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Abstract

In this paper, we study a distributed learning problem constrained by constant communication bits. Specifically,
we consider the distributed hypothesis testing (DHT) problem where two distributed nodes are constrained to
transmit a constant number of bits to a central decoder. In such cases, we show that in order to achieve the optimal
error exponents, it suffices to consider the empirical distributions of observed data sequences and encode them to
the transmission bits. With such a coding strategy, we develop a geometric approach in the distribution spaces and
establish an inner bound of error exponent regions. In particular, we show the optimal achievable error exponents and
coding schemes for the following cases: (i) both nodes can transmit log2 3 bits; (ii) one of the nodes can transmit 1
bit, and the other node is not constrained; (iii) the joint distribution of the nodes are conditionally independent given
one hypothesis. Furthermore, we provide several numerical examples for illustrating the theoretical results. Our
results provide theoretical guidance for designing practical distributed learning rules, and the developed approach
also reveals new potentials for establishing error exponents for DHT with more general communication constraints.

Index Terms

distributed learning, distributed hypothesis testing, communication constraints, multiterminal data compression,
error exponent, statistical inference

I. INTRODUCTION

The rapid development of IoT (Internet of Things) technology has led to unprecedented advances in
efficient data collection, where comprehensive descriptions of physical events are provided by distributed
sensory nodes [2]. Despite of the large amount of available samples, effectively analyzing such sensory data
can be challenging in real systems [3], due to the distributed observations at different sensory nodes, and
the communication constraints between nodes and centers. In this paper, we investigate the fundamental
limit of such distributed learning scenarios, where we assume the nodes can only communicate to the
decision center with a constant number of bits, i.e., independent of the observed sequence length. Our
goal is to characterize the performance of such distributed systems by the statistical dependency of the
observations at different nodes, the communication constraints, and the central fusion rule.

In particular, we consider a distributed hypothesis testing (DHT) problem, with a pair of random
variables X, Y and joint distributions P

(0)
XY and P

(1)
XY . In addition, there are n samples drawn in an

independently, identically distributed (i.i.d.) manner from either P (0)
XY or P (1)

XY , which may correspond
to the two hypothesis H = 0 and H = 1 in statistics, or different labels in supervised learning problems.
Moreover, in the distributed setup, we assume that there are two nodes, referred to as node NX and node
NY , each observes only the n i.i.d. samples of X and the samples of Y , respectively, and each node
sends an encoded message to a central decoder. Then, the decoder makes a decision of the hypothesis
Ĥ according to the received messages. Specifically, we assume that the number of communication bits
cannot exceed some given constants, independent of n, and both nodes are required to encode (compress)
the observed length-n sequences to the message subject to the communication constraints. Our goal is to
design the encoder of each node and the central decoder to minimize the error probability of inferring the
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label. We focus on the asymptotic regime such that n is large, and characterize the error exponent pair
for both types-I and type-II errors. The rigorous mathematical formulation is presented in Section II.

The general framework of such multiterminal statistical inference problems was first introduced in [4].
Following this proposal, the DHT problem with full side information was formulated and investigated in
[5], where the sequence observed by NY can be directly transmitted to the center, while NX can only send
messages at some positive rate. Following this work, there have been a series of studies on DHT under
different settings of communication constraints, which are typically represented as the communications
rates, or equivalently, the compression rates of the encoders. Specifically, the DHT problem with zero-rate
compression was first introduced in [6], where the one-bit compression (also known as complete data
compression) constraint was also discussed. The achievable error exponent pairs under two-sided one-
bit compression were later established in [7]. The DHT problem under zero-rate compression was also
investigated in [8], [9]. A comprehensive survey of representative works through this line of researches
can be found in [10]. Recently, the studies on DHT are still fairly active [11]–[16], with new analyzing
tools and settings considered, e.g., DHT with interactive extensions [17] and sequential extensions [18] ,
DHT over relay networks [19], and DHT over noisy channels [20]. Despite of such massive studies, the
characterizations of DHT under general communication constraints still remain open, except for several
special cases, e.g., the testing against independence problem with full side information [5], or the zero-rate
compression setting [10]. Specifically, for DHT with constant communication bits, previous discussions
were restricted to the one-bit compression setting [6], [7], [10], [21], [22].

The primary aim of this paper is to investigate the optimal error exponent pairs of DHT with constant
communication bits, and the main contributions are as follows. First, we demonstrate that the optimal
encoding scheme depends only on the empirical distributions of the observed sequences, rather than the
sequences themselves, as long as the compression rates are zeros. With this coding strategy, we develop a
geometric approach in the distribution spaces to characterize the achievable error exponent pairs. Using this
approach, we further provide an inner bound of the error exponent region, and compare the performance
under different decoders. In addition, we show that this inner bound is tight and establish the optimal error
exponents, for the following cases: (i) two-sided one-trit compression, where both nodes can transmit one-
trit (trinary digit) message; (ii) one-sided one-bit compression, where one node can transmit one bit, and
the other node is not constraint; (iii) the nodes are conditionally independent given one hypothesis. Our
characterization extends previous studies on two-sided one-bit compression (cf. [7], [10]) and provides a
novel geometric interpretation, which suggests new potentials for error exponent region characterization
of DHT under general communication constraints.

The rest of this paper is organized as follows. In Section II, we introduce the problem formulation and
related notations. Then, Section III presents the optimal encoding scheme, and a geometric characterization
of the achievable error exponents is provided in Section IV. With such characterization, we establish
the error exponent region and the optimal coding schemes under different communication settings in
Section V. Finally, we present numerical examples in Section VI, and conclude the paper with discussions
in Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the mathematical formulation of DHT problem, and also provide some
useful definitions and notations.

A. Problem Formulation
First, we assume both X and Y are discrete random variables, taking values from finite alphabets X

and Y, respectively. Then, the general setup of DHT is depicted in Fig. 1. When H = i, n i.i.d. sample
pairs {(Xj, Yj)}nj=1 are generated from the joint distribution P

(i)
XY . Throughout our analyses, we assume

that all entries of P (0)
XY and P (1)

XY are positive, i.e., for both i = 0, 1,

P
(i)
XY (x, y) > 0, for all x ∈ X, y ∈ Y. (1)
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NXXn

NYY n

Center Ĥ = φn(fn(Xn), gn(Y n))

(Xn, Y n) ∼ P
(H)
XY

fn(Xn)

gn(Y n)

Fig. 1. Distributed Hypothesis Testing with Communication Constraints

Then, node NX and node NY observe Xn , (X1, . . . , Xn) and Y n , (Y1, . . . , Yn), respectively, and
encode their observed sequences to into messages fn(Xn) and gn(Y n), where fn : Xn → M

(n)
X and

gn : Yn → M
(n)
Y are the corresponding encoders. The encoded messages are further sent to a central

machine, which makes the decision Ĥ , φn(fn(Xn), gn(Y n)), with φn : M
(n)
X ×M

(n)
Y → {0, 1} being used

as the decoder.
Due to the limited communication budgets in practice, there are typically constraints on the sizes of

the message sets M
(n)
X and M

(n)
Y . Following the convention introduced in [10], we use ‖fn‖ ,

∣∣∣M(n)
X

∣∣∣ and

‖gn‖ ,
∣∣∣M(n)

Y

∣∣∣ to denote the cardinalities of message sets, and express the constraints on ‖fn‖ and ‖gn‖
as a pair (RX , RY ), referred as the rate of encoders fn and gn, with RX , RY ∈ [0,∞) ∪ {0M : M ≥ 1}.
Specifically, each RX ∈ [0,∞) indicates the constraint1

lim sup
n→∞

1

n
log ‖fn‖ ≤ RX , (2)

and each RX = 0M with M ≥ 1 indicates the constraint

lim sup
n→∞

‖fn‖ ≤M, (3)

namely, the encoded message fn(xn) is allowed to take at most M distinct values2. The constraint RY

for ‖gn‖ is similarly defined. Specifically, we refer to fn (or gn) as a zero-rate encoder if it satisfies the
constraint RX = 0 (or RY = 0), and the corresponding hypothesis testing setting is called the zero-rate
compression regime. In this paper, we consider the DHT problem with constant communication bits,
also referred to as constant-bit compression regime, where we have RX ∈ {0M : M ≥ 1} or RY ∈
{0M : M ≥ 1}. In particular, we will focus on the constant-bit communication constraint (0MX

, 0MY
) with

MX ,MY ≥ 1, i.e., node NX and node NY can transmit at most log2MX and log2MY bits to the center,
respectively.

Then, each coding scheme can be characterized as a tuple Cn = (fn, gn, φn) of encoder and decoder
functions. In addition, for each given Cn, we define the type-I error π0(Cn) and type-II error π1(Cn)

associated with Cn as πi(Cn) , P
{
Ĥ 6= i

∣∣∣H = i
}

for i = 0, 1, where P {·} denotes the probability with
respect to the i.i.d. sampling process over n sample pairs.

In particular, we consider the asymptotic regime such that n is large and characterize the achievable
error exponents, defined as follows.

1Throughout, the logarithm log(·) indicates the natural logarithm with base e, unless otherwise specified.
2For mathematical convenience, we allow M to take 1, where no information can be transmitted from the node to center.
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Definition 1 (Error Exponent Region): Given a rate pair (RX , RY ), an error exponent pair (E0, E1) is
achievable under (RX , RY ), if there exists a sequence of coding schemes {Cn = (fn, gn, φn)}n≥1 such
that the encoders fn and gn satisfy the rate constraints (RX , RY ), and

lim
n→∞

1

n
log πi(Cn) = −Ei, i = 0, 1. (4)

Then, we define the error exponent region E(RX , RY ) as the closure of the set of all achievable error
exponent pairs under the rate constraints. Specifically, under constant-bit compression, if the coding
schemes Cn’s in (4) have a common decoder φ for all n ≥ 1, we call an error exponent pair (E0, E1) is
achievable under decoder φ. Then, we use E[φ] to denote the closure of the set of all such pairs.

Our goal is to characterize the error exponent region under constant-bit compression regime and the
coding schemes to achieve the error exponents.

B. Definitions and Notations
Given an alphabet Z ∈ {X,Y,X × Y}, we use PZ to denote the set of distributions supported on

Z. Then, for a joint distribution QXY ∈ PX×Y, the corresponding marginal distributions are denoted by
[QXY ]X ∈ PX and [QXY ]Y ∈ PY. In particular, for each i = 0, 1, we denote P (i)

X , [P
(i)
XY ]X , P

(i)
Y , [P

(i)
XY ]Y .

In addition, a sequence (z1, . . . , zn) ∈ Zn is denoted by {zi}ni=1 or simply zn, and we use P̂zn ∈ PZ

to denote its empirical distribution (type), defined asP̂zn(z′) , 1
n

∑n
i=1 1{zi=z′} for all z′ ∈ Z, where 1{·}

denotes the indicator function. Specifically, the set of all empirical distributions of sequences in Zn is
denote as P̂Z

n ,
{
P̂zn : zn ∈ Zn

}
.

Furthermore, we use P? , PX × PY to denote the product space of marginal distributions. For each
i = 0, 1 and t > 0, we define the subsets Di(t) of P? as

Di(t) , {(QX , QY ) ∈ P? : D∗i (QX , QY ) < t}, (5)

where the function D∗i : P? → R is defined as

D∗i (QX , QY ) , min
QXY : [QXY ]X=QX

[QXY ]Y =QY

D(QXY ‖P (i)
XY ), (6)

where D(·‖·) denotes the Kullback-Leibler (KL) divergence between distributions.
In addition, we define several useful operations on P? as follows. For a given A ⊂ P?, we define its

projections ΠX(A) on PX and ΠY (A) on PY, as

ΠX(A) , {QX ∈ PX : (QX , Q
′
Y ) ∈ A for some Q′Y ∈ PY}, (7a)

ΠY (A) , {QY ∈ PY : (Q′X , QY ) ∈ A for some Q′X ∈ PX}. (7b)

Then, we have the following definition.
Definition 2: The binary operator “ .” on P? is defined as A .A′ , {(QX , QY ) ∈ A : QX ∈ ΠX(A′), QY ∈

ΠY (A′)}, for all A,A′ ⊂ P?. In addition, for each k ≥ 0, we define the operator “ .k” as A .0 A
′ , A,

A .1 A
′ , A′, and A .k+2 A

′ , (A .kA
′) . (A .k+1 A

′) for k ≥ 0.
We also define operators “X

.”, “ Y

.” as

A
X

.A
′ , {(QX , QY ) ∈ A : QX ∈ ΠX(A′)}, (8)

A
Y

.A
′ , {(QX , QY ) ∈ A : QY ∈ ΠY (A′)}. (9)

Fig. 2 demonstrates relations of operators ., X

.,
Y

. and .k, where the horizontal axis and vertical axis
represent the marginal distributions of X and Y , respectively, and where each point corresponds to a pair
of marginal distributions (QX , QY ) ∈ P?.

Finally, for sequences {an}n≥1 and {bn}n≥1, we use an = o(bn) to indicate that limn→∞
an
bn

= 0. We
also define dMc , {0, . . . ,M − 1} for M ≥ 1, and ı̄ , 1− i for i ∈ {0, 1}.
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A0

A1

A0 .A1

A0
X

.A1

A0
Y

.A1

QX

QY

(a) A0 .A1,A0
X
.A1, and A0

Y
.A1

A0

A1

A0 .2 A1

A0 .3 A1

A0 .4 A1

A0 .5 A1

QX

QY

(b) A0 .k A1

Fig. 2. The relations of binary operators . (.2), X
.,

Y
., and .k, k ≥ 2, where A0 and A1 are subsets of P? = PX × PY.

C. Encoders and Decoders
We then provide characterizations on encoders and decoders in constant-bit compression regime (0MX

, 0MY
),

where MX ,MY ≥ 1. Without loss of generality, we assume that the corresponding message sets are
M

(n)
X ≡ dMXc and M

(n)
Y ≡ dMY c, respectively.

1) Type-based Encoders: An encoder is called type-based if its output depends only on the type of th
e input. Specifically, fn is type-based, when there exist a mapping θX : PX → dMXc such that fn(xn) =
θX(P̂xn), for all xn ∈ Xn. Similarly, gn is type-based if gn(yn) = θY (P̂yn) for some θY : PY → dMY c.
Then, the type-based encoders fn, gn are fully characterized by the mappings θX and θY , which we refer
to as type-encoding functions.

2) Decoder Representation and Special Decoders: Each decoder φ is a Boolean-valued function on
dMXc × dMY c, formalized as follows.

Definition 3: Given MX ,MY ≥ 1, an MX ×MY decoder is a function φ : dMXc × dMY c → {0, 1}.
The decision matrix associated with φ is defined as an MY × MX Boolean matrix A with entries
A(mY ,mX) , φ(mX ,mY ) for all (mX ,mY ) ∈ dMXc × dMY c, and we use φ ↔ A to denote this
one-to-one correspondence.

In addition, we call φ trivial if φ ≡ 0 or φ ≡ 1. For a given decoder φ, we define its complement φ̄ as
φ̄(mX ,mY ) , 1− φ(mX ,mY ), for all (mX ,mY ) ∈ dMXc × dMY c.

Moreover, the threshold decoders will be useful in our analyses, defined as follows.
Definition 4: For given MX ,MY ≥ 1, the MX × MY threshold decoders are the MX × MY de-

coder ϕMX ,MY
and its complement ϕ̄MX ,MY

, where ϕMX ,MY
(mX ,mY ) , 1{mX+mY ≥min{MX ,MY }}, for all

(mX ,mY ) ∈ dMXc × dMY c.
We will sometimes find it convenient to express a decision matrix as filled grids of the same dimensions,

with occupied grids and empty grids indicating “1” and “0”, respectively. For example, when MX = MY =
2, the threshold decoders ϕ2,2 and ϕ̄2,2 as defined in Definition 4 can be represented as “ ” and “ ”,
respectively.

The decoder representations allow us to formalize the following fact on error exponent regions.
Fact 1: Suppose φ ↔ A and φ′ ↔ A′. Then, we have E[φ′] ⊂ E[φ] if A′ is a submatrix of A. In

addition, E[φ] = E[φ′] if A′ can be obtained from A by deleting duplicated rows/columns, or permuting
rows/columns. Specifically, for all MX > MY ≥ 1, we have E[ϕMX ,MY

] = E[ϕ̄MX ,MY
].

