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Near-Optimal Coding for
Many-user Multiple Access Channels

Kuan Hsieh, Cynthia Rush, and Ramji Venkataramanan

Abstract—This paper considers the Gaussian multiple-access
channel in the asymptotic regime where the number of users
grows linearly with the code length. We propose efficient coding
schemes based on random linear models with approximate
message passing (AMP) decoding and derive the asymptotic
error rate achieved for a given user density, user payload (in
bits), and user energy. The tradeoff between energy-per-bit and
achievable user density (for a fixed user payload and target error
rate) is studied. It is demonstrated that in the large system
limit, a spatially coupled coding scheme with AMP decoding
achieves near-optimal tradeoffs for a wide range of user densities.
Furthermore, in the regime where the user payload is large,
we also study the tradeoff between energy-per-bit and spectral
efficiency and discuss methods to reduce decoding complexity.

Index Terms—Multiple access, approximate message passing,
spatial coupling, sparse superposition codes.

I. INTRODUCTION

IN certain modes of modern communications, such as in
massive machine-type communications, a large number of

devices simultaneously transmit to a single receiver. Further-
more, the data payload of each user (or device) in such
applications may be small, e.g., temperature readings from a
wireless sensor network. These modes of communications do
not lend themselves well to traditional large system analysis of
multi-user systems, which often assume a fixed (small) number
of users, and the size of the user payload scaling linearly
with the code length (as information rate is the metric of
interest), see for example [1, Chpt. 15] and [2, Chpt. 4]. This
has motivated the study of multi-user channels in the many-
user or many-access setting [3], where the number of users
grows with the code length. This paper studies the asymptotic
achievability of efficient coding schemes for the Gaussian
multiple access channel (MAC) in the many-user setting.

The L-user Gaussian MAC produces its output y ∈ Rn
according to

y =

L∑
`=1

c` +w, (1)

where c` ∈ Rn is the codeword of user ` ∈ {1, . . . , L} and
the noise vector w ∈ Rn has independent and identically
distribution (i.i.d.) zero mean Gaussian entries with variance
σ2 > 0.
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This paper first studies the symmetric Gaussian MAC in
the asymptotic regime proposed by Polyanskiy et al. [4], [5]
where: (i) the number of users L grows linearly with the code
length n, i.e., L = µn for some fixed user density µ ∈ (0,∞),
(ii) the number of bits transmitted by each user (user payload),
denoted by log2M , is fixed and independent of n, and (iii)
the energy-per-bit, denoted by Eb, is fixed and independent of
n. The energy needed to transmit each user’s payload is E =
Eb log2M . The decoding metric used is the user error rate
(UER), which specifies the fraction of user messages decoded
in error:

UER =
1

L

L∑
`=1

1 {x̂` 6= x`} , (2)

where x` denotes the message sent by user `, and x̂` is the
decoder’s estimate of the message. The per-user probability
of error (PUPE) error criterion used in [4], [5] is the expected
value of the UER.

In this asymptotic regime, the works of Polyanskiy et al.
[4], [5] obtained converse and achievability bounds on the
minimum Eb/N0 required to achieve a decoding error of
PUPE ≤ ε for a given ε > 0, when the user density µ
and user payload log2M are fixed. Here N0 = 2σ2 is the
noise spectral density. The achievability bound was based on
the coding scheme where users encode their messages with
i.i.d. Gaussian codebooks, and messages are decoded with
(joint) maximum likelihood (ML) decoding. We note that it
is infeasible to implement the ML decoder in the many-user
setting as its complexity scales exponentially with the number
of users.

A. Main Contributions and Structure of the Paper

In this paper, we rigorously analyze the performance of
coding schemes based on random linear models (which in-
clude i.i.d. Gaussian codebooks) and computationally efficient
approximate message passing (AMP) decoding. Our results
provide the exact achievable regions of these schemes in the
asymptotic regime described above, and demonstrate numeri-
cally that the achievable region of a coding scheme based on
spatially coupled Gaussian matrices and AMP decoding nearly
matches the converse bound for a large range of user densities.
An interesting feature of the spatially coupled scheme is that it
can be interpreted as a block-wise time-division with overlap
multiple-access scheme.

Section II introduces the random linear coding framework
(based on either i.i.d. Gaussian or spatially coupled Gaussian
matrices) and the associated AMP decoder. In Section III, we
present Theorems 1 and 2 which give the asymptotic UER
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achieved by these coding schemes for a fixed user payload.
Then in Section IV we bound the asymptotic UER achieved
by these coding schemes as the user payload grows large
(Theorems 3 and 4). Our results show that in the limit of
large user payload, reliable communication is not possible at
any fixed user density, and the interesting asymptotic regime
is when the number of users L, the code length n, and the
user payload log2M all tend to infinity with the spectral
efficiency S = L log2M/n (total bits/channel use) held
constant (Remark 4.1). We also discuss how modulation can
be used in the proposed coding framework to reduce decoding
complexity at large user payloads.

For simplicity, we only analyze coding schemes for the real-
valued Gaussian MAC, but the results in this paper can be
extended to the complex setting as well (see Section IV-D).

B. Related Works

The works of Chen et al. [3] and Ravi and Koch [6]–[8]
study MACs under different user scaling regimes. Moreover,
their main results pertain to the setting where the probability
of error goes to zero with increasing code length. For the linear
user scaling and finite error probability setting considered here,
the recent papers [9], [10] study the fundamental tradeoffs in
the quasi-static fading MAC.

The AMP algorithms used for decoding in this paper (and
the analyses of their asymptotic performance) are similar to
those used for random linear models and sparse superposi-
tion codes (SPARCs) [11]–[18]. The results in Section III
also generalize early results in random code-division multiple
access (CDMA) [19], [20]. Indeed, the random linear coding
framework described in Section II includes random CDMA
as a special case. The main novelty of our contribution is
in applying AMP and spatial coupling techniques to design
efficient coding schemes and prove that they achieve near-
optimal tradeoffs for many-user MACs. Our AMP analysis
for many-user MAC differs from previous AMP analyses for
random linear models and SPARCs in some key technical
aspects. In our setting the components of the signal/message
vector can be drawn from a probability distribution over
finite length vectors, which is more general than in previous
work. Furthermore, previous works use the potential function
method to analyze the mean-squared error of AMP, whereas
our results are in terms of the UER defined in (2), which
requires additional technical steps. We note that spatially
coupled random CDMA and similar multiple-access schemes
based on random spreading sequences have been studied under
belief propagation decoding (with Gaussian approximations)
in [21], [22]. However, these works do not analyze the many-
user MAC setting considered in this paper.

Müller [23] recently proposed practical coding schemes
for the many-user MAC setting considered here, based on
Gaussian random codes with power optimization and itera-
tive soft decoding. It was shown (non-rigorously) that the
asymptotic spectral efficiency versus energy-per-bit tradeoff
of the proposed scheme exceeds the achievability bound in
[5] at low spectral efficiencies, and is close to the converse
bound in [5] when the user payload is 100 bits. As mentioned

in [23, Sec. 3.2], power optimized random codebooks with
iterative decoding can be rigorously analyzed by generalizing
the AMP analysis of power allocated SPARCs for (single-user)
AWGN channels [17]. We leave this analysis and an in-depth
performance comparison of various many-user multiple-access
schemes for future work.

Building on [10] and the first version of our paper, Kowshik
[24] recently obtained a new achievability bound for many-
user MACs based on spatially coupled random codebooks and
a suboptimal AMP decoder. The advantage of this suboptimal
decoder is that its analysis leads to a bound that can be
easily computed for large user payloads (e.g., 100 bits). Our
achievable region (computed using Theorem 2) is based on
the optimal AMP denoiser, and though larger than the one in
[24], cannot be computed for large payloads.

We emphasize that our problem setting is distinct from
unsourced random access, where only a subset of users are
active at any given time and all users use the same codebook
(hence user messages are decoded only up to a permutation).
In our setting of the Gaussian MAC, users have different code-
books and are all active during the transmission period. Several
recent works have analysed the fundamental tradeoffs and
the performance of practical coding schemes for unsourced
random access in the many-user setting [4], [25], [26].

Notation: We use log2 and ln to denote the base 2 logarithm
and natural logarithm, respectively. The Gaussian distribution
with mean µ and variance σ2 is denoted by N (µ, σ2). The
indicator function of an event A is denoted by 1{A}. For a
positive integer N , we use [N ] to denote the set {1, . . . , N}.
We use bold lower case letters or Greek symbols for vectors,
and bold upper case for matrices and random vectors. We use
plain font for scalars, and subscripts denote entries of a vector
or matrix. For example, x denotes a vector, with xi being the
ith element of x. Similarly, the (i, j)th entry of matrix A is
denoted by Aij . The transpose of matrix A is denoted by A∗.

