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Utility Maximization for Multihop Wireless

Networks Employing BATS Codes

Yanyan Dong, Sheng Jin, Yanzuo Chen, Shenghao Yang and Hoover H. F. Yin

Abstract

BATS (BATched Sparse) codes are a class of efficient random linear network coding variation that

has been studied for multihop wireless networks mostly in scenarios of a single communication flow.

Towards sophisticated multi-flow network communications, we formulate a network utility maximization

(NUM) problem that jointly optimizes the BATS code parameters of all the flows and network schedul-

ing. The NUM problem adopts a batch-wise packet loss model that can be obtained from the network

local statistics without any constraints on packet loss patterns. Moreover, the NUM problem allows a

different number of recoded packets to be transmitted for different batches in a flow, which is called

adaptive recoding. Due to both the probably nonconcave objective and the BATS code-related variables,

the algorithms developed for the existing flow optimization problems cannot be applied directly to solve

our NUM problem. We introduce a two-step algorithm to solve our NUM problem, where the first step

solves the problem with nonadaptive recoding schemes, and the second step optimizes adaptive recoding

hop-by-hop from upstream to downstream in each flow. We perform various numerical evaluations and

simulations to verify the effectiveness and efficiency of the algorithm.

I. INTRODUCTION

Multihop wireless networks will play a crucial role in the future of Internet of Things, where

the communication from a source node to a destination node may go through multiple inter-
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mediate network nodes connected by wireless communication links. Compared with the wireline

network design based on dedicated and reliable links, a more sophisticated network design is

required for wireless networks due to the open, shared and dynamic wireless communication

media.

A. Background about Network Utility Maximization

Wireline communication links, such as optical fiber and twisted cable, are highly reliable.

Internet was built with wireline communication links in early days and has mechanisms designed

based on the assumption of reliable links. For example, intermediate nodes only perform store-

and-forward, i.e., only correctly received packets are forwarded to the next hop. Store-and-

forward is optimal for communicating through networks formed by the concatenation of multiple

reliable links. The network utility maximization framework originated from the analysis of

Internet design naturally assumes reliable network links [1], [2], where packet flow conservation

is implied by store-and-forward.1 Therefore, many network utility maximization problems for

wireless networks also assume the wireless links to be highly reliable [3], [4].

For wireless communications, however, link reliability cannot be guaranteed without sacrificing

communication rate and latency. The wireless channel status is time-varying and cannot be known

accurately due to interference, multipath fading, mobility, etc. The communication will fail with

a high probability when the rate is higher than the instantaneous channel capacity, a phenomenon

called outage. Most modern wireless communication systems employ an Adaptive Modulation

and Coding (AMC) mechanism to track the channel changes [5], [6]. Existing AMC algorithms

try to maximize the transmission throughput (the transmission rate times the packet success rate)

subject to a packet reliability constraint. In general, if we remove the reliability constraint, AMC

can achieve a higher transmission throughput [7]. If an unlimited number of retransmissions are

allowed for each packet, the wireless link can be reliable with an unbounded link latency. In

practice, the number of retransmissions of a packet must be limited in order to bound the latency.

For networks without the link reliability assumption, the network utility maximization frame-

work which assumes reliable link capacity can only provide a performance upper bound that

cannot be achieved practically (to be further discussed in this paper). When each link has a

1Here packet flow conservation means that for a non-source, non-destination network node, the number of correctly decoded

packets per unit time is the same as the number of outgoing packets per unit time.
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certain packet loss rate and the packet loss events are independent, a NUM problem based on

store-and-forward which is also called the leaky-pipe model has been studied in [8]. In this

model, it was shown that when each link has the same packet loss rate, the receiving rate at the

destination node decreases exponentially as the number of hops increases.

B. Motivation of This Paper

Network coding provides a more general network communication framework than store-and-

forward by allowing an intermediate network node to generate new packets [9]–[11]. It is well-

known that random linear network coding (RLNC) achieves the capacity of multihop wireless

networks with packet loss in a general setting [12]–[14]. Network utility maximization has been

studied for RLNC [15]–[19]. However, the classical RLNC approach is not efficient for practical

multihop wireless networks due to its high computational and storage costs and also its high

coefficient vector overhead. To resolve the above issues, early implementations of RLNC partition

the packets to be transmitted into small disjoint subsets known as batches, generations, chunks,

etc., and then apply RLNC for each batch separately [20], [21]. As the disjoint batches must be

decoded individually, the end-to-end transfer matrix of each batch must be of full rank, which

causes a scheduling issue for the disjoint batches [22], [23].

Compared with disjoint batches, it is more efficient to use batches with overlapped packets

[23]–[26] and coded batches [27]–[30] as the batches can help each other during decoding. These

low complexity RLNC schemes are also collectively called batched network coding. Among the

existing designs of batched network coding, BATS (BATched Sparse) codes have the best overall

performance in terms of computational complexity, throughput and latency [31], [32].

A BATS code consists of an outer code and an inner code. The outer code is a matrix

generalization of a fountain code, which can generate a potentially unlimited number of batches.

Each batch consists of a certain number of coded packets, where this number is called the batch

size. The inner code applies linear network coding, which is also known as recoding, at the

intermediate network nodes. Recoding is applied only to the packets belonging to the same

batch. All the batches in a BATS code can be decoded jointly. It is not required that all the

batch transfer matrices are of full rank as for RLNC with disjoint batches. The achievable rate

of BATS codes can approach the expected rank of the batch transfer matrices, which is also an

upper bound on the achievable rate.
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BATS codes have been extensively studied for multihop wireless networks [33]–[38]. Towards

sophisticated network communication protocols based on BATS codes, network utility maximiza-

tion (NUM) problems for adaptive allocation of network resources, including congestion control

and link scheduling, must be studied for BATS codes. A packet flow generated by BATS codes

has two fundamental differences compared with a packet flow in a network employing store-

and-forward:

1) There is no packet flow conservation at the intermediate network nodes because recoding

generates new packets for the batches.

2) The end-to-end communication performance of a packet flow is not measured by the number

of packets received per unit time.

Due to the different nature of packet flow when using BATS codes, the existing NUM models

for store-and-forward and RLNC cannot be applied directly. A recent work [39] studied the joint

optimization of link scheduling and BATS code recoding in a single communication flow with

independent packet loss. Here we study the NUM problem with multiple flows and with more

general packet loss and recoding models.

C. Our Contributions

We have two main contributions in this paper: the NUM problem formulation and the algo-

rithms for solving the NUM problem.

1) NUM Problem Formulation: We propose a general NUM problem where each commu-

nication flow formed by a path in the network employs a BATS code for reliable end-to-end

communications. Each flow has a batch rate measured by the number of batches transmitted by

the source node per unit time. As no new batch is generated at the intermediate network nodes,

the “batch flow” is conservative.2 The variables of the NUM problem include the batch rate of

each flow, the recoding parameters for each flow at each network node, and the scheduling rate

vector. Our NUM problem jointly optimizes the total utilities of all the flows subject to certain

scheduling constraints. For each flow, the end-to-end performance is measured as the product

of the batch rate and the expected rank of the batch transfer matrix, which is the maximum

achievable throughput of BATS codes.

2Here batch flow conservation means that for a non-source, non-destination network node, the number of incoming batches

per unit time is the same as the number of outgoing batches per unit time.
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Our NUM problem incorporates a general recoding framework called adaptive recoding [40]–

[47], which allows a different number of recoded packets to be transmitted for different batches

in the same flow at a network node. In contrast, the recoding schemes which generate the same

number of recoded packets for all batches are called nonadaptive recoding. It is clearly a waste

of resources in nonadaptive recoding for transmitting some packets for the batches with rank-0

transfer matrices as they certainly contain no information. The recoding scheme studied in [38],

[39] erases the batches with rank-0 transfer matrices and then uses the same number of recoded

packets for all the remaining batches, and hence this scheme is a special case of adaptive

recoding. Existing works have shown that the network throughput can be improved if more

recoded packets are generated for the batches having higher ranks in a single communication

flow [46]–[48]. Our work further evaluates the performance of adaptive recoding in a network

with multiple communication flows.

In the literature about batched network coding, the mostly used packet loss patterns are the

independent packet loss and the Gilbert-Elliott packet loss model [49], [50]. The conference

version of this paper [51] only studied nonadaptive recoding under the independent packet loss

model. In this paper, we propose a batch-wise packet loss model to formulate the NUM problem

so that the formulation is independent of particular packet loss patterns. The batch-wise packet

loss model can be practically obtained using the packet loss statistics at the two ends of a

communication link. We justify the sufficiency of using this model in the problem formulation

with adaptive recoding.

The technical details regarding the problem formulation are organized as follows. We first

give a brief introduction of BATS codes in Section II. Then, we discuss the network model

and adaptive recoding in Section III. After that, we present the details of the NUM problem

formulation in Section IV.

2) Algorithms for Solving the NUM Problem: Many traditional counterparts of our NUM

problem have concave objectives and convex constraints. In contrast, our NUM problem has an

objective function that may not be concave and constraints that may not be convex in general.

Moreover, the adaptive recoding parameters for different nodes and flows give a large number of

variables for the optimization. Due to the complexity of our problem, the algorithms developed

for the existing flow optimization problems can be trapped in local maxima with a poor objective

value according to our experiments.

We propose a two-step algorithm for solving our NUM problem. In the first step, the NUM
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problem is solved with the restriction that recoding is nonadaptive, i.e., the same number of

recoded packets is generated for all batches received by a node in the same flow. With this

restriction, the number of variables of the NUM problem is greatly reduced: the recoding

transition matrix at each node for each flow can be represented by a single value, which is

the number of recoded packets to be generated. In the second step, based on the solution

obtained in the first step, we perform a sequence of hop-by-hop adaptive recoding optimizations

in an upstream-downstream order for each flow separately. Each hop-by-hop adaptive recoding

optimization involves only local batch-wise packet loss statistics and can be solved efficiently

by the algorithms proposed in [41].

For simplicity, the number of recoded packets to be generated is also called the recoding

number. In the first step, optimizing the recoding numbers is a new component of our NUM

problem compared with the traditional ones. Following the dual-based approach for solving

the existing NUM problems, the recoding number optimization can be decomposed for each

flow individually. A special case of the recoding number optimization problem has been studied

in [38] with uniform random linear recoding and independent packet loss. For our batch-wise

packet loss model and a general recoding scheme, the technique in [38] cannot be applied. We

illustrate that alternatively optimizing the recoding numbers of a flow may not achieve a good

performance. We provide a local-search algorithm for optimizing all the recoding numbers of a

flow jointly, which achieves satisfactory results according to our numerical evaluations. See the

details in Section V. In the second step, we reallocate the recoding resources of nonadaptive

recoding to gain the advantage of adaptive recoding. The number of recoded packets for the

batches of low ranks are reduced and the released resources are used either to transmit more

recoded packets for the batches of higher ranks or to increase the batch rate for transmitting

more batches. See the details in Section VI.

