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Abstract

Graph prediction problems prevail in data analysis and machine learning. The inverse prediction
problem, namely to infer input data from given output labels, is of emerging interest in various
applications. In this work, we develop invertible graph neural network (iGNN), a deep generative
model to tackle the inverse prediction problem on graphs by casting it as a conditional generative
task. The proposed model consists of an invertible sub-network that maps one-to-one from data to an
intermediate encoded feature, which allows forward prediction by a linear classification sub-network
as well as efficient generation from output labels via a parametric mixture model. The invertibility of
the encoding sub-network is ensured by a Wasserstein-2 regularization which allows free-form layers
in the residual blocks. The model is scalable to large graphs by a factorized parametric mixture
model of the encoded feature and is computationally scalable by using GNN layers. The existence of
invertible flow mapping is backed by theories of optimal transport and diffusion process, and we prove
the expressiveness of graph convolution layers to approximate the theoretical flows of graph data. The
proposed iGNN model is experimentally examined on synthetic data, including the example on large
graphs, and the empirical advantage is also demonstrated on real-application datasets of solar ramping
event data and traffic flow anomaly detection.

1 Introduction

Graph prediction is an important topic in statistics, machine learning, and signal processing, and is
motivated by various applications, e.g., protein-protein interaction networks [45], wind power prediction
[46], and user behavior modeling in social networks [7]. There can be various versions of graph prediction
problems. We are interested in the scenario where one observes nodal (multi-dimensional) features X,
nodal responses Y , and graph topology information. The prediction algorithm typically will then leverage
graph topology information to facilitate the learning of predicting Y given X. In practice, Graph Neural
Network (GNN) models [44] have become a popular choice due to their expressiveness power and scalable
computation. In the so-called inverse of a graph prediction problem, one would like to infer the input
graph nodal features X given an outcome response Y . Such a problem is of interest in various real-world
applications, for instance, in molecular design [36], scientists want to infer features of the molecule that
lead to certain outcomes; in power outage analysis [48, 1], we are interested in finding features (e.g.,
weather or past power output by sensors) that leads to outages for future prevention. The inverse graph
prediction problem is the focus of the current work, for which we develop an invertible deep model that
can be efficiently applied to graph data.

The prediction and inverse prediction problems are illustrated in Fig. 1. The left plot shows the case
of general non-graph data, and the right plot shows the case with graph data X and graph label Y . As an
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Figure 1: Illustration of the proposed iGNN model applied to general data (left) and graph data (right).
On graph data, for v ∈ {1, · · · , 5}, Xv is the nodal feature, and Yv is the nodal label. The inverse
prediction problem is to generate the conditional distribution X|Y , which is a one-to-many mapping from
Y to X (indicated by dash lines). In our approach, Y is first mapped to an intermediate feature H|Y
(one-to-many) and then through an invertible neural network to X|Y (one-to-one).

illustrative example, suppose the graph is a power grid, where each node v ∈ {1, . . . , 5} denotes a power
generator, Xv ∈ Rd′ denotes historical power outputs from generator v, and Yv denotes the status of the
generator v (e.g., Yv = 0 for functioning normally, and 1 for anomaly). For system monitoring, it is useful
to predict the status of generators given historical observations (the forward prediction, indicated by solid
black arrows), as well as to generate unobserved possible circumstances given generator status (the inverse,
indicated by dashed black arrows) for cause analyses.

To formalize the notion of inverse prediction, we adopt some probability terminologies. The forward
prediction problem is to predict Y from input X, which can be formulated as learning the conditional
probability of p(Y |X). The inverse prediction problem is to learn the conditional probability of p(X|Y )
and to generate samples X from it. Note that a discriminative task seeks to estimate the posterior p(X|Y )
at a given (test) point X, which can be done by a conventional classification model. The generative task is
different in that one asks to sample X according to p(X|Y ), that is, given a label Y , to produce samples X
which do not exist in the training data nor any provided test set. The problem is challenging when data X
is in high dimensional space, where a grid of X can not be efficiently constructed. In particular, when X
is graph nodal feature data, the dimensionality of X scales linearly with the graph size N (the number of
nodes in the graph). In the case of categorical response, the graph label Y assigns one of the K-class labels
to each node, which makes the total possible outcomes KN many. Thus the inverse prediction problem on
graph data poses both modeling and computational challenges when scalability to large graphs is needed.

In this work, we develop a deep generative model for the conditional generation task of the inverse
prediction problem on graphs. While deep generative models like generative adversarial networks (GAN)
[15, 19], variational auto-encoders (VAE) [25, 26] and normalizing flow networks [27] have been intensively
developed in recent years, the conditional generation task given categorial prediction labels is less studied.
We further review the literature and comment on related works in Section 2.1. Unlike previous conditional
generative models [32, 21, 3, 4, 2], which typically concatenate the prediction label Y with the random
code Z as input or rely on curated forms of neural network (NN) layers to ensure invertibility, we propose
to encode the input data X one-to-one by an invertible network to an intermediate feature H, from which
the label Y can be predicted using a linear classifier, and in the other direction H can also be generated
from Y by a parametric mixture model. The framework of our model is shown in Fig. 2. Because the
general (non-graph) data case can be seen as a special case of graph data where the graph only has one
node, we call the proposed model invertible Graph Neural Network (iGNN), as a unified name.

To efficiently handle the up to exponentially many outcomes of graph nodal labels, we introduce a
factorized mixture distribution H|Y over graphs. We theoretically show that the capacity to learn the
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Figure 2: Comparison of existing conditional generative neural network models (left) and the proposed
iGNN model (right). Most current approaches concatenate the encoded prediction label Y (e.g. one-hot
encoding) as an additional input to the generative network G. Our model takes a two-step approach:
a one-to-many mapping g from label Y to intermediate feature H by a Gaussian mixture model (which
allows classification from H to Y by f), and a one-to-one mapping from H to input data X.

conditional distribution X|Y over a graph can be achieved when the per-node Gaussian mixture model
Hv|Yv has well-separated components, and the need separation increases with graph size N only mildly
(an additive logN factor), cf. Proposition 3.2. Under this formulation, the Y -to-H sub-network is light
in model and computation. The major part of the model capacity of the iGNN model is in the H-to-X
sub-network, which is an invertible flow model based on Residual Network (ResNet) framework [5]. The
computational scalability to large graphs is tackled by adopting GNN layers, which are not compatible with
normalizing flow models having constrained formats in architecture [14, 43], and would also complicate
the spectral normalization technique in [5] to ensure network invertibility.

To overcome these issues, we propose Wasserstein-2 regularization of the ResNet, which in the limit
of a large number of residual blocks recovers the transport cost in the dynamic formulation of optimal
transport (OT) [41, 6, 42]. Based on known results of OT theory, the Wasserstein-2 regularization leads
to smooth trajectories of the transported densities. The invertibility of the induced flow map can then be
guaranteed with a sufficient number of residual blocks. We empirically verify the invertibility of the flow
model in experiments. This allows our model to use free-form neural network layers inside the ResNet
blocks, including any GNN layer types. Theoretically, we study the existence and invertibility of flow
mapping based on theories of OT and diffusion process. We also prove the expressiveness of GNN layers
to approximate the velocity field in the theoretical flows when data is a Gaussian field on the graph.

We examine the performance of the proposed iGNN model on simulated graph data as well as data
from real-world graph prediction applications. In summary, the contributions of the work are
• We propose a two-step procedure, Y -to-H and H-to-X, to tackle the generative task of inverse

prediction problem viewed as a conditional generation problem and develop an invertible flow model
consisting of two subnetworks accordingly. The model is made scalable to graph data by a factorized
formulation of the parametric mixture model H|Y and the GNN layers in the invertible flow network
between H and X.
• We introduce Wasserstein-2 regularization of the invertible flow network, which is computationally

efficient and compatible with general free-form layer types, particularly the GNN layers in the flow model.
The effect on preserving invertibility is backed by OT theory and verified in practice.
• The existence of invertible flow maps is analyzed theoretically. Based on the theoretical flows, we

analyze the expressiveness of spectral and spatial graph convolution layers applied to graph data.
• The proposed iGNN model is applied to both simulated and real-data examples, showing improved

generative performance over alternative conditional generation models.
Notation. We denote by [n] = {1, · · · , n} the integer set. Ex∼p denotes the expectation over x ∼ p, that
is, Ex∼pf(x) =

∫
f(x)p(x)dx. When a probability distribution has density, we use the same notation, e.g.,

p, to denote the distribution and the density. For real-diagonalizable matrix A, and function f : R → R,
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we denote by f(A) the function of the matrix A. For T : Rd → Rd and p a distribution on Rd, we denote
by T#p the push-forward of distribution p by T , i.e., (T#p)(·) = p(T−1(·)).

2 Background

2.1 Related works

Generative deep models and normalizing flow. At present, generative adversarial networks (GAN) [15, 19]
and variational auto-encoders (VAE) [25, 26] are two of the most popular frameworks that have achieved
various successes [31, 47, 28]. However, they also suffer from clear limitations such as notable difficulties in
training, such as mode collapse [35] and posterior collapse [30]. On the other hand, normalizing flows (see
[27] for a comprehensive review) estimate arbitrarily complex densities via the maximum likelihood esti-
mation (MLE), and they transport original random features X into distribution that are easier to sample
from (e.g., standard multivariate Gaussian) through invertible neural networks. Flow-based models can
be classified into two broad classes: the discrete-time models (some of which include coupling layers [14],
autoregressive layers [43] and residual networks [5, 10]), and the continuous-time models as exemplified by
neural ODE [17, 33]. Most normalizing flow methods focus on unconditional generation with little devel-
opment in a conditional generation. In addition, to achieve numerically reliable training, regularization of
the density transport trajectories in flow networks are necessary but remain a challenge. In this work, we
propose Wasserstein-2 regularization motivated by the transport cost in the dynamic formula of optimal
transport (OT) theory. In Remark 2, we compare with the original spectral normalization in iResNet [5]
in more detail.
Conditional generation networks. The conditional generation versions of GAN (cGAN) have been studied
in several places [32, 21], where the prediction outcome Y (one-hot encoded as eY ) are typically con-
catenated with random noise Z and taken as input to the generator network, as illustrated in the left of
Fig. 2. The one-hot encoding of categorical Y concatenated with Gaussian Z poses challenges in training
cGAN models, in addition to known issues of their unconditional counterparts, such as mode collapse,
posterior collapse, and failures to provide exact data likelihood. When the prediction label Y is lying
on a graph having N nodes, the one-hot coding will increase up to O(N) more coordinates to the input
(Z, eY ), which significantly increases the model complexity and computational load with large graphs.
Conditional invertible neural network (cINN) model was developed in [3] for analyzing inverse problems.
The model inherits the approach of cGAN models to concatenate one-hot encoded prediction label eY
with normal code Z while using Real-NVP layers [14] to ensure neural network invertibility. In terms of
training objective, [3] proposed to use maximum mean discrepancy (MMD) losses to encourage both the
matching of the input data distribution and the independence between label Y and normal code Z. We
call the method in [3] cINN-MMD. Replacing the MMD losses with a flow-based objective, [4, 2] extended
the invertible network approach in [3] and applied to image generation problems. In the models in [4] and
[2], which we call cINN-Flow and cINN-Flow+ respectively, the inputs to the Real-NVP layers contain
encoded information of the prediction label Y so as to learn label-conditioned generation, see more in Fig.
A.1. In experiments, we compare with cGAN and cINN models on both non-graph and graph data.

2.2 Transport cost regularization

We review needed background on the transport cost and the dynamic formula of Wasserstein-2 optimal
transport (OT). The transport cost has been proposed to regularize the normalizing flow neural network
models, e.g., in [33]. Consider the trajectory x(t) satisfying ẋ(t) = v(x(t), t), that is, v(x, t) is the velocity
field, where x(0) ∼ p and t ∈ [0, 1]. The transport cost is defined as

T :=

∫ 1

0

Ex∼ρ(·,t)‖v(x, t)‖2dt, (1)
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where ρ(x, t) is the marginal distribution of x(t) after pushing forward the initial distribution ρ(·, 0) = p
by v(x, t) for time t. The cost (1) can be viewed as taking the kinetic energy in computing the Lagrangian
action along the trajectory. A more general form of cost under the framework of Mean-field Games has
been proposed in the current and independent work [20] to regularize trajectories of normalizing flows. It
is also known that minimizing the cost T under the constraint of transporting from fixed p = ρ(·, 0) to
q = ρ(·, 1) leads to the dynamic formulation of OT, i.e., the Benamou-Brenier formula [41, 6]. Specifically,
the solution of the minimization

inf
ρ,v

∫ 1

0

Ex∼ρ(·,t)‖v(x, t)‖2dt

s.t. ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = p, ρ(·, 1) = q,

(2)

recovers the Wasserstein-2 OT from p to q, that is, at the minimizer v(x, t), ρ(·, 1) = q and T = W 2
2 (p, q).