II. RANDOM LINEAR CODING AND AMP DECODING

We consider coding schemes where the codewords of user
` ∈ [L] are constructed as c` = A`x`, where A` ∈ Rn×B is
a random matrix and x` ∈ RB encodes the message of user
`. In this coding framework, the channel model (1) can be
written as

y = Ax+w, (3)

where the design matrix A ∈ Rn×LB is the horizontal
concatenation of matricesA1, . . . ,AL, and the message vector
x ∈ RLB is the concatenation of vectors x1, . . . ,xL. We will
assume that the squared norm of each column of A equals 1
in expectation. For example, an i.i.d. Gaussian design matrix
A has i.i.d. N (0, 1

n ) entries.
The L sections of x (each of which corresponds to a user’s

message) are drawn i.i.d. from pXsec , which is a probability
mass function over a finite set of length B vectors. The per-
user payload is therefore equal to the entropy H(Xsec), where
Xsec ∼ pXsec . The codeword energy constraint is denoted by
E = Eb log2M , i.e., we require pXsec to satisfy E‖Xsec‖2 =
E <∞.
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Example 2.1 (Random Codebooks): Let pXsec be the distri-
bution over length B vectors that chooses uniformly at random
one of its entries to be non-zero, taking the value

√
E. This

corresponds to a user payload of log2M = log2B bits. User
` ∈ [L] selects (and scales by

√
E ) one-of-B columns from

random matrix A`, resulting in expected codeword energy
E‖c`‖2 = E. In the rest of the paper, we denote the choice
of pXsec used in this example by p1.

Example 2.2 (Random Codebooks with Binary Modulation):
Let pXsec be the distribution over length B vectors that chooses
uniformly at random one of its B entries to be non-zero, taking
values in {±

√
E} with equal probability. This corresponds to

a user payload of log2M = 1 + log2B bits. User ` ∈ [L]
encodes log2B bits by selecting one-of-B columns from
random matrix A`, and an additional 1 bit in whether to
modulate that column with

√
E or −

√
E. When B = 1, this

coding scheme corresponds to random CDMA with antipodal
signalling.

One can generalize the distribution described in Example
2.2 to consider other modulation schemes such as pulse
amplitude modulation, or even complex modulation schemes
such as phase-shift keying when the channel is complex (see
Section IV-D). Therefore, random linear coding with these
choices of pXsec can be viewed as a generalization of random
CDMA, with each user encoding log2B bits in the choice of
one-of-B random spreading sequences (in addition to the bits
encoded in the choice of the modulation symbol).

A. Spatially Coupled Coding Schemes

A spatially coupled (Gaussian) design matrix A ∈ Rn×LB
is divided into R-by-C equally sized blocks. The entries within
each block are i.i.d. Gaussian with zero mean and variance
specified by the corresponding entry of a base matrix W ∈
RR×C

+ . The design matrix A is constructed by replacing each
entry of the base matrix Wrc by an n

R×
LB
C matrix with entries

drawn i.i.d. from N (0, Wrc
n/R ), for r ∈ [R], c ∈ [C]. See Fig. 1a

for an example. Hence, the design matrix A has independent
Gaussian entries

Aij ∼ N
(

0,
1

n/R
Wr(i)c(j)

)
, for i ∈ [n], j ∈ [LB]. (4)

The operators r(·) : [n] → [R] and c(·) : [LB] → [C] in
(4) map a particular row or column index to its corresponding
row block or column block index. We require C to divide L,
resulting in L/C ≥ 1 users per column block. Recall that the
design matrix A ∈ Rn×LB is the horizontal concatenation of
the random matrices A1, . . . ,AL of all the users (see (3)).
Therefore, the `th section of the design matrix (columns (`−
1)B + 1 to `B) is the random matrix of user ` ∈ [L].

The entries of the base matrix W must satisfy
∑R

r=1Wrc =
1 for c ∈ [C] to ensure that the columns of the design matrix
A have unit norm in expectation. The trivial base matrix with
R = C = 1 (single entry equal to 1) corresponds to the
design matrix with i.i.d. N (0, 1

n ) entries. In this paper we
will consider a class of base matrices called (ω,Λ, ρ) base
matrices [18], [27].

Definition 2.1: An (ω,Λ, ρ) base matrix W is described
by three parameters: coupling width ω ≥ 1, coupling length

Λ ≥ 2ω−1, and ρ ∈ [0, 1). The matrix has R = Λ+ω−1 rows
and C = Λ columns, with each column having ω identical
non-zero entries in the band-diagonal. The (r, c)th entry of
the base matrix, for r ∈ [R], c ∈ [C], is given by

Wrc =

{
1−ρ
ω if c ≤ r ≤ c + ω − 1,
ρ

Λ−1 otherwise.
(5)

When ρ = 0, as in Fig. 1a, the base matrix has non-zero
entries only in the band-diagonal part. For example, the base
matrix in Fig. 1a has parameters (ω = 3,Λ = 7, ρ = 0). For
the simulations in Section III-D, we use ρ = 0, whereas for
the theoretical results (Theorems 2 and 4) we choose ρ to be
a small positive value. (The proofs of these results use the
AMP concentration results in [18]; there are some technical
difficulties in proving the concentration results for ρ = 0,
which can be addressed by picking a suitable ρ > 0.)

Each entry of the base matrix corresponds to an n
R ×

LB
C

block of the design matrix A, and each block can be viewed
as an (uncoupled) i.i.d. Gaussian design matrix with L

C users,
code length n

R , and user density

µinner =
L/C
n/R

=
R
C
µ =

(
1 +

ω − 1

Λ

)
µ. (6)

Since ω > 1 in spatially coupled systems, we have µ < µinner.
This difference is often referred to as a “rate loss” in the
literature of spatially coupled error correcting codes [27]–[30],
and becomes negligible when Λ is much larger than ω.

The spatially coupled coding scheme can be viewed as
block-wise time-division with overlap. Consider the scenario
depicted in Fig. 1b where there are L = 25 users, n = 35
channel uses, and a spatially coupled design matrix constructed
using an (ω = 3,Λ = 5, ρ = 0) base matrix W ∈ R7×5

+ .
Each block of the design matrix corresponds to 5 channel
uses and 5 users. Fig. 1b shows how users communicate using
this multiple access scheme, assuming that each channel use
corresponds to one time instant. A red dot in the 2D grid
represents a certain user being active (transmitting) during
a certain time instant, and empty squares represent silence
(no transmission). For example, users in the first column
block (users 1 to 5) transmit during time instants 1 to 15
(corresponding to the first ω = 3 row blocks) but are silent
afterwards; users 6 to 10 transmit during time instants 6 to 20
but are silent otherwise, and so on.

Users within the same column block transmit simultane-
ously over ω row blocks of time (15 time instants), and users
in neighbouring column blocks overlap in ω − 1 row blocks
of time. At each time instant, up to ω column blocks of users
(15 users) simultaneously transmit, but the set of active users
gradually shifts over time. When ω = 1, there is no time
overlap (no coupling) between neighbouring blocks of users
and each block of users communicates using an i.i.d. Gaussian
matrix. When Λ is large with respect to ω, users are silent
for most of the transmission period (n channel uses). This
facilitates low-complexity encoding and decoding.

With a band-diagonal spatially coupled matrix as in Fig.
1a, the sections at the two ends of the message vector x are
more easily decoded than other sections. This is because the
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Fig. 1. (a) A spatially coupled design matrix A defined using a base matrix W ∈ R9×7
+ . Each square in W represents a scalar entry that specifies the

variance of the entries in a block of A. The white parts of A and W correspond to zeros. (b) An example of how 25 users communicate over 35 uses of
the channel using the multiple access scheme based on a spatially coupled design matrix constructed using an (ω = 3,Λ = 5, ρ = 0) base matrix. A red dot
in the 2D grid represents a certain user being active during a certain time instant and empty squares represent silence.

channel outputs containing information about the sections at
the ends have less interference from other sections (e.g., the
first and last row of the base matrixW only have one non-zero
entry). Once the sections at the ends have been decoded, their
neighboring sections become easier to decode, and a decoding
wave propagates towards the middle of the message vector.
In contrast, for i.i.d. design matrices, all sections are equally
hard to decode. For more intuitive explanations and figures
that illustrate the decoding wave in spatially coupled systems,
see [12], [13], [15], [18].

B. AMP Decoding and State Evolution

We consider an efficient AMP decoder that aims to re-
construct the message vector x from the channel output y.
The decoder knows the design matrix A, the base matrix
W , the distribution pXsec , and the channel noise variance σ2.
AMP algorithms are based on Gaussian approximations to
loopy belief propagation on dense graphs [11] and have been
proposed for estimation in the random linear model (3) with
spatially coupled design matrices A [12], [13], [15], [18].

The AMP decoder iteratively produces message vector
estimates xt ∈ RLB for iterations t = 1, 2, . . . as follows.
Initialize x0 to the all-zero vector, and for t ≥ 0, iteratively
compute:

qt = y −Axt + υ̃t � qt−1,

xt+1 = ηt
(
xt + (S̃

t
�A)∗qt

)
.

(7)

Here � is the Hadamard (entry-wise) product and quantities
with negative iteration indices are set to zero vectors. The
vector υ̃t ∈ Rn, the matrix S̃ ∈ Rn×LB , and the denoising
function ηt will be described in terms of the following state
evolution parameters.

State Evolution: The performance of the AMP in the large
system limit is succinctly captured by a deterministic recursion

called state evolution [31], [32]. State evolution iteratively
defines vectors γt,φt ∈ RR and τ t,ψt ∈ RC as follows.
Initialize ψ0

c = E for c ∈ [C], and for t ≥ 0, iteratively
compute:

γtr =

C∑
c=1

Wrcψ
t
c, φtr = σ2 + µinnerγ

t
r , r ∈ [R], (8)

τ tc =

[ R∑
r=1

Wrc

φtr

]−1

, ψt+1
c = mmse(1/τ tc), c ∈ [C], (9)

where µinner = R
C µ from (6), and

mmse(1/τ) = E
∥∥∥Xsec − E

[
Xsec |Xsec +

√
τZ
]∥∥∥2

(10)

(i)
= E

[
1− E

[
e
√

E
τ Z1

e
√

E
τ Z1 + e−E/τ

∑B
j=2 e

√
E
τ Zj

]]
,

where Xsec ∼ pXsec and Z = [Z1, . . . , ZB ] is a standard
Gaussian vector independent of Xsec. The equality (i) holds
when Xsec ∼ p1, where p1 is described in Example 2.1.

