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Abstract—We consider a distributed storage system with
n nodes, where a user can recover the stored file from any
k nodes, and study the problem of repairing r partially
failed nodes. We consider broadcast repair, that is, d
surviving nodes transmit broadcast messages on an error-
free wireless channel to the r nodes being repaired, which
are then used, together with the surviving data in the
local memories of the failed nodes, to recover the lost
content. First, we derive the trade-off between the storage
capacity and the repair bandwidth for partial repair of
multiple failed nodes, based on the cut-set bound for
information flow graphs. It is shown that utilizing the
broadcast nature of the wireless medium and the surviving
contents at the partially failed nodes reduces the repair
bandwidth per node significantly. Then, we list a set of
invariant conditions that are sufficient for a functional
repair code to be feasible. We further propose a scheme
for functional repair of multiple failed nodes that satisfies
the invariant conditions with high probability, and its
extension to the repair of partial failures. The performance
of the proposed scheme meets the cut-set bound on
all the points on the trade-off curve for all admissible
parameters when k is divisible by r, while employing
linear subpacketization, which is an important practical
consideration in the design of distributed storage codes.
Unlike random linear codes, which are conventionally used
for functional repair of failed nodes, the proposed repair
scheme has lower overhead, lower input-output cost, and
lower computational complexity during repair.

I. INTRODUCTION

Caching popular contents closer to end-users, par-
ticularly in the available storage space at the wire-

This work was supported by the European Research Council
(ERC) Starting Grant BEACON (grant agreement no. 677854),
European Union‘s H2020 research and innovation programme under
the Marie Sklodowska-Curie Action SCAVENGE (grant agreement
no. 675891), and UK EPSRC (EP/T023600/1) under the CHIST-ERA
program (CHISTERA-18-SDCDN-001). This work has been partly
presented in two conference versions [1], [2]

less network edge, is attracting a lot of attention in
recent years as a promising method to alleviate the
increasing traffic on the backhaul links of wireless
access points, and to improve the quality of service
for end users, particularly by reducing the latency
[3], [4], or the energy consumption [5], [6]. The
literature on distributed caching systems focuses
mostly on the code design or the resource allocation
for efficient storage of popular contents, assuming
reliable cache nodes. However, storage devices are
often unreliable and prone to failures; thus, efficient
repair techniques that guarantee continuous data
availability are essential for a successful implemen-
tation of distributed caching and content delivery
techniques in practice [7].

Maximum distance separable (MDS) codes are
typically used for distributed caching of contents at
multiple access points [2]–[4]. MDS codes provide
flexibility for storage so that users with different
connectivity or mobility patterns can download a
file from only a subset of the access points. In
particular, an (n, k) MDS code encodes a file of
size M bits by splitting it into k equal-size packets
and encoding them into n packets, which are then
stored at n cache nodes. Each data packet consists
of a set of symbols in a finite field Fq. The original
file can be reconstructed by accessing any k out
of n packets from k distinct access points. This
property is called the data reconstruction property.
When some nodes partially or fully fail, or when
content has to be moved to new cache nodes, their
cache contents must be regenerated, either in the
same failed node, or in new cache nodes, to which
the content has to be moved, to be able to continue
serving users with the same amount of redundancy.
An important objective of edge caching in wireless
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networks is to reduce the backhaul link loads;
therefore, we consider cache recovery at the edge;
that is, rather than updating the failed cache contents
from a central server through backhaul links, the
failed cache contents are regenerated with the help
of surviving cache nodes. This is called the data
regeneration property of a code. The total amount of
data transferred from the surviving nodes to repair
the failed nodes is called the repair bandwidth. A
trivial way to repair failed nodes is to allow the
nodes being repaired to connect to any k surviving
nodes, download the entire file, and recover the data
that was stored originally. However, downloading
the entire file to recover the data of a node that
stores only a fraction of the file is not efficient.
Conventional MDS codes treat the packets stored
in a node as a single symbol belonging to the finite
field Fq. It can be shown that when the nodes are
only permitted to perform linear operations over Fq
when using conventional MDS codes, the total re-
pair bandwidth cannot be smaller than the length of
the entire file. Thus, conventional MDS codes have
high storage efficiency, but their repair bandwidth
is large when using naive repair mechanisms [8].

In contrast, regenerating codes are codes that
treat the data stored on each node as a vector of
S data packets. In particular, a file of size M bits
is split into P data packets consisting of symbols
in Fq. A total of S coded packets are stored at
each node with a storage capacity of α bits. Linear
operations over Fq in this case permit the transfer of
a fraction of the data stored in a single node, thus
achieving a lower repair bandwidth than conven-
tional MDS codes with naive repair mechanisms.
Similarly to existing literature [9]–[14], we refer
to S as subpacketization. Such codes, constructed
over a vector alphabet, are called array codes in
the distributed storage literature. During repair, r
failed nodes are allowed to connect to d surviving
nodes, and download a total of γ = dβ bits to
repair the lost contents, where β is the number of
bits transmitted by each of the d surviving nodes
that are connected to. Dimakis et al. showed in
[8] that there is a fundamental trade-off between
the storage capacity α and the repair bandwidth
γ by mapping the repair problem in a distributed
storage system to a multicasting network coding
problem [15] over an information flow graph [16].
The trade-off is shown to be characterized by the
cut-set bound for linear network coding, and can be

achieved with high probability using random linear
coding [15]. The analysis in [8] focuses on a single
node repair, that is, losing one node triggers the re-
pair process. Existing literature has mainly focused
on two extremes of this trade-off: the minimum-
storage regenerating (MSR) point and the minimum-
bandwidth regenerating (MBR) point. Apart from
a low repair bandwidth, it is also desirable for
a regenerating code to have low subpacketization.
Subpacketization determines the smallest file size
that can be encoded, and the number of operations
required in the encoding and decoding processes.

A. Exact vs functional repair
Another terminology frequently found in the lit-

erature is that of exact repair and functional repair.
Functional repair, first introduced in [8], refers to
the repair process in which the replacement of a set
of failed nodes is such that the data reconstruction
property and data regeneration property are pre-
served in the resulting network of n nodes, while the
coded content in the replacement nodes may be dif-
ferent from the coded content in the original nodes.
In contrast, exact repair, subsequently introduced
and studied in [17], [18], refers to the repair process
in which the replacement nodes store exactly the
same coded content as stored originally in the failed
nodes. Exact repair is often preferred over functional
repair because the former is predictable and does not
require nodes to communicate their changing coding
coefficients to all other nodes. However, functional
repair is generally more flexible than exact repair,
and is able to achieve lower repair bandwidth than
exact repair [17], [19].

B. Related work
Existing literature on distributed storage codes

consider the exact repair of a single node at a time
[9], [10], [14], [20]–[22]. In [22], the product-matrix
framework for constructing optimal repair MSR and
MBR codes is proposed, which achieves the MBR
point for all admissible parameters, and achieves
the MSR point for parameters restricted to d ≥
2k − 2. The product-matrix construction employs a
subpacketization level that scales linearly in n, k and
d. Zig-zag codes and HashTag codes, proposed in
[9] and [23] respectively, allow arbitrarily high code
rates (k/n → 1) for the MSR point, but require a
subpacketization level that is exponential in k. Other
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MSR code constructions, including repair schemes
for MDS codes like Reed Solomon (RS) codes,
have been proposed that meet the cut-set bound, but
their subpacketization level grows exponentially in
n [10]–[12], [14].

It was first observed in [24] that multiple node
repair, that is, when the repair process starts only
after r nodes fail, is more efficient in terms of
the repair bandwidth per node, compared to re-
pairing each node as it fails. The repair process
may be initiated centrally by a controller, which
monitors the state of each storage node, or in a
decentralized fashion via periodic updates by every
storage node of its state to the remaining nodes.
In [25] and [26], the authors introduce cooperative
regenerating codes, which repair multiple failures
cooperatively by allowing each of the r nodes being
repaired to collect data from any n − r surviving
nodes, and then to cooperate with the other r − 1
nodes being repaired. In [27], the authors design a
minimum storage cooperative regenerating (MSCR)
code for n = 2k, d = 2k − 2, r = 2, which they
generalize to the repair of systematic nodes for
n = 2k, d = n − r, 2 ≤ r ≤ n − k in [28]. An
obvious drawback of these constructions is that they
are restricted to a limited set of parameters. Ye and
Barg [29] give an explicit MSCR construction for all
parameter values, that is, for 2 ≤ r ≤ n− k, d > k,
but employ a subpacketization that is exponential
in the parameters n, k and d. The product-matrix
construction of [22] for a single node repair is ex-
tended to MSCR in [30], meeting the cut-set bound
with a linearly scaling subpacketization, but for
parameters restricted to d ≥ 2k− 2− r. In [31], the
authors give an explicit construction of minimum
bandwidth cooperative regenerating (MBCR) codes
for all parameters n, k, d, r, employing only a linear
subpacketization.