As an example of Fact 1, the following result is useful for our later further derivations.
Example 1: We have E[ϕ4,2] = E[ϕ3,2] = E[ϕ̄3,2] = E[ϕ̄4,2], i.e., E[ ] = E[ ] = E[ ] =

E[ ].
Furthermore, we use FMX ,MY

to denote the collection of all MX × MY decoders, and we define
F ,

⋃
MX≥1,MY ≥1 FMX ,MY

as the collection of all decoders. Then, for each collection of decoders H ⊂ F,
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we use E[H] to denote its associated error exponent region, defined as E[H] ,
⋃
φ∈H E[φ]. Specifically,

we have the following fact, of which a proof is provide in Appendix A.
Fact 2: For all P (0)

XY , P
(1)
XY ∈ PX×Y and MX ,MY ≥ 1, we have E(0MX

, 0MY
) = E[FMX ,MY

].

III. OPTIMALITY OF TYPE-BASED ENCODERS

This section demonstrates the asymptotic optimality of type-based encoders for DHT problems satisfying
zero-rate communication constraints. To formalize this optimality, we first introduce the following result.
A proof is provided in Appendix B, via exploiting the celebrated blowing up lemma [23].3

Lemma 1: Suppose {(Xi, Yi)}ni=1 are i.i.d. generated from a joint distribution PXY with PXY (x, y) > 0,
for all x ∈ X, y ∈ Y. Then, for all zero-rate encoders fn : Xn → M

(n)
X and gn : Yn → M

(n)
Y , there exist

mappings θX : PX →M
(n)
X and θY : PY →M

(n)
Y , such that

P {fn(Xn) = θX(QX), gn(Y n) = θY (QY )} ≥ P
{

(P̂Xn , P̂Y n) = (QX , QY )
}
· exp(−n · o(1)) (10)

for all (QX , QY ) ∈ P̂X
n × P̂Y

n.
By using Lemma 1, we can establish the following result illustrating the asymptotic optimality of

type-based encoder in zero-rate DHT. A proof is provided in Appendix C.
Theorem 1: For a given n ≥ 1 and zero-rate encoders fn and gn with ranges M

(n)
X and M

(n)
Y , there

exist type-based encoders f̃n, g̃n with the same ranges as fn, gn, respectively, such that, for each decoder
φn : M

(n)
X ×M

(n)
Y → {0, 1} and the corresponding coding schemes Cn , (fn, gn, φn), C̃n , (f̃n, g̃n, φn),

we have

πi(C̃n) ≤ πi(Cn) · exp(nζn), for i ∈ {0, 1},

with ζn = o(1).
Remark 1: The optimality of type-based decision in non-distributed hypothesis testing can be established

by a more straightforward argument, see, e.g., [24, Lemma 3.5.3]. Specifically, suppose n i.i.d samples
xn ∈ Xn are generated by P (H)

X , and fn(xn) is used as our decision for H ∈ {0, 1}, where fn : Xn → {0, 1}.
Then, there exists a type-based decision f̃n : Xn → {0, 1} such that

πi(f̃n) ≤ 2 · πi(fn), for i ∈ {0, 1},

where π0(·) and π1(·) denote the type-I error and type-II error for corresponding decision functions,
respectively. It is also easy to verify that both Neyman–Pearson test [25] and Hoeffding’s test [26] depend
only on the types. In particular, Neyman–Pearson test depends only on the empirical mean of log-likelihood
ratio log

P
(0)
X (x)

P
(1)
X (x)

, see, e.g., [27, Theorem 11.7.1]. And, when only P
(0)
X is available but P (1)

X is unknown,

the resulting Hoeffding’s test depends only on the KL divergence D
(
P̂xn
∥∥P (0)

X

)
, which is also a function

of the type P̂xn .
Remark 2: The type-based encoders have also appeared frequently in previous literature on zero-rate

or one-bit DHT problems, e.g., [6, Theorem 5, Theorem 8], [7, Theorem 6], [10, Therem 5.5]. However,
its optimality has not been formalized or discussed in these studies. Specifically, the type-based encoder
was merely used for constructing achievability results (i.e., the direct part of a proof), while the converse
parts ware established by separate arguments. In contrast, Theorem 1 demonstrates the fundamental role
of type-based encoders in zero-rate DHT problems, which allows us to focus on the characterization on
distribution spaces, instead of the original sequence spaces.

3We adopt the same technique introduced in [9, Theorem 1], which was used to establish the optimal type-II error exponent E1 of DHT
under zero-rate communication constraints, with type-I error π0 constrained by a constant.
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IV. A GEOMETRIC CHARACTERIZATION OF ERROR EXPONENT REGION

With the optimality of type-based encoders, we further illustrate that the error exponent region E(0MX
, 0MY

)
can be characterized as a geometric problem of separating two sets in P?. For convenience, in the following
discussions we will assume that MX ≥MY , and the result for MX < MY can be obtained by symmetry
arguments.

First, we introduce the notion of separability on P?.
Definition 5: Given MX ,MY ≥ 1, a decoder φ ∈ FMX ,MY

, and a pair of disjoint subsets (A0,A1) of
P?, we say that φ separates (A0,A1) [or, (A0,A1) is separable by φ], denoted by φ | (A0,A1), if there
exist mappings θX : PX → dMXc and θY : PY → dMY c, such that for both i ∈ {0, 1},

φ(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Ai. (11)

Then, our main result is summarized as follows. A proof is provided in Appendix D.
Theorem 2: For each φ ∈ F, we have E[φ] = {(E0, E1) : φ | (D0(E0),D1(E1))}, where D0(·) and

D1(·) are as defined in (5). In addition, each exponent pair (E0, E1) ∈ int(E[φ]) can be achieved by the
coding schemes {(fn, gn, φ)}n≥1 with type-based encoders fn(xn) , θX(P̂xn), gn(yn) , θY (P̂yn), where
int(·) denotes the interior, and where the type-encoding functions θX and θY correspond to the mappings
such that (11) holds for Ai = Di(Ei), i ∈ {0, 1}.

Remark 3: By using a similar argument, we can show that under zero-rate communication constraints
(RX , RY ) = (0, 0), the error exponent region is

E(0, 0) = {(E0, E1) : D0(E0) ∩D1(E1) = ∅}, (12)

which coincides with the classical results demonstrated in, e.g., [7, Theorem 6], [10, Theorem 5.5].
Furthermore, note that (12) also corresponds to a limiting case of Theorem 2, and we have E[FMX ,MY

]→
{(E0, E1) : D0(E0) ∩D1(E1) = ∅} as MX →∞,MY →∞.

Theorem 2 provides a single-letter characterization of the error exponent region, which allows us to
focus on studying the separability on the distribution space P?, rather than the original sequence space
Xn×Yn. Later on we will show that existing results on one-bit communication constraints can be recovered
immediately by using such geometric characterizations.

A. Threshold Decoder Inner Bound
From the geometric characterization in Theorem 2, we can establish the error exponent regions under

threshold decoders ϕMX ,MY
and ϕ̄MX ,MY

, which also provide an inner bound of E(0MX
, 0MY

).
Specifically, our characterization uses the following recursive property of the separability of threshold

decoders, a proof is provided in Appendix E.
Proposition 1: Suppose A and A′ are two disjoint subsets of P?. Given M ≥ 2, we have

ϕM,M | (A,A′) ⇐⇒ ϕM−1,M−1 | (A′,A .A′) ⇐⇒ A .M A′ = ∅. (13)

In addition, for given MX > MY ≥ 1, ϕMX ,MY
| (A,A′) if and only if ϕMY ,MY

| (A,A′ X

.A).
By using Proposition 1, the error exponent region under threshold decoders can be established as

follows. A proof is provided in Appendix F.
Theorem 3: Given MX ≥MY ≥ 1, the error exponent regions under MX ×MY threshold decoders are

E[ϕMX ,MY
] = {(E0, E1) : D0(E0) .MY

D1(E1) = ∅}, (14)
E[ϕ̄MX ,MY

] = {(E0, E1) : D1(E1) .MY
D0(E0) = ∅} (15)

if MX = MY , and

E[ϕMX ,MY
] = E[ϕ̄MX ,MY

] = {(E0, E1) : D0(E0) .MY

(
D1(E1) X

.D0(E0)
)

= ∅} (16)

if MX > MY , where the operators “ .k” and “ X

. ” are as defined in Definition 2.
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D0(E0)

D0(E ′0)

D1(E1)

D0(E ′0) .D1(E1)QX

QY

(a) ϕ2,2 ↔ and ϕ3,3 ↔

D0(E0)

D1(E1)

D1(E1)
X

.D0(E0)QX

QY

(b) ϕ3,2 ↔

Fig. 3. Geometric interpretation for achievable error exponent pairs under different threshold decoders, with each point representing a pair
of marginal distributions (QX , QY ) ∈ P?.

From Fact 2 and Theorem 3, we can readily obtain an inner bound of E(0MX
, 0MY

) as

E(0MX
, 0MY

) = E[FMX ,MY
]

⊃ (E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

]) , (17)

which we refer to as the threshold decoder inner bound. Later on we will discuss several cases where
this bound is tight.

Furthermore, we provide a geometric interpretation of above characterizations in Fig. 3. To begin, let
us first consider the one-bit constraint (02, 02), with ϕ2,2 ↔ used as the decoder. Fig. 3a demonstrates
the case where ϕ2,2 separates (D0(E0),D1(E1)), and it follows from Theorem 2 that (E0, E1) ∈ E[ϕ2,2].
Moreover, with the type-II error exponent E1 fixed, E0 is the optimal type-I error exponent under ϕ2,2,
since (D0(E0 +ε),D1(E1)) is not separable by ϕ2,2 for all ε > 0. Now, suppose both nodes are allowed to
transmit one-trit messages with ϕ3,3 ↔ used as the decoder. Then, the optimal type-I error exponent
can be improved to E ′0 > E0, as illustrated in the figure. Compared with the one-bit setting, it can be
noted that the two additional symbols are used to encode the hatched area D0(E ′0) .D1(E1), such that
(D0(E ′0),D1(E1)) is still separable.

Similarly, Fig. 3b illustrates the separability under decoder ϕ3,2 ↔ . It can be noted that ϕ3,2 sep-
arates (D0(E0),D1(E1)), if and only if ϕ2,2 separates D0(E0) and D1(E1) X

.D0(E0) (shown in hatched).

B. Decoder Comparison and Selection
From Fact 2 and the geometric characterization in Theorem 2, each point (E0, E1) from the error ex-

ponent region E(0MX
, 0MY

) = ∪φ∈FMX,MY E[φ] is contributed by some decoder φ ∈ FMX ,MY
that separates

(D0(E0),D1(E1)). To select the decoder for a given DHT problem, it will be useful to understand the
contribution of each decoder in FMX ,MY

. To this end, we then characterize and compare the performance
of different decoders, in terms of their separability.

First, note that a simple example of decoder comparison is Fact 1, which can be directly verified by
definition. A non-trivial characterization will make use of the following operation.
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Definition 6 (Decoder Decomposition): Given MX ,MY ≥ 1, an MX × MY decoder φ is called
decomposable if there exist non-trivial decoders φ0, φ1 ∈ FMX ,MY

and i ∈ {0, 1}, such that for all
(mX ,mY ) ∈ dMXc × dMY c,

φ(mX ,mY ) = φ0(mX ,mY )⊕ φ1(mX ,mY )⊕ ı̄, (18)

I
(i)
X (φ0) ∩ I

(i)
X (φ1) = I

(i)
Y (φ0) ∩ I

(i)
Y (φ1) = ∅, (19)

where “⊕” represents the “exclusive or” operation, and where, for i ∈ {0, 1}, we have defined

I
(i)
X (φ) , {mX ∈ dMXc : ∃m′Y ∈ dMY c, φ(mX ,m

′
Y ) = i},

I
(i)
Y (φ) , {mY ∈ dMY c : ∃m′X ∈ dMXc, φ(m′X ,mY ) = i}. (20)

We will refer to (18) as a decomposition of φ.
Example 2: is decomposable, which can be decomposed as = ⊕ or = ⊕ ⊕ 1.

The decoder and its complement are decomposable, with decompositions = ⊕ , and
= ⊕ ⊕ 1, respectively.

The following result demonstrates the weak separability of decomposable decoders. A proof is provided
in Appendix G.

Lemma 2: Suppose A0 and A1 are open convex subsets of P?, and φ is a decomposable decoder with the
decomposition [cf. (18)] φ = φ0⊕ φ1⊕ ı̄ for some i ∈ {0, 1}. If φ | (A0,A1), then we have φj | (A0,A1)
for some j ∈ {0, 1}.

In addition, we can formalize the recursive properties of threshold decoders discussed in Section IV-A
as the reducibility of decoders. Specifically, given a decision matrix A and i ∈ {0, 1}, its i-dominated
rows (or columns) are defined as the rows (or columns) being all i’s. Then, a decoder φ is called reducible
if A↔ φ has dominated rows or columns. Given a reducible decoder φ↔ A, we say φ can be reduced
to φ′, if φ′ = φ, or A′ ↔ φ′ can be obtained from A by successively deleting dominated rows/columns.

Example 3: The decoder ϕ3,2 ↔ is reducible, which can be reduced to ϕ2,2 ↔ (via deleting
the 1-dominated column), or reduced to ϕ̄2,2 ↔ (via deleting the 0-dominated column).

Moreover, we call a decoder φ completely reducible if it can be reduced to trivial decoders. Then,
for given MX ,MY ≥ 1, we denote the collections of MX ×MY non-completely-reducible decoders and
completely reducible decoders by ΩMX ,MY

and Ω̄MX ,MY
, respectively.

It can be verified that all threshold decoders are completely reducible. Furthermore, we have the
following result, a proof of which is provided in Appendix H.

Lemma 3: Given MX ≥MY ≥ 1, we have E[Ω̄MX ,MY
] = E[{ϕMX ,MY

, ϕ̄MX ,MY
}].

Remark 4: If MX > MY , we can apply Fact 1 to refine the result as E[Ω̄MX ,MY
] = E[ϕMX ,MY

].
From Lemma 3, the threshold decoders ϕMX ,MY

, ϕ̄MX ,MY
have the same separability as the collection

of completely reducible decoders Ω̄MX ,MY
. In addition, we have the following useful characterization for

decoders in Ω, a proof of which is provided in Appendix I.
Fact 3: Given MX ,MY ≥ 1 and a decoder φ ∈ ΩMX ,MY

, there exists a unique irreducible decoder that
can be reduced from φ, denoted by ω∗(φ), which we refer to as the reduced form of φ.

Example 4: Let φ1 ↔ , φ2 ↔ . Then we have φ1, φ2 ∈ Ω3,3, with the same reduced form
ω∗(φ1) = ω∗(φ2)↔ .

Then, we can further partition ΩMX ,MY
as ΩMX ,MY

= Ω
(0)
MX ,MY

∪ Ω
(1)
MX ,MY

, where

Ω
(0)
MX ,MY

, {φ ∈ ΩMX ,MY
: ω∗(φ) is indecomposable},

Ω
(1)
MX ,MY

, {φ ∈ ΩMX ,MY
: ω∗(φ) is decomposable}. (21)

Then, the following theorem demonstrates that the error exponent region can be obtained by using only
threshold decoders and the decoders in Ω

(0)
MX ,MY

. A proof of which is presented in Appendix J.
Theorem 4: Given MX ≥MY ≥ 1, we have E[Ω

(1)
MX ,MY

] ⊂ E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

] and

E(0MX
, 0MY

) = E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

]. (22)
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V. OPTIMAL ERROR EXPONENTS AND CODING SCHEMES

A. Exact Characterization of Error Exponent Regions
We then provide exact characterization of error exponent regions under one-bit/one-trit communication

constraints, or with conditionally independent observations. Specifically, it can be shown that in theses
cases the threshold decoder inner bound (17) is tight.

1) One-bit/One-trit Communication Constraints: We first introduce the following result, a proof of
which is provided in Appendix K.

Theorem 5: Suppose MX ≥ MY ≥ 1 and (MX − 2)(MY − 2) < 2. Then, there exists no MX ×MY

decoder that is both indecomposable and irreducible, and we have

E(0MX
, 0MY

) = E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

]. (23)

From Theorem 5, it suffices to consider threshold decoders in the one-bit compression settings with
MX ≥ MY = 2 or the two-sided one-trit compression (MX = MY = 3). In the following, we discuss
the error exponent regions under two-sided one-bit compression constraint (E[02, 02]), two-sided one-trit
constraint (E[03, 03]), and the one-sided one-bit constraint (E[0M , 02] for M ≥ 3, or E[R, 02] for R ≥ 0),
respectively.

a) Two-sided One-bit compression: The exponent region E(02, 02) under two-sided one-bit compres-
sion regime [7], [10], can be obtained as a straightforward corollary of Theorem 5.