The vector υ̃t ∈ Rn and the matrix S̃
t
∈ Rn×LB in (7)

both have a block-wise structure and are defined using state
evolution parameters as follows. For i ∈ [n] and j ∈ [LB],

υ̃ti =
µinner γ

t
r(i)

φt−1
r(i)

, S̃tij =
τ tc(j)

φtr(i)
, (11)

where we recall that r(i) and c(j) denote the row and column
block index of the ith row entry and jth column entry,
respectively. The vector υ̃0 is defined to be the all-zero vector.

In each iteration, the AMP decoder (7) produces an effective
observation st = xt + (S̃

t
�A)∗qt, which has the following

approximate representation: for an index j in column block
c of the message vector x, we have stj ≈ xj +

√
τ tcZj ,

where {Zj} ∼i.i.d. N (0, 1). The estimate xt+1 in (7) is
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then the minimum mean square error (MMSE) estimate of
x given st, computed using the assumed distribution. This
leads to the following definition of the denoising function
ηt = (ηt1, . . . , η

t
LB) in (7): for index j in section ` ∈ [L],

which we denote by j ∈ sec(`),

ηtj(s) = E
[
(Xsec)j |Xsec +

√
τ tc(j)Z = s`

]
(12)

(i)
=
√
E ·

exp
(
sj
√
E/τ tc(j)

)
∑
i∈sec(`) exp

(
si
√
E/τ tc(j)

) , (13)

where we recall that s` ∈ RB is the `th section of s ∈ RLB .
The equality (i) holds when Xsec ∼ p1.

In addition, the decoder can also produce a hard-decision
maximum a posteriori (MAP) estimate from st, which we
denote by x̂t+1. For section ` in column block c ∈ [C], the
`th section of this hard-decision estimate is given by

x̂t+1
` = arg max

x′∈X
P
(
Xsec = x′ |Xsec +

√
τ tc Z = st`

)
, (14)

where X is the support of pXsec . When Xsec ∼ p1, for j ∈
sec(`) this hard-decision estimate is given by

x̂t+1
j =

{ √
E if stj > sti for all i ∈ sec(`)\j,

0 otherwise.
(15)

Eqs. (13) and (15) give closed form expressions for the
denoising function ηt and MAP estimator when Xsec ∼ p1.
Similar expressions can be easily obtained when Xsec is
drawn from the discrete distribution in Example 2.2 or its
generalizations, but these are omitted for brevity.

IID Gaussian A: For the special case where the entries of
the design matrix A are i.i.d. ∼ N (0, 1

n ), the AMP decoder
(7) and the state evolution (8)–(9) can be simplified. Setting
x0 equal to the all-zero vector, for t ≥ 0, the AMP decoder
computes:

qt = y −Axt +
µψt

τ t−1
qt−1,

xt+1 = ηt
(
xt +A∗qt

)
.

(16)

At t = 0, the vector µψ0

τ−1 q
−1 is set to the all-zero vector.

The scalars τ t and ψt are computed via the state evolution
recursion. Initializing with ψ0 = E, for t ≥ 0 we have:

τ t = σ2 + µψt,

ψt+1 = mmse(1/τ t),
(17)

where the mmse function is defined in (10). Furthermore,
in this case, the denoising function ηt in (12) and the hard-
decision estimate x̂t+1 in (14) are defined using the state
evolution parameter τ t as the Gaussian noise variance.

III. ASYMPTOTIC UER ACHIEVED BY AMP DECODING

We now characterize the asymptotic UER (see (2)) achieved
by coding schemes based on i.i.d. and spatially coupled
Gaussian design matrices with AMP decoding. These results
are stated in terms of a potential function.

A. Potential Function

Consider the single-section Gaussian channel with noise
variance τ :

Sτ = Xsec +
√
τZ, (18)

whereXsec ∼ pXsec andZ ∈ RB is a standard Gaussian vector
independent of Xsec. The potential function for the random
linear system (3) with user density µ = L

n and channel noise
variance σ2 is defined as

F(µ, σ2, ψ) = I(Xsec;Sτ ) +
1

2µ

[
ln
( τ
σ2

)
− µψ

τ

]
, (19)

where ψ ∈ [0, E], τ = σ2 + µψ, and the mutual information
I(Xsec;Sτ ) is computed using the channel (18).1 IfXsec ∼ p1

and Z = [Z1, . . . , ZB ], then

I(Xsec;Sτ ) =
E

τ
+ lnB − E ln

[
e
E
τ +
√

E
τ Z1 +

B∑
j=2

e
√

E
τ Zj

]
.

Define the set of potential function minimizers (w.r.t. ψ) as:

M(µ, σ2) = arg min
ψ∈[0,E]

F(µ, σ2, ψ). (20)

Consider decoding Xsec from Sτ produced by the Gaus-
sian channel in (18). The MMSE decoder x̂MMSE

sec (Sτ ) =
E[Xsec|Sτ ] achieves the MMSE given by (10). The MAP
decoder x̂MAP

sec (Sτ ) = arg maxx′ P(Xsec = x′|Sτ ) achieves
the minimum probability of error given by

Pe(τ) = P
(
x̂MAP

sec (Sτ ) 6= Xsec
)

(21)

(i)
= 1− E

[
Φ
(√

E/τ + Z
)B−1

]
. (22)

where Z ∼ N (0, 1) and Φ(·) is the standard normal distribu-
tion function. The equality (i) holds when Xsec ∼ p1.

Theorem 1 below shows that for i.i.d. Gaussian matri-
ces, the fixed point of the state evolution equations (17) is
characterized by a specific stationary point of the potential
function (19), and that the asymptotic UER achieved by AMP
decoding can be bounded using the fixed point. Theorem
2 gives an analogous result for spatially coupled Gaussian
matrices, where the fixed point of the (spatially coupled) state
evolution (8)–(9) is bounded using the global minimum of the
potential function.

B. IID Gaussian Matrices

Theorem 1 (IID Gaussian Matrices with AMP Decoding):
Consider the linear model (3), with the entries of the design
matrix A i.i.d. ∼ N (0, 1

n ) and the L sections of the message
vector x i.i.d. ∼ pXsec . Let x̂t be the AMP hard-decision
estimate of x after iteration t (see (14)), and recall that τ t, ψt

are outputs of the state evolution (17).

1The potential function (19) has connections with the mutual information
between the message vector and the channel output vector in the random linear
estimation problem (3) [33], [34]. We do not use this connection here and
only consider the relationship between the stationary points of the potential
function and the fixed points of the state evolution recursion. The potential
functions used in this paper can be derived using the method in [35], up
to scaling factors and additive constants (which do not affect the desired
properties).
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1) The sequences {τ t}t≥0 and {ψt}t≥0 are non-increasing
and converge to fixed points τFP, ψFP, where

τFP := σ2 + µψFP, (23)

ψFP := max

{
ψ : ψ = mmse

(
1

σ2 + µψ

)}
= max

{
ψ :

∂F(µ, σ2, ψ)

∂ψ
= 0

}
. (24)

The potential function F(µ, σ2, ψ) is defined in (19).
2) Fix δ > 0, and let T denote the first iteration for which

τ t ≤ τFP + δ. Then the UER of the AMP decoder after T + 1
iterations satisfies the following almost surely:

lim
L→∞

1

L

L∑
`=1

1
{
x̂T+1
` 6= x`

} a.s.
= Pe(τ

T ) ≤ Pe(τFP + δ), (25)

where the limit is taken with L
n = µ held constant and Pe(·)

is defined in (21).
Proof: 1) Results similar to the first part of the theorem

are known in the AMP literature and are sometimes used
implicitly. We provide a proof here for completeness. We
first prove that the sequence {ψt}t≥0 is non-increasing and
converges to the fixed point ψFP defined in (24). Then the
result for {τ t}t≥0 immediately follows since τ t = σ2 + µψt.

Writing the state evolution in (17) as a single recursion, we
have:

ψt+1 = mmse((σ2 + µψt)−1). (26)

Starting from ψ0 = E‖Xsec‖2 = E, we have that

ψ1 = mmse((σ2 + µE)−1) ≤ E = ψ0, (27)

where the inequality holds because the trivial all zero estimate
of a random section Xsec achieves an expected squared error
of E. The mmse function defined in (10) is non-increasing in
its argument [16], [36], and since its argument (σ2+µψt)−1 is
decreasing in ψt, the mmse function is non-decreasing in ψt.
Therefore, together with (27), this shows that the sequence
{ψt}t≥0 is non-increasing. Moreover, if ψt ≥ ψFP, then
ψt+1 ≥ ψFP. Indeed, for any ψt ≥ ψFP,

ψt+1 = mmse((σ2 + µψt)−1)

≥ mmse((σ2 + µψFP)−1) = ψFP.

Since {ψt}t≥0 is a non-increasing sequence bounded below
by ψFP (noting that ψ0 ≥ ψFP), we conclude that it converges
to ψFP.

