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On the Rate-Distortion-Perception Function
Jun Chen, Lei Yu, Jia Wang, Wuxian Shi, Yiqun Ge, Wen Tong

Abstract—Rate-distortion-perception theory generalizes

Shannon’s rate-distortion theory by introducing a con-

straint on the perceptual quality of the output. The per-

ception constraint complements the conventional distortion

constraint and aims to enforce distribution-level consisten-

cies. In this new theory, the information-theoretic limit

is characterized by the rate-distortion-perception func-

tion. Although a coding theorem for the rate-distortion-

perception function has recently been established, the

fundamental nature of the optimal coding schemes remains

unclear, especially regarding the role of randomness in

encoding and decoding. It is shown in the present work

that except for certain extreme cases, the rate-distortion-

perception function is achievable by deterministic codes.

This paper also clarifies the subtle differences between two

notions of perfect perceptual quality and explores some

alternative formulations of the perception constraint.

Index Terms—Common randomness, divergence, max-

imal coupling, perceptual quality, rate-distortion, soft-

covering lemma, squared error, total variation distance.

I. INTRODUCTION

For a Polish metric space X , let (X ,B(X )) be the

Borel measurable space induced by the metric. Let P(X )
denote the set of distributions (i.e., probability measures)

defined over (X ,B(X )), and let X be a random variable

with distribution pX ∈ P(X ). Moreover, let ∆ : X ×
X → [0,∞) be a (measurable) distortion function with

∆(x, x̂) = 0 ⇔ x = x̂, and let d : P(X ) × P(X ) →
[0,∞] be a divergence with d(pX , p

X̂
) = 0 ⇔ pX = p

X̂
.

The rate-distortion-perception function for X is given by

R(D,P ) := inf
p
X̂|X

I(X; X̂)

subject to E[∆(X, X̂)] ≤ D, (1)

d(pX , p
X̂
) ≤ P, (2)

where the infimum is taken over all channels (i.e.,

Markov kernels) p
X̂|X from X to itself satisfying (1) and

(2). The rate-distortion-perception function generalizes

the classical rate-distortion function by complement-

ing the conventional distortion constraint (1) with a

perception constraint (2). The rationale behind (2) is

that probability distributions have important perceptual

implications, thus constraining the divergence between

pX and p
X̂

helps enforce the perceptual consistencies

between the input and the output [1].

Since its inception in the seminal paper by Blau

and Michaeli [2], rate-distortion-perception theory has

received considerable attention in the machine learning

community. A coding theorem for the rate-distortion-

perception function has also been established recently [3]

(see [4], [5] for some variants of this coding theorem).

It is worth mentioning that there exist closely related

works in the signal processing and information theory

literature on quantizer design with a prescribed output

distribution motivated by perceptual considerations [6]–

[9]. This line of research culminates in [10] with a

rate-distortion theory for output constrained lossy source

coding. These two theories are intimately connected in

the sense that the perception constraint is exactly meant

to constrain the output distribution. On the other hand,

they also have noticeable differences. In particular, [10]

focuses on the case where the output is an i.i.d. sequence

whereas the formulation in [2], [3] does not directly

impose this restriction. It will be seen that this difference

has implications in terms of the rate-distortion tradeoff.

To understand the motivation behind the present work,

it is instructive to consider the following example first

introduced in [11]. Let S be uniformly distributed over

the unit circle S := {s ∈ R
2 : ‖s‖2 = 1}, where

‖ · ‖p is the p-norm. The question is how to minimize

the expected distortion E[‖S − Ŝ‖22] if S is encoded

using 1 bit while the reconstruction Ŝ is required to meet

the perfect perceptual quality constraint (i.e., Ŝ is also

uniformly distributed over S). Let θ(s) denotes the angle

of s for any s ∈ S . Two coding schemes are studied in

[11]. For the first coding scheme, the encoding operation

is given by

K :=

{

0, θ(S) ∈ [0, π),

1, θ(S) ∈ [π, 2π),

and the decoding operation is given by

Ŝ := (cos((K +W )π), sin((K +W )π),

where W is uniformly distributed over [0, 1) and is in-

dependent of S. One can readily verify that the resulting

expected distortion

E[‖S − Ŝ‖2] = 2− 8

π2
.
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In fact, it is shown in [11] that this is the minimum

achievable distortion with private randomness only (i.e.,

the random seed at the decoder is independent of that at

the encoder). The second coding scheme makes use of

W at both the encoder and the decoder. Specifically, the

encoding operation is given by

K :=

{

0, θ(S)
π

+W ∈ [0, 1) ∪ [2, 3),

1, θ(S)
π

+W ∈ [1, 2),

while the decoding operation is given by

Ŝ := (cos((K −W )π), sin((K −W )π)).

In this case, we have

E[‖S − Ŝ‖2] = 2− 4

π
< 2− 8

π2
,

which clearly shows the advantage of common random-

ness over private randomness.

The above toy example in the one-shot setting natu-

rally leads to the question whether the same phenomenon

appears in the asymptotic setting where many data points

are encoded at once. We shall show that the answer

depends critically on the definition of perfect perceptual

quality. Specifically, in the asymptotic setting, there are

two notions of perfect perceptual quality: weak-sense

and strong-sense; the advantage of common randomness

over private randomness manifests under the strong-

sense perfect perceptual quality constraint but not under

the weak-sense version. Moreover, if the weak-sense

perfect perceptual quality constraint is further relaxed

by allowing slight imperfection, then no randomness

is needed at all. We would like to point out that the

difference between common randomness and private

randomness has been investigated in the context of

output constrained lossy source coding [10], which has

important implications here, especially with respect to

the case of strong-sense perfect perceptual quality.

The rest of this paper is organized as follows. Section

II contains coding theorems for various types of coding

systems; in particular, it is shown that except for certain

extreme cases, the rate-distortion-perception function is

achievable by deterministic codes. Section III is devoted

to the clarification of the subtle differences between

two different notions of perfect perceptual quality. Some

alternative formulations of the perception constraint are

explored in Section IV. Section V concludes the paper.

Notation: We use pnX to denote the product of n copies

of pX . We use pY |X to denote a channel (a regular condi-

tional distribution or a Markov kernel), which associates

to each point x ∈ X a probability measure pY |X(·|x)
such that, for every measurable set B ⊆ Y , the map

x 7→ pY |X(B|x) is measurable with respect to the σ-

algebra on X . A distribution is discrete if it can be

written as
∑

i piδxi
for some countable number of points

xi and positive values pi such that
∑

i pi = 1, where δx
is the Dirac measure at x. For a discrete distribution,

its support is defined as the set of points at which the

probability masses are positive. For two distributions pX
and p

X̂
, we use Π(pX , p

X̂
) to denote the set of couplings

of pX and p
X̂

(i.e., the set of joint distributions p
XX̂

with

marginals pX and p
X̂

). Let B(ρ) and N (µ, σ2) denote

respectively the Bernoulli distribution with parameter ρ
and the Gaussian distribution with mean µ and variance

σ2. The cardinality of set S is written as |S|. The

binary entropy function is represented by Hb(·), i.e.,

Hb(a) := −a log(a) − (1 − a) log(1 − a) for a ∈ [0, 1].
Define 1E (·, ·) to be an indicator function in the sense

that 1E (x, x̂) = 1 if (x, x̂) ∈ E and 1E (x, x̂) = 0
otherwise. Let Unif[i : j] denote the uniform distribution

over [i : j], where [i : j] := {i, i+1, · · · , j} for integers

i ≤ j. Throughout this paper, the base of the logarithm

function is 2.

II. CODING THEOREMS

Let {Xt}∞t=1 be an i.i.d. process with marginal distri-

bution pX .

