt)|vt, λt]+(M1+M2)·1

when ζt > 0. As a result,

E[T3] =
1

T

T∑
t=1

E
[
〈∂̂λL(vt, λt)− wt, λt − λ∗〉

]
= 0. (C.14)

Step 4. Bounding E[T4], we have

E[T4] =
1

2Tα
E
[
‖v1 − v̄∗‖2

]
≤ 8|S|(1 + cσ)2

Tα(1− γ)2
. (C.15)

Step 5. Bounding E[T5], applying the expression (4.8) yields

E
[
‖∇̂vL(vt, λt)‖2

∣∣vt, λt] = Est,at,s′t,s̄t

[∥∥es̄t +
λtstat
ζtstat

(γes′t − est)
∥∥2
∣∣∣∣vt, λt]

= Est,at,s′t,s̄t

[∥∥es̄t +
λtstat

(1− δ)(1− γ)λtstat + δ
|S||A|

(γes′t − est)
∥∥2
∣∣∣∣vt, λt

]

≤ Est,at,s′t,s̄t

[
3 +

3γ2 + 3

(1− δ)2(1− γ)2

∣∣∣∣vt, λt]
≤ 27

(1− γ)2
.

Consequently,

E[T5] =
α

2T

T∑
t=1

E
[
‖∇̂vL(vt, λt)‖2

]
≤ 27α

2(1− γ)2
. (C.16)

Step 6. Bounding E[T6]. Because v̄∗ is a random variable dependent on ∇̂vL(vt, λt) we will need
the following proposition.

Proposition C.3 ((Bach and Levy, 2019)). Let Z ⊆ Rd be a convex set and w : Z → R be a 1
strongly convex function with respect to norm ‖·‖ over Z. With the assumption that for all x ∈ Z we
have w(x) −minx∈Z w(x) ≤ 1

2D
2, then for any martingale difference sequence {Zk}Kk=1 ∈ Rd and

any random vector z ∈ Z, it holds that

E

[
K∑
k=1

〈Zk, x〉

]
≤ D

2

√√√√ K∑
k=1

E
[
‖Zk‖2∗

]
,

where ‖·‖∗ denotes the dual norm of ‖·‖.
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With this proposition, and note that E
[
〈∇̂vL(vt, λt)

∣∣vt, λt] = ∇vL(vt, λt), we have

E[T6] =
1

T

T∑
t=1

E
[
〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v̄∗〉

]
(C.17)

=
1

T

T∑
t=1

E
[
〈∇vL(vt, λt)− ∇̂vL(vt, λt), v̄∗〉

]

≤
√
|S|(1 + cσ)

T (1− γ)

√√√√ T∑
t=1

E
[
‖∇vL(vt, λt)− ∇̂vL(vt, λt)‖2

]

≤
√
|S|(1 + cσ)

T (1− γ)

√√√√ T∑
t=1

E
[
‖∇̂vL(vt, λt)‖2

]
≤

√
|S|(1 + cσ)

T (1− γ)

√
2T

α
E[T5]

≤
3
√

3|S|(1 + cσ)√
T (1− γ)2

.

Appendix D. Proof of Theorem 5.4

Proof. The first row of (5.7) is directly satisfied due to the feasibility of λ̄ ∈ L. Now we prove the
second row of (5.7). When the parameters are chosen according to Theorem 5.3, we know

ε ≥ E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)]. (D.1)

For the ease of notation, denote C := (1− γ)−1(1 + cσ). Then substitute the details of L we get

min
v∈V

L(v, λ̄) = min
‖v‖∞≤2C

〈λ̄, r〉 − cρ(λ̄) + 〈ξ, v〉+
∑
a∈A

λ̄a(γPa − I)v (D.2)

= 〈λ̄, r〉 − cρ(λ̄)− 2C

∥∥∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥∥∥

1

.