To show that the fixed points of the state evolution cor-
respond to the stationary points of the potential function
F(µ, σ2, ψ) defined in (19), we compute the derivative:

∂F(µ, σ2, ψ)

∂ψ
=

µ

2(σ2 + µψ)2

[
ψ −mmse

(
1

σ2 + µψ

)]
,

where we have used τ = σ2 + µψ and the vector I-MMSE
relationship [37, Thm. 2]. Therefore, since σ2 > 0 and µ >
0, we have that ∂F(µ, σ2, ψ)/∂ψ = 0 corresponds to ψ =
mmse((σ2 +µψ)−1), which is the fixed point of the iteration
(26).

2) We now prove (25). For ` ∈ [L], we denote by a` ∈ RB
the `th section of a vector a ∈ RLB . Consider the input to the

AMP hard-decision step in iteration t+1, which we denote by
st = xt +A∗qt ∈ RLB (see (14), (16)). The MAP estimator
x̂t+1
` = x̂t+1

` (st`) in (14) partitions the space RB into decision
regions. For each x` in the support of pXsec , the decision region
is

D(x`) :=
{
st` : x̂t+1

` (st`) = x`
}
. (28)

Note that 1{x̂t+1
` (st`) = x`} = 1{st` ∈ D(x`)}.

The distance between a vector v ∈ RB and a set B ⊂ RB
is denoted by d(v,B) := inf{‖v − u‖2 : u ∈ B}. For any
ε > 0, define the functions ξε,+, ξε,− : RB × RB → R as
follows:

ξε,+(x`, s
t
`) =


1, if st` ∈ D(x`),

0, if d(st`,D(x`)) > ε,

1− d(st`,D(x`))/ε, otherwise,

ξε,−(x`, s
t
`) =


1, if d(st`,D(x`)

c) > ε,

0, if st` ∈ D(x`)
c,

d(st`,D(x`)
c)/ε, otherwise.

We note that ξε,+, ξε,− are Lipschitz-continuous (with Lips-
chitz constant 1/ε), and

ξε,−(x`, s
t
`) ≤ 1{st` ∈ D(x`)} ≤ ξε,+(x`, s

t
`),

and thus

1

L

L∑
`=1

ξε,−(x`, s
t
`) ≤

1

L

L∑
`=1

1{x̂t+1
` (st`) = x`}

≤ 1

L

L∑
`=1

ξε,+(x`, s
t
`).

(29)

A pseudo-Lipschitz function ξ : Rm → R is one that
satisfies the following for all u,v ∈ Rm:

|ξ(u)− ξ(v)| ≤ C(1 + ‖u‖2 + ‖v‖2) ‖u− v‖2,

for some constant C > 0. The results in [31] and [17], [18],
[38] imply that for any pseudo-Lipschitz function ξ : RB ×
RB → R, the following holds almost surely:

lim
L→∞

1

L

L∑
`=1

ξ(x`, s
t
`) = E{ξ(Xsec, Sτt)}, (30)

where Xsec ∼ pXsec and Sτt is given by (18). This result was
proved in [31] for the B = 1 case and extended in [17], [18]
to the setting of SPARCs where the specific distribution pXsec

given in Example 2.1 (corresponding to random codebooks)
is used. The proof for more general discrete distributions is
essentially the same. In (30) and below, L/n = µ as L→∞.

Applying (30) to the Lipschitz continuous functions ξε,+
and ξε,−, we obtain almost surely:

lim
L→∞

1

L

L∑
`=1

ξε,+(x`, s
t
`) = E{ξε,+(Xsec, Sτt)},

lim
L→∞

1

L

L∑
`=1

ξε,−(x`, s
t
`) = E{ξε,−(Xsec, Sτt)}.

(31)
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Since ε > 0 is arbitrary, from (29) and (31), we almost surely
have

lim
ε→0

E{ξε,−(Xsec, Sτt)} ≤ lim inf
L→∞

1

L

L∑
`=1

1{x̂t+1
` (st`) = x`}

≤ lim sup
L→∞

1

L

L∑
`=1

1{x̂t+1
` (st`) = x`}

≤ lim
ε→0

E{ξε,+(Xsec, Sτt)}.

By the dominated convergence theorem, we have

lim
ε→0

E{ξε,−(Xsec, Sτt)} = P(Sτt ∈ D(Xsec)) = 1− Pe(τ t),

lim
ε→0

E{ξε,+(Xsec, Sτt)} = P(Sτt ∈ D(Xsec)) = 1− Pe(τ t).

This completes the proof that, almost surely

lim
L→∞

1

L

L∑
`=1

1{x̂t+1
` (st`) 6= x`} = Pe(τ

t). (32)

Remark 3.1: Consider the setting of Theorem 1 and the
section-by-section (SBS) MAP decoder for the linear model
(3):

x̂MAP
` = arg max

x′∈X
P(x` = x′ | y,A), for ` ∈ [L], (33)

where X is the support of the discrete prior for each section of
the message vector. The SBS-MAP decoder in (33) minimizes
the expected UER. Though computationally infeasible, the
asymptotic error of the SBS-MAP decoder can be analyzed
using the non-rigorous replica method. Using this technique,
Tanaka [19] showed that for binary CDMA (B = 1 and
pXsec uniform over {1,−1}), the asymptotic UER of x̂MAP

can be characterized in terms of the probability of decoding
error in the single-section Gaussian channel (18). Specifically,
when M(µ, σ2) in (20) is a singleton (i.e., when the global
minimizer of the potential function is unique),

lim
L→∞

1

L

L∑
`=1

1{x̂MAP
` 6= x`} = Pe(τ

∗), (34)

where the limit is taken with L
n = µ held constant and

τ∗ = σ2 + µM(µ, σ2). (35)

We expect that a similar result can be shown via replica
analysis for B > 1 and general discrete priors. Several
arguments were put forward in [25, Sec. IV.A] to suggest that
such an extension is possible.

Remark 3.2: The theoretical analysis in this paper (Theo-
rems 1 to 4) is similar to the state evolution and potential
function analyses of SPARCs and random linear estimation
[15], [16], [18], [33], [34]. The key technical differences
are: (i) our coding scheme is a more general random linear
framework than SPARCs as we allow the sections of the
message vector to be drawn from a general discrete distribution
over length B vectors (standard SPARCs use the specific
distribution in Example 2.1), and (ii) state evolution and
potential function results are usually given in terms of the
mean-squared error, whereas our results are given in terms

of the UER, which requires additional technical steps, e.g.,
the sandwiching argument used to prove the second part of
Theorem 1.

C. Spatially Coupled Gaussian Matrices

Theorem 2 (Spatially Coupled Gaussian Matrices with AMP
Decoding): Consider the linear model (3) with a spatially
coupled design matrix A constructed using an (ω,Λ, ρ) base
matrix, and the L sections of the message vector x i.i.d.
∼ pXsec . Let x̂t be the AMP hard-decision estimate of x after
iteration t (see (14)), and recall that τ t ∈ RC is an output
of the state evolution recursion (8)–(9) with C = Λ in this
setting.

1) For any (ω,Λ, ρ) base matrix, each entry of τ t ∈ RC

is non-increasing in t, and the cth entry converges to a fixed
point, denoted by τSC-FP

c , for c ∈ [C].
2) For any ε > 0, there are constants ω0 <∞, Λ0 <∞ and

ρ0 > 0 such that, for all ω > ω0, Λ > Λ0 and 0 ≤ ρ < ρ0,
the fixed points {τSC-FP

c }c∈[C] satisfy

max
c∈[C]

τSC-FP
c ≤ τϑ := σ2 + ϑµ(maxM(ϑµ, σ2) + ε), (36)

where ϑ = 1 + (ω−1)
Λ , and the set of potential function

minimizers M(ϑµ, σ2) is defined in (20).
3) Fix base matrix parameters ω > ω0, Λ > Λ0, and 0 <

ρ < ρ0. Fix δ > 0, and let T denote the first iteration for
which maxc τ

t
c ≤ τϑ + δ. Then the UER of the AMP decoder

after T + 1 iterations satisfies the following almost surely:

lim
L→∞

1

L

L∑
`=1

1
{
x̂T+1
` 6= x`

} a.s.
=

1

C

C∑
c=1

Pe(τ
T
c ) ≤ Pe(τϑ + δ),

(37)

where the limit is taken with L
n = µ held constant.

Remark 3.3 (Threshold Saturation): Theorem 2 shows that
the asymptotic UER achievable with a suitable spatially cou-
pled Gaussian matrix and AMP decoding is bounded by
Pe(τϑ + δ). As ω/Λ → 0, we have ϑ → 1. Therefore, if
M(µ, σ2) defined in (20) is a singleton, (noting that ε in (36)
can be arbitrarily small) we have

lim
ω→∞

lim
Λ→∞

τϑ → τ∗, (38)

where τ∗ is defined in (35). Therefore, in the limit described
in (38), the asymptotic UER of the spatially coupled scheme
with AMP decoding is bounded by Pe(τ∗ + δ) for any fixed
δ > 0. This matches the (predicted) asymptotic UER achieved
by i.i.d. Gaussian matrices and SBS-MAP decoding (Remark
3.1). This phenomenon, where the performance of message
passing decoding in a spatially coupled system matches the
optimal decoding performance in the corresponding uncoupled
system, has been shown in other applications and is known as
threshold saturation [13], [16], [28], [29], [35], [39].