The minimizer v(x, t) of (2) can be interpreted as the optimal control of the transport problem from p to
q.

In terms of neural network implementation, OT-Flow [33] used the potential model based on OT theory
and parametrized the potential Φ(x, t) by a neural network, where ∇Φ(x, t) gives the velocity v(x, t). Our
method adopts a ResNet base model, where the invertibility is fulfilled by a Wasserstein-2 regularization,
which can be viewed as a finite-step discrete-time counterpart of the transport cost T . The proposed
Wasserstein-2 regularization recovers T with a large number of steps, yet does not require integrating the
continuous-time flow with accuracy for all time, cf. Remark 3.

3 Methods

Given data-label pairs {Xi, Yi}, we first describe our approach when Xi is a sample in Rd, and Yi is the
categorical label in K classes, i.e., Yi ∈ [K]. The case where both Xi and Yi lie on a graph is addressed in
Section 3.3 where we make the approach scalable to large graphs. In Section 3.4, we introduce Wasserstein-
2 regularization to preserve the invertibility of the trained flow network with free-form residual block layer
types. All proofs are in Appendix A.

3.1 Inverse of prediction as conditional generation

The overall framework is to (end-to-end) train a network consisting of two sub-networks: the first sub-
network maps invertibly from X to an intermediate representation H, and the second sub-network maps
from H to label Y , which is a classifier and loses information. Specifically,
• H-Y classification sub-network. We model H|Y by a Gaussian mixture model with “well-separated”

means (detailed in Section 3.2). The parametric form of H|Y contains trainable parameter θgc , and the
generation of H|Y is by sampling the corresponding mixture component accordingly. The prediction of
label Y from H can be conducted by a linear classifier parametrized by θcc. The trainable parameters in
the classification sub-network are denoted as θc = (θgc , θ

c
c).

• X-H invertible sub-network. The invertible mapping from X to H is by a flow ResNet in Rd (detailed
in Section 3.4). The sub-network parameters are denoted as θ = {θl, l = 1, · · · , L}, where L is the number
of residual blocks, and the network mapping is denoted as Fθ. The prediction of label Y from input X
is by first computing H = Fθ(X) and then applying the H-to-Y classifier sub-network parametrized by
θcc. The generation of X|Y is by inversely mapping X = F−1

θ (H) once H is sampled according to p(H|Y )
parametrized by θgc .

Remark 1 (Encoding-decoding perspective). The design of the network can be regarded as an encoding
scheme that maps X|Y to H|Y , and in the encoded domain H|Y are “noisy codes” represented by separable
isotropic Gaussian that can be linearly classified and generated (through the H-Y sub-network). In
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Figure 3: Flow map learned by iGNN model that transports three-class data in R2 to a three-component
Gaussian mixture and back. The distribution X|Y has (0, 22, 0.22, 0.56) fractions in each classes respec-
tively. The ResNet has 48 blocks. The transported data samples (upper panel) and distribution (lower
panel) of the three-class data are illustrated along the trained invertible flow network.

this sense, the invertible neural network Fθ(X) can be viewed as an invertible encoder that preserves
information content of X|Y in the encoding domain Fθ(X)|Y .

The end-to-end training objective of the proposed network can be written as

min
{θ,θc}

Lg + µLc + γW, (3)

where Lg, Lc and W are the generative loss, the classification loss and the Wasserstein-2 regularization,
respectively. The scalars µ, γ ≥ 0 are penalty factors. We will explain the choice of µ later in this
subsection, and the choice of γ is explained after the derivation in Section 3.4.

Given ntr many data-label pairs {Xi, Yi}, the generative loss is defined as Lg = 1
ntr

∑ntr

i=1 `g(Xi, Yi)
where

−`g(Xi, Yi) = log pH|Yi(Fθ(Xi)) + log |det JFθ (Xi)|. (4)

Because pH|Y is a mixture model parametrized by θgc , the per-sample loss `g(Xi, Yi) is determined by
both θ and θgc . We specify the construction and training of pH|Y in Section 3.2. The mapping Fθ is
by an invertible ResNet. The construction of Fθ, including the computation of log |det JFθ | and the
regularization loss W, will be explained in Section 3.4.

Finally, the classification loss is defined as Lc = 1
ntr

∑ntr

i=1 `c(Fθ(Xi), Yi), where `c(Hi, Yi) is the per-
sample K-class classification cross-entropy loss computed by softmax. We use a linear classifier to predict
Y given H, parametrized by θcc. When Fθ(X)|Y is close in distribution to the Gaussian mixture model
H|Y specified by θgc , one may also use θgc to construct the linear classifier from H to Y , that is, to tie
the parameters θcc and θgc . Here we separately parametrize the forward and inverse prediction parameters
in H-Y sub-network so as to facilitate optimization since, in both directions, the model is light. For the
penalty factor µ, we find the experimental results insensitive to the choice. We use µ = 1 in all experiments.

3.2 Mixture model of H|Y and the shared flow

We parametrize p(H|Y ) by a Gaussian mixture model as

H|Y = k ∼ N (µk, σ
2Id), k = 1, · · · ,K, (5)

where σ > 0 is a prefixed parameter. The K mean vectors µk will be trainable, and we use isotropic
Gaussian with the same covariance matrix for simplicity, which may be generalized. Note that we only
parametrize the locations of means of the Gaussian components, and there is no need to specify the
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weights (fraction of samples in each component) because the fractions will be determined by the data.
Fig. 3 provides an example where the fractions in the three classes differ.

We will initialize and train the mean vectors µk to be sufficiently separated to ensure the Gaussian
components have almost non-overlapping supports. Formally, we say that a collection of objects S in Rd
are δ-separated if for any two distinct elements s, s′ ∈ S, d(s, s′) ≥ δ. When S is a collection of points
in Rd, x, x′ ∈ S, then d(x, x′) = ‖x − x′‖. When S is a collection of sets in Rd, and A,A′ ∈ S, we
define d(A,A′) = infx∈A, x′∈A′ ‖x− x′‖. A set S ⊂ Rd is called an ε-support of a probability distribution
p if p(Sc) ≤ ε. When the means of Gaussian components are sufficiently separated, one would expect
that there are ε-supports of the K components that are mutually separated. Technically, we have that
3ρ-separation of the means guarantees ρ-mutual separation of K ε-supports, where ρ ∼ σ

√
log(1/ε). The

formal statement is proved in the following lemma.

Lemma 3.1 (Separation of K components). Let ρ = σ
√

2 log(K/ε) for 0 < ε < 1/2. If the K mean
vectors {µk}Kk=1 of the Gaussian mixture distribution of H|Y are 3ρ-separated in Rd, then each component
qk = N (µk, σ

2Id) in (5) has an ε-support Ωk such that for k 6= k′, d(Ωk,Ωk′) ≥ ρ.

The separation condition of the mixture model, especially the high dimensional counterpart in Proposi-
tion 3.2, may potentially be connected to the coding theory of Gaussian channel [40]. We further comment
on this in the discussion section. The purpose of having separated ε-supports of the K components in
H|Y is for the construction of an invertible flow map from H to X that transports each class of sam-

ples correspondingly. Intuitively, the separated ε-supports Ω
(H)
k of the K components of p(H|Y ) allow to

partition Rd into K domains with smooth boundary where each domain contains Ω
(H)
k . If the K-class

distributions p(X|Y ) also have separated ε-supports Ω
(X)
k , then one can try to construct an invertible flow

mapping in Rd which transports pX|Y=k to pH|Y=k by transporting from Ω
(X)
k to Ω

(H)
k respectively. While

the transport from each pX|Y=k to pH|Y=k can be constructed individually, the simultaneous transports
of the K components by a shared flow would need the transported components to stay separated from
each other along the flow, and this may not always be possible, e.g., due to topological constraints. For
the shared invertible flow to exist, we introduce the following assumption:

Assumption 1 (Shared flow). There exist δ > 0 and constant C such that for any ε < 1/2, if the K
components qk = pH|Y=k(·) of the Gaussian mixture of p(H|Y ) have ε-supports which are mutually δ-

separated in Rd, then there exists a smooth invertible flow mapping F : Rd → Rd induced by velocity field
v(x, t) for t ∈ [0, T ] (i.e. F (x) = x(T ) from x(0) = x, and x(t) solves the ODE of ẋ(t) = v(x(t), t))
such that the transported conditional distributions F#pX|Y=k(·) = q̃k satisfy that W2(q̃k, qk) ≤ Cε for
k = 1, · · · ,K.

While theoretical justification of Assumption 1 goes beyond the scope of the paper and is postponed
here, we demonstrate the validity of the assumption empirically. An example of the shared invertible flow
on a 3-class data in R2 is illustrated in Fig. 3. In all our experiments, we find that the trained invertible
ResNet successfully transports from p(X|Y ) to p(H|Y ) for all K classes. In the special case of having
K = 1 class, the conditional generation problem reduces to an unconditional one and the shared flow is no
longer an issue. In this case, one can set the distribution of H to be a standard normal, and the desired
transport map is a normalizing flow. In Section 4 we further study the existence and theoretical properties
of the flow mapping when K = 1, for general data and graph data.

Assumption 1 guarantees the existence of a shared flow mapping which transports the K-class condi-
tional densities up to O(ε) error as long as the components of the Gaussian mixture distribution p(H|Y )
have δ-separated ε-supports. Meanwhile, by Lemma 3.1, p(H|Y ) will have ρ-separated ε-supports if the
means µk are separated as therein. Since ρ ∼ σ

√
log(1/ε), it will exceed the O(1) constant δ required by

Assumption 1 when ε is small. This suggests keeping the mean vectors µk to be separated at the order
of σ

√
log(1/ε). In practice, we initialize µk to be separated at such a scale and preserve the separation

during training via a barrier penalty on the distances ‖µk − µk′‖.
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Note that Assumption 1 ensures the existence of a continuous-time flow, and we will use a ResNet model
to represent the flow by finite-step composed transports which are regularized by summed discrete-time
transport cost, to be detailed in Section 3.4.

3.3 Scalable conditional generation on graph data

The mixture modeling of H|Y described in the previous section is scalable to large graphs, as we explain
in this subsection. Consider the graph data where both the data vector X and the label Y are defined
on each node in a graph. In this subsection, the subscript v indicates graph node v. Suppose the graph
(V,E) has N nodes in V , and the edge set E is specified by an adjacency matrix A. We denote a graph
data sample X and a graph label Y as X = [X1, · · · , XN ]T ∈ RN×d′ , Xv ∈ Rd′ , Y = [Y1, · · · , YN ]T ∈ RN ,
Yv ∈ [K], v ∈ [N ], where d′ is the dimension of node feature. One may view X as a vector in Rd, d = d′N ,
and label vector Y taking KN many possibilities, and then apply the approach for non-graph data to the
KN -class prediction problem in Rd. However, this may lead to exponentially many classes when the graph
size N is large, leading to difficulty in modeling H|Y by a mixture distribution as well as large model
complexity.

To make our approach scalable to large graphs, we adopt two techniques: (i) we introduce a factorized
form of H|Y which is independent and homogeneous over graph; (ii) we propose to use GNN layers in
the invertible flow ResNet, which makes the neural network computation scalable. The scalability of our
iGNN approach is demonstrated on a larger graph with N = 500 nodes, cf. Fig. 5.

(i) Factorized H|Y over graph. Recall that H is of same dimension as X and also defined on V ,

H = [H1, · · · , HN ]T ∈ RN×d
′
, Hv ∈ Rd

′
.

Suppose we have a K-component Gaussian mixture distribution of means µk in Rd′ , we specify the graph
H|Y as

p(H|Y ) =

N∏
v=1

p(Hv|Yv), Hv|Yv ∼ N (µYv , σ
2Id′), (6)

that is, the joint distribution of H|Y consists of independent and identical K-component Gaussian mixture
distribution of Hv|Yv in Rd′ across the graph. As a result, on the graph sample-label pair {X,Y }, the
log p(H|Y ) term in the generative loss (4) can be computed as

log pH|Y (Fθ(X)) =

N∑
v=1

log pH1|Y1
((Fθ(X))v), (7)

where pH1|Y1
is specified by a Gaussian mixture model in Rd′ .