Similarly to [32], [33], we consider broadcast
repair; that is, transmissions from each node are
received in an error-free manner by all the other
nodes. The storage-repair bandwidth trade-off for
the repair of multiple fully failed nodes using
broadcast repair is derived in [33]. Additionally, we
consider the partial repair problem, studied in [32],
in which a node loses only a part of its contents,
and the remainder of the contents may be used along
with the transmissions from the surviving nodes to
repair the content, thus further reducing the repair
bandwidth. In [32], the authors derive a lower bound

on the number of packet transmissions at the MSR
point for error-free broadcast partial repair, and pro-
vide an explicit code construction for a special case.
The information flow graph construction in [32]
does not capture the relation between the storage
capacity and the repair bandwidth, thus focusing
only on one of the extreme points on the storage-
repair bandwidth trade-off curve, corresponding to
the MSR point. In this paper, we obtain the entire
optimal trade-off curve.

In [34], the authors present the storage-repair
bandwidth trade-off for clustered storage networks,
where multiple nodes within a cluster fail. This is
close to the partial failure model that we consider
since each cluster is equivalent to a node with multi-
ple memory units, and failure of a subset of memory
units in a node is the same as partial failure. How-
ever, we consider partial failures at multiple nodes,
which is equivalent to failure of multiple nodes in
multiple clusters, and we also consider broadcast
transmissions from the non-failed nodes. Another
model studied in the literature is the centralized re-
pair model [35], [36], in which the surviving nodes
transmit the repairing packets to a centralized node,
which then repairs the failed nodes. The centralized
model does not require the nodes being repaired
to exchange data like the cooperative repair model,
thus making the repair process simpler; moreover,
the storage-repair bandwidth trade-off achieved with
centralized repair is better than that with cooperative
repair. In [35], [36], it is shown that cooperative
repair achieves the minimum repair bandwidth of
centralized repair under exact repair but at a slightly
higher storage cost. In [36], it is shown that the op-
timal functional MBR point for centralized repair of
multiple nodes is not achievable under exact repair.
Unlike the centralized repair model, in this paper
we consider broadcast repair. The broadcast repair
model is almost equivalent to the centralized multi-
node repair model studied in [35], [36]. Therefore,
the codes that we construct for broadcast repair are
directly applicable to the centralized repair model
as well. The main difference between the broadcast
and centralized repair models is that while cen-
tralized repair employs two phases in the repair
process, where a centralized entity first receives
the transmissions of the surviving nodes, and then
repairs the failed nodes by passing messages to
them, broadcast repair employs a single phase of
broadcast transmissions from surviving nodes, and
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TABLE I: Comparison of explicit constructions that achieve the cut-set bound.

Code parameters Subpacketization Ref.
[n, k → n, d, r] MSR array code exponential in k [9]

All feasible parameters, RS scalar code O(nn) [11]
[n, k, d ≥ 2k − 2, r = 1] MSR array code d− k + 1 [22]

[n, k, d, r = 1], MBR array code k
2
(2d− k + 1) [22]

[n = 2k, k, d = n− r, 2 ≤ r ≤ n− k], MSCR code d− k + r [27]
All feasible parameters, MSCR code exponential in n, k, d [29]

[n, k, d ≥ 2k − 2− r, r], MSCR code d− k + r [30]
All feasible parameters, MBCR code k

2
(2d− k + r) [31]

therefore, is simpler and more efficient.

Since random linear coding is asymptotically
optimal for network coding [37], it is also asymp-
totically optimal for functional repair in distributed
storage [8]. However, random linear coding is not an
attractive scheme for distributed storage in practice
due to large overhead and high computational com-
plexity of the Gaussian elimination-based decod-
ing [38]. Therefore, most literature on regenerating
codes focus on exact repair due to limited overhead
and predictability of the system when the contents
of the storage nodes do not change with time.
However, it is shown in [17] that a large portion
of the functional repair trade-off curve cannot be
achieved under exact repair. It is further shown
in [19] that there is a non-vanishing gap between
the exact repair trade-off curve and the functional
repair trade-off curve. Hence, functional repair has
been studied in [39]–[41] in an attempt to construct
regenerating codes achieving a trade-off closer to
the optimal while incurring low overhead. Hollmann
and Poh in [40] viewed a regenerating code as a
collection of sets of subspaces of a vector space, in
which reconstruction corresponds to generating the
vector space while repair corresponds to generating
a subspace. This differs from the purely coding
theoretic view where the file is encoded using a
generator matrix, like in [22]. With respect to the
vector space interpretation of linear functional repair
codes characterized in [40], it is stated in [39] -
“The properties of the code are determined entirely
by the manner in which the various spaces intersect.
The advantage of the geometric perspective is that
many classical geometric objects have nice, well-
understood properties in terms of how spaces em-
bedded in these objects intersect”. In [39], several
constructions for strictly functional repair are pro-
posed using a projective geometry viewpoint for a

limited set of parameters, that tolerate multiple node
failures. The constructions in [39] use well-known
combinatorial objects to construct spaces while con-
trolling how they intersect. A simple example to
illustrate the point is a set of three non-concurrent
lines in a plane, which gives an exact repair code
with parameters n = 3, k = d = 2. In this example,
each node stores two points lying on a distinct line.
During repair, two nodes deliver one point each to
the newcomer, on receiving which the newcomer
reconstructs the line previously stored by the failed
node.

Despite these works, a general construction of
functional regenerating codes with low overhead,
achieving all the points on the trade-off curve
between storage capacity and repair bandwidth,
has not been achieved. This paper addresses this
problem by proposing an intuitive and practical
construction to achieve functional repair for almost
all admissible parameters. Our construction uses the
geometric view of a linear repair code, and frames
the relationship between the local intersection and
global independence properties of the subspaces.
In the conference publication [1], we presented a
code construction achieving the MBR point and an
interior point on the optimal storage-repair band-
width trade-off for full node repair. In this paper,
we modify and improve that scheme, and extend it
to achieve all the points on the trade-off curve for
full node repair as well as partial repair.

C. Our contributions

1) We derive the optimal storage-repair band-
width trade-off for broadcast repair of multiple
partial failures, and discuss the advantage of
repairing multiple failed nodes simultaneously
while leveraging unerased data remaining in
the failed nodes for repair.
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2) We derive invariant conditions that are suffi-
cient for a functional repair code to be optimal
and feasible. These conditions render structure
to the functional repair problem, and provide
insights into how to construct a feasible func-
tional repair code.

3) We present explicit codes that achieve the
optimal cut-set bound for functional repair of
multiple nodes with high probability, for a large
number of feasible parameters, in particular,
for values of k which are divisible by r.

4) The proposed scheme employs a subpacketi-
zation level that scales linearly in the code
parameters, has low computational complexity
during the repair process, and introduces low
overhead unlike random linear coding.

The rest of the paper is organized as follows.
The system model is introduced in Section II.
The storage-bandwidth trade-off for partial repair
is derived in Section III. Code constructions for
multiple node repair and partial repair are presented
in Section IV. Results and discussions are presented
in Section V. We conclude the paper in Section VI.

II. SYSTEM MODEL

Consider a wireless caching system where n
nodes, each with storage capacity α bits, store a
file of size M bits. We index these storage nodes
by {1, . . . , n}. The nodes are fully connected by
a wireless broadcast medium and use orthogonal
channels for data transmission. The file is divided
into P data packets, and the number of data packets
stored in each node, which is referred to as the
subpacketization of an array code, is defined as
S = αP

M
. The nodes store the file such that a user,

modeled as a data collector (DC), can reconstruct
the file by obtaining the contents of any k nodes.
This is called the reconstruction property.

We consider a scenario in which a portion of the
stored bits in the storage nodes is subject to being
lost. We refer to these nodes as the faulty nodes,
and to the nodes that do not experience any losses
as the complete nodes. We assume that the repair
occurs in rounds, where a repair round gets initiated
when r nodes experience partial failures of α− α1

bits, where the number of non-corrupted bits α1 ,
ρα, ρ ∈ [0, 1], is a ρth fraction of α. Thus, a single
repair round repairs r faulty nodes, where r ≤ n−d.
There is no loss during a repair round, during which

TABLE II: Notation.

n Number of storage nodes
k Minimum number of nodes required for file reconstruction
r Number of repaired nodes (newcomers) in each repair

round
d Number of helper nodes
M File size in number of bits
α Number of stored bits per node
α1 Number of non-corrupted bits in a faulty node
ρ Fraction of non-corrupted bits in a faulty node, i.e., α1 =

ρα
β Number of transmitted bits per helper node
γ Total repair bandwidth, i.e., γ = dβ

the lost bits in the faulty nodes are repaired with
the help of bits transmitted from d complete nodes,
k ≤ d ≤ n − r, called the helper nodes, and the
remaining bits that have not been lost in each of
the faulty nodes. In general, the repair is functional,
i.e., the repaired portion may not be the same as the
original portion, but the repaired nodes satisfy the
reconstruction property. See Table II for a list of the
parameters associated with a regenerating code.