Proof of Theorem 2: 1) Consider the spatially coupled
state evolution (8)–(9) as a single line recursion in the vector
γt ∈ RR: for r ∈ [R],

γt+1
r =

C∑
c=1

Wrc mmse
( R∑

r′=1

Wr′c
1

σ2 + µinnerγtr′

)
. (39)
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For any base matrix W with non-negative entries, the result in
[16, Cor. 4.3] shows that each entry of γt is non-increasing in
t and converges to a fixed point. We denote these fixed points
by {γSC-FP

r }r∈[R]. The arguments used in [16, Cor. 4.3] are
similar to those used in the proof of the first part of Theorem
1. The entries of the state evolution parameter τ t given by

τ tc =

[ R∑
r=1

Wrc

σ2 + µinnerγtr

]−1

, for c ∈ [C],

are non-decreasing in {γtr }r∈[R]. Hence we conclude that each
entry of τ t is also non-increasing in t and converges to a fixed
point; these fixed points are denoted {τSC-FP

c }c∈[C].
2) The result in (36) is obtained by using results from [35]

that bound the fixed points of general coupled recursions. The
uncoupled state evolution (17) can be written as a single line
recursion:

ψt+1 = mmse
(

1

σ2 + µψt

)
. (40)

The uncoupled recursion in (40) and the coupled recursion in
(39) correspond exactly to [35, Eqs. (27)-(28)] when µ of the
uncoupled system is equal to µinner of the spatially coupled
system and W is an (ω,Λ, ρ = 0) base matrix. (We will
discuss the implications of ρ being a small positive constant
later.) Using the same arguments as in [35, Sec. VI.E] and
the vector I-MMSE relationship [37, Thm. 2], we obtain the
following result by applying [35, Theorems 1 and 2].

For ρ = 0 and any ε > 0, there is an ω0 <∞ and Λ0 <∞
such that, for all ω > ω0 and Λ > Λ0, the fixed point of (39)
satisfies

minM̃(µinner, σ
2)−ε ≤ max

r∈[R]
γSC-FP

r ≤ maxM̃(µinner, σ
2)+ε,

(41)
where

M̃(µ, σ2) = arg min
ψ∈[0,E]

F̃(µ, σ2, ψ),

F̃(µ, σ2, ψ) = 2

{
I

(
Xsec;

√
1

σ2 + µψ
Xsec +Z

)
− I
(
Xsec;

√
1

σ2
Xsec +Z

)
+

1

2µ

[
ln
(

1 +
µψ

σ2

)
− µψ

σ2 + µψ

]}
.

Here Xsec ∼ pXsec and Z ∈ RB is a standard Gaussian vector
independent ofXsec. Since F̃(µ, σ2, ψ) and the potential func-
tion F(µ, σ2, ψ) defined in (19) are equivalent after removing
constant scaling factors and terms that don’t depend on ψ,
their minimizers with respect to ψ are identical. Therefore,
we can write (41) as

minM(µinner, σ
2)−ε ≤ max

r∈[R]
γSC-FP

r ≤ maxM(µinner, σ
2)+ε,

(42)
where M(µ, σ2) is the set of minimizers of F(µ, σ2, ψ).

Now we consider the effect of ρ being a small positive
constant on the fixed point of the state evolution. We study
this scenario as ρ needs to be lower bounded by a strictly
positive constant for the AMP concentration result in (37) to

hold. First, the mmse(s) function defined in (10) is a smooth
function of s on (0,∞) [36, Prop. 7]. Therefore, the right-
hand-side of (39) is a smooth function of the entries of W .
Hence, the fixed point of the state evolution recursion (39) is
a smooth function of ρ. For ρ ≥ 0, denoting this fixed point
by {γSC-FP

r (ρ)}r∈[R], and letting

∆(ρ) := max
r∈[R]

∣∣γSC-FP
r (ρ) − γSC-FP

r (0)
∣∣ ,

we have ∆(ρ) → 0 as ρ → 0. Consequently, the result for
(ω,Λ, ρ = 0) base matrices in (42) holds for (ω,Λ, ρ > 0)
base matrices with the deviation ε replaced by the slightly
larger value ε + ∆(ρ). Equivalently, since ε > 0 is arbitrary
and ∆(ρ) is a smooth function with ∆(0) = 0, there exists
ρ0 > 0 such that for all ρ < ρ0, the result (42) holds for
(ω,Λ, ρ > 0) base matrices.

We now obtain (36) using (42). For c ∈ [C], we have

τSC-FP
c =

[
R∑

r=1

Wrc

σ2 + µinnerγ
SC-FP
r

]−1

≤

[ ∑R
r=1Wrc

σ2 + µinner maxr′∈[R] γ
SC-FP
r′

]−1

≤ σ2 + µinner(maxM(µinner, σ
2) + ε),

where the last inequality is obtained using the
∑R

r=1Wrc = 1
constraint on base matrices, and the upper bound in (42). The
result (36) follows by recalling from (6) that µinner = ϑµ,
where ϑ = 1 + (ω − 1)/Λ.

3) We now prove (37). Consider the input to the AMP hard-
decision step in iteration t + 1, which we denote by st =

xt + (S̃
t
�A)∗qt (see (7), (14)). For ` ∈ [L], we denote by

a` ∈ RB the `th section of a vector a ∈ RLB .
The results in [32] and [18] imply that for any pseudo-

Lipschitz function ξ : RB × RB → R, the following holds
almost surely:

lim
L→∞

1

L

L∑
`=1

ξ(x`, s
t
`) =

1

C

C∑
c=1

E{ξ(Xsec, Sτtc )}, (43)

where the limit is taken with L/n = µ held constant, Xsec ∼
pXsec and Sτtc is given by (18). This result was proved in
[32] for the B = 1 case, and extended in [18] to the setting of
SPARCs where the specific distribution pXsec given in Example
2.1 (corresponding to random codebooks) is used. The proof
for more general discrete distributions is essentially the same.
Then, following the same steps as (28)–(32) (using (43) instead
of (30) in (31)) gives the desired result.

D. Numerical Results

Theorems 1 and 2 together with Remark 3.3 give us the
asymptotic UER achieved by random linear coding and AMP
decoding when i.i.d. and spatially coupled Gaussian design
matrices are used. These results are given in terms of the
largest stationary point and global minimum of the potential
function defined in (19). In this section, we numerically
evaluate these results to understand the achievable regions of
random linear coding schemes with AMP decoding.
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Fig. 2. Achievable regions of i.i.d. and spatially coupled Gaussian codebooks with AMP decoding, when the user payload is either 2 bits or 8 bits, and the
the maximum tolerated expected (or average) UER is 10−3.

TABLE I
OPTIMIZED COUPLING WIDTH VALUES USED IN FIGS. 2A AND 2B.

Fig. 2a
µ 0.9 1.00 1.1 1.2 1.3
ω 5 5 6 6 7

Fig. 2b
µ 0.15 0.20 0.25 0.30 0.33
ω 5 5 6 11 14

The solid blue and green curves in Figs. 2a and 2b plot
the asymptotic achievable region of AMP decoding when the
Gaussian design matrix A is either i.i.d. or spatially coupled,
and the sections of the message vector x are drawn i.i.d. from
p1 (see Example 2.1). Specifically, for a list of user densities µ,
we plot the minimum Eb/N0 required by the coding schemes
to achieve a UER of less than 10−3, when the user payload is
2 or 8 bits. Recall that the asymptotic UER achieved by the
two schemes are of the form Pe(τ), where Pe(·) is defined in
(22) and τ is specified by (23) for the i.i.d. scheme and by
(35) for the spatially coupled scheme. Furthermore, recall that
Eb and N0 are related to E and σ2 using E = Eb log2B and
N0 = 2σ2.

In both Figs. 2a and 2b, the asymptotic achievable region
of spatially coupled Gaussian codebooks with efficient AMP
decoding (solid green) is strictly larger than the achievability
bound in [5] (solid black), which is based on i.i.d. Gaussian
codebooks and ML decoding. Moreover, in Fig. 2b where the
user payload is 8 bits, it nearly matches the converse bound
in [5] (solid red) for µ ≥ 0.2. The converse and achievability
bounds in [5] are given in terms of the expected UER, which
is also known as the per-user probability of error. See the end
of this section for more details on the converse bound.

At low user densities (µ ≤ 0.80 in Fig. 2a and µ ≤ 0.15
in Fig. 2b), we observe that the minimum Eb/N0 required by
the i.i.d. and spatially coupled coding schemes is the same;
this is because the global minimum of the potential function
coincides with its largest stationary point. However, the gap

between the achievable regions of the two schemes increases
sharply for larger µ. Furthermore, the shape of the solid blue
curve for large Eb/N0 suggests that it might be impossible
to achieve UER ≤ 10−3 with i.i.d. Gaussian codebooks and
AMP decoding above a certain user density (µ ≈ 1.0 in Fig.
2a and µ ≈ 0.2 in Fig. 2b).

The blue and green dotted lines with crosses in Figs. 2a
and 2b show the simulated performance of the i.i.d. and
spatially coupled coding schemes with 500 and 5000 users,
respectively. For a list of user densities µ, the crosses show
the minimum Eb/N0 at which the coding scheme achieves
an average UER of less than 10−3 (averaged over many
independent trials). Recall the construction details of spatially
coupled matrices in Section II-A and the description of AMP
decoding in Section II-B. Discrete Cosine Transform (DCT)
based design matrices were used instead of Gaussian ones
to reduce decoding complexity and memory usage—the error
rates obtained by the two methods are similar for large
matrix sizes. See [15], [17], [40, Sec. 2.5.1] for details on
the DCT implementation.2 The simulations for the spatially
coupled coding scheme used (ω,Λ, ρ) base matrices with
Λ = 50, ρ = 0. For each user density µ, we calculated the
average UER obtained via simulations for a range of coupling
widths ω and picked the best one. Table I gives the optimized
ω for each µ, with Λ = 50, ρ = 0 fixed.