Corollary 1 ([7, Theorem 5], [10, Theorem 5.6]): We have E(02, 02) = E[ϕ2,2]∪ E[ϕ̄2,2], where E[ϕ2,2]
and E[ϕ̄2,2] are as given by Theorem 3, and can be represented as

E[ϕ2,2] = {(E0, E1) : D0(E0) ∩B1(E1) = ∅},
E[ϕ̄2,2] = {(E0, E1) : B0(E0) ∩D1(E1) = ∅},

where for i ∈ {0, 1} and t ≥ 0, we have defined Bi(t) , {(QX , QY ) : D(QX‖P (i)
X ) < t,D(QY ‖P (i)

Y ) < t}.
Remark 5: It has been shown in [7] that the same result can be established when we relax the strict

positive assumption (1) to D(P
(0)
XY ‖P

(1)
XY ) <∞.

b) Two-sided One-trit Compression: The error exponent region can be again obtained as an imme-
diate corollary of Theorem 5.

Corollary 2: The exponent region of MX = MY = 3 is E(03, 03) = E[ϕ3,3]∪E[ϕ̄3,3], where E[ϕ3,3] and
E[ϕ̄3,3] are as given by Theorem 3.

c) One-sided One-bit Compression: We first introduce the following result, which demonstrates the
connection between one-sided and two-sided constant-bit constraints. A proof is provided in Appendix L.

Proposition 2: Given MY ≥ 1, MX > 2MY , and RX ∈ [0,∞), we have E(RX , 0MY
) = E(0MX

, 0MY
) =

E(02MY , 0MY
).

Therefore, without loss of generality we may assume that MY ≤MX ≤ 2MY .
In addition, by combining Example 1 and Theorem 5, we have E(04, 02) = E[ϕ4,2] = E[ϕ3,2] = E(03, 02).

Hence, from Proposition 2, the error exponent region for one-sided one-bit compression can be summarized
as follows.

Corollary 3: For all M ≥ 3 and R ∈ [0,∞), we have E(R, 02) = E(0M , 02) = E(03, 02) = E[ϕ3,2].
Remark 6: It is worth noting that in general we have E(02, 02) ( E(03, 02) = E(R, 02). Therefore, when

one distributed node is allowed to transmit only a one-bit message, to obtain the optimal performance, the
other node is required to transmit at least a one-trit message. This situation differs from the one appeared
in the discussion of the optimal type-II error exponent E1 with type-I error π0 constrained by a constant
(cf. [6, Corollary 7]), where it requires only a one-bit message sent from the other node to achieve the
optimal performance.

2) Conditional Independent Observations: In addition to the one-bit/one-trit cases, when the observa-
tions at both nodes are conditionally independent given H = 0 or H = 1, the inner bound (17) is tight for
all MX ≥MY ≥ 1, illustrated as follows. A proof is provide in Appendix M.

Theorem 6: Suppose P (i)
XY = P

(i)
X P

(i)
Y for some i ∈ {0, 1}, then we have E(0MX

, 0MY
) = E[ϕMX ,MY

] ∪
E[ϕ̄MX ,MY

], for all MX ≥MY ≥ 1, where E[ϕMX ,MY
] and E[ϕ̄MX ,MY

] are as given by Theorem 3.
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B. Optimal Coding Schemes
From Theorem 2, for each MX×MY decoder φ, each error exponent pair (E0, E1) in the interior of E[φ]

can be achieved by the coding schemes {(fn, gn, φ)}n≥1, where fn and gn are type-based encoders charac-
terized by corresponding type-encoding functions. Specifically, for the error exponent regions established
in Section V-A, it suffices to consider the coding schemes with threshold decoders, i.e., ϕM,M , ϕ̄M,M for
M ≥ 1, and ϕMX ,MY

for MX > MY ≥ 1.
For ease of exposition, for each k ≥ 0, let us define

χk ,

{
1 if k is odd,
0 if k is even,

(24)

and χ̄k , 1− χk. Then, for all M ≥ 1, we define the mapping rM : dMc → dMc, such that

rM(k) ,
k

2
+

(
M − k − 1

2

)
χk, for all k ∈ dMc. (25)

For convenience, given subsets QX ⊂ PX,QY ⊂ PY and i ∈ {0, 1}, we adopt the notation

D∗i (QX ,QY ) , inf
QX∈QX
QY ∈QY

D∗i (QX , QY ), (26)

and denote D∗i (QX ,QY ) , D∗i ({QX},QY ) and D∗i (QX , QY ) , D∗i (QX , {QY }) for distributions QX ∈ PX

and QY ∈ PY.
The following result summarizes the error exponent region and the corresponding type-encoding func-

tions, with a proof presented in Appendix N.
Proposition 3: Given MX > MY = M ≥ 1, for φ ∈ {ϕM,M , ϕ̄M,M , ϕMX ,MY

} and an error exponent
pair (E0, E1), let us define sequences of sets {Q(k)

X }k≥0 and {Q(k)
Y }k≥0 such that

Q
(0)
X ,

{{
QX ∈ PX : D(QX‖P (0)

X ) < E0

}
, if φ = ϕMX ,MY

,

PX, otherwise,

and Q
(0)
Y , PY, and, for each k ≥ 1,

Q
(k)
X ,

{
QX ∈ Q

(k−1)
X : D∗χ̂k(QX ,Q

(k−1)
Y ) < Eχ̂k

}
, (27a)

Q
(k)
Y ,

{
QY ∈ Q

(k−1)
Y : D∗χ̂k(Q

(k−1)
X , QY ) < Eχ̂k

}
, (27b)

where for all k ≥ 1, we have defined

χ̂k ,

{
χ̄k if φ = ϕ̄M,M ,

χk otherwise.

Then, for each M ≥ 1, (E0, E1) ∈ E[φ] if and only if

D∗χ̂M
(
Q

(M−1)
X ,Q

(M−1)
Y

)
≥ Eχ̂M . (28)

Moreover, each error exponent pair (E0, E1) ∈ int(E[φ]) can be achieved by the type-encoding functions

θX(QX) ,

{
rM(ϑX(QX)) if QX ∈ Q

(0)
X ,

M otherwise,
θY , rM ◦ ϑY , (29)
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where rM is as defined in (25), and where “◦” denotes the composition of functions. In addition, we have
defined

ϑX(QX) , max{k ∈ dMc : QX ∈ Q
(k)
X }, for all QX ∈ Q

(0)
X (30a)

ϑY (QY ) , max{k ∈ dMc : QY ∈ Q
(k)
Y }, for all QY ∈ PY. (30b)

From (3), the decision regions in the distribution space are characterized by the sets Q(k)
X ,Q

(k)
Y as defined

in (27), which can be regarded as generalizations of the divergence ball used in Hoeffding’s test [26]. For
example, when ϕM,M is used as the decoder, from (27), the decision regions for k = 1 are the divergence
balls

Q
(1)
X =

{
QX ∈ PX : D(QX‖P (1)

X ) < E1

}
, (31a)

Q
(1)
Y =

{
QY ∈ PY : D(QY ‖P (1)

Y ) < E1

}
, (31b)

in PX and PY, respectively. As a result, from (30) we have θ(QX) > 0 if and only if D(QX‖P (1)
X ) < E1,

and θ(QY ) > 0 if and only if D(QY ‖P (1)
Y ) < E1, which share similar forms as Hoeffding’s test [26].

For k > 1, the decision regions Q
(k)
X and Q

(k)
Y do not have analytical solutions in general. The error

exponent region and the optimal type-encoding functions θX , θY can still be computed via solving related
multi-level optimization problems [28] obtained from (27)–(28). A detailed discussion of the computation
is provided in Appendix O.

Specifically, when the observations at nodes NX and NY are conditionally independent under both
hypotheses, the decision regions Q

(k)
X and Q

(k)
Y can be simply represented by KL divergences of some

marginal distributions, and the corresponding type-encoding functions become quantization functions of
the divergences. For simplicity of exposition, we again focus on the decoder ϕM,M , and define functions
λ

(i)
X (·), λ(i)

Y (·) for i = 0, 1, with

λ
(i)
X (t) , inf

QX : D(QX‖P
(ı̄)
X )<t

D(QX‖P (i)
X ), (32a)

λ
(i)
Y (t) , inf

QY : D(QY ‖P
(ı̄)
Y )<t

D(QY ‖P (i)
Y ). (32b)

These functions can be interpreted as the optimal error exponents of local decision at each distributed
node. For example, consider the setting where NX is required to make a local decision based on the
observed xn, then λ(0)

X (t) is the optimal type-I error exponent when we require type-II error exponent not
exceed t; similarly, λ(1)

X (·) represents the optimal type-II error exponent when type-I error exponent does
not exceed t.

Then, we have the following result, a proof of which is provided in Appendix P.
Proposition 4: Suppose we have, for both i ∈ {0, 1},

P
(i)
XY (x, y) = P

(i)
X (x)P

(i)
Y (y), for all (x, y) ∈ X× Y. (33)

Then, for given E0, E1 and k ≥ 1, with ϕM,M used as the decoder, the sets Q
(k)
X and Q

(k)
Y as defined in

(27) are

Q
(k)
X =

{
QX ∈ PX : D(QX‖P (0)

X ) < γ
(k−χk)
X , D(QX‖P (1)

X ) < γ
(k−χ̄k)
X

}
, (34a)

Q
(k)
Y =

{
QY ∈ PY : D(QY ‖P (0)

Y ) < γ
(k−χk)
Y , D(QY ‖P (1)

Y ) < γ
(k−χ̄k)
Y

}
, (34b)

where χk and χ̄k are as defined in (24), and where we have defined the sequences
{
γ

(k)
X

}
k≥0

and
{
γ

(k)
Y

}
k≥0

such that γ(0)
X ,∞, γ(0)

Y ,∞, and, for all k ≥ 1,

γ
(k)
X , Eχk − λ

(χk)
Y (γ

(k−1)
Y ), (35a)

γ
(k)
Y , Eχk − λ

(χk)
X (γ

(k−1)
X ), (35b)
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0.1 0.2 0.3

0.1

0.2

0.3

E0

E1

Local Decision

DHT (one-bit)

DHT (one-trit)
Non-distributed

Fig. 4. Optimal achievable error exponent pairs (E0, E1) for the distribution (37), under local decision (decision by node NX /NY only),
DHT with one-bit and one-trit communication constraints, and non-distributed decision based on complete observations of both xn and yn.

where λ(i)
X and λ(i)

Y are as defined in (32).
In addition, for each M ≥ 1, (E0, E1) ∈ E[ϕM,M ] if and only if

γ
(M)
X + γ

(M)
Y − EχM ≤ 0. (36)

VI. NUMERICAL EXAMPLES

We then provide the error exponent region and type-encoding functions for two concrete examples.
First, we consider the DHT problem with binary alphabets X = Y = {0, 1}, and the joint distributions

P
(i)
XY (x, y) =

{
1
2

if x = y = 1− i,
1
6

otherwise,
(37)

for i ∈ {0, 1}. Then, the corresponding marginal distributions are (P
(0)
X (0), P

(0)
X (1)) = (P

(0)
Y (0), P

(0)
Y (1)) =(

1
3
, 2

3

)
and (P

(1)
X (0), P

(1)
X (1)) = (P

(1)
Y (0), P

(1)
Y (1)) =

(
2
3
, 1

3

)
.

The optimal error exponents under different communication constraints are shown in Fig. 4. Specifically,
the four curves demonstrate the boundaries of error exponent regions in the settings with
• Local Decision: the error exponent pairs obtained by local decision at node NX based on observed
xn, which can also be represented as the region E(02, 01). Due to the symmetric form of (37), the
error exponent pairs obtained by local decision at node NY are the same, i.e., E(02, 01) = E(01, 02).

• DHT (one-bit): the error exponent pairs obtained by DHT with two-sided one-bit communication
constraints, E(02, 02).

• DHT (one-trit): the error exponent pairs obtained by DHT with two-sided one-trit communication
constraints, E(03, 03).

• Non-distributed: the error exponent pairs obtained by complete observations of xn and yn sequences,
which can also be represented as4 E(log 2, log 2).

In addition, since the log-likelihood function

log
P

(0)
XY (x, y)

P
(1)
XY (x, y)

= (x+ y − 1) · log 3

4Note that under both hypotheses H = 0, 1, we have H(X) ≤ log |X| = log 2, and similarly, H(Y ) ≤ log 2, where H(·) denotes the
entropy. Therefore, the full sequences xn and yn can be transmitted to the center under rate constraints (log 2, log 2).



14

P
(0)
X

P
(1)
X

PX

(1, 0, 0) (0, 1, 0)
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(0)
X
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(1)
X
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Fig. 5. The optimal type-encoding function θX as defined in (29) for DHT with joint distributions (38) and communication constraints
(07, 07).

can be represented as the superposition of functions of x and y, it can be verified that (see, e.g., [11,
Remark 3])

E(0, 0) = E(RX , RY ), for all RX ≥ 0, RY ≥ 0.

Therefore, the performance of the non-distributed case also coincides with the DHT with zero-rate
communication constraints.

Our second example demonstrates the optimal coding scheme and type-encoding functions. In particular,
we consider the DHT problem with alphabets X = Y = {0, 1, 2} and assume that X and Y are conditionally
independent given both hypotheses, i.e., (33) holds for both i ∈ {0, 1}. Let the marginal distributions beP

(0)
X (0)

P
(0)
X (1)

P
(0)
X (2)

 =

P
(0)
Y (0)

P
(0)
Y (1)

P
(0)
Y (2)

 =

1
8
1
8
3
4

 ,
P

(1)
X (0)

P
(1)
X (1)

P
(1)
X (2)

 =

P
(1)
Y (0)

P
(1)
Y (1)

P
(1)
Y (2)

 =

3
8
3
8
1
4

 . (38)

Specifically, we consider the DHT problem with communication constraints (07, 07). By applying Propo-
sition 4, we can verify that the error exponent pair (E0, E1) = (0.3, 0.25) can be obtained by the coding
scheme with decoder ϕ7,7 and type-encoding functions θX : PX → {0, . . . , 6} and θY : PY → {0, . . . , 6},
where θX is depicted in Fig. 5. Note that due to X = Y and the symmetry of underlying distributions (38),
the type-encoding function θY coincides with θX , i.e., we have θY (Q) = θX(Q) for all Q ∈ PX = PY,
and thus the plot of θY can also be demonstrated by Fig. 5.

VII. DISCUSSIONS

Our analysis provides a geometric approach for constant-bit DHT problems, which reduce the charac-
terization of error exponent regions to the study of separability on the distribution space (cf. Definition 5).
With this approach, we establish the threshold decoder inner bound of error exponent regions. Moreover,
we provide exact characterizations when the observations at nodes are conditionally independent or when
the constraints are of one-bit/one-trit type. Specifically, these error exponent regions can be obtained by
threshold decoders, and can be effectively computed.