Definition 1. Given distortion constraint D and per-

ception constraint P , rate R is said to be achievable

with common randomness if for all sufficiently large

n, there exist shared seed distribution pQ on a Polish

space Q, encoding distribution pZ|XnQ with Z countable

(equipped with the Hamming metric), and decoding dis-

tribution p
X̂n|ZQ

with X̂ = X such that the induced joint

distribution p
XnQZX̂n := pnXpQpZ|XnQpX̂n|ZQ

satisfies

1

n
H(Z|Q) ≤ R, (3)

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ D, (4)

d(pX , p
X̂t

) ≤ P, t ∈ [1 : n]. (5)

The infimum of such achievable R is denoted by

Rcr(D,P ). The achievable rate with private randomness

is defined in the same way except that the encoder and

the decoder do not have access to a shared random seed

(i.e., Q is set to be a constant); the corresponding fun-

damental limit is denoted Rpr(D,P ). If no randomness

is allowed at all (i.e., the encoder output Z is required

to be a deterministic function of Xn while the decoder

output X̂n is required to be a deterministic function of

Z), we denote the fundamental limit by Rnr(D,P ).
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Remark 1. The rationale behind (3) is as follows.

Given any realization Q = q, random variable Z can

be represented by a variable-length code of average

length no more than H(Z|Q = q) + 1. Normalizing

H(Z|Q = q) + 1 by n and taking the expectation with

respect to Q yields 1
n
H(Z|Q) + 1

n
. The extra factor 1

n

is neglible as n → ∞. Alternatively, one can replace (3)

by 1
n
log |Z| ≤ R, where Z is the alphabet over which Z

is defined. This variant is more suitable for fixed-length

codes. As far as Rcr(D,P ), Rpr(D,P ), and Rnr(D,P )
are concerned, the difference between variable-length

codes and fixed-length codes only manifests in certain

extreme cases (say, D = 0).

Remark 2. It is easy to establish the following ordering

by invoking the operational meanings of the relevant

quantities:

Rcr(D,P ) ≤ Rpr(D,P ) ≤ Rnr(D,P ). (6)

In this paper, we will make some regularity assump-

tions along the way when they are needed for establish-

ing certain technical results. This first one is as follows:

Assumption 1. d(·, ·) is convex in its second argument.

This assumption is quite mild as it is satisfied

by f -divergence and Rényi divergence [12], [13] as

well as those taking the form1 of (pX , p
X̂
) 7→

infp
XX̂

∈Π(pX ,p
X̂
) E[c(X, X̂)], where c is a (measurable)

cost function and Π(pX , p
X̂
) denotes the set of all

couplings of pX and p
X̂

.

The following result, due to Theis and Wagner [3,

Theorem 3], provides a computable characterization of

Rcr(D,P ) by linking it to R(D,P ).

Theorem 1. Under Assumption 1,

Rcr(D,P ) = R(D,P )

for D ≥ 0 and P ≥ 0.

Remark 3. It can be shown using the standard converse

argument that Theorem 1 continues to hold if (5) is

weakened to

1

n

n
∑

t=1

d(pX , p
X̂i

) ≤ P

or even further weakened to

d

(

pX ,
1

n

n
∑

t=1

p
X̂t

)

≤ P.

1Such divergences arise naturally in the theory of optimal trans-

port. In particular, if c is the metric on X , then d(pX , p
X̂
) :=

infp
XX̂

∈Π(pX ,p
X̂

) E[c(X, X̂)] is the 1-Wasserstein distance.

Remark 4. In fact, Theorem 1 is established in [3] under

the more restrictive distortion constraint (as compared

to (4))

E[∆(Xt, X̂t)] ≤ D, t ∈ [1 : n],

without Assumption 1.

The proof of Theorem 1 in [3] relies on the strong

functional representation lemma [14] and consequently

makes use of common randomness in an essential way.

Thus an open problem is posed in [3], which asks

whether the same result can be established under weaker

conditions. The next result provides an affirmative an-

swer by showing that it suffices to use deterministic

codes when D > 0 and P > 0. To state this result

precisely, we need the following technical assumption:

Assumption 2. For any D > 0 and P > 0, we have

R(D,P ) < ∞; (7)

moreover, given any ǫ > 0, there exists a discrete random

variable X̃ with its support X̃ satisfying X̃ ⊆ X and

|X̃ | < ∞ such that

I(X; X̃) ≤ R(D,P ) + ǫ, (8)

E[∆(X, X̃)] ≤ D + ǫ, (9)

E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞, (10)

d(pX , pX̃) ≤ P + ǫ, (11)

d(pX , γ) < ∞ for all distributions γ supported on X̃ .
(12)

Note that (7) is a prerequisite for the existence of a

coding theorem non-void for all D > 0 and P > 0.

It clearly holds when |X | < ∞ since R(D,P ) ≤
R(0, 0) = H(X) < ∞. When |X | < ∞, (8)–(11)

are also trivially true. In general, by the definition of

R(D,P ), there exists a random variable X̂ such that

I(X; X̂) ≤ R(D,P ) + ǫ,

E[∆(X, X̂)] ≤ D,

d(pX , p
X̂
) ≤ P.

If we think of X̃ as a quantized version of X̂, then

(8) is automatically satisfied due to the data processing

inequality, (10) is to ensure that no quantization output

might be catastrophically bad while (9) and (11) basi-

cally require that E[∆(X, X̂)] and d(pX , p
X̂
) are not

too sensitive to the discretization of p
X̂

(which can be

viewed as a form of weak convergence requirement).

Finally, (12) is a natural consequence2 of (11) for any

2Actually we only need d(pX , γ) < ∞ for γ in a small neighbor-

hood of pX̃ confined to P(X̃ ).
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reasonably behaved divergence. So Assumption 2 is

basically always true when |X | < ∞. In addition,

we verify in Appendix A that Assumption 2 holds for

the case of square-integrable random variable, squared

distortion measure, and squared quadratic Wasserstein

distance (i.e., E[X2] < ∞, ∆(x, x̂) := (x − x̂)2,

and d(pX , p
X̂
) := infp

XX̂
∈Π(pX ,p

X̂
) E[(X − X̂)2]). It is

worth mentioning that with deterministic encoding and

decoding performed at any finite rate, the reconstruction

is inevitably discrete. Hence, there are reasons to believe

that Assumption 2 cannot be substantially relaxed. As-

sumption 2 also has some nice implications. Specifically,

together with Assumption 1, (7) implies that R(D,P )
is convex and consequently continuous in (D,P ) for

D > 0 and P > 0 while (12) implies that d(pX , γ)
is continuous in γ over the interior of the probability

simplex defined on X̃ .

Theorem 2. Under Assumptions 1 and 2,

Rnr(D,P ) = R(D,P )

for D > 0 and P > 0.

Proof: The detailed proof can be found in Appendix

B. The basic idea is that, in the asymtotic setting, it is

possible to leverage the aggregated randomness to simul-

taneously shape the marginal distributions of all output

symbols into the desired form via proper deterministic

encoding and decoding even though the bit rate might

be far below the corresponding entropy. Consider the toy

example in Section I. In the one-shot setting, it is clearly

impossible to simulate a uniform distribution over the

unit circle using 1 bit if the decoder is required to be

deterministic. However, in the asymptotic setting, even

if the rate remains 1 bit per data point, we are still able

to accumulate enough randomness, which can be shared

stratigically by the reconstructed points in such a way

that they all acquire an approximate uniform distribution

over the unit circle.

The case D = 0 corresponds to the conventional zero-

error source coding problem [15], for which there is

no loss of optimality in restricting the encoder and the

decoder to be deterministic. Moreover, it is clear that the

perception constraint becomes superfluous when D = 0.