By the feasibility of λ∗, namely,
∑
a∈A(I − γP>a )λ∗a − ξ = 0, we have

L(v̄, λ∗) = 〈λ∗, r〉 − cρ(λ∗) + 〈ξ, v̄〉+
∑
a∈A

(λ∗a)>(γPa − I)v̄ = 〈λ∗, r〉 − cρ(λ∗). (D.3)

Substituting (D.2) and (D.3) into (D.1) yields

E

[
(〈λ∗, r〉 − cρ(λ∗))−

(
〈λ̄, r〉 − cρ(λ̄)

)
+ 2C

∥∥∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥∥∥

1

]
≤ ε. (D.4)
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Actually, this inequality has already proved the bound (5.8) in terms of the objective value of problem
(3.1). Also, by the feasibility of λ∗, the convexity of ρ and the optimality condition (B.4), we have

(〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
+
〈
v∗,
∑
a∈A

(I − γP>a )λ̄a − ξ
〉

= (〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
+
〈
v∗,
∑
a∈A

(I − γP>a )λ̄a −
∑
a∈A

(I − γP>a )λ∗a
〉

≥
∑
a∈A

〈
(I − γPa)v∗ − ra + cu∗a, λ̄a − λ∗a

〉
≥ 0,

where u∗ ∈ ∂ρ(λ∗) is defined in (B.4), and u∗a := [u∗1a, ..., u
∗
|S|a]> is column vector. Immediately, this

implies

(〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
≥ −

〈
v∗,
∑
a∈A

(I − γP>a )λ̄a − ξ
〉

(D.5)

≥ −‖v∗‖∞
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1

≥ −C
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1
.

where we used the fact that ‖v∗‖∞ ≤ C proved in Lemma 5.2. Substitute (D.5) into (D.4) gives

E
[
C
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1

]
≤ ε.

Divide both sides by C = (1− γ)−1(1 + cσ) proves inequality (5.7).

Appendix E. Proof of Proposition 5.5

Proof. Let v∗ be the optimal for the saddle point problem (4.1). Then the duality gap also guarantees
that

E[L(v̄, λ∗)− L(v∗, λ̄)] ≤ ε.

Substituting the detailed form of L(·, ·) we get E[T1 + T2] ≤ ε where

T1 = 〈ξ, v̄〉 − cρ(λ∗, r)− [〈ξ, v∗〉 − cρ(λ̄, r)] (E.1)

and
T2 =

∑
a∈A
〈λ̄a, (I − γPa)v̄ − ra〉 −

∑
a∈A
〈λ∗a, (I − γPa)v∗ − ra〉.

Note that for λ∗,
∑
a∈A(I − γP>a )λ∗a = ξ. Consequently,

T2 =
∑
a∈A
〈(I − γPa)v∗ − ra, λ̄a − λ∗a〉+

∑
a∈A
〈λ∗a, (I − γPa)(v∗ − v̄)〉

=
∑
a∈A
〈(I − γPa)v∗ − ra, λ̄a − λ∗a〉+ ξ>(v∗ − v̄).
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Let us define D(λ̄, λ∗) := ρ(λ̄)− ρ(λ∗)− 〈∇ρ(λ∗), λ̄− λ∗〉 ≥ 0. Combine this equality for T2 and the
definition of T1 in (E.1), we get

ε ≥ E[T1 + T2]

= E
[∑
a∈A
〈(I − γPa)v∗ − ra + c∇λa

ρ(λ∗), λ̄a − λ∗a〉︸ ︷︷ ︸
≥0 due to optimality condition (B.4)

]
+ cE[D(λ̄, λ∗)]

≥ cE[D(λ̄, λ∗)].

Now let us denote θ = (1−γ) for the ease of notation. By direct calculation, we compute the function
D as follows

D(λ̄, λ∗)

= ρ(λ̄)− ρ(λ∗)− 〈∇ρ(λ∗), λ̄− λ∗〉

=
∑
s∈S

∑
a∈A

(
θλ̄sa log

(
θλ̄sa
µsa

)
− θλ∗sa log

(
θλ∗sa
µsa

)
−
(
θ log

(
θλ∗sa
µsa

)
+ θ

)
(λ̄sa − λ∗sa)

)

=
∑
s∈S

∑
a∈A

(
θλ̄sa log

(
θλ̄sa
µsa

)
− θλ̄sa log

(
θλ∗sa
µsa

)
− θ(λ̄sa − λ∗sa)

)
= KL(θλ̄||θλ∗),

where the last inequality use the fact that
∑
s∈S

∑
a∈A θλ̄sa = 1 =

∑
s∈S

∑
a∈A θλ

∗
sa. This completes

the proof.