We conduct some numerical evaluations to compare the performance of different algorithms

for solving our NUM problem (called (AP)). We also derive a corresponding traditional NUM

problem (called (UP)), whose optimal value is an upper bound on the optimal value of (AP).

For a feasible solution of (AP), we define a term called utility ratio as the geometric average of

the ratios of the feasible throughput of each flow over the one obtained by solving (UP). The

higher the utility ratio is, the closer the utility of the solution is to the upper bound.

We evaluate 11 instances of wireless networks where some links are shared by two commu-

nication flows. For both the independent and the Gilbert-Elliott packet loss models, the two-step
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algorithm achieves a good fairness for all the cases. For independent packet loss, the two-step

algorithm can achieve about 1.7% to 2.75% higher utility ratio compared with nonadaptive

recoding. The relatively small gain of using adaptive recoding for independent packet loss is

expected as the ranks of the batches are highly concentrated. For Gilbert-Elliott packet loss,

the utility ratio for the two-step algorithm is about 6% to 10.5% higher than the corresponding

nonadaptive solution in the first step for eight of the instances.

We build a simulator using ns-3 [52] to observe certain behaviors of the flow optimization

solution in real network packet transmissions. We test both the independent packet loss and

the Gilbert-Elliott packet loss models. To see the robustness of our approach, we solve the

NUM problem with the empirical batch-wise loss model statistics and then substitute the output

parameters into the simulator. We observe that the buffer sizes at all network nodes are stable,

and the throughput is consistent with the one obtained by solving the NUM problem. See details

of the simulations in Section VII.

II. BATS CODE BASICS

In this section, we briefly introduce BATS codes. We refer readers to [32] for a detailed

discussion. Fix a base field of size q and two positive integers K and T . Suppose the data to

be transmitted consists of K input packets. Each packet is regarded as a column vector of T

symbols in the base field. We equate a set of packets to a matrix formed by juxtaposing the

packets in this set. A uniformly random matrix is a matrix having uniform i.i.d. components

over the base field.

A. Encoding and Recoding

The encoder of a BATS code generates the coded packets in the batches. Let M be a positive

integer called the batch size. For i = 1, 2, . . ., the ith batch, denoted by Xi, is generated from

the input packets using the following steps:

1) Sample a degree distribution Ψ = (Ψ1, . . . ,ΨK) which returns a degree di with probability

Ψdi .

2) Uniformly randomly choose di input packets from all the input packets and juxtapose them

into a matrix Bi.

3) Form a di ×M uniformly random matrix Gi called the batch generator matrix.
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4) The ith batch Xi is generated by

Xi = BiGi.

We assume that the destination node knows the batch generator matrices. This can be achieved

by sharing the same seeds and the same pseudorandom number generator at the source node

and the destination node.

Recoding is a linear network coding scheme that is restricted to be applied to the packets

belonging to the same batch. The packets to be transmitted for a batch are the recoded packets

of the batch generated by linear combinations of the received packets of the batch. The number

of recoded packets to be generated and the coefficients of the linear combinations depend on

the recoding scheme. We defer the discussion of the recoding schemes to Section III-C after

introducing the network model.

B. Batch Transfer Matrix

As the recoding operation at each node is linear, the transformation of each batch from the

source node to a network node that receives this batch is a linear operation. Let Hi be the batch

transfer matrix of the ith batch and Yi be the received packets of the ith batch at a network

node. We have

Yi = XiHi = BiGiHi. (1)

There are M rows in Hi, where each row is formed by the coefficients of a coded packet in Xi.

The number of columns of Hi corresponds to the number of packets of the ith batch received

by the network node. If no packet is received for the batch, then both Yi and Hi are empty

matrices.

More details about the batch transfer matrices will be discussed in Section III-C. Here we

introduce how the batch transfer matrices can be known at a network node. Right after a batch

is generated, a coefficient vector is attached to each of the M packets of the batch, where the

coefficient vectors of all the packets of a batch are linearly independent of each other. The

recoding performed on the packets is also performed on the coefficient vectors. One typical

choice is that the juxtaposition of the coefficient vectors forms an M ×M identity matrix. By

this choice, the transfer matrix of a batch can be recovered at each network node that receives

this batch by juxtaposing the coefficient vectors of the received packets of this batch.
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The rank of the batch transfer matrix of a batch is also called the rank of the batch. Let

h = (h(r), r = 0, 1, . . . ,M) be the underlying probability distribution of the ranks of the batch

transfer matrices, which is also called the rank distribution. The empirical rank distribution of

Hi, i = 1, 2, . . . converges almost surely towards h, which is a sufficient statistics for designing

the degree distribution. The upper bound on the achievable rates of a BATS code is

E[h] ,
M∑
i=1

ih(i),

which is also called the expected rank. This upper bound can be achieved using random linear

outer code [53] with Gaussian elimination decoding. A major advantage of BATS codes is that

this upper bound can be achieved by using much more efficient encoding and decoding methods.

C. Decoding

We can use the belief propagation (BP) decoding algorithm to decode a BATS code efficiently.

Suppose that n batches are received at the destination node. Recall that the decoder of a BATS

code knows the batch generator matrices Gi and the batch transfer matrices Hi of all the batches.

In other words, the decoder knows the linear systems of equations in (1) for i = 1, . . . , n. A batch

with the generator matrix G and the batch transfer matrix H is said to be decodable if rank(GH)

is equal to its degree. The BP decoding includes multiple iterations. In the first iteration, all the

decodable batches are decoded by solving the associated linear system of equations in (1), and

the input packets involved in these decodable batches are recovered. In each of the following

iterations, undecoded batches are first updated: for each undecoded batch, all the recovered input

packets involved in the batch are substituted into the associated linear system and the degree of

the batch is reduced accordingly. Then, the batches which become decodable after the update

are decoded, and the input packets involved in these decodable batches are recovered. The BP

decoding stops when there is no more decodable batch.

In the existing theory of BATS codes, a sufficient condition about the degree distribution was

obtained such that the BP decoding can recover a given fraction on the number of input packets

with high probability. A degree distribution that satisfies the sufficient condition can be obtained

for a given rank distribution h by solving a linear programming problem [31]. To have all the

input packets solved by BP decoding, precoding can be applied as in the Raptor codes. This

theory guarantees that BATS codes can achieve a rate very close to E[h] with low computational

complexity.
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When the number of packets for encoding is relatively small, BP decoding tends to stop

before decoding a large fraction of the input packets. Though we can continue decoding by

Gaussian elimination, the computational complexity is high. A better approach is to use inac-

tivation decoding: when BP decoding stops, an undecoded input packet is marked as inactive

and substituted into the batches as a decoded packet to resume the BP decoding procedure.

Inactivation decoding reduces the complexity of Gaussian elimination and improves the success

probability of BP decoding. See [32] for a detailed discussion of inactivation decoding for BATS

codes and the corresponding precoding design.

As a summary of this part, the end-to-end expected rank E[h] provides a precise performance

measure of using BATS codes for network communication.

III. NETWORK COMMUNICATIONS EMPLOYING BATS CODES

In this section, we present the use of BATS codes for reliable end-to-end communications in

a multihop wireless network model similar to the one in [3]. In particular, we will discuss in

detail how to employ adaptive recoding at the network nodes.

A. Network Model

A multihop wireless network is modeled as a directed graph G(V , E), where V and E are sets

of nodes and edges respectively. A communication link in the network that transmits packets

from node u to node v is modeled by an edge (u, v) ∈ E . Therefore, we also refer to an edge

as a link. Each link e = (u, v) is associated with a communication rate ce packets per unit time.

That is, node u can transmit at most ce packets per unit time using the link e.

Due to interference and noise, not all the packets transmitted by node u can be successfully

received by node v. Interference between different links is a characteristic of wireless networks

due to the open wireless communication media. For each link e, we have a set Ie of interfering

links. A collision occurs when a link (u, v) is scheduled to transmit with one or more interfering

links simultaneously. If a collision occurs, node v cannot receive the packets transmitted by node

u. If no collision occurs, i.e., (u, v) is scheduled to transmit without any interfering link in I(u,v)

transmitting simultaneously, then node v may receive the packet transmitted by node u. In the

discussion of this paper, we assume that certain network scheduling mechanism is applied so

that collision is avoided. Without collision, it is also possible that a transmitted packet cannot

be received correctly due to noise and signal fading. The event that node v does not receive
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the packet from u is called packet loss. A general packet loss model will be introduced in

Section III-D.

We define a (link) schedule by s = (se, e ∈ E) where se = 1 indicates that the link e is

scheduled to transmit and se = 0 otherwise. If s has no collision, i.e., se′ = 0 for all e′ ∈ Ie if

se = 1 for any e ∈ E , then the schedule is called feasible. S denotes the collection of all feasible

schedules. For a feasible schedule s ∈ S , define a rate vector s′ = (cese, e ∈ E), where cese is

the maximum communication rate that link e can support when the schedule s is in used. The

rate region is defined by

R := {(cese, e ∈ E) | s ∈ S}. (2)

The convex hull of R is denoted by Co(R), which is the collection of all achievable scheduling

rate vectors.

B. Communication Flows Employing BATS Codes

For a directed edge e = (u, v), we call u the tail of e and v the head of e. We say two

edges (u1, v1) and (u2, v2) are consecutive if v1 = u2. A sequence of distinct links P = (e`, ` =

1, . . . , L) is called a flow (or path) of length L if e` and e`+1 are consecutive for all ` =

1, . . . , L− 1. A communication flow is a flow in the network where the tail of the first edge is

called the source node and the head of the last edge is called the destination node.

The network may have a finite number of communication flows concurrently. Each communi-

cation flow employs a BATS code for reliable end-to-end communication from the source node

to the destination node. Fixed a flow P = (e` = (v`−1, v`), ` = 1, . . . , L) of length L. The source

node v0 uses the encoder of a BATS code to generate a sequence of batches of batch size M .

After that, each network node in the flow performs recoding on the batches. In particular, the

source node v0 performs recoding on the original M packets of a batch, and an intermediate

network node v`, ` = 1, . . . , L− 1, performs recoding on the received packets of a batch.