On the other hand, the notion of separability also suggests the intrinsic complexity of characterizing
error exponent region E(0MX

, 0MY
). In fact, even the two-bit setting (04, 04) can have significantly
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A0 .2 A1

A0 .3 A1

A0 .4 A1

A0 .5 A1

QX

QY

(a) (A0,A1) is not separable by ϕ4,4

A0

A1

0

1

2

3

0

1

2

0 1 2 3 0 1 2 3

0 1 θX(QX)

0 1 θY (QY )

QX

QY

(b) (A0,A1) is separable by the decoder

Fig. 6. Threshold decoders are not necessarily optimal under two-bit constraints (04, 04). (a): (A0,A1) is not separable by threshold decoders
ϕ4,4 ↔ or ϕ̄4,4 ↔ ; (b): (A0,A1) is separable by the 4 × 4 decoder , with the corresponding mappings θX(·), θY (·) [cf.
Definition 5].

more complicated behaviors, compared with the one-trit case (03, 03). To see this, we can show that
under (04, 04) constraint, threshold decoders are not necessarily optimal, as illustrated in Fig. 6. In
this figure, A1 is a mirror image of A0, and it can be noted that (A0,A1) is not separable by ϕ4,4

as A0 .4 A1 6= ∅ (cf. Proposition 1). Moreover, (A0,A1) is not separable by ϕ̄4,4 from the reflection
symmetry. However, (A0,A1) can be separated by the decoder , as shown in Fig. 6b. It is worth
mentioning this demonstrating case can appear in DHT characterizations, when we consider the separation
of Ai , Di(E), i = 0, 1 for some E > 0 (cf. Theorem 2). Specifically, one example is the DHT problem
with P (0)

XY and P (1)
XY with X = Y = {0, 1}, where

P
(0)
XY (x, y) ,


1
2
(1− ε) if x = y,

αε if (x, y) = (0, 1),

(1− α)ε if (x, y) = (1, 0),

(39)

and P (1)
XY (x, y) , P

(0)
XY (y, x), for all (x, y) ∈ X× Y, where α ∈ (0, 1

2
), and where ε > 0 is chosen to be a

small number.
From Fig. 6, a main difference between and threshold decoders ϕ4,4 or ϕ̄4,4 is that, can reuse

symbols in {0, 1, 2, 3}, which produces periodic patterns in P? to obtain better separability. In particular,
in Fig. 6b, PX is divided into 8 different regions5 (columns), with only M = 4 different symbols used. In
contrast, for threshold decoders ϕM,M and ϕ̄M,M , the number of different regions in PX or PY is at most
M . Generally, we can also generate such periodic patterns by an M ×M decoder φ, if its decoded result
φ(mX ,mY ) depends only on the value of ((mX +mY ) mod M). In addition, note that to obtain effective
separability using such periodic patterns, it requires at least M = 4 symbols, since at least two distinct
symbols are needed to encode (“cover”) each of A0 and A1 (cf. Fig. 6b). Therefore, such periodic patterns
would not appear when M = 3, which also illustrates a fundamental difference between the setting (03, 03)
and (0M , 0M) for M ≥ 4. In general, the exact characterization of separability for an arbitrary decoder,
including decoders with such periodic patterns, can also be more difficult than threshold decoders.

5Formally, we can define such regions as maximal connected subsets of {QY ∈ PY : θY (QY ) = mY } for mY ∈ dMc.
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AUXILIARY NOTATIONS AND DEFINITIONS

We first present some useful notations and definitions in our proof.
To begin, for two given decoders φ, φ′ with decision matrices A ↔ φ and A′ ↔ φ′, we call φ′ a

subdecoder of φ if A′ is a submatrix of A. In addition, φ, φ′ are called equivalent, denoted by φ ' φ′,
if A′ can be obtained from A by some row permutations and column permutations.

Moreover, we refine the reducibility of decoders introduced in Section IV-B as follows.
Definition 7: Given a non-trivial reducible decoder φ↔ A, if A has i-dominated columns for i ∈ {0, 1},

we define decoder ω(i)
X (φ) such that ω(i)

X (φ)↔ A
(i)
X , where A

(i)
X denotes the submatrix of A obtained by

deleting its i-dominated columns; similarly, if A has i-dominated rows, we define ω
(i)
Y (φ) such that

ω
(i)
Y (φ)↔ A

(i)
Y , where A

(i)
Y is the submatrix of A obtained by deleting i-dominated rows.

We refer to ω
(0)
X , ω

(1)
X , ω

(0)
Y , ω

(1)
Y as elementary reduction operators. We then use reduction operators to

refer to the elementary reduction operators and their compositions.
In addition, when compare two collection of decoders H,H′ ⊂ F, we use H � H′ to indicate that

E[H] ⊂ E[H′]. Specifically, the following fact would be useful in our proofs.
Fact 4: The relation “�” is transitive, i.e., for all decoder collections H0,H1 and H2, if H0 � H1 and

H1 � H2, then H0 � H2. In addition, given H0,H1 ⊂ F with H0 � H1, we have (H0∪H′) � (H1∪H′)
for all H′ ⊂ F.

APPENDIX A
PROOF OF FACT 2

To begin, suppose (E0, E1) ∈ E(0MX
, 0MY

), then for each ε > 0, there exists a sequence of coding
scheme {Cn}n≥1, such that [cf. (4)]

− lim
n→∞

1

n
log πi(Cn) = Ei − ε, i = 0, 1, (40)

where each coding scheme Cn is equipped with some decoder in FMX ,MY
.

Note that since the set FMX ,MY
is finite, there exists a decoder φ ∈ FMX ,MY

and an infinite subsequence
{mk}k≥1 of positive integers, such that for each k ≥ 1, the corresponding coding scheme Cmk is equipped
with φ.

Moreover, we define a new sequence of coding scheme C′n , Cmk̂ where k̂ = k̂(n) , max{k : mk ≤ n}.
It can be verified that

− lim
n→∞

1

n
log πi(C

′
n) = − lim

k→∞

1

n
log πi(Cnk)

= Ei − ε, for i = 0, 1, (41)

which implies that (E0, E1) ∈ E[φ].
Therefore, we obtain

E(0MX
, 0MY

) ⊂
⋃

φ∈FMX,MY

E[φ] = E[FMX ,MY
]. (42)

In addition, note that for each decoder φ ∈ FMX ,MY
, we have E[φ] ⊂ E(0MX

, 0MY
), which implies the

reverse inclusion

E[FMX ,MY
] ⊂ E(0MX

, 0MY
). (43)

From (42) and (43), we obtain E(0MX
, 0MY

) = E[FMX ,MY
] as desired.
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APPENDIX B
PROOF OF LEMMA 1

We first introduce several useful definitions for a given alphabet Z. The Hamming d-neighborhood of
SZ ⊂ Zn is Nd

H(SZ) , {zn ∈ Zn : dH(zn, z̃n) ≤ k for some z̃n ∈ SZ}, where dH(zn, z̃n) denotes the
Hamming distance between zn, z̃n ∈ Zn, viz., dH(zn, z̃n) , 1

n

∑n
i=1 1{zi 6=z̃i}, and where 1{·} denotes the

indicator function.
In addition, given a type QZ ∈ P̂Z

n, we use TnQZ (or simply TQZ ) to denote the set of sequences zn ∈ Zn

with the type QZ , i.e.,TnQZ , {zn ∈ Zn : P̂zn = QZ}. Moreover, for a given η > 0, we use TnQZ ;η to denote

the sequences with type close to QZ , viz.,
{
zn ∈ Zn : dmax(P̂zn , QZ) ≤ η

}
, where the metric dmax(·, ·)

on PZ is defined, such that for PZ , QZ ∈ PZ,

dmax(PZ , QZ) , max
z∈Z
|PZ(z)−QZ(z)|. (44)

Proceeding to the proof of the lemma, for a given pair of marginal distributions (QX , QY ) ∈ P̂X
n × P̂Y

n,
we first define

SX , {xn ∈ Xn : fn(xn) = θX(QX)},
SY , {yn ∈ Yn : gn(yn) = θY (QY )}

and6 SXY , SX × SY , where for given fn and gn, we have defined θX : PX →M
(n)
X and θY : PY →M

(n)
Y

such that for all PX ∈ PX and PY ∈ PY,

θX(PX) , arg max
mX∈M

(n)
X

P
{
fn(Xn) = mX

∣∣Xn ∼ P⊗nX
}
, (45)

θY (PY ) , arg max
mY ∈M

(n)
Y

P
{
gn(Y n) = mY

∣∣Y n ∼ P⊗nY
}
, (46)

where (PX)⊗n and (PX)⊗n represent the n-th product of PX and PY , respectively.
By symmetry, it suffices to establish (10) for i = 0. To this end, let (Xn, Y n) be i.i.d. generated from

P
(0)
XY , and define QXY ∈ PX×Y such that it satisfies [QXY ]X = QX , [QXY ]Y = QY and D∗0(QX , QY ) =

D(QXY ‖P (0)
XY ). In addition, by applying Sanov’s theorem [27], for each i ∈ {0, 1} and (QX , QY ) ∈

P̂X
n × P̂Y

n, we have

P
{

(P̂Xn , P̂Y n) = (QX , QY )
∣∣∣H = i

}
= exp(−n(D∗i (QX , QY ) + o(1))). (47)

Therefore, we can equivalently express (10) as

P {(Xn, Y n) ∈ SXY } ≥ exp(−n · (D(QXY ‖P (0)
XY ) + εn)) (48)

with εn = o(1).
We then illustrate that (48) holds, if there exists a sequence of positive integers {ln}n≥1 with ln = o(n),

such that for n sufficiently large, we have

max
Q̃XY ∈Qn

βn(Q̃XY ) ≥ 1

2
, (49)

where for each n ≥ 1 and Q̃XY ∈ P̂X×Y
n , we have defined

βn(Q̃XY ) ,

∣∣∣Tn
Q̃XY
∩Nln

H (SXY )
∣∣∣∣∣∣Tn

Q̃XY

∣∣∣ (50)

6With slight abuse of notation, we use (xn, yn) or simply xnyn to denote the sequence {(xi, yi)}ni=1 ∈ (X × Y)n, and denote the set
{(xn, yn) : xn ∈ SX , y

n ∈ SY } ⊂ (X× Y)n by SX × SY , for given SX ⊂ Xn and SY ⊂ Yn.
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with ηn , n−
1
3 , and

Qn ,
{
Q̃XY ∈ P̂X×Y

n : dmax(Q̃XY , QXY ) ≤ ηn

}
. (51)

To see this, first note that from [29, Lemma 5.1], we have

P {(Xn, Y n) ∈ SXY } ≥ P
{

(Xn, Y n) ∈ Nln
H (SXY )

}
· exp(−nε′n) (52)

for some ε′n = o(1).
Moreover, from (49), for sufficiently large n, there exists Q′XY ∈ Qn, such that βn(Q′XY ) ≥ 1

2
. As a

result, we have

P
{

(Xn, Y n) ∈ Nln
H (SXY )

}
≥ P

{
(Xn, Y n) ∈ TnQ′XY

∩Nln
H (SXY )

}
= P

{
(Xn, Y n) ∈ TnQ′XY

}
· βn(Q′XY )

≥ 1

2
· P
{

(Xn, Y n) ∈ TnQ′XY

}
(53)

where the equality follows from the fact that different sequences in a type class are equiprobable.
In addition, it follows from the definition of Qn [cf. (51)] that dmax(Q′XY , QXY ) ≤ ηn. Hence, from the

uniform continuity of KL divergence, there exists ε′′n = o(1) such that∣∣∣D(Q′XY ‖P
(0)
XY )−D(QXY ‖P (0)

XY )
∣∣∣ < ε′′n.

This implies that

P
{

(Xn, Y n) ∈ TQ′XY

}
≥ (n+ 1)−|X||Y| exp(−nD(Q′XY ‖P

(0)
XY ))

≥ (n+ 1)−|X||Y| exp(−nε′′n) · exp(−nD(QXY ‖P (0)
XY )), (54)

where the first inequality follows from a lower bound for the probability of a type class, see, e.g., [27,
Theorem 11.1.4] or [29, Lemma 2.6].

Then, it can then be verified from (52), (53) and (54) that (48) holds with

εn = ε′n + ε′′n +
1

n
log 2 +

|X||Y|
n

log(n+ 1) = o(1).

Hence, it remains to establish (49). To this end, we turn to consider probabilities under the measure
QXY , and let (X̃n, Ỹ n) be i.i.d. generated from QXY . Then, it follows from [29, Lemma 2.12] that

P
{

(X̃n, Ỹ n) ∈ TnQXY ;ηn

}
≥ 1− |X||Y|

4nη2
n

= 1− |X||Y|
4n

1
3

. (55)

Moreover, from (45) we have

P
{
X̃n ∈ SX

}
= P

{
fn(X̃n) = θX(QX)

}
≥ 1

‖fn‖
= exp

(
−n · log ‖fn‖

n

)
, (56)

and, similarly, from (46) we have P
{
Ỹ n ∈ SY

}
≥ exp

(
−n · log ‖gn‖

n

)
.

Then, since fn and gn are with zero-rates, both 1
n

log ‖fn‖ and 1
n

log ‖gn‖ vanish as n tends to infinity.
Therefore, it follows from the blowing up lemma (cf. [23], [29, Lemma 5.4]) that there exist dn = o(n)

and νn = o(1), such that P
{
X̃n ∈ Ndn

H (SX)
}
≥ 1− νn and P

{
Ỹ n ∈ Ndn

H (SY )
}
≥ 1− νn.
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Let ln , 2dn = o(n), and it follows from the fact Ndn
H (SX)×Ndn

H (SY ) ⊂ N2dn
H (SX × SY ) = Nln

H (SXY )
that

P
{

(X̃n, Ỹ n) ∈ Nln
H (SXY )

}
≥ P

{
(X̃n, Ỹ n) ∈ Ndn

H (SX)×Ndn
H (SY )

}
≥ P

{
X̃n ∈ Ndn

H (SX)
}

+ P
{
Ỹ n ∈ Ndn

H (SY )
}
− 1

≥ 1− 2νn

= 1− o(1), (57)

where the second inequality follows from the elementary fact that, for two events E1 and E2,

P {E1 ∩ E2} = P {E1}+ P {E2} − P {E1 ∪ E2}
≥ P {E1}+ P {E2} − 1. (58)

As a result, for sufficiently large n, we can obtain

P
{

(X̃n, Ỹ n) ∈ TnQXY ;ηn ∩Nln
H (SXY )

}
≥ P

{
(X̃n, Ỹ n) ∈ TnQXY ;ηn

}
+ P

{
(X̃n, Ỹ n) ∈ Nln

H (SXY )
}
− 1

≥ 1

2
. (59)

Therefore, with Qn as defined in (51), we obtain

max
Q̃XY ∈Qn

βn(Q̃XY ) ≥
∑

Q̃XY ∈Qn

βn(Q̃XY ) · P
{
P̂X̃nỸ n = Q̃XY

}
=

∑
Q̃XY ∈Qn

βn(Q̃XY ) · P
{

(X̃n, Ỹ n) ∈ Tn
Q̃XY

}
=

∑
Q̃XY ∈Qn

P
{

(X̃n, Ỹ n) ∈ Tn
Q̃XY
∩Nln

H (SXY )
}

= P
{

(X̃n, Ỹ n) ∈ TnQXY ;ηn ∩Nln
H (SXY )

}
≥ 1

2
, (60)

where to obtain the second equality we have used the fact that

βn(Q̃XY ) = P
{

(X̃n, Ỹ n) ∈ Nln
H (SXY )

∣∣∣(X̃n, Ỹ n) ∈ Tn
Q̃XY

}
,

and where the last equality follows from that TnQXY ;ηn
=
⋃
Q̃XY ∈Qn T

n
Q̃XY

.

APPENDIX C
PROOF OF THEOREM 1

To begin, note that from (47), there exists some εn = o(1), such that for each i ∈ {0, 1}, we have

P
{
Xn ∈ TnQX , Y

n ∈ TnQY |H = i
}
≤ exp(−n(D∗i (QX , QY )− εn)). (61)

In addition, we construct the type-based encoders f̃n, g̃n such that

f̃n(xn) , θX(P̂xn), g̃n(yn) , θY (P̂yn) (62)

for all xn ∈ Xn and yn ∈ Yn, where θX(·) and θY (·) are as defined in Lemma 1. We also define

Γni , {(QX , QY ) ∈ P̂X
n × P̂Y

n : φn(θX(QX), θY (QY )) 6= i}
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for i = 0, 1 and n ≥ 1.
Then, it can be verified that for given sequences xn ∈ Xn and yn ∈ Yn, we have φn(f̃(xn), g̃(yn)) 6= i

if and only if (P̂xn , P̂yn) ∈ Γni . Therefore, the error of the type-based coding scheme C̃n can be written as

πi(C̃n) = P
{
φn(f̃n(Xn), g̃n(Y n)) 6= i

∣∣∣H = i
}

= P
{

(P̂Xn , P̂Y n) ∈ Γni

∣∣∣H = i
}

=
∑

(QX ,QY )∈Γni

P
{

(P̂Xn , P̂Y n) = (QX , QY )
∣∣∣H = i

}
. (63)

If Γni is empty, then πi(C̃n) = 0 ≤ πi(Cn) is trivially true. Otherwise, for each n ≥ 1, let us define7

(Q
(i)
X , Q

(i)
Y ) , arg max

(QX ,QY )∈Γni

P
{

(P̂Xn , P̂Y n) = (QX , QY )
∣∣∣H = i

}
, (64)

and from (63) we have

πi(C̃n) ≤ |Γni | · P
{

(P̂Xn , P̂Y n) = (Q
(i)
X , Q

(i)
Y )
∣∣∣H = i

}
≤ (n+ 1)|X|+|Y| · P

{
(P̂Xn , P̂Y n) = (Q

(i)
X , Q

(i)
Y )
∣∣∣H = i

}
, (65)

where the second inequality follows from the fact that

|Γni | ≤
∣∣∣P̂X

n × P̂Y
n

∣∣∣ ≤ (n+ 1)|X| · (n+ 1)|Y|

= (n+ 1)|X|+|Y|. (66)

Then, from Lemma 1, for i = 0, 1, there exists ξ(i)
n = o(1), such that

πi(Cn) = P {φn(fn(Xn), gn(Y n)) 6= i|H = i}

≥ P
{
fn(Xn) = θX(Q

(i)
X ), gn(Y n) = θY (Q

(i)
Y )
∣∣∣H = i

}
≥ P

{
(P̂Xn , P̂Y n) = (Q

(i)
X , Q

(i)
Y )
∣∣∣H = i

}
· exp(−n · ξ(i)

n ), (67)

where the first inequality follows from the fact that φn(θX(Q
(i)
X ), θY (Q

(i)
Y )) 6= i since (Q

(i)
X , Q

(i)
Y ) ∈ Γni [cf.