The factorized form of H|Y reduces the complexity of modeling H|Y in Rd′N to that of modeling a
K-class mixture model in Rd′ . At the same time, one would prefer that such a reduction does not prevent
the mixture distribution H|Y from presenting any sufficiently separated conditional distribution X|Y via
an invertible mapping in Rd′N . Under Assumption 1, the desired shared flow in Rd′N exists as long as the
O(1)-separation between some ε-supports of the KN components of p(H|Y ) can be achieved. Due to that
p(H|Y ) is N (µY , σ

2Id′N ) (µY is concatenated from µYv , v ∈ [N ]), and the length of H − µY is of order
σ
√
d′N , this raises the question of how the separation of the Gaussian means of H1|Y1 in Rd′ needs to

scale with large N . The following proposition shows that, theoretically, compared to Lemma 3.1 only an
additional O(σ

√
logN) separation is needed.

Proposition 3.2 (Separation of KN components). Let ρN = σ
√

2 log(2NK/ε) for 0 < ε < 1/2. If the K

mean vectors {µk}Kk=1 of the Gaussian mixture distribution of H1|Y1 are 3ρN -separated in Rd′ , then the

KN components of the Gaussian mixture distribution of H|Y in Rd′N satisfy that each component qY has
an ε-support ΩY and for any Y 6= Y ′, d(ΩY ,ΩY ′) ≥ ρN .
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The proposition suggests that the needed separation of Gaussian mixture means in Rd′ increases
mildly when the graph size N increases. In experiments, we find that using the same algorithmic setting
to preserve mean vectors’ separation in Rd′ suffices for graph data experiments where N is up to a few
hundreds.

(ii) Scalable computation on the graph. As will be introduced in Section 3.4, the residual block in
the proposed iGNN model can take a general form (the invertibility will be enforced by a Wasserstein
transport regularization). This allows using any GNN layer type in the residual block, which can be made
computationally scalable to large graphs [44].

Consider input graph data X in RN×C , where N is the number of nodes, and C is the dimension of
node features. We denote by Y the output graph data in RN×C′ after the graph convolution, and we adopt
spectral and spatial graph convolution layers in this work. Because X and Y can be hidden-layer features
inside the residual block, the dimension C and C ′ may be larger than the data node feature dimension d′.
Let L̃ ∈ RN×N be the graph Laplacian matrix, possibly normalized so that the spectrum lines on a unit
interval. Omitting the bias term and the non-linear node-wise activation function, the GNN layers used
in this work are
• ChebNet [13], where Y =

∑K
k=1 Tk(L̃)XΘk, parametrized by Θk ∈ RC×C′ , and Tk is the Chebyshev

polynomial of degree k.
• L3Net [11], where Y =

∑K
k=1BkXAk, parametrized by Bk which are local filters on graph and Ak ∈

RC×C′ .
The benefit of using GNN layer lies in the reduced model and computational complexities: the number

of trainable parameters in a ChebNet layer is O(KCC ′), and that in an L3Net layer is O(K(CC ′ +Nv))
where v denotes average local patch size [11]. In contrast, a fully-connected layer mapping from X to
Y would have O(N2CC ′) many parameters, which is not scalable to large graphs. We include the fully-
connected layer baseline in experiments when the graph size is small and compare performance with the
GNN layers.

3.4 Invertible flow network with Wasserstein-2 regularization

We use an invertible flow network to construct the encoding which maps one-to-one between X and H.
The base model follows the framework of [5]. The ResNet has L residual blocks, and the l-th block residual
mapping f(x, θl) is parametrized by θl. The overall ResNet mapping from X to H can be expressed as
H = Fθ(X) = xL where

xl = xl−1 + f(xl−1, θl), l = 1, · · · , L, x0 = X. (8)

In each of the L residual blocks, we use a shallow network with one or two hidden layers for f(x, θl). The
parameter θl consists of the weights and bias vectors of the shallow network. The ResNet architecture is
illustrated on the right of Fig. 2. The architecture of the residual block is free-form: one can use any layer
type inside the residual blocks and even different layer types in different blocks. In this work, we use a
fully-connected layer for Euclidean data and GNN layers for graph data. To compute the log determinant
in (4), we express the quantity as a power series and adopt the technique in [10] to obtain an unbiased
estimator. Further details can be found in Appendix B.1.

The invertibility of the ResNet is to be fulfilled by using sufficiently large L together with the Wasserstein-
2 regularization in (3), which we introduce here. The regularization W takes the form as

W =
1

ntr

ntr∑
i=1

`w(Xi), `w(Xi) =

L∑
l=1

‖xl − xl−1‖22,

where x0 = Xi and xl is defined as in (8). Replacing the empirical measure of ntr training samples by the

data density p gives the population counterpart of W as W := Ex0∼p
∑L
l=1 ‖xl − xl−1‖22. We denote by Tl
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the transport map from xl−1 to xl, that is,

Tl(x) := x+ f(x, θl), Tl : Rd → Rd, (9)

and then xl = Tl(xl−1). Define the composite of Tl’s as Fl, which is the transport mapping from x0 to xl,
namely, Fl := Tl ◦ · · · ◦ T1, xl = Fl(x0), for l = 1, · · · , L, and F0 = Id. We also define ρl = (Fl)#p which is
the marginal distribution of xl, and ρ0 = p. Then W can be equivalently written as

W =

L∑
l=1

Ex∼ρl−1
‖Tl(x)− x‖22. (10)

We will show in Section 4.1 that regularizing by W is equivalent to adding

W ′ :=

L∑
l=1

W2(ρl−1, ρl)
2

to the minimizing objective. We thus call the proposed regularization the “Wasserstein-2 regularization,”
because W ′ sums over the step-wise (squared) Wasserstein-2 distance over the L steps.

In the limit of large L, the proposed regularization by W serves to penalize the transport cost. When
K = 1, the optimal flow induced by the minimizer gives the Wasserstein geodesic from p to the normal
density, cf. Section 4.2. In our problem of conditional generation, when there areK > 1 classes, the limiting
continuous time flow differs from the Wasserstein geodesic from ρ(·, 0) = p(X|Y ) to ρ(·, 1) = p(H|Y ) for
fixed Y , but is expected to give a shared flow in Rd from X to H, cf. Assumption 1 and Fig. 3. Under
regularity conditions, one would expect the transport-cost regularized continuous-time flow to also be
regular (the K = 1 case is proved in Proposition 4.2). As a result, the velocity field v(x, t) would have a
finite x-Lipschitz constant B on any bounded domain. Then, the transport from x(tl−1) to x(tl) induced
by v(x, t) on the interval [tl−1, tl] is invertible when B∆t < 1, which holds when L > B. In this case, also
assuming that the solved discrete-time transport map Tl is close to that induced by v(x, t), one can expect
the invertibility of Tl to hold for each l, and then the composed transport FL = Fθ is also invertible.

We numerically verify the invertibility of the trained Tl in ResNet in experiments, cf. Table 1 and
Appendix B. Our analysis in Section 4.1 also suggests that the regularization factor γ should scale with
L = 1/∆t, the number of residual blocks. In experiments, we find that the invertibility of the ResNet can
be guaranteed over a range of choices of γ, and the quality of generation is insensitive to the choice, see
more in Appendix B.3. The number of blocks L to use depends on the complication of the data distribution,
and in all our experiments, we find a few tens to be enough, including the large graph experiment.

Remark 2 (Comparison to spectral normalization). iResNet [5] proposed spectral normalization to ensure
the invertibility of each residual block. Given a weight matrix W ∈ RC×C′ in a fully-connected layer,
the method first computes an estimator σ̃ of the spectral norm ‖W‖2 by power iteration [16], and then
modify the weight matrix W to be cW/σ̃ if c/σ̃ < 1, where c < 1 is a pre-set scaling parameter. It was
proposed to apply the procedure to all weight matrices in all ResNet blocks in every stochastic gradient
descent (SGD) step with mini-batches. When the number of blocks L is large, this involves expensive
computation, especially if the hidden layers are wide, i.e., C and C ′ being large. In addition, while
spectral normalization of fully-connected layers together with contractive nonlinearities (e.g., ReLU, ELU,
Tanh) ensures invertibility, it may not be directly applicable to other layer types, e.g., GNN layers. In
contrast, the proposed Wasserstein-2 regularization are obtained from the forward passes of the residual
blocks on mini-batches of training samples without additional computation. It is also generally compatible
with free-form neural network layer types.
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4 Theory: Invertible flow

In this section, we first interpret the proposed Wasserstein-2 regularization in view of transport cost in
Section 4.1. In Section 4.2, utilizing theories of diffusion process and the dynamic formulation of OT, we
theoretically study the existence of invertible flow in the simplified case where K = 1. All proofs are in
Appendix A.

Throughout the section, we consider flow mapping induced by a velocity field v(x, t), that is, the
continuous-time flow is represented by an initial value problem (IVP) of ODE

ẋ(t) = v(x(t), t), x(0) ∼ p. (11)

The transport in Rd is the solution mapping from x(0) = x to x(t) at some time t > 0.

4.1 Interpretation of Wasserstein-2 regularization

The proposed regularization by W in Section 3.4 can be interpreted using the dynamic formula of
the Wasserstein-2 transport, where we recall the notations in Section 2.2. Suppose the time interval
[0, 1] is divided into L time steps, ∆t = tl+1 − tl = 1/L. With the optimal velocity field v(x, t) and
the corresponding ρ(x, t) that minimize the transport cost in (2), on every time subinterval [tl−1, tl],

Ex(tl−1)∼ρ(·,tl−1)

∫ tl
tl−1
‖v(x(t), t)‖2dt = W2(ρ(·, tl−1), ρ(·, tl))2/∆t. By the definition of the transport cost

(1), we have

T =

L∑
l=1

W2(ρ(·, tl−1), ρ(·, tl))2/∆t. (12)

Note that the right hand side (r.h.s.) only depends on ρ(·, t) at the time stamps tl. We define ρl := ρ(·, tl),
and denote by Tl the transport map from x(tl−1) to x(tl) induced by the ODE of x(t) on the time interval

[tl−1, tl], i.e., Tl(x) = x+
∫ tl
tl−1

v(x(s), s)ds starting from x(tl−1) = x. About the notation, ρl and Tl here

are determined by the continuous-time flow, and the notations coincide with those in (9) and (10) which
are determined by the finite-step ResNet. We use the same notations here since Tl will be the variables
to minimize the training objective, and thus ready to be parametrized by a residual block f(·, θl).

Specifically, when the other part in the loss, denoted as L, only depends on the terminal time density
ρ(·, 1) = ρ(·, tL), one can use the r.h.s. of (12) as the regularization term added to L, making the overall
objective as

L+ T = L[ρL] +
1

∆t

L∑
l=1

W2(ρl−1, ρl)
2, (13)

where ρl = (Tl)#ρl−1, ρ0 = p. Note that for a given p, the densities ρ1, · · · , ρL are determined by the L
transport maps Tl’s, this means that T1, · · · , TL can be used as the variables to minimize (13).

The following proposition shows that this minimization is equivalent to using the proposed Wasserstein-
2 regularization in Section 3.4 (specifically, using 1/∆t times the r.h.s. of (10)) in solving for Tl’s, and
there is no need to solve for the OT distance W2(ρl−1, ρl)

2 with additional computation.

Proposition 4.1 (Equivalent form of W ). Minimizing (13) over T1, · · · , TL is equivalent to

min
T1,··· ,Tl

L[ρL] +
1

∆t

L∑
l=1

Ex∼ρl−1
‖Tl(x)− x‖2. (14)

Remark 3. The regularization (10) can also be viewed as a first-order approximation of the transport cost
(1) using the Forward Euler scheme, that is, by (replacing the integral with finite summation at tl and) the
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approximation that ‖v(x(tl), tl)‖ ≈ ‖x(tl+1)− x(tl)‖/∆t. Note that our derivation is based on (13), which
coincides with the continuous-time transport cost in the limit of large L, but is well-defined for finite L.
The objective (13) only involves the discrete-time transported densities ρl’s, which are determined by the
L transport maps Tl’s, and does not require modeling the continuous-time trajectory x(t) for t ∈ [tl−1, tl]
with numerical accuracy. In principle, this allows to use a smaller number of residual blocks and model
size to achieve an approximation of Tl’s only (and guarantees transport invertibility) than to approximate
and solve for v(x, t) and x(t) for all t.