A. Information flow graph

The repair dynamics of the network can be repre-
sented by an information flow graph that evolves in
time. See Fig. 1 for an illustration. It is a directed
acyclic graph consisting of seven types of nodes:
a single source node S (orange), storage nodes
xiin (blue), ximid (gray), and xiout (green), failed
portion of the nodes xif (red), auxiliary nodes hi
(yellow), and a DC node denoted by DC (cyan).
Initially, each complete storage node, denoted by
xi, i = 1, . . . , n, is represented by two vertices: an
input vertex xiin and an output vertex xiout, which
are connected by a directed edge xiin → xiout with
capacity α. A faulty node is represented by four
vertices: an input vertex xiin, an intermediate vertex
ximid that is connected to xiin by a directed edge
xiin → ximid of capacity α, an output vertex xiout that
is connected to ximid by a directed edge ximid → xiout
of capacity α1, and a failed vertex xif (red) that is
connected to ximid by a directed edge ximid → xif
of capacity α−α1. The failed vertex represents the
corrupted portion of data in a storage node.

Each vertex in the graph at any given time has
two modes, active or inactive, depending on its
availability. At the beginning, the source node S
is active and it transmits data to n storage nodes
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such that a DC can retrieve the file from any k
nodes. This is modeled by adding an edge from
S to all the input vertices of the storage nodes,
S → xiin, i ∈ [n], with capacity ∞. From this point
onwards, the source node becomes inactive, and the
storage nodes become active. The directed edge of
capacity α between the input vertex and the output
vertex representing each storage node allows only
α bits of information to propagate forward through
the storage node, therefore modeling the storage
capacity of the node.

When r nodes experience partial failure of α−α1

bits each, in the s-th round, the repair process is trig-
gered and r newcomers join the system. Note that a
newcomer represents the corresponding node being
repaired. A newcomer xi, where i = sn+j, j ∈ [n],
represents the node xj after the s-th round. For
example, if n = 4 as in Fig. 1, the storage nodes
in the beginning are x1, . . . , x4. Consider that nodes
x1 and x2 fail. After one round of repair, newcomer
nodes x5 and x6 represent the repaired nodes x1

and x2 respectively, and x7 and x8 are copies of
the nodes x3 and x4, respectively. The lost data is
regenerated at the newcomers by receiving functions
of the stored data from d helper nodes. The d
helper nodes are connected to the corresponding
auxiliary nodes, denoted by hi, with a directed edge
xiout → hi of capacity β, which denotes the number
of bits broadcasted by xi. Each auxiliary node hi

is connected with infinite capacity links to all the
newcomers. This represents the broadcast nature of
the transmission medium.

Definition 1. The repair bandwidth γ = dβ is
defined as the total number of bits the helper nodes
broadcast in a repair round.

We model a newcomer with two vertices xiin and
xiout and a directed edge xiin → xiout with capacity
α. The newcomer xi, i = sn+ (s− 1)r + j, j ∈ [r],
uses the α1 bits from the corresponding node being
repaired. This is captured in the flow graph by edges
with capacity α1, x

i
mid → xiout, i = (s− 1)n+ (s−

1)r + j, j ∈ [r], followed by the edges with infinite
capacity between the output vertices of the node
being repaired and the newcomers.

A DC corresponds to a request to reconstruct
the file. DCs connect to any subset of k active

Note that adding an edge with capacity ∞ means that all the
information in the node sending the data is available in the input
vertices of the nodes receiving the data.

nodes and retrieve all the stored data in these nodes,
represented with edges with infinite capacity from
the active nodes to a node DC.

A cut-set in the information flow graph is a subset
of edges such that there is no path from the source
node S to the DC that does not go through any of
the edges in the cut-set. A cut partitions the graph
into two disjoint sets of vertices, denoted by the pair
(U, Ū), where U is the set of vertices on the left of
the cut, and Ū is the remaining vertices on the right
of the cut, assuming that the direction of all edges in
the graph is from left to right. We define the capacity
of a cut-set as the sum of its edge capacities, and the
min-cut of a graph as the cut-set with the minimum
capacity among all the cut-sets.

Proposition 1. [8] Consider any given finite in-
formation flow graph G, with a finite set of DCs. If
the min-cut separating the source from each DC is
larger than or equal to the file size M , then there
exists a linear network code defined over a suffi-
ciently large finite field F (whose size depends on
the graph size) such that all DCs can reconstruct the
original file. Further, randomized network coding
guarantees that all collectors can reconstruct the
file with probability that can be driven arbitrarily
close to 1 by increasing the field size.

Following Proposition 1, for the information flow
graph construction described above, we find the
minimum cut over all possible failure combinations.
We enumerate cuts, denoted by χ, as χ1, χ2, χ3 (see
Fig. 1). In Section III, we demonstrate how to find
the min-cut for a specific example, and finally in
the proof for Theorem 1 in Section III, we describe
the process for finding the min-cut for a general
information flow graph.

III. STORAGE-BANDWIDTH TRADE-OFF FOR
PARTIAL REPAIR

Consider the scenario illustrated in Fig. 1, where
n = 4, k = 2, d = 2 and r = 2. The capacity
of cut χ1 is 2α1 + 2β, while the capacity of cut
χ2 is 2α. Then the min-cut is min{2α1 + 2β, 2α}.
From Proposition 1, to ensure that the file can be
reconstructed by the DC, min{2α1 +2β, 2α} ≥M .

For each set of parameters (n, k, d, γ, α, r, ρ),
there is a family of information flow graphs, each
of which corresponds to a particular evolution of
node failures/repairs. We denote this family of di-
rected acyclic graphs by G(n, k, d, γ, α, r, ρ). An
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S

x1in

x2in

x3in

x4in

∞

∞

∞

∞

x3out

x4out

α

α

x1out

x2out

α

α

x1mid

x2mid

x1out

x2out

α1

α1

α

α

x1f

x2f

α− α1

α− α1

h3

h4

β

β

x5in

x6in

x7in

x8in

x7out

x8out

α

α

∞

∞

∞

∞

∞

∞

x5out

x6out

α

α

DC

∞

∞

χ1 = 2α1 + 2β χ2 = 2α

C = min{2α1 + 2β, 2α} ≥M

χ3 = α1 + 2β + α

Fig. 1: Information flow graph G with n = 4, k = r = 2, one repair round and cuts χ1, χ2, χ3.

(n, k, d, γ, α, r, ρ) tuple is feasible, if a code with
storage α and repair bandwidth γ exists.

Theorem 1. For any α ≥ α∗(n, k, d, γ, r, ρ), the
points (n, k, d, γ, α, r, ρ) are feasible, and linear
network codes suffice to achieve them. It is informa-
tion theoretically impossible to achieve points with
α < α∗(n, k, d, γ, r, ρ). If r divides k, the threshold
function α∗(n, k, d, γ, r, ρ) is given by:

α∗(n, k, d, γ, r, ρ) =

{
M
k

γ ∈ [f(0),∞)
M−g(i)γ
k−ir(1−ρ)

γ ∈ [f(i), f(i− 1)]

(1)

where, for i = 1, 2, . . . , k
r
− 1,

f(i) ,
2Md(1− ρ)

(2k − ir(1− ρ))(i+ 1) + 2k
r

(d− k)
, (2)

g(i) , (2d− 2k + r + ir)
ir

2d
. (3)

Proof. Proof in Appendix VII-A.

Corollary 1. The minimum storage point is
achieved by the pair

(α∗MSR, γ
∗
MSR) =

(
M

k
,
Mrd(1− ρ)

k(d− k + r)

)
. (4)

Corollary 2. The minimum repair bandwidth point
is achieved by the pair

(α∗MBR, γ
∗
MBR) =

(
2Md

k(2d− (k − r)(1− ρ))
, (5)

2Mrd(1− ρ)

k(2d− (k − r)(1− ρ))

)
.

(6)

MSR and MBR codes attain the points in Corol-
lary 1 and Corollary 2, respectively.

Remark 1. For ρ = 0 and r = 1, i.e., complete
failure of exactly one node, the model is equivalent
to that in [8], and the trade-off curve from Theorem
1 coincides with the trade-off curve in [8]. Similarly,
for ρ = 0 and r > 1, i.e., multiple complete failures,
the trade-off curve from Theorem 1 coincides with
the trade-off curve in [33].

Theorem 1 provides a piecewise linear trade-
off curve that defines the optimal storage capacity
as a function of the repair bandwidth when k is
divisible by r, as shown in Fig. 2. The curve is linear
between points with γ = f(i) and γ = f(i − 1),
i = 1, . . . , k

r
− 1, where f(i) is a decreasing

function of i and defines the position of the corner
points of the piecewise linear curve. All the points
lying above the curve defined by Theorem 1 are
achievable. Corollary 1 defines the MSR point, that
is, the point on the trade-off curve that has the
lowest feasible storage capacity, while Corollary 2
defines the MBR point, that is, the point on the
trade-off curve that has the lowest feasible repair
bandwidth (see Fig. 2).