Theorem 3. For P ≥ 0,

Rcr(0, P ) = Rpr(0, P ) = Rnr(0, P ) = R(0, P ),

where

R(0, P ) =

{

H(X), pX is a discrete distribution,

∞, otherwise.

It remains to deal with the case P = 0. This is

addressed by the next result, for which we need the

following assumption:

Assumption 3. For any D > 0 and ǫ > 0, there exist

a discrete random variable X̃ and an arbitrary random

variable X̂ on X such that X ↔ X̃ ↔ X̂ form a Markov

chain, the support of X̃, denoted X̃ , satisfies |X̃ | < ∞,

and

I(X; X̃) ≤ R(D, 0) + ǫ,

E[∆(X, X̂)] ≤ D,

p
X̂

= pX .

Note that according to the definition of R(D, 0), there

exists a random variable X̂ such that

I(X; X̂) ≤ R(D, 0) + ǫ,

E[∆(X, X̂)] ≤ D,

p
X̂

= pX .

So Assumption 3 basically postulates the existence of a

discrete random variable X̃ sitting between X and X̂
with I(X; X̃) ≈ I(X; X̂). This is trivially true when

|X | < ∞. In general, this assumption is quite natural

as even with the availability of private randomness, the

interface between the encoder and the decoder remains

discrete at any finite rate. We verify at the end of

Appendix C that Assumption 3 holds for the case of

square-integrable random variable and squared distortion

measure.

Theorem 4. Under Assumptions 1 and 3,

Rpr(D, 0) = R(D, 0)

for D > 0.

Remark 5. It is clear that deterministic encoder-decoder

pairs are inadequate for achieving finite-valued R(D, 0)
when pX is a continuous distribution or has an infinite

entropy.

Proof: See Appendix D.

III. ON DIFFERENT NOTIONS OF PERFECT

PERCEPTUAL QUALITY

Note that setting P = 0 in (5) only ensures p
X̂t

= pXt
,

t ∈ [1 : n], which should be distinguished from the

more restrictive constraint p
X̂n = pnX . We shall refer to

the former as weak-sense perfect perceptual quality and

the latter as strong-sense perfect perceptual quality. It is

interesting to understand whether these two notions of

perfect perceptual quality make any difference in terms

of the rate-distortion tradeoff.
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Let Rcr(D) := Rcr(D, 0) and Rpr(D) := Rpr(D, 0).
In light of Theorems 1, 3, and 4, for D ≥ 0,

Rcr(D) = Rpr(D) = φ(D), (13)

where

φ(D) := R(D, 0) = inf
p
X̂|X

I(X; X̂)

subject to E[∆(X, X̂)] ≤ D,

p
X̂

= pX .

Now we proceed to define the counterparts of Rcr(D)
and Rpr(D) under the strong-sense perfect perceptual

quality constraint.

Definition 2. Given distortion constraint D, rate R̃ is

said to be achievable with common randomness under

the strong-sense perfect perceptual quality constraint

if for all sufficiently large n, there exist shared seed

distribution pQ (on a Polish space), encoding distribution

pZ|XnQ (with Z countable), and decoding distribution

p
X̂n|ZQ

(with X̂ = X ) such that the induced joint

distribution p
XnQZX̂n := pnXpQpX̂n|ZQ

p
X̂n|ZQ

satisfies

1

n
H(Z|Q) ≤ R̃,

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ D,

p
X̂n = pnX .

The infimum of such achievable R̃ is denoted R̃cr(D). In

the case of private randomness only, the corresponding

limit is denoted R̃pr(D).

Remark 6. Analogously to (6), we have

R̃cr(D) ≤ R̃pr(D). (14)

Moreover, since strong-sense perfect perceptual quality

implies weak-sense perfect perceptual quality, it follows

that

Rcr(D) ≤ R̃cr(D), Rpr(D) ≤ R̃pr(D).

Remark 7. Under the strong-sense perfect perceptual

quality constraint, requiring the encoder and the decoder

to be deterministic trivializes the problem as the encoder-

decoder pair is basically forced to establish a one-to-one

mapping between the input and the output.

The following result, together with (13), shows that in

the presence of common randomness, the difference be-

tween weak-sense perfect perceptual quality and strong-

sense perfect perceptual quality has no impact on the

fundamental rate-distortion tradeoff.

Theorem 5. For D ≥ 0

Rcr(D) = R̃cr(D) = φ(D). (15)

Proof: This result can be deduced from the proof

of [9, Theorem 7] (see also [7]).

The following result, together with (13), shows that

in the case of private randomness only, the two dif-

ferent notions of perfect randomness indeed lead to

different rate-distortion tradeoffs. Along with Theorem

5, it also indicates that under the strong-sense perfect

perceptual quality constraint, common randomness is

generally more powerful than private randomness, which

should be contrasted with the fact that under the weak-

sense perfect perceptual quality constraint, the difference

between common randomness and private randomness is

immaterial (see Theorem 4).

We first introduce a definition, which is an extended

version of [16, Definition 3].

Definition 3. A tuple (pX , p
X̂
,∆) of source distribution,

reconstruction distribution, and distortion measure is

said to be uniformly integrable if for every ǫ > 0, there

exists δ > 0 such that supp
XX̂

,E E[∆(X, X̂)1E (X, X̂)] ≤
ǫ, where the supremum is over all p

XX̂
∈ Π(pX , p

X̂
) and

all measurable events E with P((X, X̂) ∈ E) ≤ δ.

Note that (pX , p
X̂
,∆) is uniformly integrable if ∆ is

bounded, i.e., supx,x̂∈X ∆(x, x̂) < ∞, which is trivially

true when |X | < ∞. Moreover, in Appendix E, we

verify uniform integrability for square-integrable X and

X̂ paired with squared distortion measure.

Theorem 6. If (pX , pX ,∆) is uniformly integrable, then

R̃pr(D) = ϕ(D) (16)

for D ≥ 0, where3

ϕ(D) := inf
p
UX̂|X

max{I(X;U), I(X̂ ;U)}

subject to E[∆(X, X̂)] ≤ D, (17)

p
X̂U |X = pU |Xp

X̂|U , (18)

p
X̂

= pX . (19)

Moreover, under the squared distortion measure (assum-

ing X ⊆ R),

ϕ(D) = R(
D

2
), (20)

3Here X̂ = X , and the infimum above is taken over all p
UX̂|X with

U being a Polish space such that (17)-(19) hold. A similar convention

applies to the bound in Theorem 10.
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where

R(
D

2
) := inf

pV |X

I(X;V ) (21)

subject to E[(X − V )2] ≤ D

2
. (22)

Remark 8. R(D2 ) is interpreted as R(D2 ,∞) in [2],

[17]. This interpretation is actually not completely accu-

rate. Note that R(D) is the rate-distortion function with

the output alphabet being R as V is allowed to take any

real value. In constrast, R(D,∞) is the rate-distortion

function with the output alphabet being X . In general,

under the squared distortion measure,

R(D, 0) ≤ R(
D

2
) ≤ R(

D

2
,∞),

where the second inequality becomes an equality when

X = R. Note that the first inequality follows by (14),

(15), (16), and (20) (see also [2, Theorem 2]).

Proof: One can specialize (16) from [10, Theorem

1] and [16, Theorem 2]. Moreover, (20) is implied by

[17, Theorem 2] (see also [11, Theorem]). We give a

simple proof of this fact in Appendix F.