4.2 Existence and invertibility of flow

The transport mapping by the IVP (11) is invertible as long as (11) is well-posed. For the K-class case,
Assumption 1 assumes the existence of the smooth velocity field v(x, t) as well as the shared flow mapping.
Here we consider the special case of K = 1 (the unconditional generation problem), that is, the source
density p is the data distribution in Rd and the target density q is standard normal N (0, Id). Though the
K-class conditional generation problem is of the main interest of the paper and has called for additional
requirement of the share flow, our analysis of the K = 1 case provides theoretical insights, especially for
the expressiveness of GNN layers in the flow model for graph data in Section 5.

The normalizing flow induced by v(x, t) from p to normal q is typically not unique. We introduce two
constructions here that are related to the proposed Wasserstein-2 regularization of the flow model.

(i) Flow by Benamou-Brenier formula. Consider (11) on t ∈ [0, 1], the flow F maps from x = x(0) to
x(1). Let ρ(·, t) be the density of x(t), ρ(·, 0) = p and ρ(·, 1) = F#p. We consider the flow induced by the
optimal v(x, t) in the Benamou-Brenier formula (2), where the regularity of v and ρ follows from classical
OT theory:

Proposition 4.2 ([9, 42]). Suppose p is smooth on Rd with finite moments, then the optimal velocity
field v(x, t) that minimizes (2) is smooth, the induced IVP (11) is well-posted on Rd × [0, 1] and the flow
mapping is smooth and invertible.

We now show that our optimization objective (3) is equivalent to the action minimization in the
Benamou-Brenier formula when L is large so that the discrete-time transports approximate the continuous-
time limit. When K = 1, the generalization loss (in population form) in (3) reduces to

Lg = −Ex∼p log((F−1)#q(x)).

By the relation [34]
KL(F#p||q) = KL(p||(F−1)#q), (15)

and that KL(p||(F−1)#q) = Lg +
∫
p log p, we have that Lg +

∫
p log p = KL(F#p||q), where

∫
p log p is

a constant independent of the model. The analysis in Section 3.4 gives that W (in population form) is
equivalent to 1

LT with large L. Thus our minimizing objective Lg + γW is equivalent to

T + γ̃KL(ρ(·, 1)||q) (16)

with some positive scalar γ̃. Compared to the Benamou-Brenier formula (2), the objective (16) relaxes
the terminal condition that ρ(·, 1) = q to be the KL divergence, which does not change the solution of the
optimal v.

(ii) Flow by Fokker-Planck equation. Because the transport cost T equals squared Wasserstein-2
distance between ρ(·, 0) = p and ρ(·, 1) at optimal v, the objective (16) is closely related to the problem of
minq̃ KL(q̃||q) + 1

γ̃W2(p, q̃)2. When γ̃ is small, the problem is the first step of the Jordan-Kinderleherer-

Otto (JKO) scheme [22] to solve the Fokker-Planck equation of a stochastic diffusion process toward
the equilibrium q. Because q is standard normal, the stochastic process is an Ornstein-Uhlenbeck (OU)
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process. Without going to further connections to the JKO scheme, here we use the Fokker-Planck equation
to provide another theoretical construction of the invertible normalizing flow. For the OU process in Rd,
the Fokker-Planck equation can be written as

∂tρ = ∇ · (ρ∇V +∇ρ), V (x) = |x|2/2, ρ(x, 0) = p(x), (17)

where ρ(x, t) represents the probability density of the OU process at time t. The Liouville equation of
(11) is ∂tρ = −∇ · (ρv), where ρ(x, t) represents the density of x(t). Comparing to (17), we see that the
density evolution can be made the same if the velocity field v(x, t) is set to satisfy

− v(x, t) = ∇V (x) +∇ log ρ(x, t) = x+∇ log ρ(x, t). (18)

The smoothness of v follows from that of ρ(x, t), which has an explicit expression as the solution of (17).

Proposition 4.3. Let ρ(x, t) be the solution to (17) from ρ(x, 0) = p, then the IVP (11) induced by
velocity field v(x, t) as in (18) is well-posted on Rd× (0, T ) for any T > 0 and the flow mapping is smooth
and invertible.

While theoretically the density ρ(x, t) in (17) converges to the normal equilibrium q in infinite time, the
convergence is exponentially fast [8]. Thus the transported density F#p = ρ(·, T ) for a finite T ∼ log(1/ε)
can be ε-close to q, which then guarantees the closeness of (F−1)#q to p by (15).

5 Theory: Expressing flow of graph data

We analyze the expressiveness of graph convolution layers to approximate the theoretical flow maps iden-
tified in Section 4. All proofs are in Appendix A.

5.1 Theoretical flows of graph Gaussian field data

Taking the continuous-time formulation, the goal is to represent the velocity field v(x, t) by a GNN
layer where x is graph data. Assuming that the discrete-time flow can approximate the continuous-time
counterpart when the number of residual blocks is large, the successful approximation of v(x, t) by GNN
layers indicates that the flow can be constructed by the invertible GNN flow network.

For simplicity, we consider x(0) ∼ N (0,Σ), which is a Gaussian field on the graph having N nodes
(The node feature dimension d′ = 1, and data dimension d = N). The N -by-N covariance matrix Σ is
positive semi-definite, and we further assume it is invertible. Suppose PSD matrix A = V DV T is the
eigen-decomposition, where V is an orthogonal matrix, define A1/2 = V D1/2V T . In this special case of
Gaussian data, we have explicit expressions of the velocity field of the flow induced by Benamou-Brenier
formula and by Fokker-Planck equation, as characterized by the following two lemmas.

Lemma 5.1 (v(x, t) of Fokker-Planck flow). Suppose x(t) solves (11) for t ∈ [0,∞) where the velocity
field v(x, t) is as in (18), and x(0) ∼ N (0,Σ), then, define s := 1− e−2t,

v(x, t) = −(I − (sI + (1− s)Σ)−1)x =: TFK
t x. (19)

In particular, at t = 0, TFK
0 + I = Σ−1. As t→∞, TFK

t → 0 exponentially fast.

Lemma 5.2 (v(x, t) of Benamou-Brenier flow). Suppose x(t) solves (11) for t ∈ [0, 1] where the velocity
field v(x, t) is the optimal v in (2), and x(0) ∼ N (0,Σ), then

v(x, t) = (tI + (1− t)Σ1/2)−1(I − Σ1/2)x =: TBB
t x. (20)
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In particular, TBB
0 = Σ−1/2 − I, and TBB

1 = I − Σ1/2.
The velocity field v(x, t) in both cases is a linear mapping of x depending on t, and thus it can always

be exactly expressed by a fully-connected layer. For GNN layers, the problem is to represent the matrix
Tt in both cases by a graph convolution. Because the desired operator itself is linear, we only consider
the graph convolution in space (there is no channel mixing parameter because the node feature dimension
d′ = 1 here), omitting the bias vector and the non-linear activation.

5.2 Spectrum of Σ and an approximation lemma

The approximation error will depend on the condition number of Σ, which reveals the fundamental difficulty
of approximation when Σ is near singular (the operators TFK

t and TBB
t involves Σ−1 at Σ−1/2 at t = 0

respectively). Define S := Σ−1 as the precision matrix of the distribution of x(0). Denote the condition
number of Σ as κ := Cond(Σ) <∞. κ = dmax/dmin ≥ 1, where dmax and dmin are the largest and smallest
eigenvalues of Σ. Suppose the data is properly normalized and without loss of generality, we divide Σ by
the constant

√
dmaxdmin, which makes the smallest and largest eigenvalue equal 1/

√
κ and

√
κ respectively.

Denote the spectrum of a real symmetric matrix A (i.e., the set of n eigenvalues) as spec(A). Because the
eigenvalues of S are the reciprocal of those of Σ, we have made

spec(Σ), spec(S) ⊂ [1/
√
κ,
√
κ]. (21)

Meanwhile, we also have

spec(Σ1/2), spec(S1/2) ⊂ [1/
√
κ′,
√
κ′], κ′ :=

√
κ. (22)

We introduce a function approximation lemma which will be used in the analysis of both TFK
t and

TBB
t . Define

fs(x) := (s+ (1− s)x)
−1
,

gs(x) :=
(
s+ (1− s)x−1

)−1
,

0 ≤ s ≤ 1. (23)

Lemma 5.3. For any a ≥ 1, let b = (1/a+ a)/2, which satisfies 1 ≤ b ≤ a.

(i) Short time. For all s ∈ [0, 1/2], and n ≥ 1, there is a polynomial Q
(n+1)
s (x) of degree at most

(n+ 1), where coefficients depending on s, s.t. ∀s ∈ [0, 1/2],

sup
x∈[1/a,a]

|gs(x)−Q(n+1)
s (x)| ≤ ab

(
b

b+ 1

)n
. (24)

(ii) Long time. For all s ∈ [1/2, 1] and n ≥ 1, there is a polynomial P
(n)
s (x) of degree n, where

coefficients depending on s, s.t. ∀s ∈ [1/2, 1],

sup
x∈[1/a,a]

|fs(x)− P (n)
s (x)| ≤ b

(
b

b+ 1

)n
. (25)

In below, we first introduce the approximation of TFK
t by spectral and spatial graph convolutions. The

approximation of TBB
t uses similar techniques and will be included afterward.

5.3 Approximating TFK
t by spectral graph convolution

By Lemma 5.1, with s = 1− e−2t ∈ [0, 1), we have TFK
t + I = (sI + (1− s)Σ)−1 =: T ′t , and it is equivalent

to approximate T ′t by a graph convolution. By definition,

T ′t = fs(Σ) = gs(S). (26)

Denote by L̃ the (possibly normalized) graph Laplacian matrix, which is a real symmetric PSD matrix.
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Assumption 2 (δ-approximation by spectral convolution). Assuming (21), there exist polynomial p and
q of degree at most n0, s.t. Σ̃ = p(L̃) and S̃ = q(L̃) satisfy that

(C1) spec(Σ̃), spec(S̃) ⊂ [1/
√
κ,
√
κ].

(C2) ‖Σ̃− Σ‖op, ‖S̃ − S‖op ≤ δ
√
κ.

The assumption means that both Σ and S = Σ−1 can be approximated by some low degree polynomial
of L̃ up to relative error δ. This can be the case, for example, when Σ shares the eigenvectors with L̃,
and the polynomial p and q can be constructed to fit the eigenvalues. The condition (C1) may be relaxed
by enlarging the interval [1/

√
κ,
√
κ] to be [1/a, a] where a is a multiple of

√
κ, and then construct the

polynomial approximation of gs and fs on [1/a, a] as in Lemma 5.3, which results in an O(1) constant
factor in the bound. In this case, (C1) may also be induced by (C2) with O(1) constant δ. We keep the
current form of (C1)(C2) for simplicity.

The following theorem constructs the throughout-time approximation of TFK
t by using the composed

polynomials Q
(n+1)
s ◦ q and P

(n)
s ◦ p on short and long times respectively.

Theorem 5.4 (Spectral-convolution approximation). Under Assumption 2, n0 and δ as therein, and
t0 = log

√
2.

(i) For all t ∈ [0, t0] and n ≥ 1, there is a polynomial qt(x) of degree at most (n0 + n + 1), where
coefficients depending on t, s.t.

‖T ′t − qt(L̃)‖op ≤ 2δ
√
κ+ κ exp{− n√

κ+ 1
}. (27)

(ii) For all t ≥ t0 and n ≥ 1, there is a polynomial pt(x) of degree at most (n0 + n), where coefficients
depending on t, s.t.

‖T ′t − pt(L̃)‖op ≤ 2δ
√
κ+
√
κ exp{− n√

κ+ 1
}. (28)

The theorem suggests that when the covariance matrix Σ is is well-conditioned, then small approxima-
tion error can be achieved using a low-degree n.

5.4 Approximating TFK
t by spatial graph convolution

We consider approximating operator T ′t by spatially local graph filters, such as L3Net layer [11] as intro-
duced in Section 3.3. We start by introducing the notion of locality on graph.

Definition 5.5 (v-locality). A matrix A is v-local on the graph for integer v ≥ 1 if Aij = 0 when j /∈ N (v)
i ,

where N (v)
i denotes the set of v-th neighbors of node i (assuming i is in the first neighborhood of itself).

We say that a diagonal matrix is 0-local as a convention.

The neighborhood N (v)
i denotes all nodes accessible from node i within v steps along adjacent nodes.

By definition, if a matrix B is v-local, then Bk is (kv)-local.

Assumption 3 (δ-approximation by local filter). Assuming (21), there exist v-local matrices Σ̃ and S̃
which satisfy conditions (C1)(C2) of Assumption 2 with some δ.