Theorem 2. In the same context as in Theorem 1, if
r does not divide k, let p , bk/rc such that k0 , pr.
Find t∗ ∈ [0 : p − 2] such that d−k0+t∗r

r
≤ d−k0

k−k0
≤

d−k0+(t∗+1)r
r

. Also define k′ , kρ+ (1− ρ)k0. Then
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the threshold function α∗(n, k, d, γ, r, ρ) is given by:

α∗ =



M−g(i)γ
k−ir(1−ρ)

γ ∈ [f(i), f(i− 1)],

0 ≤ i ≤ t∗ − 1

M−g(t∗)γ
k−t∗r(1−ρ)

γ ∈ [f ′, f(t∗ − 1)]

M−[g(t∗)+
d−k0

d
]γ

k′−t∗r(1−ρ)
γ ∈ [f(t∗), f ′]

M−[g(i)+
d−k0

d
]γ

k′−ir(1−ρ)
i ≥ t∗ + 1,

γ ∈ [f(i), f(i− 1)]
(7)

where i = 0, 1, . . . , k
r
− 1, and f, g and f ′ are

defined as follows:

f(i) ,



∞ i = −1

2Md(1−ρ)

(2k−r(i+1)(1−ρ))i+ 2k
r

(d−k0)
i ≤ t∗ − 1

2Md(1−ρ)

(2k′−r(i+1)(1−ρ))i+
2k′(d−k0)

r
+d−k0

i ≥ t∗

(8)

g(i) , (2d− 2k0 + r + ir)
ir

2d
(9)

f ′ ,
2Md[

2(d−k0)(k−k0−r)
k−k0

+ (t∗ + 1)r
]
t∗ + 2k(d−k0)

(k−k0)(1−ρ)

.

(10)

Proof. Proof in Appendix VII-B

Theorem 2 provides the trade-off curve when k
is not divisible by r. In this case, there is an addi-
tional corner point where γ = f ′ on the piecewise
linear trade-off curve where the slope changes, that
depends on the capacity contribution of k − k0 < r
nodes. The position of the additional corner point
depends on the value of t∗ that satisfies the condition
d−k0+t∗r

r
≤ d−k0

k−k0
≤ d−k0+(t∗+1)r

r
.

IV. CODE CONSTRUCTION

In this section, we present a framework for con-
structing explicit storage and repair schemes that
can achieve storage-repair bandwidth pairs that are
on the optimal trade-off curve. First, we provide
a few preliminary concepts that are vital for the
construction.

A. Subspace view

Consider that a node stores S linearly indepen-
dent data packets y1, . . . , yS consisting of symbols
in the finite field Fql . For simplicity, assume that
each data packet consists of exactly one symbol in
Fql . Finite field symbols in Fql can be viewed as
l−dimensional vectors over Fq. Linear operations
performed on the stored symbols correspond to lin-
ear operations on their vector representations in Fq.
Hence, we say that the node stores a subspace of di-
mension S, denoted by Wi = span{yi}, i = 1, . . . S.
For a set of nodes denoted by A, the subspace
stored by A is denoted by WA =

∑
i∈AWi. The

sum of two vector spaces W1 and W2 is defined as
W1 + W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}. Note
that the sum of two vector spaces is not in general
equal to their union. We use the notation dim(·)
for the dimension of a vector space. The subspace
view of linear storage codes has also been used in
previous works like [36], [40], [42].

1) Vector space dimension as an information
measure: Consider a sample set of p linearly
independent vectors over Flq defined as Ω ,
{w1, . . . , wp}, and a function f : Ω → Flq that
generates a random linear combination of a subset
of vectors in Ω. Consider a vector space W over
Flq generated by the vectors {w1, . . . , wp}, and a
collection Σ of subspaces of W that includes W ,
is closed under complement, and is closed under
countable sums of subspaces. Then the σ-algebra
generated by the function f on Σ is given by:

σ(f) =
{
f−1(V ) : V ∈ Σ

}
, (11)

where f−1(V ) provides the smallest pre-image of
the subspace V ∈ Σ under f . The dimension of
a vector space V ∈ Σ, defined as the function
dim : Σ → N, is a measurable function on the
space (Ω, σ(f)) such that:

dim(V ) = |f−1(V )|, (12)

where the notation | · | denotes the cardinality of
a set. By considering the dimension of a vector
space as an information measure on it, we can,
as described in [43], formulate identities for the
dimension of vector spaces that are similar to those
for Shannon information measures. We list a few
identities in the next section associated with the
dimension of vector subspaces.
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B. Identities associated with the dimension of vec-
tor spaces

1) Conditional intersection: We define the “con-
ditional intersection” of a set of vector spaces
Wi, i = 1, . . . , t, conditioned on a vector space
W0, as the largest subspace in the intersection
of the vector spaces Wi+W0, i = 1, . . . , t, after
excluding the non-zero vectors belonging to the
vector space W0. Thus, we write the dimension
of the conditional intersection as follows:

dim

(
t⋂
i=1

Wi

∣∣∣W0

)
, dim

(
t⋂
i=1

(Wi +W0) \W0

)
,

(13)

where Wi \Wj , for two vector spaces Wi and
Wj , denotes the largest subspace of Wi re-
maining after removing the non-zero elements
belonging to Wi ∩Wj from Wi. For t = 2, we
note that the above identity becomes

dim
(
W1 ∩W2

∣∣∣W0

)
= dim ((W1 +W0) ∩ (W2 +W0) \W0)

(14)
= dim (W1 ∩ (W2 +W0) \W0) , (15)

where Eq. (15) follows due to the following
reasoning: consider a vector w belonging to the
vector space (W1 + W0) ∩ (W2 + W0) given
by w = w1 + w

(1)
0 = w2 + w

(2)
0 , where w1 ∈

W1, w2 ∈ W2, and w
(1)
0 , w

(2)
0 ∈ W0. Then, we

also have w′ ∈ W1∩ (W2 +W0) given by w′ =
w1 = w2 + (w

(2)
0 − w(1)

0 ), where w(2)
0 − w(1)

0 ∈
W0. Hence, the dimensions of the vector spaces
(W1 +W0)∩ (W2 +W0) and W1 ∩ (W2 +W0)
are equal. We can also deduce the following
chain rule from Eq. (15):

dim
(
W1 ∩ (W2 +W3)

)
= dim

(
W1 ∩W2

)
+

dim
(
W1 ∩ (W3 +W2) \W2

)
(16)

= dim
(
W1 ∩W2

)
+ dim

(
W1 ∩W3

∣∣∣W2

)
(17)

2) dim
(
W1 +W2

)
= dim

(
W1

)
+ dim

(
W2

)
−

dim
(
W1 ∩W2

)
.

3) dim
(
W1 ∩ W2

)
= dim

(
W1

)
− dim

(
W1 \

W2

)
.

C. Linearized polynomials
An important component in our construction is

the linearized polynomial and its special properties.
A linearized polynomial

f(x) =
P∑
i=1

aix
qi−1

, ai ∈ Fql , (18)

can be uniquely identified from evaluations at any P
points x = θi ∈ Fql , i = 1, 2, . . . , P , that are linearly
independent over Fq. The polynomial interpolation
problem (that is, to determine the coefficients of
f(x) from the evaluations) can be written as

Qa = y, (19)

where Q is the Moore matrix corresponding to
the evaluation points ( [44], Chapter 1.3), a =
(a1, . . . , aP )T , and y = (f(θ1), . . . , f(θP ))T . For
linearly independent evaluation points θi, i =
1, . . . , P , Q is invertible, thus proving the existence
of a unique solution for Eq. (19).

Another relevant property of linearized polyno-
mials is that they satisfy:

f(ax+ by) = af(x) + bf(y), a, b ∈ Fq, x, y ∈ Fql .
(20)

In other words, given a set of points on a linearized
polynomial, any linear combination over Fq of the
points also lies on the polynomial.

D. General code construction for any point on the
trade-off curve with ρ = 0 (full-node repair)

Substituting i = k
r
− j̄, j̄ ∈ [k

r
] in Theorem 1, we

obtain the general expression for any point on the
optimal storage-repair bandwidth trade-off as

(α∗, γ∗) =
M

P ∗

(
d− (j̄ − 1)r, rd

)
, j̄ ∈

[
k

r

]
,

(21)

where P ∗ = k/2
(

2 (d− (j̄ − 1)r) − (k − r)
)

+

r
(

(j̄ − 1)k − j̄(j̄−1)
2

r
)

. By considering M
P ∗

as the
size in bits of one data packet stored in a node,
an optimal scheme stores d− (j̄ − 1)r data packets
in a node, and has d helper nodes broadcasting rd
data packets for the repair of r nodes in a repair
round. Conversely, a scheme that stores d− (j̄−1)r
data packets in a node, and has d helper nodes
broadcasting rd data packets for the repair of r
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nodes in a repair round, is optimal if the size of each
data packet is M

P ∗
. Note that the points on the trade-

off curve are parametrized by j̄, and are obtained
by varying j̄.