The recoded packets can be generated using different approaches as discussed in [32], e.g.,

uniformly random linear recoding and systematic random linear recoding. For completeness,

we briefly introduce these approaches here. Let m and r be two nonnegative integers. Suppose

r linearly independent packets are received for a batch at node u and denote by Y the matrix

formed by these received packets. That is, Y has r columns. Suppose node u needs to transmit

m packets for this batch. The transmitted packets are generated by YΦ where Φ is an r ×m
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matrix called the recoding generator matrix. In literature, there are two mainstreams of random

linear recoding.

• Uniformly Random Linear Recoding: All the transmitted packets are generated by random

linear combinations, i.e., Φ is a uniformly random matrix over the base field (or a subfield of

the base field). With a properly chosen m, this method asymptotically achieves the min-cut

from the source node to the destination node when the batch size M is sufficiently large.

• Systematic Random Linear Recoding: This recoding approach transmits the linearly indepen-

dent received packets before generating new packets by random linear combinations. When

m ≤ r, m received packets with linearly independent coefficient vectors are transmitted.

When m > r, the r linearly independent received packets and m− r packets generated by

random linear combinations are transmitted. With certain row and column permutations, Φ

is in the form of
[
Ir U

]
, where Ir is an r×r identity matrix and U is a uniformly random

matrix.

When the base field is sufficiently large, these two approaches have almost the same performance.

Uniformly random linear recoding is easier to analyze in many cases, so we use this recoding

approach without otherwise specified.

C. Adaptive Recoding

We introduce a general adaptive recoding framework [41] for a length-L flow P = (ei =

(vi−1, vi), i = 1, . . . , L). Recall that each node can check the coefficient vector attached to each

packet it has received and hence it knows the rank of the batches it has received. The maximum

rank of a batch is the batch size M . At the source node, each batch generated by the encoder

has a rank M . For adaptive recoding, the number of recoded packets to be transmitted for a

received batch is a random variable that depends on the rank of this batch.

For an integer m ≥ 0, the source node transmits m recoded packets of the batch with proba-

bility pe1(m|M). The recoding at the intermediate network nodes can be formulated inductively.

At an intermediate network node vi, i = 1, . . . , L− 1, for an integer m ≥ 0, the node transmits

m recoded packets for a received batch of rank r with probability pei+1
(m|r). We denote pei as

a stochastic matrix where its (r,m) entry is pei(m|r). Denote by hv = (hv(r), r = 0, 1, . . . ,M)

the rank distribution of a batch received at node v. At the source node v0 of flow P , we have

hv0 = (0, . . . , 0, 1). In practice, hv can be obtained empirically at node v by using the coefficient
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vectors attached to the received packets. In general, hv0 , . . . , hvL form a Markov chain for the

batches transmitted in flow P .

Fix an edge e = (u, v) ∈ P . The expected number of transmitted packets per batch on edge

e is

me :=
∑
r

∑
m

mpe(m|r)hu(r). (3)

When me has an upper bound me, a local optimization problem has been studied in [40], [41]

to maximize the expected rank at node v, which can be written as

max
pe

E[hv]

s.t. me ≤ me,
(4)

where the explicit formula of E[hv] will be discussed later on. We say that pe is almost

deterministic if there exists te = (te(r), r = 0, 1, . . . ,M) such that

pe(m|r) =


te(r)− bte(r)c if m = bte(r)c+ 1,

1− (te(r)− bte(r)c) if m = bte(r)c,

0 otherwise.

It has been shown in [41] that under certain technical concavity condition, there exists an almost

deterministic optimizer for (4). The concavity condition can be satisfied when the packet loss

pattern is a stationary stochastic process [41].

Two special cases of adaptive recoding are also of our interest:

• Before adaptive recoding was proposed, for BATS codes, the same number of recoded

packets is transmitted for all the batches in a flow, i.e., pei(mei|r) = 1 for a certain integer

mei for all r. We refer to this kind of recoding scheme as nonadaptive recoding. Adaptive

recoding can achieve a higher expected rank than nonadaptive recoding under the same

average number of recoded packets constraint [34], [40], [47].

• When the batch size is M = 1, store-and-forward performed in many existing network

communication protocols can be regarded as a special recoding scheme, where pei(0|0) = 1

and pei(1|1) = 1 for i = 1, . . . , L. In other words, each node can only transmit the packets

it has received.

D. Batch-wise Packet Loss Model

We consider a batch-wise packet loss model in this paper: for each edge e = (u, v), when

m packets of a batch are transmitted by node u, node v receives r packets of the batch with
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probability qe(r|m). We suppose the stochastic matrix qe = (qe(r|m)) is fixed for each edge e.

This is an artificial packet loss model that includes independent packet loss as a special case.

For independent packet loss, we have

qe(r|m) =

(
m

r

)
(1− εe)rεm−re , (5)

where εe is the packet loss rate on edge e. Practically, qe(r|m) can be obtained locally at node v

by counting the number of received packets for each batch. The advantage of this model is that

it keeps the analysis of BATS code feasible without knowing the complete packet loss statistics.

Consider a flow P = (ei = (vi−1, vi), i = 1, . . . , L) employing the adaptive recoding scheme

introduced above. The distribution hv for any node v in the flow can be derived analytically for

the batch-wise independent packet loss model. Denote by Pvl the (M + 1)× (M + 1) transition

matrix from hvl−1
to hvl . For example, when applying uniformly random linear recoding to

generate recoded packets, as derived in [32, chap. 4], the (i, j) entry of Pvl is

Pvl [i, j] =


∑

m≥j pel(m|i)
∑m

k=j qel(k|m)ζ i,kj if j ≤ i,

0 otherwise,

where ζ i,kj is the probability that an i× k uniformly random matrix over the base field has rank

j which has closed-form expressions and therefore can easily be computed. Hence, we have

E[hvL ] = hvL(0, 1, ...,M)T where

hvL = hv0Pv1 · · ·Pvl · · ·PvL .

For systematic random linear recoding, we need a further assumption to derive the transition

matrix: All the packets of a batch are transmitted subject to a permutation chosen uniformly at

random. With this assumption, when k packets are received for m transmitted packets, all the

combinations of k packets among the m packets are received with the same probability. Hence

for systematic random linear recoding, a transition matrix can also be derived similarly as [32,

chap. 4] for the batch-wise packet loss model.

More discussions about the batch-wise packet loss model are given in Appendix A. These

discussions provide some theoretical guidances about using this model. For example, we will

give a sufficient condition of the batch-wise packet loss model so that an almost deterministic

optimizer exists for (4), which extends the corresponding result in [41].
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IV. NETWORK UTILITY MAXIMIZATION PROBLEMS

In this section, we formulate a utility optimization problem for multihop wireless networks

with BATS codes and discuss some special cases of the problem.

A. General Problem

Consider a fixed number of communication flows in the network where the ith flow is denoted

by P i. Each flow employs a BATS code independently. The source node of the flow P i generates

batches of batch size M i and transmits αi batches per unit time, where αi is also called the

batch rate. The network nodes in P i employ certain recoding schemes on the batches as we

have described in Section III-B.

For an edge e = (u, v) ∈ P i, we denote by pie(m|r) the probability of transmitting m recoded

packets on link e for a batch of rank r at node u in flow P i. Let hi be the rank distribution of

a batch at the destination node in the ith flow. The throughput of the ith flow is αi E[hi], which

can be achieved as we have discussed in Section II. We want to maximize the total utility of

all flows defined as
∑

i Ui(αi E[hi]) where each Ui is a certain non-decreasing concave utility

function.

The constraints of the above utility maximization involve both the link capacities and link

scheduling. For a batch in flow P i, by (3), the average number of packets transmitted on edge

e = (u, v) is

mi
e =

∑
r

∑
m

mpie(m|r)hiu(r),

where hiu is the rank distribution of a batch at node u in flow P i. In practice, mi
e can be counted

at each network node locally. For each scheduling rate vector s = (se, e ∈ E) ∈ Co(R), the

average number of packets transmitted on edge e per unit time should be no more than se, i.e.,∑
i : e∈Pi αim

i
e ≤ se.

As a summary of the above problem formulation, consider the communication flows (P i)i in

a network with the edge set E and the scheduling rate region R. Each flow P i has the batch

rate αi and recoding parameters in each link (pie, e ∈ P i) as the variables for flow control. The
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variables of all flows are collectively written as (αi, (p
i
e, e ∈ P i))i. The utility maximization

problem stated above can be written as follows:

max
(αi,(pie,e∈Pi))i,s

∑
i

Ui(αi E[hi]),

s.t.
∑
i : e∈Pi

αim
i
e ≤ se, ∀e ∈ E

s = (se, e ∈ E) ∈ Co(R).

(AP)

Henceforth, we refer the above optimization problem as (AP), where AP is the acronym of

Adaptive Problem.

B. Nonadaptive Recoding Problem

Consider nonadaptive recoding with pie(m
i
e|r) = 1 for a certain integer mi

e for all r. The

general adaptive recoding NUM problem (AP) becomes

max
(αi,(mi

e,e∈Pi))i,s

∑
i

Ui(αi E[hi]),

s.t.
∑
i : e∈Pi

αim
i
e ≤ se, ∀e ∈ E

s = (se, e ∈ E) ∈ Co(R).

(NAP)

We refer the above optimization problem as (NAP), where NAP is the abbreviation of NonAdap-

tive Problem.

As a variation, we can let f ie = αim
i
e to linearize the constraints and use bf ie/αic to replace

mi
e in hi to remove the discrete variables. But the expected rank E[hi] is not necessarily concave

nor continuous in terms of f ie and αi. These facts make the nonadaptive recoding NUM problem

(NAP) usually more difficult to solve than the traditional counterparts which we will discuss

later.

For BATS codes, couple special cases of optimization problem (NAP) with only one flow

have been studied in the literature. When there is only one flow P , (NAP) becomes

max
α,(me,e∈P),s

αE[h]

s.t. αme ≤ se, ∀e ∈ P

s = (se, e ∈ P) ∈ Co(R),

(6)

where α is the batch rate of this flow, (me, e ∈ P) are the recoding numbers of each link, and h

is the rank distribution of the batches received at the destination node in P . Note that we omit

the utility function as it is non-decreasing.
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1) Single flow, no collision: The recoding optimizations in [32] focus on the case that links

have the same rate c and no collision occurs so that Co(R) = {(se, e ∈ E) | se ≤ c}. This

rate region is suitable for multi-ratio multi-channel wireless networks [54]. For e ∈ P , suppose

me′ is fixed for all e′ 6= e ∈ P , then E[h] is a non-decreasing function of me for uniformly

random linear recoding (see Appendix B for the justification). The optimization problem (6) is

equivalent to
max

α,(me=m,e∈P),s
αE[h]

s.t. αm = c, ∀e ∈ P ,
(7)

which can be solved by

max
(me=m,e∈P)

cE[h]

m
, (8)

and α∗ = c/m∗ with m∗ being the optimizer of (8). Note that (8) can be solved easily by

exploring a range of integer values of m.