Theorem 7. For X ∼ B(ρ) with ρ ∈ (0, 12 ],

φ(D) =











2Hb(ρ) +
2−2ρ−D

2 log(2−2ρ−D
2 ) +D log(D2 )

+2ρ−D
2 log(2ρ−D

2 ), D ∈ [0, 2ρ(1 − ρ)),

0, D ∈ [2ρ(1 − ρ),∞),

ϕ(D) =

{

Hb(ρ)−Hb(
1−

√
1−2D
2 ), D ∈ [0, 2ρ(1 − ρ)),

0, D ∈ [2ρ(1 − ρ),∞),

under the Hamming distortion measure (which coincides

with the squared distortion measure when X = {0, 1}).

Remark 9. In this case, we can deduce from [2, Equa-

tion (6)] that

R(
D

2
,∞) =

{

Hb(ρ)−Hb(
D
2 ), D ∈ [0, 2ρ),

0, D ∈ [2ρ,∞),

which is in general different from ϕ(D). So [17, Theorem

2] should be interpreted with great caution.

For illustrative purposes, we plot φ(D) and ϕ(D) for

X ∼ B(14) in Fig. 1.

Proof: The expression of φ(D) can be specialized

from [2, Equation (6)]. The derivation of ϕ(D) is given

in Appendix G.

Theorem 8. For X ∼ N (µ, σ2),

φ(D) =

{

1
2 log(

4σ4

4σ2D−D2 ), D ∈ [0, 2σ2),

0, D ∈ [2σ2,∞),

ϕ(D) =

{

1
2 log(

2σ2

D
), D ∈ [0, 2σ2),

0, D ∈ [2σ2,∞),
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Fig. 1. Plots of φ(D) and ϕ(D) for X ∼ B( 1
4
).

under the squared distortion measure.

Remark 10. In this case, X = R and consequently

[17, Theorem 2] holds. Indeed, we can deduce from [18,

Theorem 1] that

R(
D

2
,∞) =

{

1
2 log(

2σ2

D
), D ∈ [0, 2σ2),

0, D ∈ [2σ2,∞),

which coincides with ϕ(D).

For illustrative purposes, we plot φ(D) and ϕ(D) for

X ∼ N (0, 1) in Fig. 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

Fig. 2. Plots of φ(D) and ϕ(D) for X ∼ N (0, 1).

Proof: The expression of φ(D) can be specialized

from [18, Theorem 1] (see also [7, Proposition 2]) while
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the expression of ϕ(D) can be obtained by invoking (20)

and the fact [15] that for the quadratic Gaussian case,

R(D) =

{

1
2 log(

σ2

D
), D ∈ [0, σ2),

0, D ∈ [2σ2,∞).

Various extensions can be found in [16], [19].

IV. ALTERNATIVE FORMULATIONS OF THE

PERCEPTION CONSTRAINT

The fact that the perception constraint in (5) fails

to capture the notion of strong-sense perpect perceptual

quality motivates us to consider the following alternative

formulation.

Definition 4. Given distortion constraint D and per-

ception constraint P , rate R̃ is said to be achievable

with common randomness if for all sufficiently large

n, there exist shared seed distribution pQ (on a Polish

space), encoding distribution pZ|XnQ (with Z count-

able), and decoding distribution p
X̂n|ZQ

(with X̂ = X )

such that the induced joint distribution p
XnQZX̂n :=

pnXpQpZ|XnQpX̂n|ZQ
satisfies

1

n
H(Z|Q) ≤ R̃,

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ D,

1

n
d(pnX , p

X̂n) ≤ P. (23)

The infimum of such achievable R̃ is denoted R̃cr(D,P ).
In the case of private randomness only, the correspond-

ing limit is denoted R̃pr(D,P ).

Note that the strong-sense perceptual quality con-

straint can be viewed as an extreme case of the

new formulation since setting P = 0 in (23) forces

p
X̂n = pnX . So we have R̃cr(D, 0) = R̃cr(D) and

R̃pr(D, 0) = R̃pr(D). However, the multiletter nature of

the perception constraint in (23) makes it challenging to

obtain a computable characterization of R̃cr(D,P ) and

R̃pr(D,P ) when P > 0. To ease the difficulty, we shall

impose some further restrictions on d(·, ·):
Assumption 4. d(·, ·) is tensorizable in the sense that

d(⊗n
t=1pYt

, p
Ŷ n) ≥

n
∑

t=1

d(pYt
, p

Ŷt

),

where ⊗n
t=1pYi

denotes the joint distribution formed by

the product of marginals pY1
, · · · , pYn

.

Assumption 5. d(·, ·) is decomposable in the sense that

d(⊗n
t=1pYt

,⊗n
t=1pŶt

) =

n
∑

t=1

d(pYt
, p

Ŷt

).

Note that Assumptions 4 and 5 are satisfied by the

Kullback-Leibler divergence and those taking the form of

infp
Y nŶ n∈Π(pY n ,p

Ŷ n ) E[c(Y
n, Ŷ n)] with an additive cost

function c in the sense c(yn, ŷn) =
∑n

i=1 c
′(yi, ŷi) for

some c′ (e.g., c(yn, ŷn) := ‖yn − ŷn‖pp).

Theorem 9. Under Assumptions 1, 4, and 5,

R̃cr(D,P ) = R(D,P )

for D ≥ 0 and P ≥ 0.

Proof: We first prove the converse part. Let R̃ be

an achievable rate with respect to distortion constraint

D and perception constraint P . We have

R̃ ≥ 1

n
H(Z|Q)

≥ 1

n
I(Xn;Z|Q)

≥ 1

n
I(Xn; X̂n|Q)

=
1

n

n
∑

t=1

I(Xt; X̂
n|Q,Xt−1)

=
1

n

n
∑

t=1

I(Xt; X̂
n, Q,Xt−1)

≥ 1

n

n
∑

t=1

I(Xt; X̂t)

= I(XT ; X̂T |T )
= I(XT ; X̂T , T )

≥ I(XT ; X̂T ), (24)

where T is uniformly distributed over [1 : n] and

independent of (Xn, X̂n). Moreover,

D ≥ 1

n

n
∑

t=1

E[∆(Xt, X̂t)]

= E[E[∆(XT , X̂T )|T ]]
= E[∆(XT , X̂T )], (25)

and

P ≥ 1

n
d(pnX , p

X̂n)

≥ 1

n

n
∑

t=1

d(pXt
, p

X̂t

) (26)

=
1

n

n
∑

t=1

d(pX , p
X̂t

)

≥ d

(

pX ,
1

n

n
∑

t=1

p
X̂t

)

(27)

= d(pX , p
X̂T

), (28)
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where (26) and (27) are due to respectively the tensoriz-

ability and convexity (in its second argument) of d(·, ·).
Combining (24), (25), (28) and invoking the fact that

pXT
= pX proves R̃cr(D,P ) ≥ R(D,P ).

Now it remains to prove the achievability part.

We augment {Xt}∞t=1 into a joint i.i.d. process

{(Xt, X̂t)}∞t=1 using a memoryless channel p
X̂|X sat-

isfying E[∆(X, X̂)] ≤ D and d(pX , p
X̂
) ≤ P . For any

positive integer n,

1

n
d(pnX , p

X̂n) = d(pX , p
X̂
) ≤ P,

where the equality follows by the decomposability of

d(·, ·). Moreover, by the strong functional representation

lemma [14], there exists a random variable Q, inde-

pendent of Xn, such that X̂n can be expressed as a

deterministic function of (Xn, Q) and

1

n
H(X̂n|Q) ≤ I(X; X̂) +

1

n
log(nI(X; X̂) + 1) +

4

n
.

Setting Z = X̂n and sending n → ∞ completes the

proof.