In the following, we first state three conditions
for optimal functional repair. Then, we prove the
sufficiency of these conditions. Finally, we construct
a general scheme that satisfies these conditions with
high probability, and therefore, can achieve func-
tional repair for any point on the trade-off curve.

1) Conditions for an optimal scheme: The fol-
lowing conditions L1,L2, and L3, are sufficient
for optimal functional repair, and are described as
follows:

L1: For any set of nodes A such that |A| ≤ j̄r,
the following holds : dim

(∑
i∈AWi

)
=∑

i∈A dim
(
Wi

)
. This further implies that

dim
(
WA1 ∩WA2

)
= 0, where A1 and A2

are disjoint partitions of A.
L2: Given a node A, and a set of nodes denoted

by B such that |B| ≤ d−(j̄−1)r. Partition
B into two disjoint non-empty sets B1 and
B2. Then the following holds:

dim
(
WA ∩ (WB1 +WB2)

)
(22)

= dim
(
WA ∩WB1

)
+ dim

(
WA ∩WB2

)
.

(23)

This is equivalent to the following con-
dition: Let SBiA ,Bi ⊂ B, i = 1, 2, be the
subspace broadcasted by node A to repair
nodes in B1 and B2. Then, the following
must hold:

dim(SB1
A ∩ SB2

A ) = 0. (24)

L3: Given a node A, and disjoint sets of r
nodes denoted by R1, . . . ,Rj̄ , the follow-
ing holds:

dim

WA ∩WRj̄

∣∣∣ j̄−1∑
i=1

WRi

 ≤ r. (25)

We now show that the conditions L1, L2 and L3 are
sufficient for optimal functional repair by proving
that the reconstruction property is satisfied if these
conditions are met by a storage and repair scheme.

2) Reconstruction: Suppose a DC accesses the
nodes 1, . . . , k, denoted by Adc. For correct recon-
struction, the data available at the k nodes should
span the vector space spanned by the P packets
of the file. Therefore, a necessary condition for
successful reconstruction is dim(WAdc

) ≥ P . It
is also a sufficient condition for the reconstruction
of the file if the exact linear mapping between
the packets available at the k nodes and the P
packets of the file is known. In Section IV-D3,
we show that if the file packets are encoded with
the structure provided by linearized polynomials,
the above condition is sufficient for successful re-
construction of the file. In this section, we derive
the dimension of the subspace stored by k nodes,
assuming that the properties L1,L2 and L3 are
satisfied by the storage nodes. First we propose the
following lemma.

Lemma 1. Assume that L1,L2 and L3 are sat-
isfied. Given a node A, and a set of v ≤ d
nodes denoted by B, partition B into sets of r
nodes denoted by R1, . . . ,Rbv/rc, and denote the
remaining set of nodes by R′. Then,

dim
(
WA ∩WB

)
=

bv/rc∑
s≥j̄

dim

WA ∩WRs

∣∣∣ j̄−1∑
t=1

WRt

 .

(26)
Proof. Proof in Appendix VII-C.

Theorem 3. If a DC accesses k nodes, denoted by
Adc, k ≤ d, then, assuming that L1,L2 and L3 are
satisfied, we have

dim(WAdc
) ≥ P ∗, (27)

thus satisfying the reconstruction property with op-
timal storage and repair bandwidth.

Proof. We have

dim
( k∑
i=1

Wi

)
(28)

=
k∑
i=1

[
dim

(
Wi

)
− dim

(
Wi ∩

i−1∑
u=1

Wu

)]
(29)

=
k∑
i=1

dim
(
Wi

)
− (30)

k∑
i=1

b(i− 1)/rc∑
s=j̄

dim
(
Wi ∩WRs

∣∣∣ j̄−1∑
t=1

WRt

)
(31)
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≥ k(d− (j̄ − 1)r)− (r(r) + · · ·+ r(k − j̄r))
(32)

=
k

2
(2(d− (j̄ − 1)r)− (k − r)) + (33)

r

(
(j̄ − 1)k − j̄(j̄ − 1)

2
r

)
(34)

= P ∗ (35)

where Eq. (31) follows from Lemma 1.

Therefore, a storage and repair scheme that di-
vides the file into P data packets, and satisfies
L1,L2 and L3, achieves the optimal tradeoff be-
tween storage and repair bandwidth, by setting
P = P ∗. In the following section, we propose
a scheme that satisfies L1,L2 and L3 with high
probability.

3) Proposed code construction: A file of size
M bits is divided into P data packets denoted by
m1, . . . ,mP . For convenience and without loss of
generality, we assume that each packet consists of
exactly one symbol in Fql . Define the linearized
polynomial

f(x) =
P∑
i=1

mix
qi−1

, mi ∈ Fql , (36)

in a finite field Fql , l ≥ P . If a DC receives evalu-
ations of the polynomial f(x) on any P points in
Fql that are linearly independent over Fq, it can re-
construct f(x) by interpolation, and thus reconstruct
the file. For the rest of the section, we shall refer to
evaluations of f(x) on a set of linearly independent
evaluation points as linearly independent evalua-
tions. We propose a general scheme parameterized
by j̄ that achieves the points on the optimal storage-
repair bandwidth trade-off with a high probability.
Each node stores d− (j̄ − 1)r linearly independent
evaluations of f(x).

We set the size of the finite field to ql, where
l ≥ (n − r)(d − (j̄ − 1)r), and store d − (j̄ − 1)r
linearly independent evaluations of f(x) on the
nodes 1, . . . , n − r. Subsequently, the contents of
the remaining r nodes are generated by the nodes
1, . . . , d by using the repair scheme described in the
next subsection, as if the d nodes are helper nodes
repairing the nodes n − r + 1, . . . , n. This ensures
that the conditions L1, L2, and L3 are satisfied in
the initial storage round.

4) Repair scheme: The following repair scheme
satisfies the properties L1,L2 and L3, after an arbi-
trary number of repair rounds, with high probability.
During repair, the d helper nodes, denoted by the set
H, transmit r packets each to repair r newcomers,
enumerated as {n1, . . . , nr} = N . Node hi ∈ H,
for i = 1, . . . , d, transmits r random linear combina-
tions of packets in setA, |A| = r+e, 0 ≤ e ≤ d−j̄r,
where set A consists of r + e packets sampled
randomly from the packets stored in node hi, and e
is a free parameter that can be tuned to optimize the
performance. The packets transmitted by the helper
nodes hi in set H, enumerated as whi,1, . . . , whi,r,
are received and arranged by each newcomer in a
matrix Y of dimensions (d− (j̄ − 1)r)× j̄r in the
following manner:

YT =



wh1,1 wh2,1 · · · whd−(j̄−1)r,1

... . . . . . . ...
wh1,r wh2,r · · · whd−(j̄−1)r,r

whr+1,1 whr+2,1 · · · whd−(j̄−2)r,1

... . . . . . . ...
whr+1,r whr+2,r · · · whd−(j̄−2)r,r

wh2r+1,1 wh2r+2,1 · · · whd−(j̄−3)r,1

... . . . . . . ...
wh(j̄−1)r+1,r · · · · · · whd,r


.

(37)

Note that all the r packets received from the d
helper nodes are present in matrix Y with a certain
symmetrical arrangement.

Now, indexing the rows of matrix YT from 0 to
j̄r − 1, the following rotation operation is done on
each row of YT :

Rotate(g mod r) (row g) , g = 0, . . . , j̄r − 1,
(38)

where the function Rotateσ(v) applies a circular
rotation to the vector v by σ positions. Thus, new-
comer ni, i = 1, . . . , r, obtains matrix Y such that
each row contains packets from j̄r distinct helper
nodes.

Newcomer ni computes random linear combina-
tions over Fq of the j̄r packets in each row of Y,
and stores the resultant packets in its memory.

In the following, we argue that the conditions L1,
L2 and L3 are satisfied by the above repair scheme
with high probability.
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L1: Consider a non-zero random linear combi-
nation vp+1 of a set V of p linearly inde-
pendent vectors v1, . . . , vp. Then, the set of
vectors {vp+1} ∪ V ′, V ′ ⊂ V, |V ′| = p− 1
forms a basis. Moreover, a set containing
t non-zero random linear combinations of
the p vectors in V , and any p − t vectors
in V , forms a basis with a very high prob-
ability if the field size is sufficiently large.
Therefore, since each newcomer stores a
random linear combination of j̄r packets
received from j̄r distinct nodes, the prop-
erty L1 is satisfied with a high probability
which approaches 1 if q, the size of the
base field, is sufficiently large.