2) Single flow, all collision: The collision model in [38] is that, only one link can transmit

at a time, and the capacity of each link is c. Hence Co(R) = {(se, e ∈ E) |
∑

e se ≤ c}, where

this rate region is suitable for the case that all nodes are very close to each other. With this rate

region, the optimization problem (6) becomes
max

α,(me,e∈P),s
αE[h]

s.t. α
∑
e

me ≤ c, ∀e ∈ P ,

which can be solved by

max
(me,e∈P)

cE[h]∑
eme

, (9)

and α∗ = c∑
em
∗
e

with (m∗e, e ∈ P) being the optimizer of (9).

In [38], [39], when no packet is received for a batch, no packet is transmitted for the batch;

and when a positive number of packets are received, the same number of recoded packets

are generated. This recoding can be regarded as a special adaptive recoding approach. When

independent packet loss is assumed, the probability that no packet is received for a batch is very

low when the batch size is not too small, e.g., 16. Therefore, this modification of the problem has

little effect on the objective and hence has a very similar performance as nonadaptive recoding.

C. Traditional Cases: Store-and-Forward Recoding

When the batch size M i = 1 for all flows, (AP) includes some classical network utility

maximization problems as special cases when applying store-and-forward as discussed in Sec-

tion III-C. Many existing works do not consider packet loss when there is no collision [3],
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[55]. In this case, the destination node of flow P i receives αi packets per unit time and the

optimization problem (AP) becomes

max
(αi)i,s

∑
i

Ui(αi)

s.t.
∑
i : e∈Pi

αi ≤ se, ∀e ∈ E

s = (se, e ∈ E) ∈ Co(R).

(10)

Suppose each link has a certain packet loss rate and the packet losses are independent, the

optimization problem (AP) becomes the one of the leaky-pipe flow model [8]. Consider a flow

of L links of identical rate, where the packet loss rate of each link is ε ∈ (0, 1). In the leaky-pipe

model, the data rate decreases to (1 − ε) fraction hop-by-hop so that the receiving rate is only

(1− ε)L of the rate of the source node, i.e., the end-to-end throughput decreases exponentially

when the number of hops increases.

D. Cut-set Upper Bound

To assist the evaluation of the optimality of solving (AP), we provide an upper bound that

corresponds to the cut-set bound in a multihop network under the condition that each link has a

constant loss rate. Consider a length-L flow P = (e` = (v`−1, v`), ` = 1, . . . , L), where a BATS

code of batch size M is applied. Denote by Y` the random variable of the number of received

packets for a batch at node v`, where ` = 1, . . . , L. Let h be the rank distribution of the batches

received at node vL, we have

E[h] ≤ E(min{M,Y1, . . . , YL})

≤ min{M,E(Y1), . . . ,E(YL)} (11)

which is the cut-set upper bound of the expected rank.

Recall that we assume a certain network scheduling mechanism is applied so that collision is

avoided. Suppose each link e = (u, v) has a loss rate εe. Then 1− εe is the ratio of the expected

receiving rate at v and the transmitting rate at u on the link. Using the notations in (AP), if

e ∈ P i, then (1 − εe)mi
e is the expected number of received packets for a batch at node v in

flow P i. By the upper bound shown in (11), we have

E[hi] ≤ min{M i,mi
e(1− εe), e ∈ P i}

≤ min{mi
e(1− εe), e ∈ P i},
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where hi is the rank distribution of the batches received at the destination node in flow P i.

By letting f ie = αim
i
e(1 − εe) and replacing E[hi] by the above upper bound, the optimization

problem (AP) becomes

max
(f ie,e∈Pi)i,s

∑
i

Ui(min{f ie, e ∈ P i})

s.t.
∑
i : e∈Pi

f ie ≤ se(1− εe), ∀e ∈ E

s = (se, e ∈ E) ∈ Co(R).

(UP)

We refer the above optimization problem as (UP), where UP is the acronym of Upper-bound

Problem.

The optimal value of (UP) is an upper bound on the optimal value of (AP). This upper bound is

also called the cut-set bound of the network communication capacity, and can be achieved when

the batch size is unbounded. This upper bound, however, is not achievable in practical scenarios

where a limited batch size is required for delay and buffer size consideration. Optimization (UP)

is of the form of (10), and hence can be solved by using, e.g., the algorithms introduced in [3],

[55].

V. ALGORITHMS FOR NONADAPTIVE RECODING PROBLEM

In this section, we discuss how to solve the nonadaptive recoding NUM problem (NAP), which

is a special case of the general adaptive recoding NUM problem (AP). This special case keeps

the main features of the general problem and hence is a good starting point for studying the

optimization algorithms. If the recoding parameters mi
e are all fixed, problem (NAP) becomes

a weighted version of the traditional case (UP) and hence can be solved using the existing

algorithms.

The traditional network utility maximization problems of the form (10) can be solved by

primal, dual or primal-dual approaches [55]. As the problem decomposition induced by the

dual approach has the advantage of simplifying the complexity [3], we adopt this approach for

our optimization problem. Our main purpose here is to illustrate how to handle the recoding

parameters mi
e. The guidelines provided here can be applied to the primal and the primal-dual

approaches as well.
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A. Dual-Based Algorithm

Associating a Lagrange multiplier qe for each inequality constraint in (NAP), the Lagrangian

is ∑
i

Ui(αi E[hi])−
∑
e∈E

qe

( ∑
i : e∈Pi

αim
i
e − se

)

=
∑
i

[
Ui(αi E[hi])− αi

∑
e∈Pi

qem
i
e

]
+
∑
e∈E

qese,

where qe is an implicit cost for the link e. The dual problem of (NAP) is to minimize∑
i

max
αi,mi

[
Ui(αi E[hi])− αi

∑
e∈Pi

qem
i
e

]
+ max

s∈Co(R)

∑
e∈E

qese,

where mi = (mi
e, e ∈ P i).

Similar to [3], we have the following solution of the dual problem. We use t = 1, 2, . . . to

denote the tth iteration of the algorithm. Let αi(t), mi
e(t), etc., be the values of the corresponding

variables αi, mi
e, etc., in the tth iteration. The batch rate αi(t) and the recoding number mi

e(t)

are updated by solving

(αi(t),m
i(t)) = arg max

αi,mi

[
Ui(αi E[hi])− αi

∑
e∈Pi

qe(t)m
i
e

]
(12)

for each flow i. The scheduling rate vector is determined by

s(t) = arg max
s∈Co(R)

∑
e∈E

qe(t)se. (13)

The Lagrange multipliers are updated by

qe(t+ 1) =

[
qe(t) + γt

( ∑
i : e∈Pi

αi(t)m
i
e(t)− se(t)

)]+

(14)

where [x]+ = max{0, x} for real x, and γt, t = 1, 2, . . . is a sequence of positive step sizes such

that the subgradient search converges, e.g.,
∑

t γt =∞ and
∑

t γ
2
t <∞.

In the above algorithm, the optimization of the batch rates and recoding numbers for each flow

is decoupled, so that the complexity is linear with the number of flows. Moreover, the scheduling

update in (13) is the same as the one in the traditional problem (see [3, eq. (12)]), so that the

same imperfect scheduling policies discussed in [3] can be applied to simplify the complexity

of finding an optimal scheduling strategy. However, our problem is more complicated than the

traditional ones in the following two aspects.
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First, the subproblem (12) optimizes the recoding numbers along a path jointly. As the integer

recoding numbers get involved in the complicated formula of E[hi], experiments show that it is

not optimal to alternately optimizes one recoding number while fixing the others. The exhaustive

search of the optimal recoding numbers has exponential complexity in terms of the path length.

To reduce the complexity, we limit each recoding number within a small neighboring range in

each iteration to find a local optimum. We will elaborate how to solve (12) in Section V-B.

Second, as the primal (NAP) is nonconcave, the optimizer of the dual problem may not be

feasible for the primal one. Therefore, after obtaining a dual solution {(α̃i, (m̃i
e, e ∈ P i))i} by

multiple rounds of updates using (12)-(14), we find a feasible primal solution by solving

max
(αi)i,s

∑
i

Ui(αi E[hi])

s.t.
∑
i : e∈Pi

αim̃
i
e ≤ se, ∀e ∈ E

s = (se, e ∈ E) ∈ Co(R),

(15)

with fixed recoding numbers m̃i
e of the dual solution so that E[hi] is also fixed. The optimization

problem (15) is of the form of (10), and hence can be solved by using, say, the algorithms

introduced in [3], [55].

B. The Updates in Each Flow

In this subsection, we discuss how to update the batch rate and recoding number in (12), i.e.,

the way to solve

max
mi

max
αi

[
Ui(αi E[hi])− αi

∑
e∈Pi

qem
i
e

]
,

where qe ≥ 0. Assume
∑

e∈Pi qe > 0 since otherwise the problem is trivial. As Ui is concave,

the inner maximization problem has a unique optimal solution α∗i for any given mi. Therefore,

the essential problem here is to solve

max
mi

[
Ui(α

∗
i E[hi])− α∗i

∑
e∈Pi

qem
i
e

]
. (16)

When the utility function is the natural logarithm function, we have α∗i = 1∑
e∈Pi qemi

e
. Hence,

the mi solving

max
mi

E[hi]∑
e∈Pi qemi

e

(17)

can also solve (16).
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The optimization problem (17) has been studied in [38] for the case with independent packet

loss and uniformly random linear recoding. For this special case, the method in [38] is to relax

mi
e to be real numbers and then solve the relaxed problem using certain existing continuous

optimization solver to obtain the optimizer (m̃i
e, e ∈ P i). After that, an exhaustive search is

performed in the set {(me, e ∈ P i) | me ∈ N, bm̃i
ec ≤ me ≤ dm̃i

ee} for the final solution, where

N is the set of natural numbers.

The approach in [38] discussed above depends on the special property of independent packet

loss and hence cannot be extended for a general packet loss model. Here, we propose a local

search algorithm for solving (16) and (17) with a general batch-wise packet loss model. For a

vector v = (ve, e ∈ P i), define

N (v) = {(me, e ∈ P i) | me ∈ N, ve − 1 ≤ me ≤ ve + 1}.