The spatial graph convolution operator can be written as
∑R
r=1 crBr, where Br are local filters on the

graph, and cr are coefficients. The following theorem proves the approximation of T ′t , achieving the same
bound as in Theorem 5.4. The construction is by using powers of the local filters Σ̃ and S̃ as Br.

Theorem 5.6 (Spatial-convolution approximation). Under Assumption 3, v and δ as therein, and t0 =
log
√

2.
(i) For all t ∈ [0, t0] and n ≥ 1, there is a spatial graph convolution filter of rank at most (n+ 2) with

basis filter Bk having (kv)-locality and coefficients ck(t), k = 0, · · · , n + 1, s.t. ‖T ′t −
∑n+1
k=0 ck(t)Bk‖op

satisfies the same bound as in (27).
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(ii) For all t ≥ t0 and n ≥ 1, there is a spatial graph convolution filter of rank at most (n + 1) with
basis filter Bk having (kv)-locality and coefficients ck(t), k = 0, · · · , n, s.t. ‖T ′t −

∑n
k=0 ck(t)Bk‖op satisfies

the same bound as in (28).

Note that the construction has time-independent Br, which means that in the L3Net GNN layers, we
can potentially share the basis filter Br across residual blocks throughout the L blocks, which will further
reduce model complexity.

5.5 Approximating TBB
t by graph convolutions

We take s = t the time on [0, 1]. By Lemma 5.2, TBB
t has the following short and long time representation,

TBB
t +

1

1− tI =
1

1− tgt(S
1/2), t ∈ [0, 1/2],

TBB
t − 1

t
I = −1

t
f̄t(Σ

1/2), t ∈ [1/2, 1],

where f̄s(x) := xfs(x), and fs, gs are defined same as before (23). Let Σ̃1/2 and S̃1/2 are the approximators
by some low-degree polynomials of L̃ in spectral convolution, and by v-local graph filters in spatial con-
volution, respectively. Following (22), we replace κ to be κ′ in the analysis, and the conditions (C1)(C2)
in Assumptions 2-3 become

(C1’) spec(Σ̃1/2), spec(S̃1/2) ⊂ [1/
√
κ′,
√
κ′].

(C2’) ‖Σ̃1/2 − Σ1/2‖op, ‖S̃1/2 − S1/2‖op ≤ δ
√
κ′.

Noting that in the short and long time expression of TBB
t , the constant factor 1/(1 − t) and 1/t are

bounded by 2 respectively, thus we aim to approximate gt(S
1/2) and f̄t(Σ

1/2). In applying Lemma 5.3(ii),

the bound becomes |f̄s(x)− xP (n)
s (x)| ≤ ab(b/(b+ 1))n, which raises the polynomial degree to be (n+ 1),

and has another factor of a =
√
κ′ in the bound. The analysis proceeds using the same technique, and the

details are omitted. The final approximation bounds in both the short-time (t ∈ [0, 1/2]) and long-time
(t ∈ [1/2, 1]) cases are

4δ
√
κ′ + 2κ′ exp{− n√

κ′ + 1
} ∼ δκ1/4 + κ1/2 exp{− n

κ1/4 + 1
},

which improves the dependence on condition number from κ1/2 to κ1/4.

5.6 Comparison of spectral and spatial graph convolutions

The analysis above shows that, for Gaussian field data X on graph, the ability of a GNN flow network
to learn the normalizing flow is determined by the ability of the graph convolution filters to approximate
the covariance matrix and precision matrix (or their square roots) of X. In terms of the expressiveness
of spectral and spatial filters, first note that when the spectral graph convolution filters are local (e.g.,
ChebNet filters of low polynomial degree), they become a special case of the spatial filters. In this case,
spatial filters are always more expressive. Meanwhile, there can be local spatial filters that cannot be
expressed by spectral filters [11]. Here we provide an example of covariance matrix Σ on a three-node
graph that cannot be represented by spectral graph filter due to constructed symmetry.

Example 1. Consider a graph with three nodes {1, 2, 3} and two edges {(1, 2), (2, 3)} between nodes. Self-
loops at each node are also inserted. Let the covariance matrix Σ and permutation matrix π take the
form

Σ :=

1 ρ 0
ρ 0 ρ1

0 ρ1 1

 , π =

0 0 1
0 1 0
1 0 0

 .
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One can see that πΣπT 6= Σ if ρ 6= ρ1. On the other hand, πAπT = A at this chosen permutation π,
so that any spectral graph filter f(A) as a matrix function of A satisfies that πf(A)πT = f(A). As a
result, f(A) for any f will make an O(1) error in approximating Σ. Because (possibly normalized) graph
Laplacian is either a polynomial of A or preserves the same symmetry pattern as A, the issue happens
with any spectral convolutional filter.

This example will be empirically examined in Section 6.4 where we train iGNN models on simulated
graph data, see Fig. A.5. We find that for this example, using ChebNet layer fails to learn the generation
flow, and switching to the L3Net layer resolves the issue. In other situations where spectral graph filters
have sufficient expressiveness for graph data, the spectral GNN has the advantage of a lighter model size.

6 Experiment

We first examine the proposed iGNN model on simulated data, including large-graph data, in Section
6.2. We then apply the iGNN model to real graph data (solar ramping event data and traffic flow
anomaly detection) in Section 6.3. In Section 6.4, we study the effect of using different GNN layers in
the iGNN model. The experimental setup is introduced in Section 6.1, and further details and addi-
tional results are provided in Appendix B.2. The code is available at https://github.com/hamrel-cxu/
Invertible-Graph-Neural-Network-iGNN.

6.1 Experiment setup

Baselines and evaluation metrics. We consider three competing conditional generative models: (a) Con-
ditional generative adversarial network (cGAN) [21]. (b) Conditional invertible neural network with max-
imum mean discrepancy (cINN-MMD) [3]. (c) Conditional invertible neural network using normalizing
flow (cINN-Flow) [4]. To quantify performance, we measure the difference between two distributions
(X|Y versus X̂|Y at different Y ) by kernel maximum mean discrepancy (MMD) [18] and energy statistics
[38]. Details of the MMD and energy statistics metrics are contained in Appendix B.1. We also provide
qualitative comparison by visualizing the distribution of generated data.

Data and ResNet architecture. In the examples of graph data, the number of graph nodes ranges from 3
to 500. All graphs are undirected and unweighted, with inserted self-loops. Regarding the ResNet block
layer type: for non-graph data, we use 2 fully-connected hidden layers of 64 neurons in all ResNet blocks.
For graph data, in each residual block, we replace the first hidden layer to be a GNN layer (either ChebNet
or L3Net layer); the second layer is a shared fully-connected layer that applies channel mixing across all
the graph nodes (which can be viewed as a GNN layer with identity spatial convolution). The activation
function is chosen as ELU [12] or LipSwish [10], which have continuous derivatives. The network is trained
end-to-end with the Adam optimizer [24]. Hyperparameter selection and additional results with different
choices are described in Appendix B.3.

6.2 Simulated examples

We consider three simulated examples in this section. The first considers non-graph Euclidean data,
and the second and the third consider graph data on small and large graphs. Detailed data-generating
procedures can be found in Appendix B.1.

Table 1: Relative inversion error EX [‖F θ−1(F θ(X))−X‖2] on the solar ramping event test data. Gener-
ative quality and data details are described in Section 6.3.

γ 0 0.5 1 2 5 10
Inversion error 4.09e+04 2.74e-06 1.03e-06 3.14e-06 2.61e-06 1.60e-06
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(a) X|Y (left) and iGNN X̂|Y (right) (b) iGNN loss (c) cINN X̂|Y (d) cINN loss

Figure 4: Compare iGNN vs. cINN-MMD on simulated data in R2, the data observes a mixture model
having eight components but are attributed to four classes (indicated by color). The four classes of input
data remain separated, cf. Assumption 1.

1. Non-graph data in R2. The dataset contains a Gaussian mixture of eight components with four classes,
where each X|Y is further divided into two separated Gaussian distributions in R2. Fig. 4 compares the
generative results of the proposed iGNN model with cINN-MMD, where both methods can generate data
that are reasonably close to X|Y at each Y .

2. Data on a small graph. We consider the three-node graph introduced in Example 1. At each node v,
Yv ∈ {0, 1} and features Xv ∈ R2, thus the graph node label vector Y ∈ {0, 1}3. In this example, iGNN
yields comparable generative performance with cINN-MMD, where both models use L3net GNN layers.
See Fig. A.4 and more results in appendix B.2.

3. Data on a large graph. To demonstrate the scalability of our approach, we consider a 503-node
chordal cycle graph [29], which is an expander graph. We design binary node labels and let node features
X|Y ∼ N(µY ,ΣY ), where Xv ∈ R2 and the mean µY and covariance matrix ΣY contain graph information.
Because enumerating all values of Y is infeasible, we randomly choose 50 values of outcome Y , each of
which has 50% randomly selected node labels to be 1. To visualize the generative performance of iGNN,
we compare the covariance of true and generated data restricted to subgraphs. Specifically, we plot the
covariance matrix of model-generated data X̂|Y and true data X|Y on sub-graphs produced by 1 or 2-
hop neighborhoods of a graph node. Fig. 5 shows the resemblance between learned and true covariance
matrices on different neighborhoods on the graph.

6.3 Real-data examples

We apply the iGNN model to two graph prediction data in real applications, the solar ramping event data,
and the traffic flow anomaly detection data. The inverse prediction problem is formulated as a conditional
generation task.

1. Solar ramping events data. Consider the anomaly detection task on California solar data in 2017
and 2018, which were collected in ten downtown locations representing network nodes. Each node records
non-negative bi-hourly radiation recordings measured in Global Horizontal Irradiance (GHI). After pre-
processing, graph nodal features Xt ∈ R10×2 denote the average of raw radiation recordings every 12 hours
in the past 24 hours, and response vectors Yt ∈ {0, 1}10 contain the anomaly status of each city. Fig. 6
shows that the learned conditional distribution X̂|Y by iGNN model closely resembles that of the true
data X|Y , and outperforms the generation of cINN-MMD. The quantitative evaluation is given in Table
2, which shows that iGNN has comparable or better performance than the alternative approaches (smaller
test statistics indicate better generation). The table also shows that cINN-Flow performs significantly
worse than cINN-MMD and iGNN on this example, which is consistent with the visual comparison of X̂|Y
(not shown). Lastly, Fig. 7 shows the predictive capability of iGNN: given a test node feature matrix
X, we can compute P(Yi = 1|X) for node i using the trained linear classifier on FΘ(X). The predicted
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(a) Graph
(b) 1-hop neighborhood of node 100 (4 nodes) (c) 2-hop neighborhood of node 100 (10 nodes)

(d) 1-hop neighborhood of node 500 (4 nodes) (e) 2-hop neighborhood of node 500 (10 nodes)

Figure 5: Generating performance by iGNN of graph data X|Y on a 503-node chordal cycle graph, where
the node feature dimension d′ = 2, and the per-node class number K = 2. To evaluate the conditional
generation quality, we plot the covariance matrix of model-generated data X̂|Y (right plot in (b)-(e))
restricted to sub-graphs produced by 1 or 2-hop neighborhoods of a graph node in comparison with the
ground truth (left plot in (b)-(e)).

probabilities learned by the model are consistent with the true nodal labels, and provide more information
than the binary prediction output.

2. Traffic flow anomalies. We study the anomaly detection task on Los Angeles traffic flow data from
April to September 2019. The whole network has 15 sensors with hourly recordings. Graph nodal features
Xt ∈ R15×2 denote the raw hourly recording in the past two hours, and response vectors Yt ∈ {0, 1}15

contain the anomaly status of each traffic sensor. The graph topology is shown in Fig. 8a, along with the
raw input features in R2 (over all graph nodes). The generated data distribution by iGNN resembles the
ground truth, as shown in Fig. 8(b), and the performance is better than that of cINN-MMD in (c). The
quantitative evaluation metrics also reveal the better performance of iGNN over alternative baselines, cf.
Table 2.

Table 2: Two-sample testing statistics on test data. We use the formula (A.24) for MMD statistics and
(A.26) for energy statistics.

Solar data MMD Energy Traffic data MMD Energy

iGNN 0.062 0.341 iGNN 0.128 0.537
cINN-MMD 0.061 0.344 cINN-MMD 0.152 1.484
cINN-Flow 0.402 3.488 cINN-Flow 0.281 6.183

cGAN 0.572 3.422 cGAN 0.916 4.132
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(a) Raw data (b) X|Y (left) and iGNN X̂|Y (right) (c) cINN X̂|Y (d) iGNN loss

Figure 6: Comparison of iGNN versus cINN-MMD on solar ramping event data. The graph has 10 nodes
with binary node response and node features in R2. (a) shows the scatter plot of nodal features across all
nodes and all samples for training (upper panel) and testing data (lower panel), respectively. (b)-(c) show
the model generated X̂|Y in comparison to the ground truth X|Y , where three rows in the plot represent
three chosen representative Y (10-dimensional vector that contains nodal features over all nodes). The
scatter plots show the samples of two-dimensional nodal features, which are connected to each other by
light-blue lines and are colored by empirical variances of each node.