Theorem 10. For D ≥ 0 and P ≥ 0,

R̃pr(D,P ) ≤ R′(D,P ),

where

R′(D,P ) := inf
p
UX̂|X

max{I(X;U), I(X̂ ;U)}

subject to E[∆(X, X̂)] ≤ D,

p
X̂U |X = pU |Xp

X̂|U ,

d(pX , p
X̂
) ≤ P,

(pX , p
X̂
,∆) is uniformly integrable.

Proof: Suppose that X̂n is constrained to be an

i.i.d. sequence with marginal distribution p
X̂

satisfying

d(pX , p
X̂
) ≤ P . For such X̂n,

1

n
d(pnX , p

X̂n) = d(pX , p
X̂
) ≤ P,

where the equality follows by the decomposability of

d(·, ·). Now the problem is converted to output con-

strained lossy source coding in the sense of [10], and

consequently the desired upper bound can be deduced

by following steps similar to those for the achievability

part of [16, Theorem 2].

It can be shown that, with the output constrained to

be i.i.d., this upper bound is in fact the best possible (as-

suming d(·, ·) is tensorizable, decomposable, and convex

in its second argument). Moreover, when P = 0, the

i.i.d. constraint is automatically satisfied and the upper

bound is tight. Indeed, we have R′(D, 0) = ϕ(D), which

is known to coincide with R̃pr(D, 0) (or equivalently,

R̃pr(D)) according to Theorem 6. On the other hand, it

is unclear whether the i.i.d. constraint is redundant when

P > 0. So the upper bound can potentially be loose

in that regime. In constrast, as the proof of Theorem 9

indicates, with the presense of common randomness, the

i.i.d. constraint incurs no penalty in terms of the rate-

distortion-perception tradeoff.

Roughly speaking, distortion measures and perception

measures in the rate-distortion-perception framework can

be considered full-reference metrics and no-reference

metrics, respectively. Take image compression as an

example. To evaluate a compressed image, full-reference

metrics compare it to the ground truth (i.e., the original

version) while no-reference metrics quantify its quality

using a prescribed criterion based on some statistical

feature information. In the current setting, the realization

of X̂n, the realization of Xn, and the distribution of

Xn correspond to the object to be evaluated, the ground

truth, and the statistical feature information, respec-

tively. However, the perception constraint in the form

of (5) or (23) is imposed on the distribution of X̂n,

not on its realization. This is somewhat unsatisfactory

since the perceptual quality should be defined for each

individual object (say, an image) rather than for an

ensemble only. Furthermore, it is often impossible to

deduce a realization-based perceptual quality measure

from a distribution-based measure because two different

distributions may generate the same realization. So the

operational meaning of (5) and (23) is not entirely clear.

To gain a better understanding, let us revisit the toy

example in Section I. Suppose we want to evaluate the

“perceptual quality” of a given realization of Ŝ. Clearly,

it is irrelevant here whether the distribution on the unit

circle is uniform or not as we are dealing with a property

of the realization itself. When a particular realization

is concerned, the only role of the so-called “perfect

perceptual quality constraint” is to force it to be on

the unit circle. So the “perception constraint” should

be better stated to specify a perceptually admissible set

rather than the distribution(s) on it. Interestingly, if no

restriction is imposed on how Ŝ is distributed on the unit

circle, then one can simply choose two antipodal recon-

struction points (e.g., those highlighted with ∗ in Fig.

3) and perform vector quantization without involving

extra randomness. Indeed, deterministic encoding and
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decoding

K :=

{

0, θ(S) ∈ [0, π),

1, θ(S) ∈ [π, 2π),

Ŝ :=

{

(0, 1), K = 0,

(0,−1), K = 1,

yields

E[‖S − Ŝ‖2] = 2− 4

π
,

previously only achievable with the aid of common

randomness. Note that requiring Ŝ to reside on the unit

circle is not a superfluous “perception constraint” since

otherwise it is possible [11] to achieve

E[‖S − Ŝ‖2] = 1− 4

π2

by using the following modified decoder

Ŝ :=

{

(0, 2
π
), K = 0,

(0,− 2
π
), K = 1,

with the two reconstruction points (highlighted with

◦ in Fig. 3) sitting inside the unit circle. Therefore,

this distribution-oblivious “perception constraint” also

requires a compromisation of distortion.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. A toy example. The reconstruction points under the perception

constraint are highlighted with ∗ while the unconstrained counterparts

are highlighted with ◦.

By now it should be clear that the role of realization-

based perception constraints is to specify a collection

of perceptually admissible sets parameterized by P (the

smaller P is, the more restrictive the set becomes). One

can reconcile such constraints with their distribution-

based counterparts using empirical distribution as a link.

To this end, we quantify the perceptual quality of a

given realization x̂n by the divergence d(pX , γx̂n), where

γx̂n is the empirical distribution of x̂n. We say x̂n

is P -typical with respect to pX if d(pX , γx̂n) ≤ P ,

and let the perceptually admissible set be the set of

P -typical sequences. It will be seen that the single-

letter characterization of the rate-distortion-perception

function with distribution-based perception constraints

(especially in the form of (5)) can be largely recovered

in the realization-based framework under the following

definition.

Definition 5. Given distortion constraint D and per-

ception constraint P , rate R̄ is said to be achievable

with common randomness if for all sufficiently large

n, there exist shared seed distribution pQ (on a Polish

space), encoding distribution pZ|XnQ (with Z count-

able), and decoding distribution p
X̂n|ZQ

(with X̂ = X )

such that the induced joint distribution p
XnQZX̂n :=

pnXpQpZ|XnQpX̂n|ZQ
satisfies

1

n
H(Z|Q) ≤ R̃,

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ D,

d(pX , γ
X̂n) ≤ P almost surely. (29)

The infimum of such achievable R̄ is denoted R̄cr(D,P ).
The achievable rate with private randomness is defined

in the same way except that the encoder and the decoder

do not have access to a shared random seed (i.e., Q is set

to be a constant); the corresponding fundamental limit is

denoted R̄pr(D,P ). If the encoder and the decoder are

further required to be deterministic (i.e., no randomness

is allowed at all), we denote the fundamental limit by

R̄nr(D,P ).

Theorem 11. Under Assumptions 1 and 2,

R̄cr(D,P ) = R̄pr(D,P ) = R̄nr(D,P ) = R(D,P ).

for D > 0 and P > 0

Remark 11. It is worth mentioning that P = 0 is

in general not feasible under Definition 5 since pX
cannot be realized as an empirical distribution for all

sufficiently large n. Moreover, D = 0 implies X̂n = Xn

almost surely. Note that in the finite alphabet case,

d(pX , γXn) ≤ P almost surely for all sufficiently large

n if and only if

P ≥ sup
pX′ :pX′≪pX

d(pX , pX′),
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where pX′ ≪ pX means p
X̂′ is absolutely continuous

with respect to pX .

Proof: First consider the case of common ran-

domness. Let R̄ be an achievable rate with respect

to distortion constraint D and perception constraint P .

Similarly to (24) and (25), we have

R̄ ≥ I(XT ; X̂T ), (30)

D ≥ E[(∆(XT , X̂T ))], (31)

where T is uniformly distributed over [1 : n] and

independent of (Xn, X̂n). Note that given X̂n = x̂n,

the distribution of X̂T is the same as the empirical

distribution of x̂n, and consequently

d(pX , γx̂n) = d(pX , p
X̂T |X̂n=x̂n).

Since d(pX , γ
X̂n) ≤ P almost surely and d(·, ·) is

convex in its second argument, it follows that

d(pX , p
X̂T

) ≤ P. (32)

Combining (30), (31), (32) and invoking the fact that

pXT
= pX proves R̄cr(D,P ) ≥ R(D,P ).