The algorithm starts with an initial vector m(0) = (me(0), e ∈ P i) where me(0) ≥ 0. In the

tth iteration, t = 1, 2, . . . , the local search algorithm performs an exhaustive search in the set

N (m(t − 1)) to find m(t) that maximizes (16) (or (17) for natural logarithm utilities). The

algorithm stops when m(t) = m(t − 1), which indicates that m(t) is a local optimal solution

in N (m(t)). For an edge e such that qe > 0, as E[hi] is upper bounded by the batch size, the

optimal mi
e is also bounded. When qe = 0, the objective function of (16) is non-decreasing in

mi
e, and hence the above terminating condition may not be satisfied for any finite t. We add an

additional terminating condition that the algorithm stops when the improvement of the objective

in an iteration is smaller than a certain threshold. As the objective is upper bounded and is

increasing in each iteration, the additional terminating condition can guarantee the termination

of the algorithm.

Note that both our approach and the algorithm in [38] have an exponential complexity in

terms of the flow length. A seemingly intuitive way to solve (16) with a low computational cost

is to alternately optimize the recoding number of every single link while fixing the others until

no link can be updated to bring improvement. Here, we give an example to illustrate that this

intuition may have a poor performance. Consider a two-hop flow where both links have capacity

1 and loss rate 0.2. Assume the packet losses are independent and we use natural logarithm as

the utility. The objective of (17) is a function of the recoding numbers m1 and m2 (where the

superscript is dropped for conciseness). We plot the objective function in Fig. 1. Suppose we

start with m1 = 5 and optimize m2. From the figure, we can see that the best value of m2 is 5.
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Fig. 1. Illustration of the objective of (17). For each m1 = 4, . . . , 8, we plot the objective values for m2 = 3, . . . , 10.

Now we fix m2 = 5 and optimize m1. Then, we get m1 = 5, which implies that the algorithm

stops when (m1,m2) = (5, 5). However, our local search algorithm can find (m1,m2) = (6, 6)

in N ((5, 5)) which is a better solution.

C. Numerical Results

To evaluate the performance of the dual-based algorithm for (NAP), we solve the problem for

several instances. We use a network with node set V = {v0, . . . , v8} and edge set E = {ei =

(vi−1, vi), i = 1, . . . , 8}. Let εi be the packet loss rate of ei and ci be the communication rate of

ei. We test 11 cases of different settings as listed in Table I, where without otherwise specified,

εi = 0.2 and ci = 1. We use the two-hop interference model [56]. Here we assume the packet

losses are independent and the packet loss model qe can be calculated by (5). For BATS codes,

we use batch size M = 16 and base field size q = 256 for all the flows.

Although we can use general utility functions in our algorithm, we use the natural logarithm

(log) in our numerical evaluations. Logarithm utility functions imply the proportional fairness

criterion [57] which have been used in the analysis of TCP [58]. See more about the choices of

utility functions in [58], [59].

The numerical results of solving these 11 cases are given in Table II and III. Table II includes

the recoding numbers and batch rates obtained using the dual-based algorithm for solving (NAP).

In Table III, U1 = log(α1 E[h1]) and U2 = log(α2 E[h2]) are the utilities of the two flows obtained
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TABLE I

NETWORK AND FLOW SETTINGS. IN THE “FLOWS” COLUMN, [11111000; 00111111] MEANS THAT THE FIRST FLOW

CONTAINS THE LINKS e1 TO e5 AND THE SECOND FLOW CONTAINS THE LINKS e3 TO e8 . IN THE “LOSS RATE” AND

“COMMUN. RATE” COLUMNS, WITHOUT OTHERWISE SPECIFIED, εi = 0.2 AND ci = 1. HERE ε3,4,5 = 0.1 MEANS

ε3 = ε4 = ε5 = 0.1, AND c3,4,5 = 2 MEANS c3 = c4 = c5 = 2.

case flows loss rate commun. rate

1 [11111000; 00111111] / /

2 same as case 1 / c3,4,5 = 2

3 same as case 1 / c1,2,6,7,8 = 1/2

4 same as case 1 / c1,2,6,7,8 = 1/4

5 same as case 1 ε3,4,5 = 0.1 /

6 same as case 1 ε3,7 = 0.1 /

7 same as case 1 ε1,2,6,7,8 = 0.1 /

8 same as case 1 ε1,2,6,7,8 = 0.4 /

9 [11111111; 11111111] / /

10 [11111111; 00111111] / /

11 [11111111; 00111100] / /

using the dual-based algorithm for solving (NAP), and Ũ is the optimal value of (UP), which

provides an upper bound of U , U1 + U2. We see that the utilities of the two flows are very

close to each other, which means that the flow control induced by the algorithm is fair.

Denote by Ũ1 and Ũ2 the optimal utilities of the two flows of (UP) respectively. Then, Ũ =

Ũ1 + Ũ2 is the optimal value of (UP). To compare the achievable utilities of (NAP) and (UP),

we define the utility ratio

κ =

√
eU1

eŨ1

eU2

eŨ2
= e(U−Ũ)/2. (18)

In other words, κ is the geometric average of the throughput ratios of all flows.3 As another

interpretation of κ, we scale αi by 1/κ and then evaluate the total utility:

log(α1h1/κ) + log(α2h2/κ) = −2 log(κ) + U = Ũ .

From this point of view, κ is the rate scaling factor so that the solution can achieve the cut-set

bound. We know that κ ≤ 1 as U ≤ Ũ . In the last column of Table III, we show κ for all the

cases and observe that κ is at least 83.86% for our evaluated cases.

3For a network of k flows, we can extend the definition as κ = e(U−Ũ)/k.
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TABLE II

RECODING NUMBERS FOR RANDOM LINEAR RECODING OBTAINED BY THE DUAL-BASED ALGORITHM

case α1 × 102 α2 × 102 m1 m2

1 0.877 0.877 [32, 31, 19, 19, 19] [19, 19, 19, 29, 33, 31]

2 1.645 1.606 [21, 20, 20, 21, 21] [20, 20, 21, 20, 21, 21]

3 0.819 0.794 [20, 20, 20, 21, 21] [20, 21, 21, 20, 21, 22]

4 0.525 0.417 [19, 19, 21, 25, 24] [22, 26, 24, 20, 20, 20]

5 0.980 0.980 [30, 28, 17, 17, 17] [17, 17, 17, 32, 30, 28]

6 0.909 0.909 [32, 28, 17, 19, 19] [17, 19, 19, 30, 27, 28]

7 0.877 0.877 [28, 25, 19, 19, 19] [19, 19, 19, 26, 32, 24]

8 0.877 0.877 [36, 35, 19, 19, 19] [19, 19, 19, 36, 36, 36]

9 0.769 0.769 [22, 22, 21, 22, 22, 21, 22, 22] [22, 22, 21, 22, 22, 21, 22, 22]

10 0.794 0.794 [30, 26, 21, 21, 21, 21, 21, 21] [21, 21, 21, 21, 21, 21]

11 0.862 0.862 [27, 31, 20, 19, 19, 20, 27, 31] [20, 19, 19, 20]

TABLE III

COMPARISON TABLE FOR RANDOM LINEAR RECODING

case U1 U2 Ũ κ

1 −2.119 −2.119 −4.030 90.12%

2 −1.452 −1.495 −2.644 85.94%

3 −2.159 −2.186 −4.030 85.43%

4 −2.610 −2.821 −5.215 89.76%

5 −1.969 −1.969 −3.794 93.05%

6 −2.071 −2.071 −3.954 91.03%

7 −2.119 −2.119 −4.030 90.12%

8 −2.120 −2.120 −4.030 90.03%

9 −2.191 −2.191 −4.030 83.86%

10 −2.172 −2.172 −4.030 85.47%

11 −2.137 −2.137 −4.030 88.51%

VI. ALGORITHMS FOR GENERAL ADAPTIVE RECODING PROBLEM

In this section, we discuss the algorithms for solving the general adaptive recoding prob-

lem (AP). Following the discussion in the last section, one may consider extending the dual-based

algorithm by replacing mi
e with pie so that (12) becomes the optimizer of

max
αi,(pie,e∈Pi)

[
Ui(αi E[hi])− αi

∑
e∈Pi

qe(t)m
i
e

]
. (19)
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As pie are continuous variables, the approach in Section V-B cannot be directly extended to

update pie in (19). We may try to solve (19) by gradient search, which is similar to the primal-

dual algorithm for classical NUM problems without network coding [55]. However, due to the

nonconcavity of the problem, our experiments show that it is hard to escape a local optimum with

a poor objective value. We leave the formulations of the primal-dual algorithm in Appendix C.

In the following, we discuss a two-step approach for solving (AP) with adaptive recoding.

A. Two-step Approach

We solve (AP) in two steps. In the first step, we solve the nonadaptive recoding version

(NAP) of (AP) using the dual-based algorithm discussed in Section V. Denote by ((αi, (m
i
e, e ∈

P i))i, s) the optimizer of (NAP). In the second step, we reallocate the recoding resources to

gain the advantage of adaptive recoding. In the nonadaptive recoding optimization, all batches

from flow P i have the same mi
e recoded packets transmitted on edge e. With adaptive recoding,

the number of recoded packets for the batches of relatively lower ranks can be reduced so that

some bandwidth along the path of the flow is released. We consider two strategies to reallocate

the released bandwidth:

i) Transmit more recoded packets for the batches of relatively higher ranks; or

ii) Transmit more batches, i.e., transmit in a higher batch rate.

To manage the computational cost, we reallocate the recoding resources of each flow P i

separately. Suppose P i = {ei` = (vi`−1, v
i
`), ` = 1, . . . , Li}. For each ` = 1, . . . , Li, we write pi

ei`

as pi` to simplify the notation. Let ηi ≥ 1 be the variable for scaling the batch rate αi. With the

scaled batch rate ηiαi, we can find a feasible solution (pie, i ∈ P i) of (AP) by solving

max
pi`

E
[
hi`
]

s.t. mi
ei`
≤ mi

ei`
/ηi,

(20)

where hi` is the rank distribution of the batches received at node vi` in flow P i, and mi
ei`

=∑
m,rmp

i
`(m|r)hi`−1(r). In the objective function, hi` can be obtained from hi`−1 using the

transition matrix studied in Section III-D.

Suppose hi0 = (0, . . . , 0, 1), i.e., all the batches at the source node have the maximum rank.

For a given ηi, the optimization problem (20) with ` = 1 can be solved by using the algorithm

proposed in [41]. Hence, we obtain hi1. Similarly, we can solve (20) for ` = 2, . . . , Li sequentially.