(64)].
Therefore, from (65) and (67) we have πi(C̃n) ≤ πi(Cn) · exp(nζn) for i = 0, 1, where

ζn ,
(|X|+ |Y|) log(n+ 1)

n
+ max{ξ(0)

n , ξ(1)
n } = o(1).

APPENDIX D
PROOF OF THEOREM 2

We first demonstrate that (E0, E1) ∈ E[φ] if (D0(E0),D1(E1)) is separable by φ. To this end, we
consider the error exponents associated with the coding schemes {Cn}n≥1 with Cn , (fn, gn, φ), where
fn(xn) , θX(P̂xn), gn(yn) , θY (P̂yn), and θX and θY are the corresponding functions as defined in
Definition 5 to separate (D0(E0),D1(E1)).

To begin, first note that from (47), there exists some εn = o(1), such that for each i ∈ {0, 1}, we have

P
{

(P̂Xn , P̂Y n) = (QX , QY )|H = i
}
≤ exp(−n(D∗i (QX , QY )− εn)). (68)

7For convenience, the dependencies of Q(i)
X , Q

(i)
Y on n are omitted from the notations.
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In addition, for each i = 0, 1 and n ≥ 1, let us define

Γni , {(QX , QY ) ∈ P̂X
n × P̂Y

n : φ(θX(QX), θY (QY )) 6= i},

and it can be verified from Definition 5 that

D∗i (QX , QY ) ≥ Ei for all (QX , QY ) ∈ Γni . (69)

Therefore, the type-I error π0 and type-II error π1 can be represented as

πi(Cn) = P
{
φ(θX(P̂Xn), θY (P̂Y n)) 6= i

∣∣∣H = i
}

=
∑

(QX ,QY )∈Γni

P
{
Xn ∈ TnQX , Y

n ∈ TnQY

∣∣H = i
}

≤
∑

(QX ,QY )∈Γni

exp(−n · (D∗i (QX , QY )− εn)) (70)

≤
∑

(QX ,QY )∈Γni

exp(−n(Ei − εn)) (71)

≤ |Γni | · exp(−n(Ei − εn)) (72)

≤ (n+ 1)|X|+|Y| exp(−n(Ei − εn)). (73)
≤ exp(−n(Ei − ε′n)), (74)

where (70) follows from (68), (71) follows from (69), (74) follows from (66), and where ε′n , εn +
log(n+1)

n
· (|X|+ |Y|).

Note that since ε′n = o(1), we obtain (E0, E1) ∈ E[φ].
In addition, we illustrate that for each (E0, E1) ∈ E[φ], (D0(E0),D1(E1)) is separable by φ. To this end,

first note that from Theorem 1, it suffices to consider coding schemes C̃n = (f̃n, g̃n, φ) with type-based
encoders f̃n : xn 7→ θ̂

(n)
X (P̂xn) and g̃n : yn 7→ θ̂

(n)
Y (P̂yn), where θ̂(n)

X : P̂X
n → dMXc and θ̂

(n)
Y : P̂Y

n → dMY c
are the corresponding type-encoding functions.

Then, it can be verified that for n sufficiently large, the θ̂(n)
X and θ̂(n)

Y satisfy that, for both i = 0, 1, and
each (QX , QY ) ∈ Di(Ei) ∩ (P̂X

n × P̂Y
n),

φ(θ̂
(n)
X (QX), θ̂

(n)
Y (QY )) = i. (75)

By symmetry, it suffices to establish (75) for the case i = 0, which can be shown by contradiction.
Indeed, suppose that there exists some (QX , QY ) ∈ D0(E0)∩(P̂X

n×P̂Y
n) such that φ(θ̂

(n)
X (QX), θ̂

(n)
Y (QY )) =

1, then from (47), there exists some νn = o(1), such that the type-I error π0(C̃n) satisfies

π0(C̃n) ≥ P
{
Xn ∈ TnQX , Y

n ∈ TnQY |H = 0
}

≥ exp(−n(D∗0(QX , QY ) + νn)).

Therefore, the type-I error exponent is at most D∗0(QX , QY ), which is strictly less than E0, since (QX , QY ) ∈
D(E0). This contradicts the assumption (E0, E1) ∈ E[φ].

Furthermore, let us define functions θ̃(n)
X : PX → dMXc and θ̃(n)

Y : P̂Y
n → dMY c such that

θ̃
(n)
X (QX) , θ̂

(n)
X (Q̂

(n)
X ) and θ̃

(n)
Y (QY ) , θ̂

(n)
X (Q̂

(n)
Y )

for all QX ∈ PX and QY ∈ PY, where

Q̂
(n)
X , arg min

Q′X∈P̂X
n

dmax(Q′X , QX), (76a)

Q̂
(n)
Y , arg min

Q′Y ∈P̂Y
n

dmax(Q′Y , QY ), (76b)
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where dmax is as defined in (44).
Note that for each (QX , QY ) ∈ D0(E0), we have D∗0(QX , QY ) < E0. In addition, from (76), we

have dmax(Q̂
(n)
X , QX) ≤ 1

n
and dmax(Q̂

(n)
Y , QY ) ≤ 1

n
. Therefore, it follows from the uniform continuity

of D∗0 that for n sufficiently large, we have D∗0(Q̂
(n)
X , Q̂

(n)
Y ) < E0, which implies that (Q̂

(n)
X , Q̂

(n)
X ) ∈

D0(E0) ∩ (P̂X
n × P̂Y

n). Hence, from (75) we obtain

φ(θ̃
(n)
X (QX), θ̃

(n)
Y (QY )) = 0. (77)

Similarly, we have

φ(θ̃
(n)
X (QX), θ̃

(n)
Y (QY )) = 1 (78)

for each (QX , QY ) ∈ D1(E1). From (77) and (78), D0(E0) and D1(E1) is separable by φ, which completes
the proof.

APPENDIX E
PROOF OF PROPOSITION 1

We first introduce a useful result.
Proposition 5: Suppose A0,A1 ⊂ P?, and φ is a reducible decoder. For each i ∈ {0, 1}, we have
• when ω(i)

X (φ) exists, φ | (A0,A1) if and only if ω(i)
X (φ) | (A0

X

.Aı̄,A1
X

.Aı̄);
• when ω(i)

Y (φ) exists, φ | (A0,A1) if and only if ω(i)
Y (φ) | (A0

Y

.Aı̄,A1
Y

.Aı̄).
Here, “X

.” and “ Y

.” are as defined in (8) and (9), respectively.
Proof of Proposition 5: It suffices to consider the first statement for i = 0, and other statements can

be similarly established. To begin, let φ′ , ω
(0)
X (φ), and we use A ↔ φ and ↔ A

(0)
X ↔ φ′ denote the

corresponding decision matrices (cf. Definition 7). We also define

A′0 , A0
X

.A1, and A′1 , A1
X

.A1 = A1. (79)

Without loss of generality, suppose the 0-dominated columns of A are its last d columns, i.e., we have

φ(mX ,mY ) = 0, (80)

for each mX = MX − d, . . . ,MX − 1 and mY ∈ dMY c.
Moreover, it can be verified that φ′ is the restriction of φ to dMX − dc × dMY c, and we have

φ′(mX ,mY ) = φ(mX ,mY ) (81)

for each (mX ,mY ) ∈ dMX − dc × dMY c.
To prove the “only if” part of the claim, suppose (A0,A1) is separable by φ. Then, from Definition 5,

there exist mappings θX : PX → dMXc and θY : PY → dMY c, such that for both i ∈ {0, 1}, we have

φ(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Ai. (82)

For each QX ∈ ΠX(A1), it can be verified that θX(QX) ∈ dMX − dc. Otherwise, there exists Q′Y ∈ PY

with (QX , Q
′
Y ) ∈ A1, and it follows from (80) that φ(θX(QX), θY (Q′Y )) = 0, which contradicts the claim

(82).
Then, we define θ′ : PX → dMX − dc such that

θ′(QX) =

{
θ′(QX) if QX ∈ ΠX(A1),

0 otherwise,
(83)

and it follows from (81) that, for each QX ∈ ΠX(A1) and QY ∈ PY, we have

φ(θX(QX), θY (QY )) ≡ φ′(θ′X(QX), θY (QY )).
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Moreover, from (82) we have, for both i ∈ {0, 1},

φ′(θ′X(QX), θY (QY )) = i, for all (QX , QY ) ∈ A′i, (84)

which implies that (A′0,A
′
1) is separable by φ′.

For the “if” part of the claim, suppose φ′ | (A′0,A
′
1), then there exist functions θ̂X : PX → dMX − dc

and θ̂Y : PY → dMX − dc, such that for both i ∈ {0, 1}, we have

φ′(θ̂X(QX), θ̂Y (QY )) = i, for all (QX , QY ) ∈ A′i. (85)

Then, let us define θ̂′ : PX → dMXc such that

θ̂′(QX) =

{
θ̂(QX) if QX ∈ ΠX(A1),

MX − d otherwise.
(86)

From (80), for both i ∈ {0, 1}, we have φ(θ̂′X(QX), θ̂Y (QY )) = i for all (QX , QY ) ∈ Ai, which implies
that φ | (A0,A1).

Proceeding to our proof of Proposition 1, first note that we have ϕ̄M−1,M−1 = ω
(0)
Y

(
ω

(0)
X (ϕM,M)

)
.

Therefore, from Proposition 5, we have

ϕM,M | (A,A′) ⇐⇒ ω
(0)
X (ϕM,M) | (A X

.A
′,A′)

⇐⇒ ϕ̄M−1,M−1 | ((A X

.A
′) Y

.A
′,A′)

⇐⇒ ϕ̄M−1,M−1 | (A .A′,A′)

⇐⇒ ϕM−1,M−1 | (A′,A .A′),

where the third “⇐⇒” follows from (A X

.A′)
Y

.A′ = A .A′. To obtain the last “⇐⇒”, we have used the
third property of Fact 5.

In addition, by repeatedly applying the first “ ⇐⇒ ” of (13) (M − 1) times, we know that first two
statements of (13) are equivalent to

ϕ1,1 | (A .M−1 A
′,A .M A′) ⇐⇒ A .M A′ = ∅,

where we have used the second property of Fact 5.
Similarly, we can establish the second statement of the claim, by noting that ϕMY ,MY

= ω
(1)
X (ϕMX ,MY

)
for all MX > MY ≥ 1.

APPENDIX F
PROOF OF THEOREM 3

We first introduce the following fact on the separability, which can be readily verified from Definition 5.
Fact 5: Given A,A′ ⊂ P?, we have
• φ | (A,A′) ⇐⇒ φ′ | (A,A′), for all φ ' φ′;
• ϕ1,1 | (A,A′) ⇐⇒ A′ = ∅;
• φ | (A,A′) ⇐⇒ φ̄ | (A′,A).
To establish Theorem 3, we first consider the case MX = MY . From Theorem 2 we have

(E0, E1) ∈ E[ϕMY ,MY
] ⇐⇒ ϕMY ,MY

| (D0(E0),D1(E1))

⇐⇒ D0(E0) .M D1(E1) = ∅,

where the last “⇐⇒” follows from Proposition 1. Then, it follows from the third property of Fact 5 that

(E0, E1) ∈ E[ϕMY ,MY
] ⇐⇒ D1(E1) .M D0(E0) = ∅.
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For the case MX > MY , it can be verified that

E[ϕMX ,MY
] = E[ϕMY +1,MY

]

= E[ϕ̄MY +1,MY
] = E[ϕ̄MX ,MY

],

where the second equality follows from the first property of Fact 5 and that ϕMY +1,MY
' ϕ̄MY +1,MY

. To
obtain the first equality, note that the decision matrix associated with ϕMX ,MY

and that associated with
ϕMY ,MY

differ only in duplicated columns. The last equality follows from symmetry considerations.
Then, from Theorem 2 and Proposition 1 we can obtain

(E0, E1) ∈ E[ϕMX ,MY
] ⇐⇒ ϕMX ,MY

| (D0(E0),D1(E1))

⇐⇒ ϕMY ,MY
| (D0(E0),D1(E1) X

.D0(E0))

⇐⇒ D0(E0) .MY
(D1(E1) X

.D0(E0)) = ∅,

which completes the proof.

APPENDIX G
PROOF OF LEMMA 2

By symmetry, it suffices to consider the case where (18) holds for i = 1, i.e.,

φ = φ0 ⊕ φ1. (87)

Since (A0,A1) is separable by φ, from Definition 5, there exists θX : PX → dMXc and θY : PY → dMY c,
such that, we have

φ(θX(QX), θY (QY )) = 0, for all (QX , QY ) ∈ A0, (88)

and

φ(θX(QX), θY (QY )) = 1, for all (QX , QY ) ∈ A1. (89)

From (19) and (87), we have, for all (mX ,mY ) ∈ dMXc × dMY c,

φ(mX ,mY ) = max{φ0(mX ,mY ), φ1(mX ,mY )}, (90)
φ0(mX ,mY ) · φ1(mX ,mY ) = 0. (91)

Therefore, we obtain, for each (QX , QY ) ∈ A0,

φ0(θX(QX), θY (QY )) = φ1(θX(QX), θY (QY )) = 0, (92)

and, for each (QX , QY ) ∈ A1,

φ0(θX(QX), θY (QY )) + φ1(θX(QX), θY (QY )) = 1.

Furthermore, we can demonstrate that, for either i = 0 or i = 1,

φi(θX(QX), θY (QY )) ≡ 1, for all (QX , QY ) ∈ A1. (93)

To see this, we define, for i ∈ {0, 1},

A
(i)
1 , {(QX , QY ) ∈ A1 : φi(θX(QX), θY (QY )) = 1}, (94)

from which we obtain the partition A1 = A
(0)
1 ∪A

(1)
1 with A

(0)
1 ∩A

(1)
1 = ∅. Then, it suffices to show that

A
(i)
1 = ∅ for i = 0 or i = 1, which we will establish by contradiction.
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To begin, suppose we have (QX , QY ) ∈ A
(0)
1 and (Q̃X , Q̃Y ) ∈ A

(1)
1 . Then, let us define sequences{

(Q
(n)
X , Q

(n)
Y )
}
n≥0

and
{

(Q̃
(n)
X , Q̃

(n)
Y )
}
n≥0

such that (Q
(0)
X , Q

(0)
Y ) = (QX , QY ) and (Q̃

(0)
X , Q̃

(0)
Y ) = (Q̃X , Q̃Y ).

Moreover, for each n ≥ 0, we define

(Q
(n+1)
X , Q

(n+1)
Y ) ,

{
(Q̂

(n)
X , Q̂

(n)
Y ) if (Q̂

(n)
X , Q̂

(n)
Y ) ∈ A

(0)
1 ,

(Q
(n)
X , Q

(n)
Y ) otherwise,

and

(Q̃
(n+1)
X , Q̃

(n+1)
Y ) ,

{
(Q̃

(n)
X , Q̃

(n)
Y ) if (Q̂

(n)
X , Q̂

(n)
Y ) ∈ A

(0)
1

(Q̂
(n)
X , Q̂

(n)
Y ) otherwise,

where we have defined

Q̂
(n)
X ,

1

2
(Q

(n)
X + Q̃

(n)
X ), Q̂

(n)
Y ,

1

2
(Q

(n)
Y + Q̃

(n)
Y ),

and we have (Q̂
(n)
X , Q̂

(n)
Y ) ∈ A1 due to the convexity of A1.