Next consider the case of no randomness. According

to Assumption 2, for any ǫ ∈ (0,min{D
2 ,

P
2 }), there

exists a discrete random variable X̃ with its support X̃
satisfying X̃ ⊆ X and |X̃ | < ∞ such that

I(X; X̃) ≤ R(D − 2ǫ, P − 2ǫ) + ǫ,

E[∆(X, X̃)] ≤ D − ǫ,

E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞,

d(pX , pX̃) ≤ P − ǫ.

By Lemma 1 in Appendix B, for any δ > 0, when n
is sufficiently large, we can find deterministic encoding

function f (n) : X n → [1 : M (n)] and decoding function

g(n) : [1 : M (n)] → C(n) with the properties

1

n
logM (n) ≤ I(X; X̃) + 2δ(H(X̃) + 1),

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ E[∆(X, X̃)] + δ,

C(n) ⊆ T (n)
δ (pX̃),

where X̃n := g(n)(f (n)(Xn)) and T (n)
δ (pX̃) is the set

of δ-typical sequences with respect to pX̃ . Clearly, by

choosing δ ≤ ǫ

2(H(X̃)+1)
, we have

1

n
logM (n) ≤ R(D − 2ǫ, P − 2ǫ) + 2ǫ,

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ D.

Moreover, since d(pX , γ) is continuous in γ over the

interior of the probability simplex defined on X̃ , it

follows that

d(pX , γx̃n) ≤ d(pX , pX̃) + ǫ ≤ P

for all x̃n ∈ T (n)
δ (pX̃) when δ is small enough. Now

sending ǫ → 0 and invoking the continuity of R(D,P )
for D > 0 and P > 0 shows R̄nr(D,P ) ≤ R(D,P ).
In view of the fact that R̄cr(D,P ) ≤ R̄pr(D,P ) ≤
R̄nr(D,P ), the proof is complete.

Although defining the perceptual quality of a real-

ization based on its empirical distribution is arguably

justifiable for i.i.d. sources, this is at best a first-order

approximation of what humans subconciously adopt for

image evaluation. How to take into account more so-

phisticated patterns while maintaining the theory at a

manageable level is a challenge to be addressed in future

works.

V. CONCLUSION

The roles of common randomness and private ran-

domness in rate-distortion-perception theory have been

investigated and shown to depend critically on how

the perception constraint is formulated. The operational

meanings of various perception constraints are also ex-

amined. It is our opinion that, as the distinguishing

feature of the new theory and likely the decisive factor

for its success, the notion of perceptual quality remains

to be formalized more convincingly in an information-

theoretic framework as a no-reference metric closely

mimicking the relevant human intuition.

APPENDIX A

VERIFICATION OF ASSUMPTION 2

Here we verify Assumption 2 for the case E[X2] <
∞, ∆(x, x̂) := (x − x̂)2, and d(pX , p

X̂
) :=

infp
XX̂

∈Π(pX ,p
X̂
) E[(X − X̂)2] (in this case, d(pX , p

X̂
)

is written as W 2
2 (pX , p

X̂
) according to the convention).

Let X̄ be a quantized version of X, obtained by

mapping X to its nearest point in 1√
N
[−N : N ], where

N is a positive integer. Since E[X2] < ∞, for any

D > 0, we can choose a sufficiently large N such

that E[(X − X̄)2] ≤ D
2 . Let X̂ be the mirror version

of X with respect to X̌ := E[X|X̄ ] in the sense that

p
XX̌X̂

= pXX̌p
X̂|X̌ and pX|X̌ = p

X̂|X̌ . Obviously,

X ↔ X̌ ↔ X̂ form a Markov chain and p
X̂

= pX .

Note that

I(X; X̂) ≤ I(X; X̌) ≤ H(X̌) ≤ H(X̄) ≤ log(2N + 1),

E[(X − X̂)2] = 2E[(X − X̌)2] ≤ 2E[(X − X̄)2] ≤ D,

W 2
2 (pX , p

X̂
) = 0.
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Therefore, we have4 R(D, 0) < ∞. Since R(D,P ) ≤
R(D, 0) for P > 0, it follows that (7) holds.

By the definition of R(D,P ), for any D > 0 and

P > 0, there exists a random variable X̂ such that

I(X; X̂) ≤ R(D,P ) + ǫ,

E[(X − X̂)2] ≤ D,

W 2
2 (pX , p

X̂
) ≤ P.

Let X̃ be a quantized version of X̂, obtained by mapping

X to its nearest point in 1√
N
[−N : N ], where N is a

positive integer. Clearly, we have |X̃ | < ∞ since X̃ ⊆
1√
N
[−N : N ]. With this construction, (8) is a simple

consequence of the data processing inequality. It can be

verified that

E[(X − X̃)2] (33)

= E[(X − X̂ + X̂ − X̃)2]

= E[(X − X̂)2] + E[(X̂ − X̃)2]

+ 2E[(X − X̂)(X̂ − X̃)]

≤ E[(X − X̂)2] + E[(X̂ − X̃)2]

+ 2

√

E[(X − X̂)2]E[(X̂ − X̃)2] (34)

≤ D + E[(X̂ − X̃)2] + 2

√

DE[(X̂ − X̃)2],

where (34) is due to the Cauchy-Schwarz inequality.

Similarly,

W 2
2 (pX , pX̃) ≤ P + E[(X̂ − X̃)2] + 2

√

PE[(X̂ − X̃)2].

Since E[X̂2] < ∞ (implied by the fact E[X2] < ∞ and

E[(X − X̂)2] < ∞), it follows that E[(X̂ − X̃)2] →
0 as N → ∞. Therefore, we can ensure (9) and (11)

by setting N large enough. Moreover, (10) is satisifed

because

E

[

max
x̃∈X̃

(X − x̃)2
]

≤ E[X2] + 2
√
NE[|X|] +N

≤ E[X2] + 2
√

NE[X2] +N (35)

< ∞,

where (35) is due to the Cauchy-Schwarz inequality. In

view of the fact that W 2
2 (pX , γ) ≤ E[maxx̃∈X̃ (X − x̃)2]

for all γ with support X̃ , (12) must hold as well. This

completes the verification of Assumption 2.

4It is worth mentioning that the value of R(D, 0) does not depend

on the choice of divergence d.

APPENDIX B

PROOF OF THEOREM 2

Lemma 1. Let X̃ be a discrete random variable defined

on X and jointly distributed with X and assume that its

support X̃ ⊆ X satisfies |X̃ | < ∞ and

E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞.

Given any D > 0, P > 0, and δ > 0, there exist

deterministic encoding function f (n) : X n → [1 : M (n)]
and decoding function g(n) : [1 : M (n)] → C(n) for all

sufficiently large n such that

1

n
logM (n) ≤ I(X; X̃) + 2δ(H(X̃) + 1),

1

n

n
∑

t=1

E[∆(Xt, X̃t)] ≤ E[∆(X, X̃)] + δ,

C(n) ⊆ T (n)
δ (pX̃),

where X̃n := g(n)(f (n)(Xn)) and T (n)
δ (pX̃) denotes

the set of δ-typical sequences with respect to pX̃ , i.e.,

T (n)
δ (pX̃) := {x̃n ∈ X̃ n : |γx̃n(x̃) − pX̃(x̃)| ≤

δpX̃(x̃) for all x̃ ∈ X̃ }.

Proof: This result has many known variants in the

literature (see, e.g., [20, Theorem 9.6.2]). We include its

proof for completeness.