Let Ri(ηi) be the optimal value of (20) for ` = Li. We can then tune ηi to maximize ηiαiRi(ηi)

for ηi ≥ 1.
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TABLE IV

PERFORMANCE EVALUATIONS OF ADAPTIVE RECODING USING THE TWO-STEP ALGORITHM WITH INDEPENDENT PACKET

LOSS.

two-step algorithm

case U1 U2 κ

1 −2.095 −2.095 92.33%

2 −1.426 −1.467 88.30%

3 −2.119 −2.160 88.28%

4 −2.587 −2.794 92.04%

5 −1.951 −1.951 94.71%

6 −2.054 −2.054 92.57%

7 −2.095 −2.095 92.33%

8 −2.095 −2.095 92.28%

9 −2.165 −2.165 86.06%

10 −2.146 −2.145 87.77%

11 −2.111 −2.111 90.83%

Note that the solution of pi` obtained in the above process is almost deterministic if the packet

loss pattern is a stationary stochastic process [41]. For online implementation, the optimization

problem (20) can be solved at node vi`−1, which is the network node that needs pi` for recoding.

The distribution hi`−1 can be calculated at node vi`−1 by counting the numbers of batches of

different ranks in flow P i. Therefore, (20) can be solved locally in an upstream-downstream

order.

B. Numerical Results

In this section, we evaluate the optimization algorithms for solving the adaptive recoding

problem (AP) with natural logarithms as the utilities. We consider the same network and flow

settings and also the same BATS code parameters as in Section V-C.

1) Independent Packet Loss Model: We first consider the case that packet losses are indepen-

dent. For each case listed in Table I, we solve (AP) by using the two-step algorithm. The utilities

of the two-step algorithm are given in Table IV. We also give the values of κ for comparison.

From Table IV, we can see that U1 and U2 are all very close to each other in each case,

which implies the fairness of the flow control. In each case, we observe that U1, U2 and κ given

by the two-step algorithm are better than those given by the nonadaptive recoding algorithm
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shown in Table III. In terms of κ, the two-step algorithm is about 1.7% to 2.75% better than

the nonadaptive recoding algorithm. The relatively small gain of using adaptive recoding for

independent packet loss is expected as the ranks of the batches are highly concentrated.

TABLE V

PERFORMANCE EVALUATION FOR GILBERT-ELLIOTT PACKET LOSS MODEL

nonadaptive recoding adaptive recoding: two-step approach

case U1 U2 κ U1 U2 κ

1 −2.290 −2.289 76.01% −2.233 −2.231 80.50%

2 −1.718 −1.754 66.10% −1.627 −1.681 71.74%

3 −2.408 −2.448 66.16% −2.313 −2.373 72.03%

4 −2.795 −3.059 72.66% −2.715 −2.967 79.17%

5 −2.046 −2.044 86.23% −2.001 −2.003 90.02%

6 −2.221 −2.223 78.30% −2.190 −2.190 80.84%

7 −2.282 −2.283 76.55% −2.231 −2.231 80.60%

8 −2.356 −2.369 70.63% −2.252 −2.274 78.07%

9 −2.470 −2.470 63.43% −2.411 −2.411 67.31%

10 −2.436 −2.435 65.65% −2.364 −2.364 70.52%

11 −2.356 −2.346 71.48% −2.264 −2.265 77.92%

2) Gilbert-Elliott Packet Loss Model: The Gilbert-Elliott (GE) model [49], [50] has been

widely applied to describe burst error patterns in communication channels. Here, we describe a

GE model for packet loss on a network link. A GE model has two states G (good) and B (bad).

In state G (resp. B), a packet transmitted on this link can be correctly received with probability

sG (resp. sB). The state transition probability from state G to state B is pG→B and the one from

state B to state G is pB→G. We use GE(sG, sB, pG→B, pB→G) to denote the GE model with

parameters sG, sB, pG→B, pB→G. Let (πG, πB) be the steady state of the GE model. We have

πG =
pB→G

pG→B + pB→G
, πB =

pG→B
pG→B + pB→G

.

The (average) loss rate of the GE model is 1− πGsG − πBsB.

For each link in the network settings shown in Table I, we use a GE model with the corre-

sponding loss rate. GE(1, 0.8, 10−3, 10−3), GE(1, 0.6, 10−3, 10−3) and GE(0.8, 0.4, 10−3, 10−3)

are used for loss rates 0.1, 0.2 and 0.4, respectively. Our NUM problems need the batch-wise

packet loss model qe(r|m) for each link e. For each m = 1, . . . , 100, we use the empirical



29

distribution of the number of received packets when transmitting m packets as qe(·|m). The

number of samples is 10000.

With this preparation, the NUM problem (AP) associated with each network setting with the

GE model is ready to be solved by the two-step algorithm. In Table V, we give the utilities of

both flows in the first and the second steps, and we observe that our algorithm can achieve the

fairness as well. Note that the corresponding problem (UP) of (AP) is the same as the one with

the independent loss model, and hence the cut-set upper bound on the total utility is the same.

For each case, the values of κ for both steps are given in Table V. These values are about 6% to

10.5% higher than the corresponding nonadaptive solution in the first step for eight of the cases.

Comparing with the results about independent packet loss, we observe that adaptive recoding

with GE packet loss models has a larger gain than that with independent packet loss models.

VII. SIMULATION RESULTS

In the last section, we only solve the optimization problems numerically. To observe how the

results of these algorithms work in real network communications, we use ns-3 [52] to implement

a simulator with BATS codes, which supports both the independent packet loss model and the

GE packet loss model. For a rate vector s ∈ Co(R), we can obtain the corresponding scheduling

so that the simulator can operate the network without collision [3].

Our process of using the simulator is as follows.

• We first configure the simulator using the setting of case 1 in Table I, and set up either the

independent packet loss model or the GE packet loss model. The batch-wise packet loss

model qe(·|m) is obtained as the empirical distribution of the number of received packets

when transmitting m packets, for each m = 1, . . . , 100. The number of samples for each

m is 10000.

• We then solve the corresponding NUM problem (AP) using the two-step algorithm, which

returns the coding parameters (αi, (m
i
e, e ∈ P i)) for each flow P i and the scheduling rate

vector s ∈ Co(R).

• At last, we substitute these parameters into the simulator and perform the simulation.

During the simulation, we keep track on the buffer size, defined as the number of recoded

packets of all the flows which are generated but not yet transmitted, at each network node

v0, v1, . . . , v7. We also record the empirical rank distribution at the destination node of each

flow.



30

0 1000 2000 3000 4000 5000 60000

20

40

60

80

100

120
To

ta
l B

uf
fe

r 
Si

ze
Node v0

0 1000 2000 3000 4000 5000 60000

20

40

60

80

100

120 Node v1

0 1000 2000 3000 4000 5000 60000

20

40

60

80

100

120 Node v2

0 1000 2000 3000 4000 5000 60000

20

40

60

80

100

120 Node v3

0 1000 2000 3000 4000 5000 6000
Time

0

20

40

60

80

100

120

To
ta

l B
uf

fe
r 

Si
ze

Node v4

0 1000 2000 3000 4000 5000 6000
Time

0

20

40

60

80

100

120 Node v5

0 1000 2000 3000 4000 5000 6000
Time

0

20

40

60

80

100

120 Node v6

0 1000 2000 3000 4000 5000 6000
Time

0

20

40

60

80

100

120 Node v7

Fig. 2. The buffer size at each node for the independent packet loss model.

When all links have independent packet loss, the utilities of the two flows obtained in the

simulation are −2.094 and −2.104 respectively, which are very close to the utilities obtained by

solving (AP) using the two-step algorithm (see Table IV). The buffer sizes are counted at each

timeslot of the simulation. Fig. 2 shows the instantaneous buffer sizes at v0, v1, . . . , v7 at each

timeslot. We can see that the buffer sizes do not grow indefinitely at all the nodes. At the source

node of each flow, batches are generated according to the given batch rate. Hence the buffer size

jumps between 0 and the recoding number periodically (as illustrated by the figure for v0). The

dynamics of the buffer sizes at the other nodes can be classified into two classes. The first class

includes nodes v1, v2, v5, v6, v7, where the buffer sizes are within 20 and 40 most of the time.

The second class includes nodes v3 and v4, where the buffer sizes may change dramatically over

time. If we substitute the solution obtained by the two-step algorithm back into (AP) and check

the inequality constraints, we can observe that the inequality constraints for the outgoing links

of v2, v3, v4 are saturated, while those for the going links of v1, v5, v6, v7 are not. Node v2 is the

source node of P2 and an intermediate node of P1. At node v2, the recoded packets periodically

generated for P2 increase its buffer size, thus giving the curve for v2 a relatively more regular

shape than those of v3 and v4.

When all links have GE packet loss, we use the same model setting as in Section VI-B2

for case 1. The utilities of the two flows obtained in the simulation are −2.307 and −2.288

respectively, which are again very close to the values obtained by solving (AP) using the two-

step algorithm (see Table V). From Fig. 3, we observe that the buffer sizes at v0, . . . , v7 during

the simulation do not grow indefinitely. Except at v0, the buffer sizes at all the other nodes

change more dramatically than the independent loss simulation. Nodes v1, v6, v7 have buffer
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Fig. 3. The buffer size at each node for the GE packet loss loss model.

sizes smaller than 50, and nodes v2, v5 have buffer sizes smaller than 100 most of the time. The

buffer sizes at nodes v3, v4 can be close to 800 and 400, respectively. If we substitute the solution

obtained by the two-step algorithm back into (AP) and check the inequality constraints, we can

observe that the inequality constraints for the outgoing links of v2, v3, v4 are saturated, the one

for the outgoing link of v5 is almost saturated, and those for the outgoing links of v1, v6, v7 are

not saturated.

VIII. CONCLUDING REMARKS

We introduced a network utility maximization (NUM) problem for a multi-flow network

employing BATS codes with adaptive recoding, where a batch-wise packet loss model is used to

capture the packet loss events on the network links. We proposed some preliminary algorithms

for solving the problem and illustrated how to evaluate and compare the performance of the

algorithms. Although we only discussed the NUM problem for BATS codes, our discussion

can be applied to other batched network codes where adaptive recoding can be adopted and

the performance of the outer code can be measured by the expected rank of the batch transfer

matrices.

The algorithms provided in this paper are for solving the NUM problem with all the required

network statistics known in a centralized manner. In the scenarios where the network topology,

flow settings and link statistics are stable for a long period, it is possible to solve the NUM

problem in a centralized manner and then deploy the solution to all the network nodes. When

some of the parameters which would affect the solution of the NUM problem changes, instead
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of solving the NUM problem again, a better way is to update the existing solution to approach

the new optimal value of the NUM problem. This is also called a dynamic control algorithm.