6.4 Comparison of GNN layers in iGNN models

We examine the empirical performance of different GNN layers in learning the normalizing flow of graph
data, for which the theoretical analyses appeared in Section 5.

Figure 7: Predicted probabilities of graph labels Y by iGNN model where Y takes different values on graph
nodes on test data. Given a node feature matrix X, we compute P(Yi = 1|X) on each node using the
linear classifier f(·; θcc) in H-Y sub-network applied to the flow-mapped graph node feature H = Fθ(X).
The true node label Yi is shown on top of each node in the plot.
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(a) Raw data (b) X|Y (left) and iGNN X̂|Y (right) (c) cINN X̂|Y (d) iGNN loss

Figure 8: Comparison of iGNN versus cINN-MMD on traffic anomaly detection data. Same plots ar-
rangement as in Fig. 6.

1. Simulated data on three-node graph. To validate our theory, we study two simulated datasets to show
the possible insufficiency of spectral GNN layers, as has been explained in Section 5.6. The graph data
are on a three-node graph: the first one is as in Example 1, where nodal feature dimension d′ = 1, and
K = 1; the second one has nodal feature dimension d′ = 2, and K = 2, see more details in Appendix B.1.
We compare the generative performance of iGNN by using ChebNet and L3Net layers for both examples.
The result on the d′ = 2 example is shown in Fig. 9, where iGNN with ChebNet layers fails to learn
the conditional distribution X|Y , cf. plot (b). Meanwhile, iGNN with L3Net layers yields satisfactory
performance by having sufficient model expressiveness for this example. The second experiment studies
Example 1 considered in Section 5.6. The results are shown in Fig. A.5, where, similarly, iGNN with
ChebNet layers fails to generate the graph data X and switching to L3Net layers resolves the insufficiency
of expressiveness.

2. Simulated large-graph data. We also compare the GNN layers on a larger graph using the same 503-
node chordal cycle graph as in Fig. 5, and simulate X ∼ N (0,Σ), where Σ−1 =

∑2
k=0 akTk(L̃), Tk is the

k-th Chebyshev polynomial, L̃ = I − D−1/2
A AD

−1/2
A , A being the adjacency matrix and DA the degree

matrix, and a0 = 0.6, a1 = 0, a2 = 0.5. Fig. A.6c (ChebNet) and A.7c (L3Net) in appendix B.2 show
that the iGNN model learns to generate samples close in distribution to the ground truth, as reflected in
the resemblance of the correlation matrices. For this dataset, both spectral and spatial GNN layers have
sufficient expressiveness to learn the data distribution.

7 Discussion

In this work, we developed the iGNN model, a conditional generative deep model based on invertible
normalizing flow ResNet for inverse graph prediction problems. The model encodes the conditional dis-
tribution X|Y into a parametric distribution H|Y by a one-to-one mapping from X to H, which allows
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(a) True data (b) ChebNet (c) ChebNet losses (d) L3Net (e) L3Net losses

Figure 9: Comparison of using spectral and spatial GNN layer in iGNN model for conditional generation.
Data in (a) are generated as two-dimensional graph node features lying on a three-node graph with binary
node labels; colors indicate the node, and the gray lines connect three nodal features associated with the
same data instance. The top row has Y = [1, 1, 0] and the bottom row has Y = [1, 1, 1]. We visualize
samples generated by iGNN using the spectral GNN layer (ChebNet) in (b) and spatial GNN layer (L3Net)
in (d), as well as the losses over training epochs in (c) and (e).

forward prediction and generation of input data X given an outcome Y (including the construction of
uncertainty sets for X|Y ). The scalability of the iGNN model to large graphs is achieved by taking a
factorized formula of H|Y with a provable component separation guarantee, and the computational scala-
bility is achieved via adopting GNN layers. In addition, the invertibility of the flow network is ensured by
a Wasserstein-2 regularization, which can be computed efficiently in the forward pass of the flow network
and is compatible with free-form neural network layer types in the residual blocks. Theoretically, we
analyzed the existence of invertible flows and examined the expressiveness of GNN layers on graph data
to express these normalizing flows. In experiments, we showed the improved performance of iGNN over
alternatives on real data and the scalability of the iGNN model on large graphs.

There are several future directions to extend the work. On the theoretical side, first, under the
framework of our problem, more analysis of the K > 1 case will be useful to go beyond the current
Assumption 1. Second, it would be interesting to develop a full approximation result on how the theoretical
continuous-time flow identified in Section 4 can be approximated by a deep residual network. Specifically,
one can construct a discrete-time flow on [0, T ] with L time stamps tl to approximate the continuous-
time one. T = 1 for the Benamou-Brenier flow, and T ∼ log(1/ε) for the Fokker-Planck flow (so as
to achieve ε-closeness to the normal density at time T ). The smoothness of the velocity field in both
cases, cf. Propositions 4.2 and 4.3, implies that at each time stamp tl, v(x, tl) may be approximated by
a shallow residual block with finite many trainable parameters based on universal approximation theory.
Compositing the L time steps constructs a neural network approximation of the flow with a provable
approximate generation of the data density p. The precise analysis is left to future work. At last, one may
be curious about the connection between the encoding scheme of iGNN model and the Gaussian channel.
If we view µk as the input of the channel and the output as given by µk + Z, for noise Z ∼ N (0, σ2Id),
then the separation of K components can be viewed as a requirement to ensure the error probability
of the linear decoder to be sufficiently small. A natural question arises in how many components can
be encoded in this way and subsequently decoded (classified) successfully, for instance, by considering a
compact encoding domain. To further develop the methodology, one interesting question is to consider
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the regression problem, where the outcome Y takes continuous (rather than categorical) values. Another
related question is the inverse of the graph classification problem, that is, given an output label of a whole
graph, generate the input graph data including changing graph topology and node/edge features. The
current work tackles the node classification setting, and some of our techniques may extend to the graph
classification setting.
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Conditional invertible neural networks for diverse image-to-image translation. In DAGM German
Conference on Pattern Recognition, pages 373–387. Springer, 2020.

[3] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with
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A Proofs

A.1 Proofs in Section 3

Proof of Lemma 3.1. For any k ∈ [K], and k′ 6= k, define vk,k′ := µk′ − µk, ‖vk,k′‖ ≥ 3ρ > 0. Define

Sk,k′ := {x ∈ Rd, (x− µk)T
vk,k′

‖vk,k′‖
< ρ}, (A.1)

and we claim that
qk(Sck,k′) ≤

ε

K
, k 6= k′. (A.2)

If true, then let
Ωk := ∩

k′ 6=k
Sk,k′ ,

we have that
qk(Ωck) = qk( ∪

k′ 6=k
Sck,k′) ≤

∑
k′ 6=k

ε

K
≤ ε,

thus Ωk is an ε-support of qk for all k. Meanwhile, for any k 6= k′, x ∈ Ωk and x′ ∈ Ωk′ , we know
that x ∈ Sk,k′ and x′ ∈ Sk′,k. By construction (A.1), we know that if we center the origin at µk
and rotate the coordinates in Rd such that vk,k′ is along e1 the first coordinate, then xT e1 < ρ, and
x′T e1 > ‖vk,k′‖ − ρ ≥ 2ρ. This gives that

‖x− x′‖ ≥ ‖(x− x′)T e1‖ ≥ ρ.

Thus d(Ωk,Ωk′) ≥ ρ.
It remains to show (A.2) to finish the proof of the lemma. By construction, this is equivalent to show

that for X ∼ N (0, Id),

Pr[XT e1 ≥ r] ≤
ε

K
, r :=

√
2 log(K/ε),

where we have that r ≥ √2 log 2 > 1 due to that ε < 1/2. Note that XT e1 ∼ N (0, 1), thus

Pr[XT e1 ≥ r] =

∫ ∞
r

1√
2π
e−x

2/2dx

≤ 1√
2π

∫ ∞
r

e−x
2/2xdx (by that x ≥ r > 1)

=
1√
2π
e−r

2/2

≤ e−r2/2 =
ε

K
,

where the last equality is by the definition of r.

Proof of Proposition 3.2. Let ε = ε/(2N) < 1/2, then ρN here equals ρ in Lemma 3.1, where the dimension
d in Lemma 3.1 is d′ here. Applying Lemma 3.1 to the K-component Gaussian mixture distribution H1|Y1

in Rd′ , there exist sets Ωk ⊂ Rd′ such that qk(Ωk) ≥ 1− ε, and

dRd′ (Ωk,Ωk′) ≥ ρN , ∀k 6= k′. (A.3)
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For each Y from the KN possible graph labels, define

ΩY :=

N∏
v=1

ΩYv (A.4)

which is an N -way rectangle in Rd′N . Due to the factorized form of p(H|Y ) as in (6), we know that

qY (ΩY ) =

N∏
v=1

qYv (ΩYv ) ≥ (1− ε)N .

By the elementary relation that 1− x ≥ e−2x for 0 < x < 1/2, we have that

(1− ε)N ≥ e−2εN ≥ 1− 2εN = 1− ε.

This shows that qY (ΩY ) ≥ 1− ε and thus ΩY is an ε-support of qY in Rd′N .
To prove the proposition, it remains to show that d(ΩY ,ΩY ′) ≥ ρN for any Y 6= Y ′. Let X ∈ ΩY and

X ′ ∈ ΩY ′ , by (A.4),

X = [X1, · · · , XN ]T , Xv ∈ ΩYv ⊂ Rd
′
,

X ′ = [X ′1, · · · , X ′N ]T , X ′v ∈ ΩY ′v ⊂ Rd
′
.

Because Y 6= Y ′, there exists a node u ∈ [N ] such that Yu 6= Y ′u. Then

‖X −X ′‖Rd′N ≥ ‖Xu −X ′u‖Rd′ ≥ dRd′ (ΩYu ,ΩY ′u).

Because Yu 6= Y ′u, together with (A.3), we have that ‖X −X ′‖Rd′N ≥ ρN . This proves that d(ΩY ,ΩY ′) ≥
ρN .

A.2 Proofs in Section 4

Proof of Proposition 4.1. By definition, for each l,

W2(ρl−1, ρl)
2 = inf

T̃ , s.t.,T̃#ρl−1=ρl

Ex∼ρl−1
‖T̃ (x)− x‖2.

The minimization of (13) can be written as

min
T1,··· ,Tl

L[ρL] +
1

∆t

L∑
l=1

inf
T̃l, s.t.,(T̃l)#ρl−1=ρl

Ex∼ρl−1
‖T̃l(x)− x‖2, (A.5)

and the minimization in (14) is with the extra constraint that T̃l = Tl. It suffices to show that the
minimization over Tl’s only (by requiring T̃l = Tl and eliminating the variables T̃l’s) achieves the same
minimum of minimizing over both Tl’s and T̃l’s in (A.5). Suppose (A.5) is minimized at Tl’s and T̃l’s, and
the minimum equals

L[ρL] +
1

∆t

L∑
l=1

Ex∼ρl−1
‖x− T̃l(x)‖2, (A.6)

where ρl = (Tl ◦ · · · ◦ T1)#p, and we also have (T̃l)#ρl−1 = ρl for l = 1, · · · , L. This guarantees that

ρl = (T̃l ◦ · · · ◦ T̃1)#p, l = 1, · · · , L,

that is, if we replace Tl with T̃l in (A.6) the value of the equation remains the same. This shows that the
minimum of (A.5) can be achieved by the objective of (14) at a set of L transport maps T̃l’s.
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Proof of Proposition 4.2. The Wasserstein-2 optimal transport T = ∇ϕ, and because both p and standard
normal q are smooth and have all finite moments in Rd, ϕ is also smooth [9]. The optimal v(x, t) has the
expression that

v(·, t) = (T − Id) ◦ T−1
t , (A.7)

where Tt = (1− t)Id + tT is the displacement interpolation for 0 ≤ t ≤ 1 [42]. Because both T and Tt are
smooth, v(x, t) is smooth on Rd × [0, 1]. For any bounded domain Ω ⊂ Rd, v(x, t) has finite x-Lipschitz
constant on Ω× [0, 1], which suffices for the well-posedness of the IVP [37].