L2: Helper hi transmits r random linear com-
binations of r + e linearly independent
packets in each repair round to repair
a group of r newcomers. Consider that
the helper hi repairs two disjoint sets of
r newcomers R1 and R2. The packets
transmitted by hi can be written as UT =

U [T1 T2], where U ∈ Fl×(d−(j̄−1)r)
q

is the matrix representation in the base
field Fq of the packets stored in hi, and
T1,T2 ∈ F(d−(j̄−1)r)×r

q , having r + e non-
zero rows each, capture the coefficients of
the linear combinations of the r+e packets
transmitted for the repair of R1 and R2

respectively. The sufficient condition for
Eq. (24) to hold for B = R1 ∪ R2 is that
matrix T should have full column rank.
The probability that T has full column
rank is given by the probability that T has
at least 2r non-zero rows. Therefore, the
probability that T has full column-rank is
given by:

Pr(T has full column-rank)

=

∑2e
i=0

(
r+e
i

)(
d−(j̄−1)r−(r+e)

r+e−i

)(
d−(j̄−1)r
r+e

) . (39)

Consequently, if r ≥ 1 and e = 0, we have

Pr(T has full column-rank) =

(
d−(j̄−1)r−r

r

)(
d−(j̄−1)r

r

)
(40)

=
r∏
i=1

d− (j̄ − 1)r − 2r + i

d− (j̄ − 1)r − r + i
, (41)

which is close to 1 if d is sufficiently
large. As e increases, the probability of
T having a full column-rank increases. If
e ≥ r, matrix T has full column rank with
probability 1. In general, the probability
of matrix T ∈ F(d−(j̄−1)r)×|B|

q having full
column-rank can be made as high as de-
sired if e is set to an appropriate value
depending on the parameters d and r.

L3: This property holds for the described
scheme because each helper node delivers
r linearly independent packets to the new-
comers, which are then linearly combined
with the packets received from j̄−1 other
helper nodes which are also assumed to be
linearly independent. Therefore, given the
packets from the j̄− 1 helper nodes, node
A and the r nodes in the set R1 only have
r packets in common.

E. MSR point with ρ = 0

To achieve the MSR point (see Corollary 1), we
set j̄ = k

r
in the code construction in Section IV-D.

Thus the file is divided into P = P ∗ = k(d−k+ r)
data packets. Each node stores d − k + r linearly
independent points on f(x). Y is of dimensions
(d− k+ r)× k, and thus each newcomer computes
random linear combinations of the k packets in
the rows of Y. In this manner, an MSR code is
constructed with a subpacketization level of S =
d− k + r that scales linearly with d, k and r.

F. MBR point with ρ = 0

To achieve the MBR point (see Corollary 2), we
set j̄ = 1 in the code construction in Section IV-D.
The file is divided into P = P ∗ = k

2
(2d−k+r) data

packets. Each node stores d linearly independent
points on f(x). Y is of dimensions d× r, and each
newcomer computes random linear combinations of
the r packets in the rows of Y.

G. Code construction for any point on the trade-off
curve with ρ > 0 (partial repair)

In this section, we propose the sufficient condi-
tions for an optimal partial repair scheme, and then
propose an extension of the repair scheme from
the previous section to achieve optimal partial node
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repair performance with high probability. Substitut-
ing i = k

r
− j̄, j̄ ∈ [k

r
] in Theorem 1, we obtain

the general expression for any point on the optimal
storage-repair bandwidth trade-off for partial repair
as

(α∗, γ∗) =
M

P ∗

(
d− (j̄ − 1)r, rd(1− ρ)

)
, j̄ ∈

[
k

r

]
,

(42)

where P ∗ = k
2

(2(d− (j̄ − 1)r)− (1− ρ)(k − r))+
r(1 − ρ)

(
(j̄ − 1)k − j̄(j̄−1)

2
r
)

. An optimal partial
repair scheme divides a file into P ∗ data packets,
and each node stores (d− (j̄ − 1)r) coded packets.
Instead, we consider that, for ξ ∈ N, such that
ρξ ∈ N, the file is divided into ξP ∗ data packets,
and each node stores (d− (j̄−1)r)ξ coded packets.
The storage capacity and the repair bandwidth
achieved is optimal for any arbitrary ξ.

In the following, we first state three conditions
for optimal functional repair of partially failed
nodes, and then prove their sufficiency. In Section
IV-G3, we propose a general scheme that satisfies
these conditions with high probability, and therefore
achieve functional repair for any point on the trade-
off curve.

1) Conditions for an optimal scheme: The prop-
erties L1 and L2 remain the same as in Section
IV-D. The property L3 is described as follows:

L3: Given a node A, and j̄ disjoint sets of r
nodes denoted by R1, . . . ,Rj̄ , the follow-
ing property holds:

dim

WA ∩WRj̄

∣∣∣ j̄−1∑
t=1

WRt

 ≤ (1− ρ)rξ.

(43)

We now show that the above conditions are
sufficient for optimal functional repair.

2) Reconstruction: Given that L1,L2 and L3 are
satisfied, the dimension of the space obtained by a
DC accessing any k nodes is given by

dim
( k∑
i=1

Wi

)
=

k∑
i=1

[
dim

(
Wi

)
− (44)

dim
(
Wi ∩

i−1∑
u=1

Wu

)]
(45)

=
k∑
i=1

dim
(
Wi

)
− (46)

k∑
i=1

b(i− 1)/rc∑
s=j̄

dim
(
Wi ∩WRs

∣∣∣ j̄−1∑
t=1

WRt

)
(47)

≥ kξ
(
d− (j̄ − 1)r

)
−
(

(1− ρ)ξr(r)+

· · ·+ (1− ρ)ξr(k − j̄r)
)
(48)

= kξ
(
d− (j̄ − 1)r

)
− ξ(1− ρ)

(
r(r) + · · ·+ r(k − r)

)
+ ξ(1− ρ)r

(
(k − (j̄ − 1)r) + · · ·+ (k − r)

)
(49)

=
kξ

2
(2(d− (j̄ − 1)r)− (1− ρ)(k − r)) (50)

+ ξr(1− ρ)

(
(j̄ − 1)k − j̄(j̄ − 1)

2
r

)
,

(51)
which is equal to P ∗, thus proving optimality.
Therefore, if we have a repair scheme for which
L1,L2 and L3 are satisfied after an arbitrary num-
ber of repair rounds, the value of P can be set to P ∗,
thus achieving the optimal performance in terms of
storage and repair bandwidth.

3) Proposed code construction: The general
code construction for partial repair is an extension
of the one presented in Section IV-D.

We consider that, for ξ ∈ N, such that ρξ ∈ N,
the file is divided into ξP ∗ data packets, and each
node stores (d − (j̄ − 1)r)ξ coded packets. Thus,
when (1 − ρ)(d − (j̄ − 1)r)ξ, where 0 ≤ ρ < 1,
packets are erased on each of the r faulty nodes, we
have an integer number of erased packets, assuming
that ρξ ∈ N. The linearized polynomial f(x) is
constructed with these packets as coefficients, sim-
ilarly to Eq. (36). Node i, i = 1, . . . , n, stores S =(
d− (j̄−1)r

)
ξ linearly independent evaluations of

f(x), enumerated as wi,j, j = 1, . . . , (d−(j̄−1)r)ξ.
4) Repair scheme: We assume that (1 − ρ)(d −

(j̄−1)r)ξ packets are erased on each of the r faulty
nodes. Consider that the indices of the r faulty nodes
are denoted by the set N , and the indices of the
helper nodes are denoted by H. During repair, the
helper node h ∈ H transmits (1 − ρ)ξr random
linear combinations of a set of (1 − ρ)(r + e)ξ
randomly sampled packets. The number of unerased
packets on a faulty node ni ∈ N , i = 1, . . . , r, is
given by ρξ (d− (j̄ − 1)r). A set of rξρ packets
are randomly sampled from the unerased packets
in the faulty node ni, which are added to the
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Fig. 2: Trade-off curve between the repair band-
width and storage, M = 1, k = 8 and d = 10 helper
nodes. For single node failure r = 1 and for multiple
node failures r = 2.

(1−ρ)rξ packets transmitted by a helper node, thus
making rξ packets per helper node. Faulty node
ni arranges these packets to form a matrix Y of
dimensions (d − (j̄ − 1)r)ξ × j̄r, such that each
row contains packets from j̄r distinct helper nodes.
The conditions L1, L2 and L3 are satisfied with
high probability, and the rest of the repair scheme
proceeds similar to that in Section IV-D4.