Then, for each n ≥ 0, it can be verified that

(Q
(n)
X , Q

(n)
Y ) ∈ A

(0)
1 , (Q̃

(n)
X , Q̃

(n)
Y ) ∈ A

(1)
1 , (95)

and

d?

(
Q

(n)
X Q

(n)
Y , Q̃

(n)
X Q̃

(n)
Y

)
=

1

2
· d?
(
Q

(n−1)
X Q

(n−1)
Y , Q̃

(n−1)
X Q̃

(n−1)
Y

)
=

1

2n
· d?
(
Q

(0)
X Q

(0)
Y , Q̃

(0)
X Q̃

(0)
Y

)
=

1

2n
· d?
(
QXQY , Q̃XQ̃Y

)
.

As a result, we obtain

d?
(
Q

(n)
X Q̃

(n)
Y , Q

(n)
X Q

(n)
Y

)
= dmax(Q̃

(n)
Y , Q

(n)
Y )

≤ d?

(
Q

(n)
X Q

(n)
Y , Q̃

(n)
X Q̃

(n)
Y

)
≤ 1

2n
· d?
(
QXQY , Q̃XQ̃Y

)
= o(1).

Since A1 is open, for sufficiently large n we have Q(n)
X Q̃

(n)
Y ∈ A1. Thus, it follows from (89) that

φ(θX(Q
(n)
X ), θY (Q̃

(n)
Y )) = 1. (96)

In addition, from (94) and (95), we have

θX(Q
(n)
X ) ∈ I

(1)
X (φ0) and θY (Q̃

(n)
Y ) ∈ I

(1)
Y (φ1), (97)

where I
(1)
X (·) and I

(1)
Y (·) are as defined in (20). This implies (cf. Definition 6) φ(θX(Q

(n)
X ), θY (Q̃

(n)
Y )) = 0,

which contradicts (96).
Hence, we obtain (93) as desired. Finally, it follows from (92) that (A0,A1) is separable by φj for

some j ∈ {0, 1}.
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APPENDIX H
PROOF OF LEMMA 3

We first introduce a useful characterization of completely reducible decoders.
Proposition 6: Let φ denote an MX ×MY decoder with MX ,MY ≥ 2. Then, the following statements

are equivalent:
S1) φ is completely reducible;
S2) each 2× 2 subdecoder of φ is reducible;
S3) there exists a monotonic decoder φ′ such that φ ' φ′.

Specifically, a decoder φ is called monotonic, if for all mX ≤ m′X and mY ≤ m′Y , we have φ(mX ,mY ) ≤
φ(m′X ,m

′
Y ).

Proof of Proposition 6: We will show the equivalences by demonstrating “S1 =⇒ S2”, “S2 =⇒
S3”, and “S3 =⇒ S1”.

First, for the claim “S1 =⇒ S2”, note that there are two irreducible 2 × 2 decoders, which we can
denote by

φ0 ↔ A0 = and φ1 ↔ A1 = . (98)

We then prove the claim by contradiction. Specifically, we assume that φ ↔ A has an irreducible
subdecoder φ0. Without loss of generality, suppose A0 is the submatrix of A composed of first two
rows and first two columns of A. Then, it suffices to show that φ is not completely reducible, which is
trivially true if φ is irreducible.

We now consider the case where φ is reducible. Then, there exists an elementary reduction operator ω,
such that ω(φ) exists. Since the first two rows and first two columns of A cannot be dominated, A0 is
also a submatrix of A′ ↔ ω(φ), and thus φ0 is also a subdecoder of ω(φ). As a consequence, for all φ′

that can be reduced from φ, φ0 is a subdecoder of φ′, which implies that φ is not completely reducible.
Similarly, φ is not completely reducible if φ1 is a subdecoder of φ.

Then, to prove “S2 =⇒ S3”, note that for each decoder φ, we can construct its equivalent decoder
φ′ ' φ such that the functions σ(φ)

X (·) and σ(φ)
Y (·) are both non-decreasing, where for each φ ∈ FMX ,MY

,
we have defined

σ
(φ)
X (mX) ,

∑
mY ∈dMY c

φ(mX ,mY ), ∀mX ∈ dMXc, (99a)

σ
(φ)
Y (mY ) ,

∑
mX∈dMXc

φ(mX ,mY ), ∀mY ∈ dMY c. (99b)

We then establish that φ′ is monotonic if φ satisfies the statement S2. To see this, first note that for all
0 ≤ mX < m′X < MX , we have σX(mX) ≤ σX(m′X), which implies∑

mY ∈dMY c

[φ′(mX ,mY )− φ′(m′X ,mY )] ≤ 0. (100)

Now, suppose φ′(mX ,mY ) − φ′(m′X ,mY ) > 0 for some mY ∈ dMY c. Since the summation (100) is
non-negative, there exists m′Y ∈ dMY c with φ′(mX ,m

′
Y )− φ′(m′X ,m′Y ) < 0. Therefore,

φ′(mX ,mY ) = 1, φ′(m′X ,mY ) = 0,

φ′(mX ,m
′
Y ) = 0, φ′(m′X ,m

′
Y ) = 1,

which implies that φ′ has an irreducible 2×2 subdecoder. Thus, φ also has an irreducible 2×2 subdecoder,
which contradicts the statement S2.

As a consequence, we obtain φ′(mX ,mY )−φ′(m′X ,mY ) ≤ 0 for all mY ∈ dMY c and 0 ≤ mX < m′X <
MX , and, similarly, φ′(mX ,mY )−φ′(mX ,m

′
Y ) ≤ 0 for all mX ∈ dMXc and 0 ≤ mY < m′Y < MY . This

demonstrates the statement S3.
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Finally, to establish “S3 =⇒ S1”, note that for equivalent decoders φ ' φ′, φ is completely reducible
if and only if φ′ is completely reducible. Therefore, it suffices to show that monotonic decoders are
completely reducible. To this end, we first show that the monotonic decoders are reducible. Indeed, for a
given monotonic decoder φ ∈ FMX ,MY

, it can be verified from the definition that
• if φ(MX − 1, 0) = 0, then φ(mX , 0) = 0 for all mX ∈ dMXc;
• if φ(MX − 1, 0) = 1, then φ(MX − 1,mY ) ≡ 1 for all mY ∈ dMY c.

Therefore, φ is reducible.
Moreover, if φ is non-trivial, there exists an elementary reduction operator ω, such that ω(φ) exists.

Then, it can be verified that ω(φ) is also monotonic, and we can similarly apply reduction operations on
ω(φ) until obtaining trivial decoders. This establishes the statement S1.

In addition, the following simple fact is also useful.
Fact 6: If φ ' φ′, then E[φ] = E[φ′]. If φ′ is a subdecoder of φ, then E[φ′] ⊂ E[φ], i.e., {φ′} � {φ}.
Proceeding to the proof of the lemma, for all given MX and MY , we define

Fm
MX ,MY

, {φ ∈ FMX ,MY
: φ is monotonic}. (101)

Then, from Fact 6 and the equivalence of statements S1 and S3 in Proposition 6, we obtain E[Ω̄MX ,MY
] =

E[Fm
MX ,MY

].
Therefore, it suffices to establish {φ} � {ϕMX ,MY

, ϕ̄MX ,MY
} for each φ ∈ Fm

MX ,MY
. To this end, we

first establish a useful expression of monotonic decoders via using the functions σ(φ)
X (·) and σ

(φ)
Y (·) as

defined in (99). In particular, for each φ ∈ Fm
MX ,MY

, from the definition of monotonicity we have, for all
(mX ,mY ) ∈ dMXc × dMY c,

φ(mX ,mY ) = 1{mX+σ
(φ)
Y (mY )≥MX}

(102)

= 1{σ(φ)
X (mX)+mY ≥MY }

. (103)

If MX > MY , for each mX ∈ dMXc, we have σ(φ)
X (mX) ∈ dMXc. Then, it follows from (103) that,

for all mY ∈ dMY c,

φ(mX ,mY ) = 1{σ(φ)
X (mX)+mY ≥MY }

= ϕMX ,MY
(σ

(φ)
X (mX),mY ), (104)

which implies that φ is a subdecoder of ϕMX ,MY
. Therefore, from Fact 6 we obtain

{φ} � {ϕMX ,MY
} � {ϕMX ,MY

, ϕ̄MX ,MY
}. (105)

For the case MX = MY , let M ,MX , then σ(φ)
Y (·) is a non-decreasing function on dMc. If σ(φ)

Y (·) is
not strictly increasing, then there exists m′Y ∈ dM − 1c, such that σ(φ)

Y (m′Y ) = σ
(φ)
Y (m′Y + 1), and from

(102) we obtain φ(mX ,m
′
Y ) = φ(mX ,m

′
Y + 1), for all mX ∈ dMc. This implies that the m′Y -th and

(m′Y + 1)-th rows of the associated decision matrix A ↔ φ are the same. Let A′ denote the submatrix
of A obtained by deleting its (m′Y + 1)-th row. Then, it can be verified that, the decoder φ′ ↔ A′ is an
M × (M − 1) monotonic decoder with E[φ] = E[φ′].

Therefore, we obtain

{φ} � Fm
M,M−1 � {ϕM,M−1} � {ϕM,M} � {ϕM,M , ϕ̄M,M},

where the second “�” follows from (105), and where the third “�” follows from Fact 6 and that ϕM,M−1

is a subdecoder of ϕM,M .
It remains to establish the claim for the case where MX = MY = M and σ

(φ)
Y (·) is strictly increasing

on dMc. To this end, first note that if σ(φ)
Y (0) = 0, for each mX ∈ dMc we have φ(mX , 0) = 0. Therefore,

we have σ(φ)
X (mX) ∈ dMc, and it follows from (104)–(105) that {φ} � Fm

M,M . Moreover, if σ(φ)
Y (·) is

strictly increasing and σ(φ)
Y (0) 6= 0, we have σ(φ)

Y (mY ) = mY + 1 for all mY ∈ dMc.
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Hence, from (102) we have, for all (mX ,mY ) ∈ dMXc × dMY c,

φ(mX ,mY ) = 1{mX+mY ≥M−1}

= 1{(M−1−mX)+(M−1−mY )≤M−1}

= 1{(M−1−mX)+(M−1−mY )<M}

= ϕ̄M,M(M − 1−mX ,M − 1−mY ),

which implies that φ ' ϕ̄M,M . As a result, we obtain {φ} � {ϕ̄M,M} � {ϕM,M , ϕ̄M,M}, which completes
the proof.

APPENDIX I
PROOF OF FACT 3

To begin, we consider a decoder φ that is not completely reducible. If φ is irreducible, it suffices to let
φ′ = φ. Otherwise, since φ cannot be reduced to trivial decoders, each decoder reduced from φ is either
an irreducible decoder, or a non-trivial reducible decoder. Therefore, we can apply a series of elementary
reduction operators on φ, until obtaining some irreducible decoder.

It remains only to demonstrate the uniqueness of obtained irreducible decoders. To see this, suppose
both φ′′ and φ̃′′ are the irreducible decoders obtained from the above procedures.

Note that since φ′′ is an irreducible subdecoder of φ, its associated rows and columns in the decision
matrix A ↔ φ cannot be dominated during the above reduction procedures. Therefore, it is also a
subdecoder of all decoders reduced from φ.

As a result, φ′′ is a subdecoder of φ̃′′, and, similarly, φ̃′′ is a subdecoder of φ′′. Hence, we have φ′′ = φ̃′′,
corresponding to the unique decoder φ′ reduced from φ.

APPENDIX J
PROOF OF THEOREM 4

Our proof makes use of the notion of open sets in P?, together with discussions on the separability (cf.
Definition 5) under reducible and decomposable decoders.

As a first step, we define the open sets in P? as follows. With slight abuse of notation, we use QXQY to
represent (QX , QY ) ∈ P?. Then, we introduce the metric d? on P?, such that for all given QXQY , Q

′
XQ

′
Y ∈

P?,

d?(QXQY , Q
′
XQ

′
Y ) , max {dmax(QX , Q

′
X), dmax(QY , Q

′
Y )} .

Moreover, A ⊂ P? is open, if for each QXQY ∈ A, there exists η > 0, such that for all Q′XQ
′
Y ∈ P?

satisfying d?(QXQY , Q
′
XQ

′
Y ) < η, we have Q′XQ

′
Y ∈ A.

Specifically, with assumption (1), the functions D∗0(·) and D∗1(·) as defined in (6) are uniformly
continuous, from which we can obtain the following useful fact.

Fact 7: Suppose the assumption (1) holds. Then, for all t ≥ 0 and i ∈ {0, 1}, Di(t) is open.
To better illustrate the separability under reducible decoders, we introduce notations as follows.
For all given A0,A1 ⊂ P? and a reduction operator ω, we define the sets τi(A0,A1;ω) for i = 0, 1,

such that for j ∈ {0, 1} and ̄ , 1− j,

τi(A0,A1;ω
(j)
X ) , Ai

X

.Ā, (106a)

τi(A0,A1;ω
(j)
Y ) , Ai

Y

.Ā, (106b)

and, for each composite reduction operator ω ◦ ω′,

τi(A0,A1;ω ◦ ω′) , τi(A
′
0,A

′
1;ω), (107)

where A′j , τj(A0,A1;ω′) for j ∈ {0, 1}.
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Then, we have the following useful fact, which can be verified by definition.
Fact 8: If A0,A1 ⊂ P? are open and convex, then for each reduction operator ω and i ∈ {0, 1},

τi(A0,A1;ω) is open and convex.
The following fact, as an immediate consequences of Proposition 5, is also useful.
Fact 9: Suppose A0,A1 ⊂ P?, and φ is a reducible decoder which can be reduced to ψ , ω(φ) by

some reduction operator ω. Then, we have φ | (A0,A1) if and only if ψ | (τ0(A0,A1;ω), τ1(A0,A1;ω)).
In addition, our proof will make use of the following result.
Lemma 4: Suppose A0,A1 ⊂ P? are open and convex. Then, for each φ ∈ Ω

(1)
MX ,MY

that separates
(A0,A1), there exists φ′ ∈ FMX ,MY

with κ(φ′) < κ(φ), such that φ′ | (A0,A1), where κ : FMX ,MY
→ N

such that for each κ(φ) = 0 if φ ∈ Ω̄MX ,MY
, and κ(φ) , min{LX , LY } for φ ∈ ΩMX ,MY

, where we have
assumed that ω∗(φ) ∈ FLX ,LY for some LX , LY ≥ 2, and where ω∗(φ) denotes the reduced form of φ.

Proof of Lemma 4: To begin, suppose φ ∈ Ω
(1)
MX ,MY

for some MX ,MY ≥ 2, and let ψ , ω∗(φ)
denote the reduced form of φ, as defined in Proposition 3. Furthermore, suppose ψ can be reduced from
φ by a reduction operator ω, i.e., ψ = ω(φ), and that ψ ∈ FLX ,LY for some LX ≤ MX and LY ≤ MY .
Without loss of generality, we assume that, for all (mX ,mY ) ∈ dLXc×dLY c, ψ(mX ,mY ) = φ(mX ,mY ).

Then, for i ∈ {0, 1}, we define A′i , τi(A0,A1;ω), with τi as defined in (106)–(107). Then, since
(A0,A1) is separable by φ, from Fact 9 we know that (A′0,A

′
1) is separable by ψ.

In addition, as both A0 and A1 are convex and open, from Fact 8 that, A′0 and A′1 are also convex and
open. Then, from the definition of Ω

(1)
MX ,MY

[cf. (21)], ψ is decomposable with the decomposition

ψ = ψ0 ⊕ ψ1 ⊕ ı̄ (108)

for some i ∈ {0, 1}, where ψ0, ψ1 ∈ FLX ,LY satisfy (19).
Therefore, it follows from Lemma 2 that (A′0,A

′
1) is separable by ψ0 or ψ1. Furthermore, let us define

φ0, φ1 ∈ FMX ,MY
such that, for each j ∈ {0, 1},

φj(mX ,mY ) ,

{
ψj(mX ,mY ) if (mX ,mY ) ∈ dLXc × dLY c,
φ(mX ,mY ) otherwise.

Then, it can be verified that (A0,A1) is separable by φ0 or φ1.
It remains to verify that κ(φj) < κ(φ). To see this, note that from the definition of κ(·), for both

j ∈ {0, 1}, we have

κ(φj) = κ(ψj) (109)

≤ min
{
|I(i)
X (ψj)|, |I(i)

Y (ψj)|
}

(110)
< min{LX , LY } (111)
= κ(ψ) = κ(φ), (112)

where I
(1)
X (·) and I

(1)
Y (·) are as defined in (20), and where to obtain (110)–(111) we have used (19).