Proof of Proposition 4.3. The solution ρ(x, t) of (17) has the explicit expression as

ρ(x, t) =

∫
Kt(x, y)ρ0(y)dy, Kt(x, y) :=

1

(2πσ2
t )d/2

e
− |x−e

−ty|2

2σ2t , σ2
t := 1− e−2t. (A.8)

By the smoothness of Kt(x, y), ρ(x, t) is smooth over Rd × (0,∞). By (18), for any t > 0, v(x, t) =
−x−∇ρ(x, t)/ρ(x, t), and thus v(x, t) is also smooth over Rd× (0,∞). Same as in the proof of Proposition
4.2, the global smoothness of v(x, t) suffices for the well-posedness of the IVP on Rd × (0, T ) for any
T > 0,

A.3 Proofs in Section 5

Proof of Lemma 5.1. By the expression of ρ(x, t) of the OU process (A.8), we know that

x(t)|x(0) ∼ N (e−tx(0), σ2
t I), σ2

t = 1− e−2t.

Because x(0) ∼ N (0,Σ), one can directly verify that the marginal distribution of x(t) is a gaussian with
mean 0 and variance Σt defined as

Σt := (1− e−2t)I + e−2tΣ. (A.9)

This gives that

ρ(x, t) ∝ e− 1
2x
TΣ−1

t x,

and as a result,
∇ log ρ(x, t) = −Σ−1

t x.

This proves (19) by definition (18).

Proof of Lemma 5.2. The Wasserstein-2 optimal transport between two Gaussians has closed form solution
[39]. From source density p = N (0,Σ) to target density q = N (0, I), the optimal transport map

T = Σ−1/2,

and then Tt = (1− t)I + tΣ−1/2. By (A.7),

v(x, t) = (T − Id) ◦ T−1
t x = −(I − Σ−1/2)((1− t)I + tΣ−1/2)−1x, (A.10)

which is equivalent to (20).

Proof of Lemma 5.3. To prove (i), note that

gs(x) =
x

(1− s) + sx

=
x

(1− s) + sb

(
1 +

s(x− b)
(1− s) + sb

)−1

=
x

(1− s) + sb

∞∑
k=0

(
− s(x− b)

(1− s) + sb

)k
. (A.11)
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Because b is the midpoint of the interval [1/a, a] where x lies on, we have that for all s ≤ 1/2,∣∣∣∣ s(x− b)
(1− s) + sb

∣∣∣∣ ≤ sb

(1− s) + sb
=

b

b+ (1− s)/s ≤
b

b+ 1
, (A.12)

where in the last inequality we have use that s ≤ 1/2. We now truncate to the expansion (A.11) up to
k = n, and define

Q(n+1)
s (x) :=

x

(1− s) + sb

n∑
k=0

(
− s(x− b)

(1− s) + sb

)k
,

the polynomial Q
(n+1)
s is a polynomial of degree (n+ 1) for s > 0 and reduces to x when s = 0. By (A.12)

and that the number (1− s) + sb ≥ 1 because b ≥ 1, we have that for all x ∈ [1/a, a],

|gs(x)−Q(n+1)
s (x)| ≤ |x|

(1− s) + sb

∑
k>n

∣∣∣∣ s(x− b)
(1− s) + sb

∣∣∣∣k
≤ a

∑
k>n

(
b

b+ 1

)k
= ab

(
b

b+ 1

)n
,

which holds uniformly for all s ∈ [0, 1/2].
To prove (ii), use the expansion of fs(x) as

fs(x) =
1

s+ (1− s)x

=
1

s+ (1− s)b
∞∑
k=0

(
− (1− s)(x− b)

s+ (1− s)b

)k
, (A.13)

and define P
(n)
s as the truncated summation up to k = n, which is a polynomial of degree n. Similarly,

we can bound the residual as

|fs(x)− P (n)
s (x)| ≤ 1

s+ (1− s)b
∑
k>n

∣∣∣∣ (1− s)(x− b)s+ (1− s)b

∣∣∣∣k
≤
∑
k>n

(
b

b+ 1

)k
= b

(
b

b+ 1

)n
, (A.14)

where we use that ∀x ∈ [1/a, a] and s ≥ 1/2,∣∣∣∣ (1− s)(x− b)s+ (1− s)b

∣∣∣∣ ≤ (1− s)b
s+ (1− s)b =

b

b+ s/(1− s) ≤
b

b+ 1
. (A.15)

The bound (A.14) holds uniformly for all x ∈ [1/a, s] and s ≥ 1/2.

Proof of Theorem 5.4. Under the assumption of the theorem, Lemma 5.3 applies with s = 1− e−2t.

Proof of (i): We set qt(x) = Q
(n+1)
s (q(x)), which is a polynomial of degree at most n0 +n+ 1 since the

degree of q is at most n0. Recall that S̃ = q(L̃) satisfies (C1)(C2), and by (26),

T ′t − qt(L̃) = gs(S)−Q(n+1)
s (S̃)

= (gs(S)− gs(S̃)) + (gs(S̃)−Q(n+1)
s (S̃)) =: 1○ + 2○.
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We bound ‖ 1○‖op and ‖ 2○‖op respectively.
By definition of gs as in (23), for any invertible real symmetric matrix A, denote α := s, β := 1− s,

gs(A) =
(
αI + βA−1

)−1

= A(βI + αA)−1 = (βI + αA)−1A.

By that 1○ = gs(S)− gs(S̃) = (βI + αS)−1S − S̃(βI + αS̃)−1, one can verify that

(βI + αS) 1○(βI + αS̃) = S(βI + αS̃)− (βI + αS)S̃ = β(S − S̃),

and thus

‖ 1○‖op = ‖(βI + αS)−1β(S − S̃)(βI + αS̃)−1‖op
≤ β‖S − S̃‖op‖(βI + αS)−1‖op‖(βI + αS̃)−1‖op.

By (C2), ‖S̃ − S‖op ≤ δ
√
κ; By (21), min spec(S) ≥ 1/

√
κ ≥ 0, and then

‖(βI + αS)−1‖op ≤
1

min{spec(βI + αS)} ≤
1

β
;

Meanwhile, min spec(S̃) ≥ 1/
√
κ ≥ 0 by (C1), and then similarly, ‖(βI + αS̃)−1‖op ≤ 1/β. Putting

together,

‖ 1○‖op ≤ βδ
√
κ(

1

β
)2 =

1

β
δ
√
κ ≤ 2δ

√
κ, (A.16)

where the last inequality is by that β = e−2t ≥ e−2t0 = 1/2.
To bound ‖ 2○‖op, we introduce the following lemma which can be verified directly by definition (in

below).

Lemma A.1. Let A be a real symmetric matrix and spec(A) ⊂ [a, b]. For real-valued functions f and g
on [a, b],

‖f(A)− g(A)‖op ≤ sup
x∈[a,b]

|f(x)− g(x)|.

By definition of 2○ and that spec(S̃) ⊂ [1/
√
κ,
√
κ] by (C1),

‖ 2○‖op = ‖gs(S̃)−Q(n+1)
s (S̃)‖op

≤ sup
x∈[1/

√
κ,
√
κ]

|gs(x)−Q(n+1)
s (x)| (by Lemma A.1 )

≤ √κb
(

b

b+ 1

)n
, (by Lemma 5.3(i)) (A.17)

where a =
√
κ and b = (1/a+a)/2. Because b ≥ 1, by the elementary inequality b

b+1 = 1− 1
b+1 ≤ e−1/(b+1),

we have (
b

b+ 1

)n
≤ e−n/(b+1) ≤ e−n/(

√
κ+1) (A.18)

by that b ≤ √κ. Back to (A.17), we have

‖ 2○‖op ≤
√
κbe−n/(

√
κ+1) ≤ κe−n/(

√
κ+1). (A.19)

Putting together (A.16) and (A.19) proves (27) by triangle inequality for all t ≤ t0.
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Proof of (ii): We set ps(x) = P
(n)
s (p(x)), which is a polynomial of degree at most n0 + n. Recall that

Σ̃ = p(L̃) satisfies (C1)(C2), and then

T ′t − pt(L̃) = fs(Σ)− P (n)
s (Σ̃)

= (fs(Σ)− fs(Σ̃)) + (fs(Σ̃)− P (n)
s (Σ̃)) =: 1○ + 2○.

To bound ‖ 1○‖op, by definition of ft as in (23), the constants α and β as before, we have

fs(A) = (αI + βA)
−1
,

and then

1○ = (αI + βΣ)
−1 −

(
αI + βΣ̃

)−1

= (αI + βΣ)
−1
β(Σ̃− Σ)

(
αI + βΣ̃

)−1

.

By that min spec(Σ),min spec(Σ̃) ≥ 1/
√
κ ≥ 0, and also with that α = 1 − e−2t ≥ 1 − e−2t0 = 1/2 for

t ≥ t0,

‖ (αI + βΣ)
−1 ‖op ≤

1

min{spec(αI + βΣ)} ≤
1

α
≤ 2,

and same with ‖
(
αI + βΣ̃

)−1

‖op. Together with ‖Σ̃− Σ‖op ≤ δ
√
κ By (C2), we have

‖ 1○‖op ≤ βδ
√
κ · 22 ≤ 2δ

√
κ, (A.20)

where we have used that β = e−2t ≤ e−2t0 = 1/2 when t ≥ t0.
To bound ‖ 2○‖op, by that spec(Σ̃) ⊂ [1/

√
κ,
√
κ] by (C1),

‖ 2○‖op = ‖fs(S̃)− P (n)
s (Σ̃)‖op

≤ sup
x∈[1/

√
κ,
√
κ]

|fs(x)− P (n)
s (x)| (by Lemma A.1 )

≤ b
(

b

b+ 1

)n
(by Lemma 5.3(ii))

≤ √κe−n/(
√
κ+1). (by (A.18) and that b ≤ a =

√
κ) (A.21)

Putting together (A.20) and (A.21) proves (28) for all t ≥ t0.

Proof of Lemma A.1. Suppose A is N -by-N . Let A = UΛUT be the eigen-decomposition, where U is
an orthogonal matrix consisting of columns Ui, i = 1, · · · , N , and λi are the diagonal entries of Λ (the
associated eigenvalues). Then

f(A)− g(A) =

N∑
i=1

(f(λi)− g(λi))UiU
T
i ,

and thus
‖f(A)− g(A)‖op = max

1≤i≤N
|f(λi)− g(λi)| ≤ sup

x∈[a,b]

|f(x)− g(x)|

due to that all λi lie inside [a, b].

Proof of Theorem 5.6. To prove (i), let

Bk = S̃k, k = 0, · · · , n+ 1,
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cINN-MMD:
X̃ ↔ [Z

eY], X̃  padded

Fθ : Real-NVP with s( ⋅ ), t( ⋅ )

cINN-Flow, Flow+:
X ↔ Z, Z |Y d= Z for all Y

Fθ : Real-NVP with s( ⋅ , c), t( ⋅ , c), c is a coding of Y

iGNN (ours):
X ↔ H →← Y, H |Y is Gaussian mixture

Fθ : free-form ResNet

cGAN:
X ← [Z

eY]
Fθ : general-form neural network

Figure A.1: Detailed comparison of conditional generative networks in cGAN (top), cINN (middle two),
and iGNN (bottom). The random code Z ∼ N (0, Id) has the same dimension as input data X ∈ Rd.
First, cGAN [21] uses an general-form generative NN, where the input concatenates Z and one-hot-

encoded layer Y . Second, cINN-MMD [3] constructs an invertible network between the padded input X̃
and the concatenated input of Z and eY , and uses Real-NVP layers to ensure network invertibility. Third,
cINN-Flow [4] and cINN-Flow+ [2] also use Real-NVP layers to construct an invertible network between
X and Z, where each layer contains encoded information of the label Y . Lastly, the proposed iGNN model
builds an invertible network between the intermediate feature H and input data X, where H|Y denotes a
Gaussian mixture in Rd, and constructs the invertible network using free-form residual blocks.

where S̃ is v-local and satisfies (C1)(C2). As a result, Bk is (kv)-local. We set the coefficients ck(t) such
that

n+1∑
k=0

ck(t)Bk =

n+1∑
k=0

ck(t)S̃k = Q(n+1)
s (S̃), s := 1− e−2t.

The proof of Theorem 5.4Theorem 5.4(i) that bounds ‖gs(S) − Q(n+1)
s (S̃)‖op by the r.h.s. of (27) only

uses the properties (C1)(C2) of S̃, and thus also applies there.
Statement (ii) can be proved similarly: let Bk = Σ̃k, k = 0, · · · , n, Bk is (kv)-local, and set the

coefficients ck(t) such that
n∑
k=0

ck(t)Bk =

n∑
k=0

ck(t)Σ̃k = P (n)
s (Σ̃).