We indepenently and uniformly choose M (n) :=

⌊2n(I(X;X̃)+2δ′)⌋ codewords C(n) := {X̃n}M (n)

m=1 from

T (n)
δ (pX̃). Given Xn = xn, the encoder finds an m̂ such

that

1

n

n
∑

t=1

∆(xt, X̃t(m̂)) ≤ E[∆(X, X̃)] +
δ

2
. (36)

If no such m̂ exists, the encoder simply sets m̂ = 1. Let

Axn :=

{

x̃n ∈ T (n)
δ (pX̃) :

n
∏

t=1

pX̃|X(x̃t|xt) >
2nR̂

|T (n)
δ (p

X̃
)|

or
1

n

n
∑

t=1

∆(xt, x̃t) > E[∆(X, X̃)] +
δ

2

}

,

where R̂ := I(X; X̃)+ δ′. Given Xn = xn, the encoder

fails to find a codeword satisfying (36) only if X̃n(m) ∈



12

Axn for all m. Therefore,

P

(

1

n

n
∑

t=1

∆(xt, X̃
n(m̂))

> E[∆(X, X̃)] +
δ

2
for all m

∣

∣

∣

∣

Xn = xn

)

≤



1−
∑

x̃n∈T (n)
δ

(pX̃)\Axn

1

|T (n)
δ (pX̃)|





M (n)

≤



1− 2−nR̂
∑

x̃n∈T (n)
δ

(pX̃)\Axn

n
∏

t=1

pX̃|X(x̃t|xt)





M (n)

≤ 1−
∑

x̃n∈T (n)
δ

(pX̃)\Axn

n
∏

t=1

pX̃|X(x̃t|xt)

+ exp(−M (n)2−nR̂) (37)

=
∑

x̃n∈(T (n)
δ

(pX̃))c∪Axn

n
∏

t=1

pX̃|X(x̃t|xt)

+ exp(−M (n)2−nR̂), (38)

where (37) is due to [15, Lemma 13.5.3]. Let A(n) :=

{(xn, x̃n) : xn ∈ X n, x̃n ∈ (T (n)
δ (pX̃))c ∪ Axn}. It

follows from (38) that

P

(

1

n

n
∑

t=1

∆(Xt, X̃(m̂)) > E[∆(X, X̃)] +
δ

2

)

≤ P((Xn, X̌n) ∈ A(n)) + exp(−M (n)2−nR̂),

where (Xt, X̌t), t ∈ [1 : n], are independent

and distributed according to pX,X̃ . Note that X̌n ∈
T (n)
δ (pX̃) with high probability when n is large. More-

over, in light of the weak law of large numbers,
1
n

∑n
t=1 pX̃|X(X̌t|Xt) and 1

n

∑n
t=1 ∆(Xt, X̌t) converge,

respectively, to −H(X̃|X) and E[∆(X, X̃)] in probabil-

ity. It is easy to see that

1

n
log

2nR̂

|T (n)
δ (pX̃)|

≥ 1

n
log

2nR̂

2n(1+δ)H(X̃)

= I(X; X̃) + δ′ − (1 + δ)H(X̃)

= −H(X̃ |X) + δ′ − δH(X̃).

So by choosing δ′ = δ(H(X̃) + 1), we have

P((Xn, X̌n) ∈ A(n)) → 0 as n → ∞. It is also clear

that exp(−M (n)2−nR̂) → 0 as n → ∞.

As shown by the above argument, for any δ > 0
and ǫ > 0, when n is sufficiently large, we can find

deterministic encoding function f (n) : X n → [1 : M (n)]
and decoding function g(n) : [1 : M (n)] → C(n) such that

1

n
logM (n) ≤ I(X; X̃) + 2δ(H(X̃) + 1),

P

(

1

n

n
∑

t=1

∆(Xt, X̂t) > E[∆(X, X̃)] +
δ

2

)

≤ ǫ,

C(n) ⊆ T (n)
δ (pX̃).

Let

W :=







1, 1
n

n
∑

t=1
∆(Xt, X̂t) > E[∆(X, X̃)] + δ

2 ,

0, otherwise,

and Vt := maxx̃∈X̃ ∆(Xt, x̃), t ∈ [1 : n]. We have

1

n

n
∑

t=1

E[∆(Xt, X̂t)]

=
1

n

n
∑

t=1

P(W = 0)E[∆(Xt, X̂t)|W = 0]

+
1

n

n
∑

t=1

P(W = 1)E[∆(Xt, X̂t)|W = 1]

≤ 1

n

n
∑

t=1

E[∆(Xt, X̂t)|W = 0]

+
1

n

n
∑

t=1

E[W∆(Xt, X̂t)]

≤ E[∆(X, X̃)] +
δ

2
+

1

n

n
∑

t=1

E[WVt].

Note that

E[WVt] = P

(

Vt ≤
1√
ǫ

)

E

[

WVt

∣

∣

∣

∣

Vt ≤
1√
ǫ

]

+ P

(

Vt >
1√
ǫ

)

E

[

WVt

∣

∣

∣

∣

Vt >
1√
ǫ

]

≤ P

(

Vt ≤
1√
ǫ

)

E

[

W
1√
ǫ

∣

∣

∣

∣

Vt ≤
1√
ǫ

]

+ P

(

Vt >
1√
ǫ

)

E

[

Vt

∣

∣

∣

∣

Vt >
1√
ǫ

]

≤ 1√
ǫ
E[W ] + P

(

Vt >
1√
ǫ

)

E

[

Vt

∣

∣

∣

∣

Vt >
1√
ǫ

]

≤ √
ǫ+ P

(

Vt >
1√
ǫ

)

E

[

Vt

∣

∣

∣

∣

Vt >
1√
ǫ

]

.

Since

E[Vt] = E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞,

it follows by the dominated convergence theorem that

P(Vt > v)E[Vt|Vt > v] → 0 as v → ∞. Therefore,
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by choosing a sufficiently small ǫ, we can ensure that

E[WVt] ≤ δ
2 , t ∈ [1 : n], and consequently

1

n

n
∑

t=1

E[∆(Xt, X̂t)] ≤ E[∆(X, X̃)] + δ.

This completes the proof of Lemma 1.

Now we proceed to prove Theorem 2. It suffices

to consider the case where pX does not assign all

probability mass to a single atom since otherwise the

problem is trivial.

According to Assumption 2, for any

ǫ ∈ (0,min{D
2 ,

P
2 }), there exists a random variable X̃

with its support X̃ satisfying X̃ ⊆ X and |X̃ | < ∞
such that

I(X; X̃) ≤ R(D − 2ǫ, P − 2ǫ) + ǫ,

E[∆(X, X̃)] ≤ D − ǫ,

E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞, (39)

d(pX , pX̃) ≤ P − ǫ.

By Lemma 1, for any δ > 0, when n is sufficiently large,

we can find deterministic encoding function f (n) : X n →
[1 : M (n)] and decoding function g(n) : [1 : M (n)] →
C(n) with the properties

1

n
logM (n) ≤ I(X; X̃) + 2δ(H(X̃) + 1),

1

n

n
∑

t=1

E[∆(Xt, X̃t)] ≤ E[∆(X, X̃)] + δ,

C(n) ⊆ T (n)
δ (pX̃).

Clearly, by choosing δ ≤ ǫ

2(H(X̃)+1)
, we have

1

n
logM (n) ≤ R(D − 2ǫ, P − 2ǫ) + 2ǫ,

1

n

n
∑

t=1

E[∆(Xt, X̃t)] ≤ D − ǫ

2
.

Moreover, 1
n

∑n
t=1 pX̃t

must converge to pX̃ under the

total variation distance (i.e., dTV(
1
n

∑n
t=1 pX̃t

, pX̃) → 0)

as δ → 0 given the fact that

1

n

n
∑

t=1

pX̃t|X̃n=x̃n = γx̃n,

P(X̃n ∈ T (n)
δ (pX̃)) = 1.