Our proof of Theorem 4 proceeds as follows. To begin, when MY = 1, we have Ω
(1)
MX ,MY

⊂ ΩMX ,MY
=

∅, and Theorem 4 is trivially true. Thus, it suffices to consider the case MX ,MY ≥ 2. In particular,
note that for all t > 0, Di(t) is convex and open, where the openness follows from Fact 7. To see the
convexity, first note that from the convexity of KL divergence, D∗i is also convex (see, e.g., [30, Example
3.17]). Therefore, Di(t), as a strict sublevel set of D∗i , is also convex.

Therefore, it follows from Theorem 2 and Lemma 4 that, for each φ ∈ Ω
(1)
MX ,MY

and error exponent
pair (E0, E1) ∈ E[φ], there exists φ′ ∈ FMX ,MY

, such that

(E0, E1) ∈ E[φ′] and κ(φ′) < κ(φ). (113)
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Therefore, from (113), for each φ ∈ Ω
(1)
MX ,MY

and (E0, E1) ∈ E[φ], we can obtain some φ′ satisfying
(113). Similarly, if φ′ ∈ Ω

(1)
MX ,MY

, we can again apply (113) to obtain an MX ×MY decoder φ′′ with
κ(φ′′) < κ(φ′) and (E0, E1) ∈ E[φ′′].

In addition, since κ(·) is non-negative, for each φ ∈ Ω
(1)
MX ,MY

and error exponent pair (E0, E1) ∈ E[φ],
we can repeatedly apply these procedures to obtain

φ̃ ∈ FMX ,MY
\ Ω

(1)
MX ,MY

= Ω̄MX ,MY
∪ Ω

(0)
MX ,MY

,

such that (E0, E1) ∈ E[φ̃], which demonstrates E[Ω
(1)
MX ,MY

] ⊂ E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

].
Therefore, from Lemma 3 we obtain

E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

] ⊂ E[FMX ,MY
] = E[Ω̄MX ,MY

] ∪ E[Ω
(0)
MX ,MY

] ∪ E[Ω
(1)
MX ,MY

] (114)

⊂ E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

], (115)

which implies E[Ω
(0)
MX ,MY

] = E[{ϕMX ,MY
, ϕ̄MX ,MY

}], i.e., (22).

APPENDIX K
PROOF OF THEOREM 5

To begin, for each φ ∈ FMX ,MY
, we define the bipartite graph Gφ = (U, V,Eφ) with the vertex sets U ,

{umX : mX ∈ dMXc} and V , {vmY : mY ∈ dMY c}, and the edge sets Eφ , {(umX , vmY ) : φ(mX ,mY ) =
1}, where (umX , vmY ) represents the undirected edge connecting umX and vmY . This establishes the one-
to-one correspondence between decoders and bipartite graphs, and it can be verified that, the decision
matrix A associated with φ corresponds to the biadjacency matrix of Gφ.

We then illustrate that if φ is indecomposable and irreducible, then both Gφ and Gφ̄ are connected. To
this end, first note that since φ is irreducible, there exists no isolated vertex in Gφ.

Now, suppose Gφ is disconnected and can be divided into bipartite graphs G(0) = (U0, V0, E
(0)) and

G(1) = (U1, V1, E
(1)), with non-empty vertex sets U0, U1, V0, V1 satisfying

U = U0 ∪ U1, U0 ∩ U1 = ∅,
V = V0 ∪ V1, V0 ∩ V1 = ∅.

Let φ0 and φ1 be the decoders associated with G(0) and G(1), respectively. Then, it can be verified that
φ satisfies (18) with i = 0, and thus is decomposable, which contradicts our assumption. Therefore, Gφ

is connected. Via a symmetry argument, we can show that Gφ̄ is also connected.
Therefore, we obtain

|Eφ| ≥ |U |+ |V | − 1 (116a)
|Eφ̄| ≥ |U |+ |V | − 1, (116b)

where we have used the simple fact that each connected graph with k vertices has at least k − 1 edges.
From (116), we obtain

MXMY = |Eφ|+ |Eφ̄|
≥ 2(|U |+ |V | − 1) = 2(MX +MY − 1),

which is equivalent to

(MX − 2)(MY − 2) ≥ 2. (117)

As a result, if (MX − 2)(MY − 2) < 2, no MX ×MY decoder is both indecomposable and irreducible.
It suffices to establish (23). To this end, we first demonstrate that Ω

(0)
MX ,MY

= ∅. Otherwise, for each
φ ∈ Ω

(0)
MX ,MY

, let ψ , ω∗(φ). Then, we have ψ ∈ FLX ,LY for some LX ≤ MX , LY ≤ MY . This implies



31

that ψ is both irreducible and indecomposable, and (LX − 2)(LY − 2) ≥ 2, which contradicts previous
argument.

Hence, from Theorem 4, we have

E(0MX
, 0MY

) = E[{ϕMX ,MY
, ϕ̄MX ,MY

}] ∪ E[Ω
(0)
MX ,MY

]

= E[{ϕMX ,MY
, ϕ̄MX ,MY

}]
= E[ϕMX ,MY

] ∪ E[ϕ̄MX ,MY
].

APPENDIX L
PROOF OF PROPOSITION 2

First, we define Rmax , max{H(P
(0)
X ), H(P

(1)
X )} with H(·) representing the entropy. Then, due to the

inclusion chain

E(02MY , 0MY
) ⊂ E(0MX

, 0MY
)

⊂ E(RX , 0MY
) ⊂ E(Rmax, 0MY

), (118)

it suffices to demonstrate E(02MY , 0MY
) = E(Rmax, 0MY

).
Specifically, note that under the constraints (Rmax, 0MY

), the decoder can obtain the full side information
of the X sequence. Then, for each n ≥ 1, the corresponding coding scheme can be characterized as a
encoder gn that encodes Y n, and a central decoder φn : Xn × dMY c → {0, 1}. When nodes NX and NY
observe sequences Xn = xn and Y n = yn, respectively, the decision at the center can be represented as
Ĥ = φn(xn, gn(yn)).

Then, we introduce a new encoder fn : Xn → d2MXc for encoding Xn, such that

fn(xn) ,
∑

j∈dMY c

φn(xn, j) · 2j, for all xn ∈ Xn.

We also define decoder φ′ : d2MY c × dMY c → {0, 1} as

φ′(mX ,mY ) , bmY , (mX ,mY ) ∈ d2MY c × dMY c,

where for each j ∈ dMY c, bj ∈ {0, 1} denotes the (j + 1)-th digit of the binary representation of mX ,
such that

mX = (bMY −1 · · · b1b0)2 ,
∑

j∈dMY c

bj · 2j.

It can be verified that for each xn ∈ Xn and yn ∈ Yn, the decision Ĥ′ associated with the coding scheme
(fn, gn, φ

′) is

Ĥ′ = φ′(fn(xn), gn(yn)) ≡ φn(xn, gn(yn)) = Ĥ.

Therefore, for each coding scheme under the rate constraints (Rmax, 0MY
), there exists a coding scheme

satisfying constraints (02MY , 0MY
) which obtains the same decision result. Hence, we have E(Rmax, 0MY

) ⊂
E(02MY , 0MY

), and it follows from (118) that E(02MY , 0MY
) = E(Rmax, 0MY

).
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APPENDIX M
PROOF OF THEOREM 6

For given MX ,MY , note that if ΩMX ,MY
and Ω̄MX ,MY

satisfy

ΩMX ,MY
� Ω̄MX ,MY

, (119)

from Fact 4 we have

FMX ,MY
= ΩMX ,MY

∪ Ω̄MX ,MY
� Ω̄MX ,MY

, (120)

and thus

E(0MX
, 0MY

) = E[FMX ,MY
] = E[Ω̄MX ,MY

] (121)
= E[{ϕMX ,MY

, ϕ̄MX ,MY
}], (122)

where the first equality follows from Fact 2, where the second equality follows from (120), and where
the last equality follows from Lemma 3.

Therefore, it suffices to establish (119). Note that if MY = 1, then ΩMX ,MY
= ∅, and (120) is trivially

true. We then establish (119) for MX ≥MY ≥ 2. To this end, we show that for each φ ∈ ΩMX ,MY
, there

exists φ′ ∈ Ω̄MX ,MY
, such that E[φ] ⊂ E[φ′].

To begin, note that from statement S2 of Proposition 6, φ has at least one irreducible 2× 2 subdecoder
[cf. (98)]. Without loss of generality, we assume

φ(0, 0) = φ(1, 1) = 0,

φ(1, 0) = φ(1, 0) = 1.

By symmetry, it suffices to consider the case

P
(0)
XY = P

(0)
X P

(0)
Y . (123)

Let φ(0) , φ, and suppose fn : Xn → dMXc and gn : Yn → dMY c are some given encoders. Then, we
define φ(1) as

φ(1)(mX ,mY ) ,

{
0 if (mX ,mY ) = (jX , ̄X),

φ(0)(mX ,mY ) otherwise,
(124)

where we have defined

jX , arg min
j∈{0,1}

P {fn(Xn) = j|H = 0} (125)

and ̄X , 1− jX .
For k = 0, 1, let C(k)

n , (fn, gn, φ
(k)) denote the corresponding coding schemes. Then, it can be verified

that the type-I and type-II errors for C(1)
n satisfy

π0(C(1)
n ) ≤ 2 · π0(C(0)

n ), (126a)

π1(C(1)
n ) ≤ π1(C(0)

n ). (126b)

To establish (126a), note that

π0(C(1)
n )− π0(C(0)

n ) = P {(fn(Xn), gn(Y n)) = (jX , ̄X)|H = 0} (127)
= P {fn(Xn) = jX |H = 0}P {gn(Y n) = ̄X |H = 0} (128)
≤ P {fn(Xn) = ̄X |H = 0}P {gn(Y n) = ̄X |H = 0} (129)
= P {(fn(Xn), gn(Y n)) = (̄X , ̄X)|H = 0} (130)

≤ π0(C(0)
n ), (131)
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where (128) and (130) follow from (123), and where (129) follows from (125).
Moreover, (132b) follows from the simple fact that, for all (mX ,mY ) ∈ dMXc × dMY c,

φ(1)(mX ,mY ) = 1 implies φ(0)(mX ,mY ) = 1.

Furthermore, if φ(1) /∈ Ω̄MX ,MY
, we can define φ(2) similar to (124). Similarly, for each k ≥ 0, we

define φ(k+1) if φ(k) /∈ Ω̄MX ,MY
. Then we can demonstrate that, there exists k′ ≤ MXMY − 1, such that

φ(k′) ∈ Ω̄MX ,MY
. Indeed, note that we have, for all k ≥ 0,

0 ≤ σXY (φ(k)) = σXY (φ(0))− k ≤MXMY − 1− k,

where we have defined, for each φ ∈ FMX ,MY
,

σXY (φ) ,
∑

mX∈dMXc

∑
mY ∈dMY c

φ(mX ,mY ).

In addition, similar to (124), for each k we have

π0(C(k)
n ) ≤ (k + 1) · π0(C(0)

n ), (132a)

π1(C(k)
n ) ≤ π1(C(0)

n ). (132b)

This implies that

π0(C(k′)
n ) ≤ (k′ + 1)π0(C(0)

n ) ≤MXMY · π0(C(0)
n ), (133a)

π1(C(k′)
n ) ≤ π1(C(0)

n ). (133b)

Finally, let φ′ , φ(k′) ∈ Ω̄MX ,MY
. Then, since the encoders fn and gn can be arbitrarily chosen, it follows

from (133) that E[φ′] ⊂ E[φ], which completes the proof.

APPENDIX N
PROOF OF PROPOSITION 3

Our proof makes use of the following fact.
Fact 10: For all A0,A1 ⊂ P? and k ≥ 2, we have

A0 .kA1 ⊂ A0 .k−2 A1, (134)

ΠX(A0 .kA1) ⊂ ΠX(A0 .k−1 A1), (135a)
ΠY (A0 .kA1) ⊂ ΠY (A0 .k−1 A1), (135b)

and

A0 .kA1 = Aχk . (A0 .k−1 A1). (136)

Proof of Fact 10: From Definition 2, we have

A0 .kA1 = (A0 .k−2 A1) . (A0 .k−1 A1)

= (A0 .k−2 A1) ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1)) , (137)

from which we can obtain (134) and

A0 .kA1 ⊂ ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1). (138)
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From (138) and (7), we can readily obtain (135b). As a result, we can rewrite (137) as

A0 .kA1 = (A0 .k−2 A1) ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1))

= (A0 .k−4 A1) ∩ (ΠX(A0 .k−3 A1)× ΠY (A0 .k−3 A1))

∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1)) (139)
= (A0 .k−4 A1) ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1)) (140)
= · · · = (A0 .χk A1) ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1)) (141)
= Aχk ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1)) (142)
= Aχk . (A0 .k−1 A1), (143)

where to obtain (140) we have used (134), and to obtain (142) we have used the fact that Aχk = A0 .χk A1.

The following simple fact is also useful.
Fact 11: Given M ≥ 1, for all k0, k1 ∈ dMc, we have ϕM,M(rM(k0), rM(k1)) = χk0∧k1 , where

k0 ∧ k1 , min{k0, k1}.
Proof of Fact 11: If M = 1, we have k0 = k1 = 0 and ϕ1,1(k0, k1) = 0, and the claim is trivially

true.
If M = 2, we have rM(k) = k for k ∈ dMc = {0, 1}. Then, for all k0, k1 ∈ {0, 1}, we have

k0 ∧ k1 ∈ {0, 1} and

ϕM,M(rM(k0), rM(k1)) = ϕM,M(k0, k1) = 1{k0+k1≥2}

= 1{k0∧k1=1}

= χk0∧k1 .

For the general case with M > 2, we will make use of the following properties of rM(·), which can
be verified by definition.
• For each k ∈ dM − 2c, we have

rM(k + 2) > rM(k) if χk = 0, (144a)
rM(k + 2) < rM(k) if χk = 1. (144b)

• For each k ∈ dM − 1c, we have

rM(k) + rM(k + 1) = M − 1 + χk. (145)

• For each k ∈ dMc, we have

rM(k) ≤ 1

2
(M + χM)− 1 if χk = 0, (146)

rM(k) ≥ 1

2
(M + χM) if χk = 1. (147)

To establish Fact 11, without loss of generality we assume k0 ≤ k1. To begin, we consider the case
χk0 = χk1 . If χk0 = χk1 = 0, from (146) we have

rM(k0) + rM(k1) ≤M + χM − 2 < M,

which implies that ϕM,M(rM(k0), rM(k1)) = 0 = χk0 . Similarly, when χk0 = χk1 = 1, from (147) we
have

rM(k0) + rM(k1) ≥M + χM ≥M,

and thus ϕM,M(rM(k0), rM(k1)) = 1 = χk0 .
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Moreover, if χk0 6= χk1 , then we have χk1 = χk0+1 and k1 ≥ k0 + 1. Specifically, if (χk0 , χk1) = (0, 1),
then

rM(k0) + rM(k1) ≤ rM(k0) + rM(k0 + 1) = M − 1,

where the inequality follows from (144), and where the equality follows from (145). Hence, we obtain
ϕM,M(rM(k0), rM(k1)) = 0 = χk0 . Similarly, if (χk0 , χk1) = (1, 0), then from (144) and (145) we have

rM(k0) + rM(k1) ≥ rM(k0) + rM(k0 + 1) = M,

which implies ϕM,M(rM(k0), rM(k1)) = 1 = χk0 .
In addition, the following proposition is also useful.

Proposition 7: Given A0,A1 ⊂ P?, let us define

ϑ′X(QX) ,

{
max{k ≥ 0: QX ∈ ΠX(A0 .kA1)} if QX ∈ ΠX(A0 ∪A1),

0 otherwise,
(148)

ϑ′Y (QY ) ,

{
max{k ≥ 0: QY ∈ ΠY (A0 .kA1)} if QY ∈ ΠY (A0 ∪A1),

0 otherwise,
(149)

for all QX ∈ PX and QY ∈ PY, where ΠX(·) and ΠY (·) are as defined in (7), and “ .k” is as defined in
Definition 2. Then, if ϕM,M | (A0,A1) for some M ≥ 1, we have

ϑ′X(QX), ϑ′Y (QY ) ∈ dMc, for all (QX , QY ) ∈ P?, (150)

and [cf. (11)]

ϕM,M(θ′X(QX), θ′Y (QY )) = i, for all (QX , QY ) ∈ Ai, (151)

for both i ∈ {0, 1}, where we have defined θ′X , rM ◦ ϑ′X and θ′Y , rM ◦ ϑ′Y .
Proof of Proposition 7: First, from (134), we can obtain the sequences of nested sets

A0 = (A0 .0 A1) ⊃ · · · ⊃ (A0 .2kA1) ⊃ (A0 .2k+2 A1) ⊃ · · ·

and

A1 = (A1 .1 A1) ⊃ · · · ⊃ (A0 .2k+1 A1) ⊃ (A0 .2k+3 A1) ⊃ · · · .