Since Σ̃ satisfies (C1)(C2), the rest of proof is the same as in Theorem 5.4(ii) which bounds ‖fs(Σ) −
P

(n)
s (Σ̃)‖op by the r.h.s. of (28).

B Additional experimental details

B.1 Experimental set-up

B.1.1 Computation of log det

To compute the log determinant in (4), we adopt the following unbiased log determinant approximation
technique as proposed in [10]. Let Fθ(x) = x + fθ(x) denote the output from a generic ResNet block
with parameter θ. First, observe that for any input x, log |det JFθ (x)| = tr(log JFθ (x)) because the matrix
JFθ (x) is non-singular. We thus have tr(log JFθ (x)) = tr(log(I + Jfθ (x))). As a result, the trace of the
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(a) In-distribution sample X

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

X
F−1
Θ (FΘ(X))

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

X
FΘ(F

−1
Θ (X))

(b) Out-of-distribution sample X

Figure A.2: The invertibility of iGNN on non-graph data in R2. We visualize F−1
θ (Fθ(X)) (forward then

invert) and Fθ(F
−1
θ (X)) (invert then forward) on in-distribution data (i.e., X as a part of two-moon data)

and out-of-distribution data (i.e., X having random U [0, 1) entries). Note that the scatter plots of X and
Fθ(F

−1
θ (X)) completely overlap because of small invertibility errors.

matrix logarithm can be expressed as

tr(log(I + Jfθ (x))) = tr

( ∞∑
k=1

(−1)k+1

k
[Jfθ (x)]k

)
. (A.22)

Based on (A.22), which takes infinite time to compute, we can obtain an unbiased estimator in finite
time based on the “Russian roulette“ estimator approach [23, 10]. For a ResNet as a concatenation of L
ResNet blocks, the approximation is applied to each block and summed over all blocks. Lastly, to speed up
gradient computation of the approximation, we further adopt memory efficient backpropagation through
the early computation of gradients [10].

B.1.2 Model evaluation metrics

MMD statistics metric. Given two sets of samples X = {x1, . . . , xn},X′ = {x′1, . . . , x′n} of same sample
size n, the MMD two-sample statistic between X and X′ is defined as

MMD(X,X′) :=
1

n2

n∑
i=1

n∑
j=1

k(xi, xj) +
1

n2

n∑
i=1

n∑
j=1

k(x′i, x
′
j)−

2

n2

n∑
i=1

n∑
j=1

k(xi, x
′
j), (A.23)

where we use the radial basis kernel k(x, x′) = exp(−α‖x− x′‖2) with α = 0.1.

Figure A.3: Confidence region of three moons by iGNN. The setup is identical to that in Fig. 3, where we
visualize the confidence region of X|Y based on that of H|Y . The confidence region in the input space of
X can be computed from that in the feature space H based on the parametric mixture model of H.
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(a) X|Y iGNN X̂|Y (b) cINN-MMD X̂|Y (c) iGNN losses

Figure A.4: Compare iGNN vs. cINN-MMD on generating two-dimensional graph node features on the
three-node graph. Color indicates node index and rows in (a) and (b) are determined by two different
values of Y ∈ {0, 1}3. We connect the two-dimensional node features belonging to the same 3-by-2 feature
matrix X by light blue lines to illustrate the distribution of X|Y . Both models use L3net GNN layers.

For the K-class conditional distribution X|Y , where we denote by {X|Y = k} the set of samples
{xi : yi = k}ni=1, the overall MMD statistic is defined using (A.23) as

MMD =

K∑
k=1

wkMMD({X|Y = k}, {X′|Y = k}), wk =

∑n
i=1 1(yi = k)

n
. (A.24)

Note that on graph data where Y concatenates all nodal labels, the summation is over all types of Y (up
to KN many).

Energy statistic metric. Given two sets of samples X = {x1, . . . , xn},X′ = {x′1, . . . , x′n}, The energy
statistic under `2 norm is defined as

Energy(X,X′) :=
2

n2

n∑
i=1

n∑
j=1

‖xi − x′j‖2 −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 −
1

n2

n∑
i=1

n∑
j=1

‖x′i − x′j‖2, (A.25)

For K-class conditional distribution X|Y , the weighted energy statistics is defined using (A.25) as

Energy =

K∑
k=1

wkEnergy({X|Y = k}, {X′|Y = k}), wk =

∑n
i=1 1(yi = k)

n
. (A.26)

Computation of the weighted statistics on graph data is identical to that of the weighted MMD statistics
on graph.

Model invertibility error. We see from Fig. A.2 that iGNN under the Wasserstein-2 regularization ensures
model invertibility up to very high accuracy.
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(a) True data (b) ChebNet (c) L3Net
(d) Chebnet (top) and
L3net (bottom) losses

Figure A.5: Comparison of using spectral and spatial GNN layers in iGNN model for generating graph data
as in Example 1, where the data samples are one-dimensional graph node features lying on a three-node
graph, ρ = 0.6 and ρ1 = −0.4. We visualize correlation of samples generated by iGNN using the spectral
GNN layer (ChebNet) in (b) and spatial GNN layer (L3Net) in (c), in comparison with the ground truth
in (a). The losses over training epochs are shown in (d).

B.1.3 Construction of simulated graph data

We first describe the construction of simulated graph data on small graphs (corresponding to Figures A.4
and 9). Each node has a binary label so that Y ∈ {0, 1}3 is a binary vector. Conditioning on a specific
binary vector Y out of the eight choices, the distribution of X|Y is defined as

X|Y := PA

(
Z|Y +

[
−4 0 4
0 0 0

])
,

where PA := D−1
A A is the graph averaging matrix. The distribution of Z|Y is specified as:

• In Figure 9, we let

Zv|Yv ∼
{
N ((0, 1.5)T , 0.1I2) if Yv = 0

N ((0,−1.5)T , 0.1I2) if Yv = 1
. (A.27)

• In Figure A.4, Zv|Yv are non-identically distributed over nodes v = 0, 1, 2. When v = 1, Zv|Yv follow
the same distribution as (A.27). When v = 0 or 2, Zv|Yv are rotated and shifted noisy two moons,
whose positions depend on the binary value of Yv.

On large graphs (corresponding to Fig. 5), each node has a binary label so that Y ∈ {0, 1}503 is a
binary vector. Conditioning on a specific binary vector Y out of the eight choices, the distribution of X|Y
is defined as

X|Y := R((1− δ)I + δPA)Z|Y s.t. Zv|Yv ∼
{
N ((0, 12)T , I2) if Yv = 0

N ((0, 0)T , I2) if Yv = 1
,

where R denotes a counter-clockwise rotation matrix for 90 degrees (applied node-wise to each two-
dimensional nodal feature) and PA := D−1

A A is the graph averaging matrix, where DA is the degree
matrix. We choose δ = 0.2 so that a soft graph averaging is applied to the hidden variables Z|Y .
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(a) 503-node graph

(b) iGNN loss
(c) True correlation matrices (left column), learned correlation matrices (middle column),
and difference in true and learned correlation matrices (right column)

Figure A.6: Unconditional generation performance on graph data by iGNN using spectral GNN (ChebNet).
Data X lie on a 503-node chordal cycle graph and the node feature dimension d′ = 1. To examine the
generation quality, we plot the covariance matrix of model generated data X̂ in comparison with that
under the ground truth data X.

B.2 Additional experimental results

This subsection contains experimental results to augment those in the main text. In particular,

• We show the confidence region on the three-moon non-graph conditional generation data in Fig.
A.3. The generative quality is presented in Fig. 3 in the main text.

• We compare the generative quality of iGNN and cINN-MMD on simulated three-node graph condi-
tional generation data in Fig. A.4, to augment the results in Section 6.2.

• We numerically verify Example 1 based on simulated three-node graph unconditional generation
data. The generative results are presented in Fig. A.5 for iGNN using Chebnet and L3net.

• We demonstrate the unconditional generation results of iGNN using GNN layers in Fig. A.6c (spec-
tral GNN) and Fig. A.7c (spatial GNN). Empirical results are presented in Section 6.4 and theoretical
analyses are presented in Section 5.

B.3 Hyperparameter selection

We first summarize the hyperparameters used in our experiments and then verify that iGNN is insensitive
to alternative hyperparameter choices.

• Mixture distribution in R2 with 8 components (cf. Fig. 4): we let iGNN contain 40 ResNet blocks,
each of which is built with fully-connected layers with two hidden layers. We fix the learning rate at
5e-4 and train with a batch size of 1000. We fix the γ regularization factor of the W2 loss as 1.
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(a) 500-node graph

(b) iGNN loss
(c) True correlation matrices (left column), learned correlation matrices (middle column),
and difference in true and learned correlation matrices (right column)

Figure A.7: Unconditional generation performance on graph data by iGNN using spatial GNN (L3Net).
Data X lie on a 503-node chordal cycle graph with spatial-based covariance Σ, where the node feature
dimension d′ = 1. To examine the generation quality, we plot the covariance matrix of model generated
data X̂ in comparison with that under the ground truth data X.

• Conditional generation on small graph (cf. Fig. 9 and Fig. A.4): we let iGNN contain 40 ResNet
blocks, where the first hidden layer of each block is an L3Net layer. We fix the learning rate at 5e-4
and train with a batch size of 100. We fix the γ regularization factor of the W2 loss as 1.

• Conditional generation on large graph (cf. Fig. 5): we let iGNN contain 5 ResNet blocks, where the
first hidden layer of each block is an L3Net layer. We fix the learning rate at 1e-3 and train with a
batch size of 100. We fix the γ regularization factor of the W2 loss as 0.375/503.

• Solar ramping event (cf. Fig. 6): we let iGNN contain 40 ResNet blocks, where the first hidden layer
of each block is a Chebnet layer. We fix the learning rate at 1e-4 and train with a batch size of 150.
We fix the γ regularization factor of the W2 loss as 0.375/503.

• Traffic anomaly detection (cf. Fig. 8): we let iGNN contain 40 ResNet blocks, where the first hidden
layer of each block is an L3Net layer. We fix the learning rate at 1e-4 and train with a batch size of
200. We fix the γ regularization factor of the W2 loss as 1.

• Unconditional generation on large graph (cf. Fig. A.6c and Fig. A.7c): we let iGNN contain 40
ResNet blocks, each of which contains a ChebNet or an L3Net layer. We fix the learning rate at 5e-4
and train with a batch size of 400. We fix the γ regularization factor of the W2 loss as 1.

Insensitivity of iGNN to γ for W2 regularization. We verify that as long as the ResNet is invertible under
the choice of γ, the value of γ only affects the training efficiency but not the final generative quality. This
is because larger γ values restrict more the amount of movement by the ResNet, which thus potentially
takes longer training epochs before transporting the distribution X|Y to H|Y at each Y . Fig. A.8 shows
iGNN performance on conditional generation of data on large graph, where we increase the γ factor by
503 times. The performance is nearly identical to that in Fig. 5. On the other hand, Fig. A.9 visualizes
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(a) 1-hop neighborhood of node 100 (4 nodes) (b) 2-hop neighborhood of node 100 (10 nodes)

Figure A.8: Insensitivity of iGNN to the choice of γ on conditional generation of large graph data. We
increase γ by 503X and keep all other choices the same as we did in Fig. 5.

(a) Increase γ for W2 regu-
larization from 1 to 5

(b) Increase the learning
rate from 5e-4 to 5e-3

(c) Reduce the number of
blocks from 40 to 20

(d) Reduce the batch size
from 400 to 200

Figure A.9: Insensitivity of iGNN to the choice of various hyperparameters on unconditional generation
of large graph data. We change one hyperparameter at a time and keep all other choices the same as we
did in Fig. A.6c.

the generative loss of iGNN on unconditional generation of data on large graph, where we increase the γ
factor by 5 times. Comparing to the generative loss in Fig. A.6b, the loss takes more epochs to converge,
but eventual generative performance are nearly identical.

Insensitivity of iGNN to other hyperparameters. We verify that iGNN is insensitive to other hyperparam-
eter choices such as learning rate, batch size, and the number of residual blocks. Figures A.9 shows the
loss trajectories of iGNN under alternative choices of these hyperparameters, where the setup is identical
to that in Fig. A.6c. We see that training losses under these choices all converge reasonably fast. We omit
comparing the covariance matrices because the generative quality barely differs from those in Fig. A.6c.
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