We observe that for both i.i.d. and spatially coupled coding
schemes, the finite user and asymptotic curves match at low
user densities (the near-vertical part of the curve). For the
i.i.d. coding scheme (blue), although a gap between the two
curves appears above a certain user density threshold (µ =
0.65 in Fig. 2a and µ = 0.13 in Fig. 2b), their overall shape
remains similar. For the spatially coupled scheme (green), the
gap between the asymptotic and finite user curves increases

2Although the cited works use Hadamard based design matrices and the
Fast Walsh-Hadamard Transform in their simulations, our DCT construction
is essentially the same.
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with µ. This gap is a finite length effect, due to the relatively
small values of base matrix parameters.

Table I shows the values of the optimized coupling widths
used in Figs. 2a and 2b for user densities above the near-
vertical parts of each curve. We observe that the optimal
coupling width increases with the user density. At lower user
densities, a range of coupling widths (including the uncoupled
case ω = 1) achieve similar average UERs.

The solid red curves in Figs. 2a and 2b show the following
converse bound from [5] on the minimum Eb/N0 to achieve
expected UER within a given ε > 0 (for fixed user density µ
and user payload log2M ):

Eb
N0
≥ max

{[
Q−1

(
1
M

)
−Q−1(1− ε)

]2
2 log2M

,

22µ[log2M−ε log2(M−1)−Hb(ε)] − 1

2µ log2M

}
,

(44)

where Hb(·) is the binary entropy function.

IV. LARGE USER PAYLOADS

When coding with random codebooks, i.e., when the sec-
tions of x are drawn i.i.d. from p1 (see Example 2.1), the
size B of each section in x increases exponentially with the
user payload (which is log2M = log2B bits). For very large
B it is computationally infeasible to evaluate the potential
function (19). The potential function is needed to compute the
asymptotic UER bounds in Theorems 1 and 2 (see (25) and
(37)). In this section we bound the asymptotic UER achieved
by i.i.d. and spatially coupled Gaussian codebooks with AMP
decoding when the user payload is large. Furthermore, in
Section IV-D we discuss simple ways to reduce the decoding
complexity at larger user payloads. Both results in this section
(Theorems 3 and 4) use the following lemma.

Lemma 4.1 (Asymptotic UER Bound): Consider the setting
of either Theorem 1 or 2, and take the distribution pXsec to
be p1. Let x̂t be the AMP hard-decision estimate of x after
iteration t, and recall that ψt ∈ RC is an output of the state
evolution (8)–(9). Then we have that the following limit exists
almost surely and satisfies:

lim
L→∞

1

L

L∑
`=1

1
{
x̂t` 6= x`

}
≤ 4

C

C∑
c=1

ψtc
E
, (45)

where the limit is taken with L
n = µ held constant. Recall that

C = 1 when the design matrix A has i.i.d. Gaussian entries
N (0, 1

n ).
The proof of Lemma 4.1 is given in Appendix A.

A. IID Gaussian Codebooks

Theorem 3 (AMP Decoding of IID Gaussian Codebooks at
Large User Payloads): Consider the setting of Theorem 1 and
take the distribution pXsec to be p1. The UER of the AMP
decoder after its first iteration exhibits the following phase
transition for sufficiently large payloads log2B.

1) For any δ ∈ (0, 1
2 ), let fB,δ := B−kδ

2

δ
√

lnB
where k is a

positive constant. If

µ log2B <
1

2

(
1

(1 + δ
2 ) ln 2

− 1

Eb/N0

)
, (46)

then limL→∞
1
L

∑L
`=1 1

{
x̂1
` 6= x`

}
≤ 4fB,δ .

2) For any δ̃ ∈ (0, 1) and δ2 ∈ (0,
√

2−
√

2− δ̃), let gB,δ̃ :=

B−k1δ̃
2

where k1 is a positive constant and hB,δ2 := B−δ
2
2/2

δ2
√

lnB
+

B−δ
2
2 . If

µ log2B >
1

2(1− gB,δ̃)

(
1

(1− δ̃
2 ) ln 2

− 1

Eb/N0

)
, (47)

then limL→∞
1
L

∑L
`=1 1

{
x̂t` 6= x`

}
≥ 1−hB,δ2 for all t ≥ 1.

In both statements, the limits exist and are taken with L
n = µ

held constant.
Remark 4.1: From (47), we see that for any fixed values

of µ and Eb
N0

, the UER of AMP decoding is lower bounded
by a value that approaches 1 with growing B. Therefore, the
interesting regime for large user payloads is when the spectral
efficiency

S := µ log2B =
L log2B

n
bits/transmission, (48)

is of constant order. (The spectral efficiency is the total number
of bits transmitted by all the users per channel use.) Theorem
3 can be extended (using analysis similar to [17], [18]) to this
asymptotic regime where L, n, log2B all tend to infinity with
the spectral efficiency held constant. In this case, the UER of
the AMP decoder exhibits the following phase transition in
this large system limit almost surely:

lim
L,B,n→∞

1

L

L∑
`=1

1
{
x̂1
` 6= x`

}
=

{
0 if S < SAMP,

1 otherwise,
(49)

where SAMP is defined as

SAMP :=
1

2

(
1

ln 2
− 1

Eb/N0

)
. (50)

From (49) and (50), we see that positive spectral efficiencies
are achievable in this large system setting using i.i.d. Gaussian
codebooks and AMP decoding if and only if Eb

N0
> ln 2.

Proof of Theorem 3: Recalling the definition of the state
evolution parameters τ t and ψt from (17), let

νt :=
E

τ t lnB
=

E

(σ2 + µψt) lnB
. (51)

From [18, Lem. 4.1] we know that for sufficiently large B
and any δ ∈ (0, 1

2 ), δ̃ ∈ (0, 1), we have

(1−gB,δ̃)1{ν
t < 2−δ̃} < ψt+1

E
≤ 1−(1−fB,δ)1{νt > 2+δ},

(52)
where fB,δ and gB,δ̃ are defined in the theorem statement. We
now prove the two parts of the theorem in sequence.

1) Using (51) in the upper bound of (52) and recalling that
E = Eb log2B, σ2 = N0/2, we obtain

ψt+1

E
≤ fB,δ if

ψt

E
<

2
2+δ −

ln 2
Eb/N0

2µ lnB
. (53)
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By substituting the initial condition ψ0 = E into (53), we
have that ψ

1

E ≤ fB,δ under the condition in (46). Furthermore,
from Lemma 4.1 we know that the asymptotic UER after
iteration t = 1 satisfies

lim
L→∞

1

L

L∑
`=1

1
{
x̂1
` 6= x`

}
≤ 4ψ1

E
≤ 4fB,δ. (54)

2) We prove the second statement of the theorem by first
showing that under (47),

E

τ t
< (2− δ̃) lnB for all t ≥ 0. (55)

For t = 0, we have τ0 = σ2 + µE, and the condition in
(47) ensures that E

τ0 < (2− δ̃) lnB.
Assume towards induction that E

τt < (2− δ̃) lnB for some
t ≥ 0. Then we have

E

τ t+1
=

E

σ2 + µψt+1
<

1

(σ2/E) + µ(1− gB,δ̃)
, (56)

where the inequality is obtained from (52) and noting that
νt = E

τt lnB < 2− δ̃. We further bound the right side of (56)
by using the condition in (47) along with E = Eb log2B and
σ2 = N0/2 to obtain:

E

τ t+1
<

lnB
ln 2
2

1
Eb/N0

+ µ log2B(1− gB,δ̃) ln 2

<
lnB

ln 2
2

1
Eb/N0

+ ln 2
2 ( 1

(1−δ̃/2) ln 2
− 1

Eb/N0
)

= (2− δ̃) lnB.

(57)

This shows that (55) holds for all t ≥ 0.
Using (55), we now prove that limL→∞

1
L

∑L
`=1 1

{
x̂t` 6=

x`
}
≥ 1 − hB,δ2 for all t ≥ 1. Using (25) and (22) (noting

that the first equality in (25) holds for t ≥ 0), we have

lim
L→∞

1

L

L∑
`=1

1
{
x̂t+1
` 6= x`

}
= Pe(τ

t) = 1− E
[
Φ
(√

E/τ t + Z
)B−1

]
,

(58)

where Z ∼ N (0, 1) and Φ(·) is the distribution function of
the standard normal. This holds specifically when Xsec ∼ p1.
Thus to show the main result we will prove

E
[
Φ
(√

E/τ t + Z
)B−1

]
≤ hB,δ2 , (59)

noting that E
τt < (2 − δ̃) lnB as shown above. We will use

the following bounds on the tail probability of the standard
normal Φc(u) := P(Z > u) [41]. For all u > 0,√

2

π

(
1

u+
√
u2 + 4

)
e−u

2/2 < Φc(u) <
1√
2π

(
1

u

)
e−u

2/2.

(60)
For arbitrary δ2 ∈ (0,

√
2−

√
2− δ̃), we have the bound

E
[
Φ
(√

E/τ t + Z
)B−1

]
≤ P

(
|Z| > δ2

√
lnB

)
+ E

[
Φ
(√

E/τ t + Z
)B−1 ∣∣∣ |Z| ≤ δ2√lnB

]
.