Appendix F. Proof of Theorem 5.6

Proof. For the ease of presentation, let us first prove two lemmas.

Lemma F.1. For each subproblem (5.9), there is a closed form solution. For (5.10), we apply
Algorithm 1 with the number of iterations T set according to Theorem 5.6. Then for all λk and µk

with k ∈ {1, ...,K}, the approximate feasibility condition (5.13) is satisfied. Furthermore we have

E
[
Φ(λk+1, µk+1)−max

λ∈Λ
Φ(λ, µk+1)

]
≥ −ε.

The proof of this lemma is provided in Appendix F.1.

Lemma F.2. Suppose the sequence {(λk, µk)} is generated by Algorithm 2 with the parameters set
by Theorem 5.6. For each iteration of Algorithm 2, let us define

λk+1
∗ = arg max

λ∈Λ
Φ(λ, µk+1).

Then the output (λk
∗
, µk

∗
) solution satisfies

E[‖λk
∗
− λk

∗

∗ ‖2] ≤ 2ε

M
and E

[
‖λk

∗

∗ − λk
∗−1‖2

]
≤ 4ε

M
.

The proof of this lemma is provided in Appendix F.2. Based on this result, let us bound the
expected squared projected gradients. By the optimality of µk

∗
for subproblem (5.9),

ΠU (∇µΦ(λk
∗−1, µk

∗
)) = 0.
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Consequently,

‖ΠU (∇µΦ(λk
∗
, µk

∗
))‖2

= ‖ΠU (∇µΦ(λk
∗
, µk

∗
))−ΠU (∇µΦ(λk

∗−1, µk
∗
))‖2

≤ ‖∇µΦ(λk
∗
, µk

∗
)−∇µΦ(λk

∗−1, µk
∗
)‖2

= (1− γ)2‖4c〈λk
∗
− λk

∗−1, r〉r + 2M(λk
∗
− λk

∗−1)‖2

≤ (1− γ)2‖4crr> + 2MI‖22‖λk
∗
− λk

∗−1‖2

= 4(1− γ)2(2c|S||A|+M)2‖λk
∗
− λk

∗−1‖2

≤ 8(1− γ)2(2c|S||A|+M)2
(
‖λk

∗

∗ − λk
∗−1‖2 + ‖λk

∗
− λk

∗

∗ ‖2
)
.

In the above arguments, the fourth row is yielded by directly substituting the formulas of∇µΦ(λk
∗
, µk

∗
)

and ∇µΦ(λk
∗−1, µk

∗
); the sixth row is due to ‖rr>‖2 = ‖r‖2 ≤ |S||A|. Substituting the bounds

provided in Lemma F.2 yields

E
[
‖ΠU (∇µΦ(λk

∗
, µk

∗
))‖2

]
≤ 48ε

M
(1− γ)2(2c|S||A|+M)2. (F.1)

Similarly,

‖ΠΛ(∇λΦ(λk
∗
, µk

∗
))‖2

= ‖ΠΛ(∇λΦ(λk
∗
, µk

∗
))−ΠΛ(∇λΦ(λk

∗

∗ , µ
k∗))‖2

= ‖∇λΦ(λk
∗
, µk

∗
)−∇λΦ(λk

∗

∗ , µ
k∗)‖2

= (1− γ)4‖2c〈λk
∗

∗ − λk
∗
, r〉 · r +M(λk

∗

∗ − λk
∗
)‖2

≤ (1− γ)4‖2crr> +MI‖22‖λk
∗

∗ − λk
∗
‖2

≤ (1− γ)4(2c|S||A|+M)2‖λk
∗

∗ − λk
∗
‖2

≤ 16ε

M
(1− γ)4(2c|S||A|+M)2.

Combine the above inequality with (F.1), we get

E
[
‖ΠΛ(∇λΦ(λ, µ))‖2 + ‖ΠU (∇µΦ(λ, µ))‖2

]
≤ O

(
(1− γ)2

(
c2|S|2|A|2

M
+M

)
ε

)
.