V. RESULTS AND DISCUSSION

A. Optimal trade-off curve

In Fig. 2, we plot the storage vs. repair bandwidth
trade-off for single-node repair [8], broadcast repair
of multiple full node failures [33], and partial repair
of multiple nodes. Fig. 2 illustrates that utilizing the
unerased portion of data on a failed node reduces the
repair bandwidth significantly. The repair bandwidth
is normalized by the number of failed nodes, and
the fraction of data that is erased, in order to
make a fair comparison with single node repair
and full node repair respectively. We call it the
normalized repair bandwidth. We observe that the
MSR point does not improve over full node repair
even with partial repair, that is, the unerased data
in a faulty node does not help in the repair of the
erased packets in any meaningful way for the MSR
point. However, the normalized repair bandwidth

decreases significantly at all other points on the
trade-off curve.

B. Verifying the reconstruction property
We ran experiments using the sagemath python

library to verify the preservation of the recon-
struction property, that is, dim(WAdc

) ≥ P ∗ over
multiple repair rounds. We initially store (d− (j̄ −
1)r)(n− r) linearly independent evaluations of the
encoding linearized polynomial on n − r storage
nodes, and use the repair scheme to populate the
remaining r nodes with content. We run 100 repair
rounds, where the indices of the failing nodes and
the helper nodes are sampled uniform randomly
from the n nodes. We then compute the dimen-
sions of the subspace obtained from sets of k
nodes sampled randomly in each of 50 trials, and
record the minimum dimension from the subspaces
obtained from those sets of k nodes, as well as
the average dimension over those sets of k nodes
observed in the trials. It is observed that the value of
dim(WAdc

) decreases as the nodes go through repair
rounds, and approaches P ∗ asymptotically. Table
III records the results of experiments with multiple
parameter combinations, for different points on the
corresponding trade-off curves for those parameters,
using the proposed scheme for full-node repair.
We observe that dim(WAdc

) ≥ P ∗ is satisfied for
arbitrary parameter combinations if e and q are
chosen appropriately.

C. Subpacketization
As described in Section I-B, existing works

mainly consider exact repair on the MSR and MBR
points, but not the intermediate points on the trade-
off curve. Existing constructions for repairing Reed
Solomon (RS) codes that meet the cut-set bound
employ an exponential in n subpacketization [10]–
[12], [14]. The construction in [11] achieves the
cut-set bound for the MSR point but requires a
subpacketization S ≈ nn. For combination no. 1
in Table III , where n = 27, the subpacketization
required using the scheme in [11] is a practically
infeasible S ≈ 2727. Among the works that propose
repair schemes using non-RS codes, [22] proposes
a product-matrix construction that achieves the cut-
set bound for a linearly scaling subpacketization

Code available at: https://github.com/nitishmital/functional-repair

https://github.com/nitishmital/functional-repair


15

TABLE III: Results of experiments with multiple
parameter combinations verifying the reconstruction
property.

n k d r j̄ q e P ∗ min avg

27 15 17 5
1 29 0 180 191 191
2 29 0 155 158 158
3 257 2 105 105 105

24 16 16 4

1 29 1 160 170 170
2 29 1 144 149 149
3 29 1 112 114 114
4 29 0 64 64 64

20 12 12 4
1 29 1 96 96 96
2 29 1 80 84 84.98
3 29 0 48 48 48

16 12 12 3

1 1021 3 90 91 91
2 1021 3 81 83 83
3 257 3 63 63 63
4 257 0 36 36 36

16 8 11 2

1 29 1 64 65 74.1
2 29 1 60 64 68.84
3 29 1 52 54 55.56
4 29 1 40 40 40

14 10 10 2

1 29 2 60 60 60
2 29 1 56 57 57.96
3 29 2 48 49 49
4 29 2 36 36 36.92
5 127 0 20 20 20

9 6 6 3 1 1021 3 27 27 27
2 1021 0 18 18 18

level of S = d − k + r, but with the constraint
n ≥ 2k − 1. The construction in [45] achieves
the MSR cut-set bound for general parameters with
a subpacketization of S ≈ rdn/re, which for the
parameters in combination no. 1 in Table III, gives
S = 56.

The proposed scheme achieves a subpacketization
level that scales linearly with n, k, d and r, for all
points on the trade-off curve for full node repair. For
example 1 in the above table, the subpacketization
for the MSR point is S = d − k + r = 7, while
that for the MBR point is S = d = 17. The
subpacketization is given by S = d − (j̄ − 1)r for
different points on the trade-off curve parameterized
by j̄. For partial repair, the subpacketization is given
by S = (d− (j̄ − 1)r)ξ, ξ ∈ N, which is also linear
in n, k, d and r.

D. Input/Output cost

The input-output cost is defined as the number
of symbols that need to be read by a helper node
from its memory, which are then linearly combined
and sent to the newcomers. For the repair of r

newcomers, the proposed scheme achieves an input-
output cost of r+ e. As recorded in Table III, small
values of e are often sufficient to achieve the cut-set
bound, implying a low input-output cost of r.

E. Computational complexity
The finite field operations are in the finite ex-

tension field F(ql). For reconstruction of the file
from any k nodes, the DC interpolates a linearized
polynomial of degree P in the finite field Fql .
The complexity of interpolation of a linearized
polynomial is O(P ε) operations in Fq, where ε is
the matrix multiplication exponent [46]. One of the
frequently used fast algorithms for matrix multi-
plication is known as the Strassen algorithm [47],
which achieves the matrix multiplication exponent
ε = 2.807. Therefore, the fastest reconstruction
complexity is O(P 2.807) operations in Fq.

The repair complexity, defined as the computa-
tional complexity of repair operations, is smaller
than that of random linear coding, because only
rows of j̄r < dr packets are multiplied with the
parity matrix Mj̄r×r in the repair process, which
makes the computations faster, unlike random linear
coding where, in general, d−(j̄−1)r random linear
combinations of dr packets are computed during the
repair process, requiring dr(d− (j̄−1)r) finite field
operations. In the proposed scheme, the number
of finite field operations during repair is given by
j̄r(d− (j̄ − 1)r). For the MBR point, where j̄ = 1,
this results in a reduction in repair complexity by
a factor of d. Since the number of coefficients of
linear combination needed to be communicated is
also reduced, the overhead is lower.

VI. CONCLUSIONS

In this paper, we studied large scale distributed
storage systems and considered the problem of
repair of partial failures of multiple nodes via
broadcast transmissions over a wireless medium. We
derive the optimal storage-repair bandwidth trade-
off curve by constructing an information flow graph
to represent the evolution of the system with time,
and computing the minimum cut-set capacity in the
information flow graph. It has been shown in previ-
ous literature that, compared to single node repair,
repairing multiple nodes at once and exploiting the
broadcast nature of the medium reduce the repair
bandwidth per failed node. We illustrate that the
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optimal repair bandwidth is reduced even further
by utilizing the remaining content in the nodes that
experience partial failure. We derive the invariant
conditions related to the way the subspaces stored
by different nodes intersect, that are sufficient for
the existence of a feasible functional regenerating
code, and provide an intuitive insight into how
functional regenerating codes may be constructed.
We then present an explicit storage and repair
framework for the functional repair of multiple
node failures in a broadcast setting, achieving all
the points on the trade-off curve, as illustrated in
Fig. 2, with high probability. We also extend the
framework to the case when there is only partial
failure of multiple nodes. The proposed storage
and repair framework achieves multiple desirable
characteristics for regenerating codes. These char-
acteristics include achieving the optimal storage-
repair bandwidth trade-off with high probability, for
many feasible parameters (n, k, d, r) not achieved
in existing literature; achieving all points on the
trade-off curve; a subpacketization level that scales
linearly with respect to the code parameters; low
input-output cost; and low computation complexity
during repair.

An interesting future research direction is the
consideration of more realistic heterogeneous sce-
narios, in which the storage nodes have unequal
capacities and experience unequal partial failures, as
explored in [48] for a flexible reconstruction degree,
where every node in the system has a dynamic
repair bandwidth and dynamic storage capacity. In
this case, finding the min-cut capacity of the infor-
mation flow graph must be formulated as a linear
programming problem. While trivial extensions of
the proposed scheme for the homogeneous setting
in this paper can allow us to obtain a sub-optimal
achievable scheme, a thorough analysis should po-
tentially provide significant gains and interesting
insights. It may be possible to group nodes together
or assign different tolerances to partial failures to
different nodes based on their storage capacities or
connectivity to other storage nodes.
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VII. APPENDIX

A. Proof of Theorem 1

Proof. Consider an information flow graph G that
enumerates all possible failure/repair patterns and
all possible DCs when the number of failures/repairs
is bounded by r. We analyze the connectivity in
the information flow graph to find the minimum
repair bandwidth. Initially, the source delivers α
bits each to n nodes, which then become active
while the source node becomes inactive. When r
nodes lose part of their data, a repair round is
triggered in which they connect to d surviving nodes
and receive β bits from each of them. Using the
received messages, and the un-erased content in
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their local memories, the r nodes recover their lost
content. The active nodes, before the s-th repair
round is triggered, are labelled as Ract

s , {(s −
1)n + 1, . . . , sn}. Consider that in the s-th repair
round, the nodes Rf

s , {(s − 1)n + (s − 1)r +
1, . . . , (s − 1)n + sr} are repaired. Denote the
set of labels of the newcomers in the s-th round
by Rnew

s , {sn + (s − 1)r + 1, . . . , sn + sr},
which represent the repaired nodes. The complete
nodes are copied into the next round and labeled as
Rcomp
s , { i : i ∈ [sn + 1 : (s + 1)n] \ Rnew

s }. The
newcomers and the copied complete nodes together
form the set of active nodes for the next repair
round, i.e., Ract

s+1 = Rnew
s ∪Rcomp

s , while the nodes
from all the previous rounds become inactive.