Dynamic control algorithms are an important future research direction. The centralized solution

of solving the NUM problem provides an upper bound on the performance of the dynamic

algorithms. We hope the dynamic control algorithm has an equilibrium that is close to the optimal

value of the NUM problem. Moreover, as we have seen from the literature, the algorithm for

solving the NUM problem may provide guidances about the design of the control algorithm.

In another direction of future research, variations of our NUM problem can be studied by

considering more communication features. In the existing research, multi-path communications,

multicast communications, power control, routing, multi-radio, multi-channel and so on can all be

incorporated in the NUM framework. Some of the combinations of the communication features

are also valid and valuable for using BATS codes as well.
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APPENDIX A

DISCUSSION OF BATCH-WISE PACKET LOSS MODEL

Consider an edge e = (u, v) and a batch of rank r. Suppose t packets of the batch are

transmitted by node u on edge e using a certain linear recoding approach, where the order of

these t packets for transmission is uniformly at random decided as among all the permutations of

t elements. Let Ẽr(k) be the expected rank of the batch at node v when k packets are received.

Lemma 1. Ẽr(k) is a non-decreasing, concave function of k.

Proof: Let Φ be the r × t recoding matrix for generating the t recoded packets. Fix k =

0, 1, . . . , t − 1. Let B be an r × (k + 1) submatrix of Φ formed by k + 1 columns chosen

uniformly at random. Let B′ be the first k columns of B and b be the last column of B. Then

Ẽr(k) = E[rank(B′)] and Ẽr(k + 1) = E[rank(B)]. Denote by col(A) the column space of a

matrix A. We have

Ẽr(k + 1))− Ẽr(k) = E(rank([B′ b]))− E(rank(B′))

= E(rank([B′ b])− rank(B′))

= Pr{b /∈ col(B′)}

≥ 0,

i.e., Ẽr(k) is non-decreasing.

Fix k = 0, 1, . . . , t−2. Let A be an r×(k+2) submatrix of Φ formed by k+2 columns chosen

uniformly at random. Let A′ be the first k columns of A, a be the second last column of A and b be

the last column of A. Then Ẽr(k) = E[rank(A′)], Ẽr(k+1) = E[rank([A′ a])] = E[rank([A′ b])],

and Ẽr(k + 2) = E[rank([A′ a b])]. Then,

(Ẽr(k + 2)− Ẽr(k + 1))− (Ẽr(k + 1)− Ẽr(k))

= (E(rank([A′ a b]))− E(rank([A′ b]))− (E(rank([A′ a]))− E(rank(A′))

= E(rank([A′ a b])− rank([A′ b]))− E(rank([A′ a])− rank(A′))

= Pr{a /∈ col([A′ b])} − Pr{a /∈ col(A′)}

≤ 0,

i.e., Ẽr(k) is concave.
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For the batch-wise packet loss mode qe, let

Er(t) =
t∑
i=0

qe(i|t)Ẽr(i),

i.e., Er(t) be the expected rank of this batch at the next network node v. When Er(t) is a non-

decreasing, concave function with respect to t, an algorithm in [41] for solving (4) can guarantee

to converge to the optimal solution, and the solution is almost deterministic. In [41], it has been

argued that when the packet loss pattern is a stationary process, Er(t) is a non-decreasing,

concave function of t and hence the solution of (4) is almost deterministic. Here we show a

more general condition on the batch-wise packet loss model so that Er(t) is a non-decreasing,

concave function of t. Let

F (i|t) =
∑
j≥i

qe(j|t). (21)

Theorem 1. If there exist Ai,t ≥ 0 and Bi,t ≥ 0 such that Bt+1,t = 0, A0,t = 0 and for

i = 0, 1, . . . , t+ 1,

F (i+ 1|t+ 2)− F (i+ 1|t+ 1) = Ai,t +Bi,t, (22)

and for i = 1, . . . , t+ 1,

F (i|t+ 1)− F (i|t) = Ai,t +Bi−1,t, (23)

then Er(t) is a non-decreasing, concave function of t.

Proof: Let Ẽ ′r(i) = Ẽr(i+ 1)− Ẽr(i). We can write

Er(t) =
t∑
i=1

F (i|t)Ẽ ′r(i− 1).

Hence,

Er(t+ 2)− Er(t+ 1) =
t+2∑
i=1

[F (i|t+ 2)− F (i|t+ 1)]Ẽ ′r(i− 1)

=
t+1∑
i=0

[F (i+ 1|t+ 2)− F (i+ 1|t+ 1)]Ẽ ′r(i)

=
t+1∑
i=1

Ai,tẼ
′
r(i) +

t∑
i=0

Bi,tẼ
′
r(i) (24)

=
t∑
i=0

Ai+1,tẼ
′
r(i+ 1) +

t∑
i=0

Bi,tẼ
′
r(i)
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≤
t∑
i=0

Ai+1,tẼ
′
r(i) +

t∑
i=0

Bi,tẼ
′
r(i) (25)

=
t∑
i=0

[Ai+1,t +Bi,t]Ẽ
′
r(i)

=
t+1∑
i=1

[Ai,t +Bi−1,t]Ẽ
′
r(i− 1)

=
t+1∑
i=1

[F (i|t+ 1)− F (i|t)]Ẽ ′r(i− 1) (26)

= Er(t+ 1)− Er(t).

where (24) follows from (22), (25) is obtained due to Ẽr(i) is concave of i, and (26) follows

from (23). By (24), we see Er(t) is non-decreasing as Ẽ ′r(i) ≥ 0.

Let {Zi} be the stochastic process which characterizes the packets loss pattern of the edge e,

i.e., Zi = 1 if the packet is received and Zi = 0, otherwise. We have (22) and (23) hold when

{Zi} is stationary, which can be verified in the following:

F (i+ 1|t+ 2)− F (i+ 1|t+ 1) = Pr{Z1 + · · ·+ Zt+2 ≥ i+ 1} − Pr{Z1 + · · ·+ Zt+1 ≥ i+ 1}

= Pr{Z1 + · · ·+ Zt+1 = i, Zt+2 = 1}

= Pr{Z1 = 1, Z2 + · · ·+ Zt+1 = i− 1, Zt+2 = 1}+

Pr{Z1 = 0, Z2 + · · ·+ Zt+1 = i, Zt+2 = 1}

= Ai,t +Bi,t,

and

F (i|t+ 1)− F (i|t) = Pr{Z1 + · · ·+ Zt+1 ≥ i} − Pr{Z1 + · · ·+ Zt ≥ i}

= Pr{Z1 + · · ·+ Zt = i− 1, Zt+1 = 1}

= Pr{Z2 + · · ·+ Zt+1 = i− 1, Zt+2 = 1}

= Pr{Z1 = 1, Z2 + · · ·+ Zt+1 = i− 1, Zt+2 = 1}+

Pr{Z1 = 0, Z2 + · · ·+ Zt+1 = i− 1, Zt+2 = 1}

= Ai,t +Bi−1,t,
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where

Ai,t = Pr{Z1 = 1, Z2 + · · ·+ Zt+1 = i− 1, Zt+2 = 1}, (27)

Bi,t = Pr{Z1 = 0, Z2 + · · ·+ Zt+1 = i, Zt+2 = 1}. (28)

APPENDIX B

PROPERTIES OF EXPECTED RANK FUNCTION

Consider a length-L line network with node set V = {v0, . . . , vL} and edge set E = {e` =

(v`−1, v`), ` = 1, . . . , L}. Suppose a batch is transmitted in this line network, for ` = 1, . . . , L,

the recoding generator matrix of the node v`−1 is Φ` and E` is a diagonal matrix, in which the

diagonal elements represent the packet loss pattern of the transmitted packets in link e`. Then

the rank of this batch at the destination node is equal to rank(Φ1E1 · · ·Φ`E` · · ·ΦLEL). Suppose

the recoding number at each link is {me`}, ` = 1, . . . , L. Let h̄(me`) be the expected rank of

the batch at the destination node when the recoding number in v`−1 is me` and the recoding

numbers in other nodes are fixed to be mej for j 6= `.

In the following lemma and theorem, uniformly random coding is employed in the recoding

scheme of each node, which implies {Φ`}L`=1 are all uniformly random matrices. We use F (i|t)

as defined in (21).

Theorem 2. If for any t ≥ 0 and i = 0, 1, . . . , t+ 1,

F (i+ 1|t+ 2)− F (i+ 1|t+ 1) ≥ 0,

h̄(me`) is a non-decreasing function of me` when uniformly random coding is employed in the

recoding scheme of each node.

Proof: Let ẼL
r (k) be the expected rank of the batch at the destination node vL when the

rank of the batch equals r at node v`−1 and k packets are received at node v`. For the batch-wise

packet loss mode qe, let

EL
r (me`) =

me∑̀
k=0

qe(k|me`)Ẽ
L
r (k),

i.e., EL
r (me`) be the expected rank of this batch at the destination node vL when the rank of the

batch equals r at node v`−1 and the recoding number at node v`−1 is me` . Then

h̄(me`) =
M∑
r=0

hv`−1
(r)EL

r (me`).
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Firstly, we will show ẼL
r (k) is a non-decreasing function of k. Let H = Φ1E1 · · ·Φ`−1E`−1

and U = E`+1Φ`+2E`+2 · · ·ΦLEL. Let θ` = {j | j′th column of E` is zero}. Φ` is a uniformly

random matrix of size me`−1
×me` .

ẼL
r (k) = E[rank(HΦ`E`Φ`+1U) | rank(H) = r, |θ`| = me` − k]

= E[rank(H∗Φ∗`E`Φ`+1U) | |θ`| = me` − k]

= E[rank(Φ∗`E`Φ`+1U) | |θ`| = me` − k],

where H∗ is formed by r linearly independent columns of H and Φ∗` is an r×me` matrix such

that HΦ` = H∗Φ∗` . Then Φ∗` is a uniformly random matrix [32]. We rewrite

ẼL
r (k) = E[(rank

(
(Φ∗`E`)

′Φ′`+1U
)
| |θ`| = me` − k],

where (Φ∗`E`)
′ a submatrix of Φ∗`E` which is obtained by taking out the columns in Φ∗`E` with

the column index belonging to θ` and Φ′`+1 is a submatrix of Φ`+1 which is given by putting off

the rows in Φ`+1 of row index in θ`. Φ′`+1 is also a uniformly random matrix of size k×me`+1
.

Let B be a r×(k+1) submatrix of Φ∗` formed by k+1 columns chosen uniformly at random.

B′ is the first k columns of B and b is the last column of B. Φ`+1 is a uniformly random

matrices of size (k + 1)×me`+1
. Then

ẼL
r (k + 1) = E

[
rank

(
(B′, b)Φ`+1U

)]
, ẼL

r (k) = E
[
rank(B′Φ′`+1U)

]
.