Suppose (QX , QY ) ∈ Ai for some i ∈ {0, 1}. Let us define

k′ , max{k ≥ 0: (QX , QY ) ∈ A0 .2k+iA1},

then we have

(QX , QY ) ∈ A0 .2k′+iA1, (152)
(QX , QY ) /∈ A0 .2(k′+1)+iA1. (153)

From Fact 10, we obtain

A0 .2(k′+1)+iA1 = Ai . (A0 .2k′+i+1 A1)

= Ai ∩ (ΠX(A0 .2k′+i+1 A1)× ΠY (A0 .2k′+i+1 A1)) ,

and it follows from (QX , QY ) ∈ Ai and (153) that

QX /∈ ΠX(A0 .2k′+i+1 A1) or QY /∈ ΠY (A0 .2k′+i+1 A1). (154)

In addition, from (152), we have

QX ∈ ΠX(A0 .2k′+iA1) and QY ∈ ΠY (A0 .2k′+iA1). (155)
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Combining (154)–(155) and (135b), we obtain

min
{
ϑ′X(QX), ϑ′X(QY )

}
= 2k′ + i.

Therefore,

ϕM,M(θ′X(QX), θ′X(QY )) = ϕM,M(rM(ϑ′X(QX)), rM(ϑ′Y (QY )))

= χ2k′+i

= i,

where to obtain the second equality we have used Fact 11.
Proceeding to our proof of Proposition 3, we first show that for each given (E0, E1) and all k ≥ 1, the

Q
(k)
X and Q

(k)
Y as defined in (27) satisfy

Q
(k)
X = ΠX(A0 .kA1), (156a)

Q
(k)
Y = ΠY (A0 .kA1), (156b)

and where we have defined

A0 ,

{
D1(E1) if φ = ϕ̄M,M ,
D0(E0) otherwise,

and A1 ,


D1(E1) if φ = ϕM,M ,
D0(E0) if φ = ϕ̄M,M ,
D1(E1) X

.D0(E0) if φ = φMX ,MY
.

(157)

We then verify (156) for decoder φ = ϕM,M , and the other two cases can be similarly established. First,
when k = 1, we have

ΠX(A0 .1 A1) = ΠX(A1) = ΠX(D1(E1))

=
{
QX ∈ PX : D(QX‖P (1)

X ) < E1

}
= Q

(1)
X (158)

and, similarly, ΠY (D0(E0) .1 D1(E1)) = Q
(1)
Y .

Suppose (156) holds for k = ` ≥ 1. For k = `+ 1 ≥ 2, it follows from Fact 10 that

A0 .kA1 = Aχk . (A0 .k−1 A1)

= Aχk ∩ (ΠX(A0 .k−1 A1)× ΠY (A0 .k−1 A1))

= Aχk ∩
(
Q

(k−1)
X × Q

(k−1)
Y

)
. (159)

As a result, we have

ΠX(A0 .kA1) =
{
QX ∈ Q

(k−1)
X : (QX , QY ) ∈ Aχk for some QY ∈ Q

(k−1)
Y

}
=
{
QX ∈ Q

(k−1)
X : D∗χk(QX , QY ) < Eχk for some QY ∈ Q

(k−1)
Y

}
=
{
QX ∈ Q

(k−1)
X : D∗χk(QX ,Q

(k−1)
Y ) < Eχk

}
= Q

(k)
X .

By a symmetry argument, we can also obtain (156b). Hence, (156) holds for all k ≥ 1.
Then, from Theorem 3, (E0, E1) ∈ E[φ] if and only if

A0 .M A1 = ∅. (160)

In addition, from (159), it can be verified that

A0 .M A1 = AχM ∩
(
Q

(M−1)
X × Q

(M−1)
Y

)
,

= Dχ̂M (Eχ̂M ) ∩
(
Q

(M−1)
X × Q

(M−1)
Y

)
. (161)
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Hence, (160) is equivalent to

D∗χ̂M (Q
(M−1)
X ,Q

(M−1)
Y ) ≥ Eχ̂M , (162)

which is (28).
Finally, with the correspondence (157), it follows from Proposition 7 that, for all (E0, E1) ∈ E[φ] and

both i = 0, 1, we have

ϕM,M(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Ai, (163)

where θX and θY are as defined in (29). This implies that [cf. (11)]

φ(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Di(Ei). (164)

Therefore, it follows from Theorem 2 that each exponent pair (E0, E1) ∈ int(E[φ]) can be achieved by
the type-encoding functions θX and θY .

APPENDIX O
COMPUTATION OF ERROR EXPONENT REGION AND TYPE-ENCODING FUNCTIONS

For convenience, we focus on the decoder ϕM,M , and the computation of ϕ̄M,M and ϕMX ,MY
is similar.

From (28), for all M ≥ 1, (E0, E1) ∈ E[ϕM,M ] if and only if

D∗χM
(
Q

(M−1)
X ,Q

(M−1)
Y

)
≥ EχM .

From the definition of D∗i [cf. (6)], this is equivalent to{
QXY ∈ PX×Y : D(QXY ‖P (χM )

XY ) ≥ EχM , [QXY ]X ∈ Q
(M−1)
X , [QXY ]Y ∈ Q

(M−1)
Y

}
6= ∅. (165)

Moreover, from (27), for all k ≥ 1 and QX ∈ PX, QX ∈ Q
(k)
X if and only if

QX ∈ Q
(k−1)
X and D∗χk(QX ,Q

(k−1)
Y ) < Eχk ,

which is equivalent to{
QXY ∈ PX×Y : D(QXY ‖P (χk)

XY ) < Eχk , [QXY ]X = QX ∈ Q
(k−1)
X , [QXY ]Y ∈ Q

(k−1)
Y

}
6= ∅. (166)

Similarly, QY ∈ Q
(k)
Y if and only if{

QXY ∈ PX×Y : D(QXY ‖P (χk)
XY ) < Eχk , [QXY ]Y = QY ∈ Q

(k−1)
Y , [QXY ]X ∈ Q

(k−1)
X

}
6= ∅. (167)

We first consider the computation of error exponent regions ϕM,M . Specifically, when M = 2, combining
(165) and (31), we have (E0, E1) ∈ E[ϕ2,2] if and only if there exists QXY ∈ PX×Y, such that

D(QXY ‖P (0)
XY ) ≥ E0,

D([QXY ]X‖P (1)
X ) < E1,

D([QXY ]Y ‖P (1)
Y ) < E1.

Therefore, for each given E0, the optimal E1 achieved by ϕ2,2 is given by the optimal value of the
convex programming problem

minimize
t,QXY

t (168a)

subject to QXY ∈ PX×Y, (168b)

D(QXY ‖P (0)
XY ) ≤ E0, (168c)

D([QXY ]X‖P (1)
X ) ≤ t, (168d)

D([QXY ]Y ‖P (1)
Y ) ≤ t, (168e)
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Similarly, for M = 3, we have (E0, E1) ∈ E[ϕ3,3] if and only if there exists QXY ∈ PX×Y, such that

D(QXY ‖P (1)
XY ) ≥ E1, (169)

[QXY ]X ∈ Q
(2)
X and [QXY ]Y ∈ Q

(2)
Y . (170)

In addition, from (166), (170) is equivalent to{
Q′XY ∈ PX×Y : D(Q′XY ‖P

(0)
XY ) < E0, [Q

′
XY ]X = [QXY ]X ∈ Q

(1)
X , [Q′XY ]Y ∈ Q

(1)
Y

}
6= ∅ (171)

and {
Q′′XY ∈ PX×Y : D(Q′′XY ‖P

(0)
XY ) < E0, [Q

′′
XY ]Y = [QXY ]Y ∈ Q

(1)
Y , [Q′′XY ]X ∈ Q

(1)
X

}
6= ∅, (172)

respectively.
As a result, combining (169), (31), and (171)–(172), for each given E0, the optimal E1 achieved by

ϕ3,3 is given by the optimal value of the convex programming problem

minimize
t,QXY ,Q

′
XY ,Q

′′
XY

t (173a)

subject to QXY , Q
′
XY , Q

′′
XY ∈ PX×Y, (173b)

D(QXY ‖P (1)
XY ) ≤ t, (173c)

[Q′XY ]X = [QXY ]X , D([Q′XY ]Y ‖P (1)
Y ) ≤ t, D(Q′XY ‖P

(0)
XY ) ≤ E0, (173d)

[Q′′XY ]Y = [QXY ]Y , D([Q′′XY ]X‖P (1)
X ) ≤ t, D(Q′′XY ‖P

(0)
XY ) ≤ E0. (173e)

The computation of error exponent region E[ϕM,M ] for general M can be obtained similarly. Moreover,
the type-encoding functions θX , θY as defined in (28) can also be computed in a similar manner. As an
illustrative example, we consider the computation of θX with ϕ3,3 used as the decoder. It can be verified
that

θX(QX) =


0 if QX /∈ Q

(1)
X ,

1 if QX ∈ Q
(2)
X ,

2 if QX ∈ Q
(1)
X \ Q

(2)
X .

From (31), for each given QX , it is straightforward to decide whether QX ∈ Q
(1)
X or not, and it suffices

to verify if QX ∈ Q
(2)
X . From (166), QX ∈ Q

(2)
X if and only if{

QXY ∈ PX×Y : D(QXY ‖P (0)
XY ) < E0, [QXY ]X = QX ∈ Q

(1)
X , [QXY ]Y ∈ Q

(1)
Y

}
6= ∅, (174)

which is equivalent to

D(QX‖P (1)
X ) ≤ E1 (175a)

and

min
QXY ∈PX×Y : [QXY ]X=QX ,

D([QXY ]Y ‖P
(1)
Y )≤E1

D(QXY ‖P (0)
XY ) ≤ E0, (175b)

where (175a) is due to QX ∈ Q
(1)
X .

Therefore, for each given QX ∈ PX, we have θX(QX) = 0 if and only if (175a) cannot be satisfied; In
addition, θX(QX) = 1 if and only if both (175a) and (175b) hold, and θX(QX) = 2 if and only if QX

satisfies (175a) but does not satisfy (175b).
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APPENDIX P
PROOF OF PROPOSITION 4

Our proof makes use of the following two facts.
Fact 12: Suppose P (i)

XY = P
(i)
X P

(i)
Y for some i ∈ {0, 1}. Then, for all (QX , QY ) ∈ P?, we have

D∗i (QX , QY ) = D(QX‖P (i)
X ) +D(QY ‖P (i)

Y ).

Proof of Fact 12: For all QXY satisfying [QXY ]X = QX and [QXY ]Y = QY , we have

D(QXY ‖P (i)
XY ) = D(QX‖P (i)

X ) +
∑
x∈X

QX(x)D(QY |X=x‖P (i)
Y )

≥ D(QX‖P (i)
X ) +D([QY |XQX ]Y ‖P (i)

Y )

= D(QX‖P (i)
X ) +D(QY ‖P (i)

Y )

= D(QXQY ‖P (i)
XY ),

where the inequality follows from Jensen’s inequality.
As a result, from the definition (6), we have

D∗i (QX , QY ) = min
QXY : [QXY ]X=QX

[QXY ]Y =QY

D(QXY ‖P (i)
XY )

= D(QXQY ‖P (i)
XY )

= D(QX‖P (i)
X ) +D(QY ‖P (i)

Y ).

Fact 13: For all k ≥ 1, the Q
(k)
X and Q

(k)
Y given by (34) satisfy

inf
QX∈Q

(k)
X

D(QX‖P (χk+1)
X ) = λ

(χk+1)
X (γ

(k)
X ), (176a)

inf
QY ∈Q

(k)
Y

D(QY ‖P (χk+1)
Y ) = λ

(χk+1)
Y (γ

(k)
Y ). (176b)

Proof of Fact 13: To establish (176b), note that

inf
QY ∈Q

(k)
Y

D(QY ‖P (χk+1)
Y ) = inf

QY : D(QY ‖P
(0)
Y )<γ

(k−χk)

Y

D(QY ‖P
(1)
Y )<γ

(k−χ̄k)

Y

D(QY ‖P (χk+1)
Y )

= inf
QY : D(QY ‖P

(χk)

Y )<γ
(k)
Y

D(QY ‖P
(χ̄k)

Y )<γ
(k−1)
Y

D(QY ‖P (χ̄k)
Y )

= inf
QY : D(QY ‖P

(χk)

Y )<γ
(k)
Y

D(QY ‖P (χ̄k)
Y )

= λ
(χ̄k)
Y (γ

(k)
Y )

= λ
(χk+1)
Y (γ

(k)
Y ).

Similarly, (176a) can be proved via a symmetry argument.
Proceeding to our proof of Proposition 4, first note that from (35), we have γ(1)

X = γ
(1)
X = E1, and it

follows from (31) that (34) holds for k = 1.
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Suppose (34) holds for some k ≥ 1. Then, it suffices to establish (34) for k + 1, i.e., to demonstrate
that

Q
(k+1)
X =

{
QX ∈ PX : D(QX‖P (0)

X ) < γ
(k+1−χk+1)
X , D(QX‖P (1)

X ) < γ
(k+1−χ̄k+1)
X

}
, (177)

Q
(k+1)
Y =

{
QY ∈ PY : D(QY ‖P (0)

Y ) < γ
(k+1−χk+1)
Y , D(QY ‖P (1)

Y ) < γ
(k+1−χ̄k+1)
Y

}
. (178)

In fact, it follows from (27) that for all QX ∈ PX, QX ∈ Q
(k+1)
X is equivalent to

QX ∈ Q
(k)
X , (179a)

D∗χk+1
(QX ,Q

(k)
Y ) < Eχk+1

. (179b)

From (26) and Fact 12, we obtain

D∗χk+1
(QX ,Q

(k)
Y ) = inf

QY ∈Q
(k)
Y

D∗χk+1
(QX , QY ) (180)

= D(QX‖P (χk+1)
X ) + inf

QY ∈Q
(k)
Y

D(QY ‖P (χk+1)
Y ) (181)

= D(QX‖P (χk+1)
X ) + λ

(χk+1)
Y (γ

(k)
Y ) (182)

where to obtain the second equality we have used Fact 13.
Therefore, (179b) is equivalent to

D(QX‖P (χk+1)
X ) < Eχk+1

− λ(χk+1)
Y (γ

(k)
Y ) = γ

(k+1)
X , (183)

where the equality follows from the definition (35).
Moreover, from (34), (179a) is equivalent to

D(QX‖P (χk)
X ) < γ

(k)
X , D(QX‖P (χk+1)

X ) < γ
(k−1)
X . (184)

In addition, from the fact that λ(i)
X and λ(i)

Y are monotonically decreasing functions for i ∈ {0, 1}, it can
be verified that we have γ(k+1)

X ≤ γ
(k−1)
X . Hence, combining (184) and (183) yields D(QX‖P (χk)

X ) < γ
(k)
X

and D(QX‖P (χk+1)
X ) < γ

(k+1)
X , which imply (177). By a symmetry argument, we can establish (178).

Finally, the equivalence between (28) and (36) follows from that

D∗χM
(
Q

(M−1)
X ,Q

(M−1)
Y

)
− EχM = inf

QX∈Q
(M−1)
X ,QY ∈Q

(M−1)
Y

D∗χM (QX , QY )− EχM (185)

= inf
QX∈Q

(M−1)
X

D(QX‖P (χM )
X ) + inf

QY ∈Q
(M−1)
Y

D(QY ‖P (χM )
Y )− EχM (186)

= λ
(χM )
X (γ

(M−1)
X ) + λ

(χM )
Y (γ

(M−1)
Y )− EχM (187)

= (EχM − γ
(M)
X ) + (EχM − γ

(M)
Y )− EχM (188)

= −(γ
(M)
X + γ

(M)
Y − EχM ), (189)

where to obtain (189) we have used (26), to obtain (186) we have used Fact 12, to obtain (187) we have
used Fact 13, and to obtain (188) we have used (35).
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