F.1 Proof of Lemma F.1

Proof. First, let us consider the subproblem (5.9) for updating µ. Note that for any fixed λ, we
rewrite the subproblem as follows (constants omitted)

max
µ

2c〈λ̂, r〉〈µ, r〉 − c〈µ,R〉 − M

2
‖µ− λ̂‖2 s.t. µ ≥ 0, ‖µ‖1 = 1.

With a few more reformulation, this is actually a projection problem:

min
µ

∥∥∥∥µ− (λ̂+
2

M
(2〈λ̂, r〉 · r −R)

)∥∥∥∥2

s.t. µ ≥ 0, ‖µ‖1 = 1.

This problem has a closed form solution and can be implemented within O(|S||A| log(|S||A|)) cost,
see (Wang and Carreira-Perpinán, 2013).
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Second, we consider the subproblem (5.10). As a special case of problem (3.1) whose sample
complexity is fully characterized by Theorem 5.3 and Theorem 5.4, all we need to do here is to specify
the constant σ with the following “ρ function”:

ρ(λ) = 〈λ̂, r〉2 − 2〈µ, r〉〈λ̂, r〉+ 〈µ,R〉+
M

2c
‖λ̂− µ‖2,

where λ̂ = (1 − γ)λ. Note that ∇ρ(λ) = (1 − γ) · (2(〈λ̂, r〉 − 〈µ, r〉) · r + M
c (λ̂ − µ)). Then, if we

directly set ∂̂ρ(λ) := ∇ρ(λ), we have

σ = sup
λ∈L
‖∇ρ(λ)‖∞ ≤ (1− γ)(1 +M/c).

Therefore, Theorem 5.3 and Theorem 5.4 tell us that the required sample complexity is

T = Θ

(
|S||A| log(|S||A|)(1 + cσ)2

(1− γ)4ε2

)
= Θ

(
|S||A| log(|S||A|)

(1− γ)4ε2
(
1 + (1− γ)2(c2 +M2)

))
.

Thus we complete the proof.

F.2 Proof of Lemma F.2

Proof. By Lemma F.1, we have

E[Φ(λk+1, µk+1)− Φ(λk+1
∗ , µk+1)] ≥ −ε. (F.2)

By M -strongly concavity of Φ(·, µk), we know

M

2
‖λk+1 − λk+1

∗ ‖2 ≤ E[Φ(λk+1
∗ , µk+1)− Φ(λk+1, µk+1)] ≤ ε.

Dividing both sides by M/2 proves the first inequality of the lemma. Again, by M -strongly concavity
of Φ(·, µk), we also have

Φ(λk+1
∗ , µk+1) ≥ Φ(λk, µk+1) +

M

2
‖λk+1
∗ − λk‖2. (F.3)

Because µk+1 = arg maxµ Φ(λk, µ) s.t. µ ≥ 0, ‖µ‖1 = 1. We know

Φ(λk, µk+1) ≥ Φ(λk, µk). (F.4)

Combining the above three inequalities, we have

E
[
Φ(λk+1, µk+1)− Φ(λk, µk)

]
≥ E

[
Φ(λk+1, µk+1)− Φ(λk, µk+1)

]
= E

[
Φ(λk+1, µk+1)− Φ(λk+1

∗ , µk+1)
]

+ E
[
Φ(λk+1

∗ , µk+1)− Φ(λk, µk+1)
]

≥ M

2
‖λk+1
∗ − λk‖2 − ε,

where the second row is due to (F.4), the last row is due to (F.2) and (F.3). Summing up the above
inequalities over all k and then take the average, then we know

M

2K

K∑
k=1

E
[
‖λk∗ − λk−1‖2

]
≤ maxλ,µ Φ(λ, µ)− Φ(λ0, µ0)

K
+ε ≤ 2ε.

Because k∗ is randomly chosen from {1, ...,K}, we get

E
[
‖λk

∗

∗ − λk
∗−1‖2

]
=

1

K

K∑
k=1

E
[
‖λk∗ − λk−1‖2

]
≤ 4ε

M
.

This proves the second inequality of this lemma.
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