ẼL
r (k + 1)− ẼL

r (k)

= E
[
rank

(
(B′, b)Φ`+1U

)]
− E

[
rank(B′Φ′`+1U)

]
= E

[
rank

(
(B′, b)

(
Φ′`+1

φ

)
U
)
− rank(B′Φ′`+1U)

]
= Pr{b ∈ col(B′)}E

[
rank

(
(B′Φ′`+1 + bφ)U

)
− rank(B′Φ′`+1U) | b ∈ col(B′)

]
+

Pr{b 6∈ col(B′)}E
[
rank

(
(B′Φ′`+1 + bφ)U

)
− rank(B′Φ′`+1U) | b 6∈ col(B′)

]
≥ 0,

where φ is a uniformly random row vector. Note that the last inequality holds since when

b 6∈ col(B′),

rank((B′Φ′`+1 + bφ)U) ≥ rank(B′Φ′`+1U),



41

and when b ∈ col(B′), due to the fact that each column of B′Φ′`+1 + bφ and B′Φ′`+1 is the vector

chosen uniformly at random from col(B′) independent of U ,

rank((B′Φ′`+1 + bφ)U) = rank(B′Φ′`+1U).

Let E ′r
L(k) = ẼL

r (k + 1)− ẼL
r (k). We can write

EL
r (me`) =

me∑̀
k=1

F (k|me`)E
′
r
L
(k − 1).

Then

EL
r (me` + 2)− EL

r (me` + 1) =

me`
+2∑

k=1

[F (k|me` + 2)− F (k|me` + 1)]E ′r
L
(k − 1)

=

me`
+1∑

k=0

[F (k + 1|me` + 2)− F (k + 1|me` + 1)]E ′r
L
(k)

≥ 0,

which implies EL
r (me`) is a non-decreasing function of me` and hence h̄(me`) is non-decreasing.

APPENDIX C

PRIMAL-DUAL APPROACH

We discuss two primal-dual based algorithms for solving (AP).

A. The First Formula

Associating a Lagrange multiplier λe for each inequality constraint in (AP), the Lagrangian

is

L =
∑
i

[
Ui(αi E[hi])− αi

∑
e∈Pi

λem
i
e

]
+
∑
e∈E

λese.

Similar to [3], we have the following iterative algorithm for the dual problem. In iteration

t = 1, 2, . . ., for each flow P i, (αi, (p
i
e, e ∈ P i)) is updated by

(αi, (p
i
e, e ∈ P i))← arg max

αi,(pie,e∈Pi)

[
Ui(αi E[hi])− αi

∑
e∈Pi

λem
i
e

]
; (29)

the scheduling rate vector s is updated by

s← arg max
s∈Co(R)

∑
e∈E

λese; (30)



42

and the Lagrange multipliers are updated by

λe ← max

{
0, λe + γt

( ∑
i : e∈Pi

αim
i
e − se

)}
, (31)

where {γ1, γ2, . . .} is a sequence of positive step sizes such that the subgradient search converges,

e.g.,
∑

t γt =∞ and
∑

t γ
2
t <∞.

The subproblem (29) is different from the traditional counterparts [3], [55]. Suppose Ui is a

logarithm function, we can further simplify (29) as follows:

arg max
αi,(pie,e∈Pi)

[
Ui(αi E[hi])− αi

∑
e∈Pi

λem
i
e

]

= arg max
(pie,e∈Pi)

{
arg max

αi

[
Ui(αi E[hi])− αi

∑
e∈Pi

λem
i
e

]}

= arg max
(pie,e∈Pi)

[
Ui

(
E[hi]∑
e∈Pi λem

i
e

)]
(32)

= arg max
(pie,e∈Pi)

E[hi]∑
e∈Pi λem

i
e

, (33)

where (32) follows that Ui(αi E[hi]) − αi
∑

e∈Pi λem
i
e is concave in αi and thus achieves the

maximum when its partial derivative with respect to αi equals 0, i.e.,

1

αi
−
∑
e∈Pi

λem
i
e = 0; (34)

and (33) follows that Ui is increasing. Therefore, we can solve (29) by first obtaining pie from

(33) and then deriving αi by substituting pie into (34). In other words, we can decompose (29)

as:

(pie, e ∈ P i)← arg max
(pie,e∈Pi)

E[hi]∑
e∈Pi λem

i
e

, (35)

αi ←
1∑

e∈Pi λem
i
e

. (36)

Since the optimization subproblem (35) is difficult to solve directly, we solve (AP) by a

primal-dual approach, where pie is updated using gradient search. Denote by I the collection of

all (M+1)×(M0 +1) stochastic matrices where the (r,m) entry is p(m|r) for m = 0, 1, . . . ,M0

and r = 0, 1, . . . ,M such that p(0|0) = 1 and
∑

m p(m|r) = 1. For an (M + 1) × (M0 + 1)

matrix A, denote by projI(A) the projection of A onto I, which is the point in I that is closest

to A. We obtain the projection by solving the convex optimization problem: minB∈I ‖A−B‖2
2
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(‖ · ‖2 is the squared norm), which can be solved numerically. In iteration t = 1, 2, . . . of the

primal-dual approach, pie is updated by

pie ← projI

(
pie + βt

∂

∂pie

E[hi]∑
e∈Pi λem

i
e

)
, (37)

where βt > 0 is the step size. The updates of αi, s and λe are given in (36), (30) and (31),

respectively. The (r,m) entry of the gradient of E[hvL ] with respect to pel is

∂ E[hvL ]

∂pel(m|r)
= hv0Pv1 · · ·Pvl−1

∂Pvl
∂pel(m|r)

Pvl+1
· · ·PvL [0, 1, ...,M ]T , (38)

where the (i, j) entry of ∂Pvl

∂pel (m|r)
is

∂Pvl [i, j]

∂pel(m|r)
=


∑m

k=j qel(k|m)ζ i,kj if i = r and j ≤ m,

0 otherwise.

As the primal (AP) is nonconcave, the optimizer of the primal-dual approach may not be

feasible for the primal one. Therefore, after obtaining a solution (α̃i, (p̃
i
e, e ∈ P i))i by multiple

rounds of updating using the primal-dual approach, we find a feasible primal solution by solving

(AP) with pie = p̃ie fixed.

Moreover, motivated by the almost deterministic solutions of adaptive recoding in [41], we may

further require pie to be almost deterministic to reduce the complexity of the above approaches.

B. Another Formula

Put the stochastic constraints explicitly into (AP)

max
(αi,(pie≥0,e∈Pi))i,s

∑
i

Ui(αi E[hi])

s.t.
∑
i : e∈Pi

αim
i
e ≤ se, ∀e ∈ E

s = (se) ∈ Co(R)
M0∑
m=1

pie(m|r) ≤ 1, ∀i, e ∈ P i, r = 1, . . . ,M.

(39)

The corresponding Lagrangian is

L =
∑
i

Ui(αi E[hi])−
∑
e∈E

λe

( ∑
i : e∈Pi

αim
i
e − se

)
−
∑
i

∑
e∈Pi

θie(p
i
e

′
I1 − I2)

=
∑
i

[
Ui(αi E[hi])−

∑
e∈Pi

(
λeαim

i
e + θie(p

i
e

′
I1 − I2)

)]
+
∑
e∈E

λese.
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where I1 = (0, 1, 1, ..., 1)T is a column vector of size M0 +1, I2 is a size M column vector with

all elements being one and pie
′ is the submatrix formed by 1st to M ’th row of pie. Now, similar

as (32), we have

arg max
αi,(pie≥0,e∈Pi)

[
Ui(αi E[hi])−

∑
e∈Pi

(
λeαim

i
e + θie(p

i
e

′
I1 − I2)

)]

= arg max
(pie≥0,e∈Pi)

[
Ui

(
E[hi]∑
e∈Pi λem

i
e

)
−
∑
e∈Pi

θiep
i
e

′
I1

]
(40)

As the above subsection, we use the primal-dual approach, which updates pie using gradient

search. In each iteration, we update pie by

pie ←

pie + βt

 ∂
∂pie

E[hi]∑
e∈Pi λemi

e

E[hi]∑
e∈Pi λemi

e

− ∂

∂pie
θiep

i
e

′
I1

+

,

(41)

where the submatrix formed by 1st to M ’th row of ∂
∂pie
θiep

i
e
′
I1 equals θie

T
IT1 and 0’th row equals

zero. The updates of αi, r and λe still follow (36), (30) and (31), respectively. Moreover, the

update of θie is

θie ←
[
θie + γt

(
pieI1 − I1

)]+
, (42)

where γt, t = 1, 2, . . . is a sequence of positive step sizes such that the subgradient search

converges, e.g.,
∑

t γt =∞ and
∑

t γ
2
t <∞.

As the primal (AP) is nonconcave, the optimizer of the primal-dual approach may not be

feasible for the primal one. Therefore, after obtaining a solution (α̃i, (p̃
i
e, e ∈ P i))i by multiple

rounds of updating using the primal-dual approach, we project pie to I to make it feasible. Then

we find a primal solution by solving (AP) with feasible pie fixed.


	I Introduction
	I-A Background about Network Utility Maximization
	I-B Motivation of This Paper
	I-C Our Contributions
	I-C1 NUM Problem Formulation
	I-C2 Algorithms for Solving the NUM Problem


	II BATS Code Basics
	II-A Encoding and Recoding
	II-B Batch Transfer Matrix
	II-C Decoding

	III Network Communications Employing BATS Codes
	III-A Network Model
	III-B Communication Flows Employing BATS Codes
	III-C Adaptive Recoding
	III-D Batch-wise Packet Loss Model

	IV Network Utility Maximization Problems
	IV-A General Problem
	IV-B Nonadaptive Recoding Problem
	IV-B1 Single flow, no collision
	IV-B2 Single flow, all collision

	IV-C Traditional Cases: Store-and-Forward Recoding
	IV-D Cut-set Upper Bound

	V Algorithms for Nonadaptive Recoding Problem
	V-A Dual-Based Algorithm
	V-B The Updates in Each Flow
	V-C Numerical Results

	VI Algorithms for General Adaptive Recoding Problem
	VI-A Two-step Approach
	VI-B Numerical Results
	VI-B1 Independent Packet Loss Model
	VI-B2 Gilbert-Elliott Packet Loss Model


	VII Simulation Results
	VIII Concluding Remarks
	References
	Appendix A: Discussion of Batch-wise Packet Loss Model
	Appendix B: Properties of Expected Rank Function
	Appendix C: Primal-Dual Approach
	C-A The First Formula
	C-B Another Formula