For the reconstruction property to hold, any DC
that connects to the “out-nodes” of any k active
nodes must satisfy

C = mincut(S,DC) (52)

≥
k/r∑
s=1

min{(rα1 + (d− r(s− 1))β, rα)}. (53)

First, we show that there exists an information flow
graph G′, for which Eq. (52) holds with equality.
Consider that after the storage nodes have gone
through h repair rounds, a DC connects to the nodes
with indices Rnew

h . Consider a cut (U, Ū) between S
and DC, which separates the graph into the disjoint
sets of nodes U and Ū , constructed as follows. For
the s-th repair round, if rα ≤ rα1 +(d−(s−1)r)β,
then we include the nodes xR

new
s

in in U , and xR
new
s

out in
Ū , similarly to the cut χ2 in Fig. 1; otherwise, we
include x

Rnew
s

in , x
Rnew

s
out , xR

f
s

out, and all auxiliary nodes
in Ū , while the nodes xR

f
s

mid and x
Ract

s
in are included

in U , similarly to the cut χ1 in Fig. 1. We argue
that the capacity of the cut (U, Ū) meets that of Eq.
(52) with equality.

Second, we argue that any information flow graph
has at least the cut capacity in Eq. (52). We note
that there is a topological order of the nodes in an
information flow graph by which any node νi having
incoming edges only from nodes in Ū , also belongs
to Ū , and an edge from νi to νj implies i < j. The
min-cut in a repair round can be of only two types.
In a “type-1” cut, all helper nodes not yet included
in Ū , and the out-vertices of the faulty nodes, are
included in Ū , as illustrated by the cut χ1 in Fig. 1.
A type-1 cut includes both the in-vertices and the

out-vertices of the newcomer nodes in Ū . In a “type-
2” cut, all helper nodes and the in-vertices of the
newcomers are included in U , while the out-vertices
of the newcomers are included in Ū , as illustrated
by the cut χ2 in Fig. 1. Other cuts that include
the in-vertices of a subset of the newcomers in
U , while including the in-vertices of the remaining
newcomers in U , always have a capacity larger than
type-1 cuts.

We illustrate this using Fig. 1: Suppose cut χ3

passes through the edge x5
in → x5

out, and the edges
x2
mid → x2

out, x
3
out → h3, x4

out → h4. The capacity
of cut χ3 is given by α1 + 2β + α, which is
always greater than the capacity of the cut χ1, since
α1 + 2β + α > 2α+ 2β. Therefore, we see that the
minimum cut is always either type-1 or type-2 in
any particular repair round, and the minimum cut
thus obtained achieves the cut capacity given by Eq.
(52).

The expression for the min-cut capacity is derived
in the following way. The contribution of the first
repair round to the minimum cut capacity is given
by min{rα1 +dβ, rα}, where the first term denotes
the capacity contribution from a type-1 cut, and the
second term denotes the contribution from a type-2
cut. Consider the second repair round. The r nodes
which are repaired in the first repair round already
lie in Ū , so edges originating from these nodes
do not contribute to the min-cut capacity from the
second round onwards.

The min-cut capacity contribution by the second
repair round is given by min{rα1 + (d− r)β, rα}.
We follow this procedure of passing the min-cut
through each repair round with a type-1 or a type-2
cut until the DC lies in Ū , which happens when the
k nodes to which the DC is connected to lie in Ū .
When we sum the contributions from each repair
round to the min-cut capacity, we obtain Eq. (52).

From Proposition 1, the min-cut capacity must be
greater than the file size to ensure that the DC is able
to reconstruct the file from any k nodes. Therefore,
the following must be satisfied for guaranteed file
reconstruction:

k/r∑
s=1

min{(rα1 + (d− r(s− 1))β, rα)} ≥M.

(54)
We are interested in characterizing the

achievable trade-offs between the storage α
and the repair bandwidth dβ for given (n, k, ρ).
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If rα ≤ rα1 + (d − k + r)β, then the min-cut
is type-2 in each of the k/r repair rounds; if
rα1 + (d − k + r)β ≤ rα ≤ rα1 + (d − k + 2r)β,
then the min-cut is type-2 for the first k/r − 1
repair rounds, but type-1 in the k/r-th repair
round. In general, if rα1 + (d − rs)β ≤ rα ≤
rα1 + (d− r(s− 1))β, s ∈ [k/r], then the min-cut is
type-2 for the first s repair rounds, and type-1 for
the remaining k/r − s repair rounds.

Let bs−1 ,
d−k
r

+s

1−ρ β, s = [k/r]. The capacity of the
min-cut is a piecewise-linear function of α given by

C(α) =



kα, α ∈ (0, b0]
(k − r)α + (rα1 + (d− k + r)β) ,

α ∈ (b0, b1]
...
rα +

∑k/r−1
i=1 (rα1 + (d− k + ir)β) ,

α ∈ (bk/r−2, bk/r−1]∑k/r
i=1 (rα1 + (d− k + ir)β) ,

α ∈ (bk/r−1,∞]
(55)

=


kα, α ∈ (0, b0]

(k − ir(1− ρ))α + (1− ρ)
∑i−1

j=0 rbj,
α ∈ (bi−1, bi], i = 1, 2, . . . , k/r − 1

kρα + (1− ρ)
∑k/r−1

j=0 rbj,
α ∈ (bk/r−1,∞]

(56)

Note that C(α) is a strictly increasing function. To
find the minimum α for a given repair bandwidth
γ = dβ such that C(α) ≥M , we let α∗ = C−1(M)
to obtain

α∗ =



M
k

M ∈ (0, kb0]
M−g(i)γ
k−ir(1−ρ)

M ∈
[
(k − ir(1− ρ))bi−1

+(1− ρ)
∑i−1

j=0 rbj, (k − ir(1− ρ))bi

+(1− ρ)
∑i−1

j=0 rbj

]
(57)

=

{
M
k

γ ∈ [f(0),∞)
M−g(i)γ
k−ir(1−ρ)

γ ∈ [f(i), f(i− 1)]
(58)

B. Proof of Theorem 2
Proof. The proof follows essentially the same steps
as in the proof for Theorem 1. k nodes are divided
into p groups of r nodes where p = bk

r
c, and

a remaining group of k − k0 nodes. The min-cut

capacity contribution by the group of k − k0 nodes
is given by min{(k−k0)α, (k−k0)α1 +(d−k0)β},
while the min-cut capacity contribution of the other
groups of r nodes is computed in exactly the same
manner as for Theorem 1. The min-cut capacity is
therefore written as:

C(α) = min
{

(k − k0)α, (k − k0)α1 + (d− k0)β}

+

k/r∑
s=1

min{(rα1 + (d− r(s− 1))β, rα)
}
. (59)

The rest of the derivation of the piecewise linear
function follows the same procedure as in the proof
for Theorem 1.

C. Proof of Lemma 1

Proof. We have

dim
(
WA ∩WB

)
= dim

(
WA ∩

v∑
i=1

Wi

)
(60)

= dim

WA ∩

bv/rc∑
t=1

WRt +WR′

 (61)

=

j̄−1∑
u=1���

���
���

���
���:0

dim
(
WA ∩WRu

∣∣∣ u−1∑
t=1

WRt

)
+ dim

(
WA ∩WB\(R1,...,Rj̄−1)

∣∣∣ j̄−1∑
t=1

WRt

)
(62)

a
= dim

(
WA ∩WB\(R1,...,Rj̄−1)

∣∣∣ j̄−1∑
t=1

WRt

)
(63)

b
= dim

(
WA ∩WRj̄

∣∣∣ j̄−1∑
t=1

WRt

)
+

dim
(
WA ∩WB\(R1,...,Rj̄)

∣∣∣ j̄−1∑
t=1

WRt

)
(64)
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where step a is due to property L1, while step b is
due to L2. Using Eq. (64) recursively, we obtain

dim
(
WA ∩WB

)
=

bv/rc∑
s≥j̄

dim
(
WA ∩WRs

∣∣∣ j̄−1∑
t=1

WRt

)

+ dim
(
WA ∩WR′

∣∣∣ j̄−1∑
t=1

WRt

)
(65)

c
=

bv/rc∑
s≥j̄

dim
(
WA ∩WRs

∣∣∣ j̄−1∑
t=1

WRt

)
(66)

where step c follows from L1.
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