(61)

Label the two terms on the right side of (61) as T1 and T2.
Using (60), for the first term T1 we have:

T1 = 2Φc
(
δ2
√

lnB
)
≤
√

2

π

(
1

δ2
√

lnB

)
e−(δ22 lnB)/2

≤ B−δ
2
2/2

δ2
√

lnB
. (62)

To bound T2, first notice that conditional on |Z| ≤ δ2
√

lnB
and E

τt < (2− δ̃) lnB, we have

0 ≤
∣∣∣√E/τ t + Z

∣∣∣ ≤ (

√
2− δ̃ + δ2)

√
lnB. (63)

Using this and the substitution δ3 :=
√

2− δ̃ + δ2, we can
bound T2 as follows:

T2

(i)
≤ E

[[
1− Φc

(
δ3
√

lnB
)]B−1

]
(ii)
≤ E

[
exp

{
−(B − 1)Φc

(
δ3
√

lnB
)}]

(iii)
≤ exp

 −
√

2(B − 1)e−δ
2
3 lnB/2

√
π
(
δ3
√

lnB +
√
δ2
3 lnB + 4

)


(iv)
≤ exp

{
−
√

2B1−δ23/2

5
√
π lnB

}
, (64)

where the labelled steps are obtained as follows: (i) using
Φ(u) ≤ Φ(|u|), the second inequality in (63), and Φ(u) =
1−Φc(u); (ii) using the bound (1−x) ≤ e−x when x > 0; (iii)
using (60); and in (iv) we use B − 1 > (4/5)B when B > 5,
and δ3 =

√
2− δ̃+δ2 ≤

√
2 when δ2 ∈ (0,

√
2−
√

2− δ̃), so
that for lnB ≥ 4 we have δ3

√
lnB+

√
δ2
3 lnB + 4 < 4

√
lnB.

Now we notice that (64) implies T2 ≤ B−δ
2
2 since

−
√

2B1−(
√

2−δ̃+δ2)2/2

5
√
π lnB

≤ −δ2
2 lnB for large enough B (because

1−(
√

2− δ̃+δ2)2/2 > 0). Finally, using (61) and combining
the bounds on T1 and T2, we conclude that E[Φ(

√
E/τ t +

Z)B−1] ≤ hB,δ2 .

B. Spatially Coupled Gaussian Codebooks

From Remark 4.1, we see that for large user payloads and
spectral efficiencies less than SAMP, one does not require
spatial coupling for reliable AMP decoding. The following
result shows that any spectral efficiency above SAMP and below
the converse can be achieved using spatially coupled Gaussian
codebooks and AMP decoding. The converse is discussed in
Remark 4.3.

Theorem 4 (AMP Decoding of Spatially Coupled Gaussian
Codebooks at Large User Payloads): Consider the setting of
Theorem 2 and take the distribution pXsec to be p1. Let ϑ =
1 + ω−1

Λ , µ = L
n , snr = 2Eb

N0
µ log2B, and define

∆ :=
1

2ϑ
ln(1 + ϑ snr)− µ lnB, (65)

ω∗ :=
( ϑ snr2

1 + ϑ snr

) 1

∆
, (66)

ρ∗ := min
{ ∆

3 snr
,

1

2

}
. (67)
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Let δ be an arbitrary constant in (0,min{ ∆
2µ lnB ,

1
2}) and

Sopt > 0 be the solution to

Sopt =
1

2
log2

(
1 + Sopt

2Eb
N0

)
. (68)

1) If the spectral efficiency satisfies

1

ϑ
SAMP ≤ µ log2B <

1

ϑ
Sopt, (69)

and the base matrix parameters satsify ω > ω∗ and 0 < ρ ≤
ρ∗, then, for t ≥ 1 and c ≤ max{ ωtω∗ , d

Λ
2 e}, we have

ψtc = ψtΛ−c+1 ≤ E fB,δ (70)

for sufficiently large B, where E = Eb log2B, fB,δ := B−kδ
2

δ
√

lnB
and k is a positive constant.

2) Let T denote the first iteration for which maxc ψ
t
c ≤

E fB,δ . Then we have

T ≤
⌈

Λω?

2ω

⌉
, (71)

and the UER of the AMP decoder after T iterations satisfies
the following almost surely:

lim
L→∞

1

L

L∑
`=1

1
{
x̂T` 6= x`

}
≤ 4fB,δ, (72)

where the limit is taken with L
n = µ held constant.

Proof: The first part of Theorem 4 is a direct application
of the state evolution analysis of spatially coupled SPARCs
for channel coding over the (single-user) AWGN channel [18,
Prop. 4.1]. The main change of variables required is that the
signal-to-noise ratio in the AWGN channel is replaced by
snr = L(E/n)

σ2 = 2Eb
N0

µ log2B. Another change is that the
AWGN rate R = L lnB

n in [18] is replaced by µ lnB. The
result in (72) is a direct application of Lemma 4.1.

Remark 4.2: A positive solution to (68) exists if and only
if Eb

N0
> ln 2.

Remark 4.3 (Parameter Choice): Consider spectral effi-
ciency S = µ log2B bits/transmission. For any spectral
efficiency S < Sopt, or equivalently any Eb

N0
> 22S−1

2S (which
matches the converse bound in [5] with B →∞ and the target
expected UER ε → 0), we can choose design parameters as
follows to guarantee that the AMP decoder achieves a small
UER at large payloads.

1) If S < SAMP, or equivalently Eb
N0

> ( 1
ln 2 − 2S)−1 for

S < 1
2 ln 2 , we can use i.i.d. Gaussian codebooks. Theorem 3

then guarantees that the UER is bounded by a small constant
at large payloads.

2) If SAMP ≤ S < Sopt, we can use spatially coupled
codebooks with base matrix parameters ω and Λ chosen
as follows to satisfy the conditions of Theorem 4. Letting
ϑ0 = Sopt/S, first choose ω > ω?(ϑ0) (defined as in (66)
with ϑ replaced by ϑ0). Then choose Λ large enough that
ϑ = 1 + ω−1

Λ ≤ ϑ0. This ensures that S < Sopt/ϑ and
ω > ω?(ϑ). Theorem 4 then guarantees that the UER is
bounded by a small constant at large payloads.

Remark 4.4: Theorem 4 can be extended to the setting where
L, n, log2B all tend to infinity with the spectral efficiency S =

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Eb/N0 (dB)

0

1

2

3

4

5

S
=

L
lo

g 2
B

/n

Eb/N0 = ln2
S = 1

2ln2

iid + AMP - B = 2
iid + AMP - B = 22

iid + AMP - B = 28

iid + AMP - B
SC+AMP - B = 2
SC+AMP - B = 22

SC+AMP - B = 28

Ach. [5] - B = 280

Ach. [5] - B = 21000

SC+AMP - B

Fig. 3. Achievable regions of i.i.d. and spatially coupled Gaussian codebooks
with AMP decoding at different user payloads (log2B bits). The results at
finite B show the minimum Eb/N0 required to achieve expected UER ≤
10−3. The results for B = 280 and 21000 use the achievability bound from
[5].

L log2B/n held constant (see Remark 4.1). In this asymptotic
regime, the result states that for any SAMP ≤ S < Sopt, the
UER with AMP decoding converges almost surely to 0.

C. Numerical Results

Fig. 3 shows the achievable regions of i.i.d. and spatially
coupled Gaussian codebooks with AMP decoding, in the large
system limit of L, n, log2B all tending to infinity with the
spectral efficiency S = L log2B/n held constant (Remarks
4.1 and 4.4). Recall that the user payload is log2M = log2B
bits. The dashed black line is the achievable region for i.i.d.
Gaussian codebooks and the solid black line for spatially
coupled codebooks. From (50), we see that i.i.d. Gaussian
codebooks with AMP decoding cannot achieve spectral ef-
ficiencies S ≥ 1

2 ln 2 ≈ 0.7213 (asymptote of the dashed black
line). We note that the solid black line matches the converse
bound in [5] with B →∞ and the target expected UER ε→ 0.

The solid and dashed black lines split Fig. 3 into three
distinct regions, which are sometimes referred to as the ‘easy’,
‘hard’, and ‘impossible’ regions of inference in statistical
physics [42]: 1) Below dashed black line: achievable with
i.i.d. Gaussian codebooks and AMP decoding; 2) Between
solid and dashed black lines: achievable with spatially cou-
pled Gaussian codebooks and AMP decoding (or with i.i.d.
Gaussian codebooks and symbol-by-symbol MAP decoding,
see Remark 3.1); 3) Above solid black line: not achievable by
any scheme.

In Fig. 3, we also plot the achievable regions of i.i.d. Gaus-
sian codebooks (dashed lines) and spatially coupled Gaussian
codebooks (solid lines) with AMP decoding at several finite
payloads log2B (with L, n → ∞ and the user density
µ = L/n held constant). For B = 2, 22, 28, we use the same
setup as Fig. 2, and find the smallest Eb

N0
such that the coding

scheme achieves UER ≤ 10−3. For B = 280, 21000, it is
computationally infeasible to evaluate the potential function
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(19), so we plot the achievability bound from [5] (red and
purple curves).

For spatially coupled Gaussian codebooks with AMP de-
coding, the achievable region gets larger as the user payload
increases, but at high spectral efficiencies (e.g. S > 1.5),
the improvement is insignificant after roughly log2B = 8
bits. Therefore, it is possible to communicate reliably at high
spectral efficiencies with near-minimal Eb

N0
even when the

user payload is finite. For i.i.d. Gaussian codebooks with
AMP decoding, there is a tradeoff in the achievable region
as the user payload increases: a lower Eb/N0 is required
to communicate reliably at low spectral efficiencies, but the
maximum achievable spectral efficiency decreases.

D. Implementation at Large User Payloads

When i.i.d. or spatially coupled codebooks are used and the
user payload log2M = log2B bits is large, the computational
complexity of the AMP decoder is too high for practical use
even when DCT based design matrices are used instead of
Gaussian ones. In this section we discuss the computational
advantage of using smaller codebooks multiple times and the
price paid in terms of a smaller achievable region. Further-
more, we discuss how introducing modulation to the encoding
scheme can reduce the complexity and enlarge the achievable
region.

A simple idea for reducing the complexity is to encode
each user’s message using several smaller codebooks instead
of a single large codebook, e.g., by using a smaller codebook
multiple times. For example, a user payload of 80 bits can
be transmitted using a codebook of size B = 28 ten times
instead of a large codebook of size B = 280 once. The smaller
codebooks can be based on either i.i.d. or spatially coupled
Gaussian (or DCT) matrices, and the messages can be decoded
using an AMP decoder each time.3

The achievable region obtained using this method is closely
related to the achievable region of the coding scheme where
each user encodes a payload of 8 bits with a single codebook
of size B = 28 (the reference coding scheme). Compared
to the reference coding scheme, the method described above
effectively increases the code length by a factor of 10 due
to repeated transmissions, and the achievable region obtained
using this method in terms of the user density µ versus Eb/N0

trade-off is the same as that obtained by the reference coding
scheme, except the user density µ is reduced by a factor of
ten.4

This asymptotic achievable region of this method is shown
in blue in Fig. 4, where we assumed that spatially coupled

3Another possible implementation involves the superposition of codewords
from multiple (different) smaller codebooks. For example, user payloads of
80 bits can be transmitted with each user encoding their message with 10
codebooks of size B = 28 each. The codewords from the 10 codebooks
are summed together to form the final user codeword. This method is
equivalent to each user encoding their message with a SPARC [14]. This
implementation has the same asymptotic achievable region as using smaller
codebooks multiple times but has higher decoding complexity.

4If instead we considered the spectral efficiency S = (µ × user payload)
versus Eb/N0 trade-off, then the achievable region of the described method
would be exactly the same as that of the reference coding scheme. This is
because the ten-fold increase in the user payload from 8 bits to 80 bits cancels
out the factor of ten reduction in the user density µ.
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Converse [5]
Achievability [5]
SC + AMP (B = 28, K = 1), 10 transmissions
SC + AMP (B = 28, K = 2), 9 transmissions
SC + AMP (B = 28, K = 4), 8 transmissions
SC + AMP (B = 28, K = 8), 8 transmissions

Fig. 4. Red and black: converse and achievability bounds from [5] for the
many-user Gaussian MAC when the per-user payload is 80 bits and the
maximum tolerated expected UER is 10−3. Blue, orange, green and purple:
asymptotic achievable regions of coding methods based on spatially coupled
complex Gaussian codebooks (of size B = 28) with K-ary PSK modulation
and AMP decoding for the same maximum tolerated expected UER.

complex Gaussian codebooks (of size B = 28) and AMP
decoding are used, and the maximum tolerated expected UER
is 10−3. The red and black curves plot the converse and
achievability bounds from [5] when the user payload is 80
bits and the maximum tolerated expected UER is also 10−3.
We see that one can still achieve near-optimal µ versus
Eb/N0 trade-offs using these methods at user densities above
µ ≈ 0.04. However, at lower user densities, there is a
noticeable gap between the achievability of this method and
the achievability of large (B = 280) i.i.d. Gaussian codebooks
with ML decoding (black).

We now discuss how to shrink this gap using modulation.
We consider K-ary phase-shift keying (PSK) modulation in
the context of complex Gaussian MACs. In the real-valued
setting, this modulation technique is restricted to binary PSK.

Introducing Modulation to Encoding: Consider again the
example where the user payload is 80 bits. If in addition to en-
coding 8 bits using a size B = 28 codebook, we encode 1 extra
bit in the sign of the chosen codeword (as in Example 2.2),
then the final codeword would encode 9 bits and 80 bits can
be sent in fewer than 9 transmissions. In comparison, to send
80 bits without modulation would require 10 transmissions of
8 bits each. For general K-ary PSK modulation, an additional
log2K bits are encoded the phase of the chosen codeword
(using Gray coding). As the modulation factor K increases,
the number of transmissions required (and the complexity)
is reduced. The increase in AMP decoding complexity due to
increased modulation is insignificant when K � log(LB) [43,
Sec. V]. In addition to reducing computational complexity,
Fig. 4 shows that using binary PSK (orange) and 4-PSK
modulation (green) increases the achievable region compared
to the unmodulated case (blue); however, using 8-PSK (purple)
significantly decreases the achievable region.

A user’s message is decoded in error when either the
chosen codeword from the user’s codebook or the phase of the
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codeword is estimated in error. We observe empirically that
with 8-PSK modulation the phase of the codeword is much
more likely to be estimated in error compared to 4-PSK or
binary PSK, which results in a smaller achievable region.

Complex setting: To illustrate the effects of PSK modula-
tion, Fig. 4 considered a complex Gaussian MAC and coding
using complex Gaussian codebooks. With slight modifications
to the AMP decoder, state evolution and potential function,
Theorems 1 to 4 extend directly to the setting where the design
matrix A, message vector x and channel noise are complex
(see [40, Sec. 4.4] for more details). The main takeaway is that
complex random linear coding with AMP decoding at user
density µ achieves the same asymptotic UER as real-valued
random linear coding with AMP decoding at user density µ

2
when all other parameters are the same, e.g., user payload,
Eb/N0 and pXsec .

V. CONCLUSION

In this paper we considered Gaussian MACs in the asymp-
totic setting where the number of users L and the code length
n both tend to infinity with the user density µ = L/n held
constant, and where the user payload log2M and energy-per-
bit constraint are considered fixed and independent of n. We
analyzed the asymptotic user error rate (the fraction of user
messages decoded in error) achieved by coding schemes based
on random linear models (which include i.i.d. Gaussian code-
books and random CDMA) and AMP decoding. We found that
the asymptotic achievable region of a coding scheme based
on spatially coupled Gaussian matrices and AMP decoding
exceeds that obtained using the achievability bound in [5] and
nearly matches the converse bound for a large range of user
densities. The spatially coupled scheme can be interpreted as a
block-wise time-division with overlap multiple-access scheme.

We then analysed the performance of these coding schemes
as the user payload grows large and found that the interesting
asymptotic regime is when L, log2M,n all tend to infinity
with the spectral efficiency S = L log2M/n held constant. We
also showed that using small random codebooks multiple times
to transmit large user payloads can achieve near-optimal trade-
offs at large user densities while having lower complexity, and
adding modulation (e.g., K-PSK modulation) to the encoding
scheme can simultaneously increase the asymptotic achievable
region and reduce complexity in such settings.

An interesting open question is how to close the gap
between the converse bound and achievable region at low user
densities in Fig. 2. Another exciting direction is to explore
how ideas such as block-wise time-division with overlap (via
spatially coupled codebooks) and the generalization of CDMA
(by assigning a codebook of spreading sequences to each
user) can be used to enhance the performance of practical
techniques for multiple-access and unsourced random access.
For example, in [25] the authors suggest spatial coupling as
a way to improve the performance of their unsourced random
access scheme based on SPARCs and AMP, and in [44],
an outer code is used to induce coupling in the AMP-based
random access scheme. Finally, it is also important to study
the question of how spatial coupling can be applied in practical

random access settings where the number of users is random
and unknown [45].

APPENDIX A
PROOF OF LEMMA 4.1

The existence of the limit in (45) is shown in Theorems 1
and 2. For ` ∈ [L], we denote by a` ∈ RB the `th section of
a vector a ∈ RLB . Let xt+1 be the AMP estimate of x after
iteration t + 1 (defined in (13)). It was proved in [18] that
the MSE of the AMP decoder after iteration t ≥ 0 converges
almost surely to the following limit:

lim
L→∞

‖xt+1 − x‖2

L
=

1

C

C∑
c=1

ψt+1
c , (73)

where the state evolution parameters ψtc for c ∈ [C] and t ≥ 0
are defined in (9)–(10).

To prove (45), we first notice that for the prior p1, the hard-
decision estimator x̂t+1

` defined in (15) can equivalently be
written as follows. For j ∈ sec(`):

x̂t+1
j =

{ √
E if xt+1

j > xt+1
i for all i ∈ sec(`)\j,

0 otherwise.
(74)

Here xt+1 is the AMP estimate computed according to (7)
and (13).

Let j∗ ∈ sec(`) denote the index of the unique non-zero
entry of x in section ` ∈ [L], i.e., xj∗ =

√
E. From (13),

we note that the sum of the entries in each section of xt+1

equals
√
E. The decision rule (74) then implies that xt+1

j∗ ≤√
E/2 whenever x̂t+1

` 6= x`. Therefore, x̂t+1
` 6= x` implies

that ‖xt+1
` − x`‖2 ≥ E/4. Therefore,

1

L

L∑
`=1

1{x̂t+1
` 6= x`} ≤

1

L

L∑
`=1

4‖xt+1
` − x`‖2

E
. (75)

Combining (75) with (73) yields (45).
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