Since d(pX , γ) is continuous in γ over the interior of the

probability simplex defined on X̃ , it follows that

d

(

pX ,
1

n

n
∑

t=1

pX̃t

)

≤ d(pX , pX̃) +
ǫ

2
≤ P − ǫ

2
(40)

when δ is sufficiently close to zero.

However, in general (40) does not imply the stronger

requirement

d(pX , pX̃t
) ≤ P − ǫ

2
, t ∈ [1 : n].

Nevertheless, there is a simple remedy with the avail-

ability of common randomness. For any integer q,

let s
(n)
i be a circular shift operator in the sense that

s
(n)
q (xn) = (x1⊕nq, x2⊕nq, · · · , xn⊕nq) for all xn, where

⊕n is modulo-n addition5. Let C(n)
q denote the codebook

obtained by applying s
(n)
q to every codeword6 of C(n),

q ∈ [0 : n− 1]. Moreover, we equip each codebook C(n)
q

with encoding function f
(n)
q : X n → [1 : M (n)] and

decoding function g
(n)
q : [1 : M (n)] → C(n)

q defined as

follows:

f (n)
q (xn) := f (n)(s

(n)
−q (x

n)), xn ∈ X n,

g(n)q (m) = s(n)q (g(n)(m)), m ∈ [1 : M (n)].

Note that we have C(n)
0 = C(n), f

(n)
0 = f (n), and g

(n)
0 =

g(n). Let Q be uniformly distributed over [0 : n − 1],
independent of Xn, and available at both the encoder and

decoder. The role of Q is to specify which codebook (as

well as the associated encoding and decoding functions)

to use. Let X̌n denote the reconstruction. Based on our

construction, it is clear that

pX̌t
=

1

n

n
∑

t′=1

pX̃t′
, t ∈ [1 : n],

1

n

n
∑

t=1

E[∆(Xt, X̌t)|Q = q] =
1

n

n
∑

t=1

E[∆(Xt, X̃t)],

q ∈ [0 : n− 1],

and consequently

d(pX , pX̌t
) ≤ P − ǫ

2
, t ∈ [1 : n],

1

n

n
∑

t=1

E[∆(Xt, X̌t)] ≤ D − ǫ

2
.

It remains to eliminate common randomness. The

key observation here is that Q can be simulated using

a negligible fraction of source symbols as H(Q) is

sublinear in n. Specificaly, consider the case where

n0 := ⌊nα⌋ source symbols are leveraged to simulate

Q, where α > 0 is small enough. Let pmax denote the

maximum probability value of pX (i.e., the maximum

of the probabilities of atoms if atoms exist; otherwise,

pmax = 0). We assume pmax > 0 since otherwise Q

5We assume the output of the modulo-n operation is in [1 : n].
6The resulting codeword still retains the index of the original

codeword.
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can be exactly generated from X ∼ pX . Obviously,

the maximum probability value of pn0

X is pn0
max, which

vanishes exponentially as n → ∞ (for any given α > 0).

This ensures that there is a map ω : X n0 → [0 : n − 1]
such that the distribution pω(Xn0) of ω(Xn0) satisfies

|pω(Xn0 )(i) − 1
n
| ≤ pn0

max for all i ∈ [0 : n − 1]. For

example, first map as many atoms as possible to the

elements of [0 : n−1] while ensuring that the total mass

of atoms mapped to each element is no greater than 1
n

;

then use the remaining atoms and atomless measurable

sets to fill the gap between the total mass for each

element and the target 1
n

so that the total mass for each

element is within the range 1
n
± pn0

max. Consequently, we

have dTV(pω(Xn0 ),Unif[0 : n − 1]) ≤ npn0
max → 0 as

n → ∞.

We assume the encoder uses this simulation code on

the (n + 1)-th to (n + n0)-th source symbols Xn+n0

n+1

to generate Q̂ := ω(Xn+n0

n+1 ). It then transmits Q̂ to the

decoder losslessly with ⌈log n⌉ bits and applies the afore-

mentioned randomly shifted code to the first n source

symbols Xn but with Q replaced by its approximate

version Q̂. Denote the reconstructions of the first n
source symbols by X̂n. For the (n+ 1)-th to (n+ n0)-
th source symbols, the decoder generates reconstructions

X̂n+j := X̂j , j ∈ [1 : n0]. Under this construction, both

the encoder and decoder are deterministic.

We shall show that the deterministic code has the

desired properties. Since

n
∑

t=1

E[∆(Xt, X̂t)|Q = q] =

n
∑

t=1

E[∆(Xt, X̃t)],

q ∈ [0 : n− 1],

E[∆(Xn+j, X̂n+j)] ≤ E

[

max
x̃∈X̃

∆(X, x̃)

]

< ∞,

j ∈ [1 : n0],

it follows that

1

n+ n0

n+n0
∑

t=1

E[∆(Xt, X̂t)] ≤ D

for all sufficiently large n as long as α is chosen small

enough. Moreover, in view of the fact that p
X̂t|Q̂ =

pX̌t|Q, t ∈ [1 : n], and dTV(pQ̂, pQ) → 0 as n → ∞,

we must have dTV(pX̂t

, pX̌t
) → 0 uniformly for all

t ∈ [1 : n] as n → ∞, which, together with the

uniform convergence of pX̌t
, t ∈ [1 : n], to pX̃ under

the total variation distance as δ → 0 and the continuity

of d(pX , q) in this second argument at q = pX̃ , implies

d(pX , pX̌t
) ≤ P, t ∈ [1 : n+ n0],

for all sufficiently large n as long as δ is chosen small

enough. Finally, invoking the fact that
⌈log n⌉
n+n0

→ 0 as

n → ∞ and the continuity of R(D,P ) for D > 0 and

P > 0 completes the proof of Theorem 2.

Remark 12. It is possible to avoid using the simulation

code via a more careful construction.

Let A := {xn ∈ X n : xn = s
(n)
i (xn) for some i ∈

[1 : n− 1]} and B := X n\A. Moreover, we partition B
into B0,B1, · · · ,Bn−1 such that Bq = {s(n)i (xn) : xn ∈
B0}, q ∈ [1 : n − 1]. (The existence of such a partition

will be discussed later.)

Take codebook Cn ⊆ T (n)
δ (pX̃) and its associated

deterministic encoding function f (n) : X n → [1 : M (n)]
and decoding function g(n) : [1 : M (n)] → C(n) as

specified in the proof of Theorem 2. Given xn ∈ A∪B0,

the encoder finds7 (m∗, q∗) such that

(m∗, q∗) = arg min
m∈[1:M (n)],i∈[0:n−1]

n
∑

t=1

∆(xt, x̃t),

where x̃n := s
(n)
q (g(n)(m)). It then sends (m∗, q∗)

to the decoder, which produces s
(n)
i∗ (g(n)(m∗)) as the

reconstruction. For xn ∈ Bq, q ∈ [1 : n−1], the encoder

finds the index pair for the corresponding s
(n)
−q (x

n) in B0

according to the aforedescribed encoding rule and sends

it to the decoder. The decoder first produces the recon-

struction for s
(n)
−q (x

n) according to the aforedescribed

decoding rule, then outputs the final result by shifting

this reconstruction using s
(n)
q . Let X̄n denote the output

induced by this new coding scheme. Since the distortion

does not increase for any realization xn as compared to

the original scheme8, it follows that

n
∑

t=1

E[∆(Xt, X̄t)] ≤
n
∑

t=1

E[∆(Xt, X̃t)], (41)

where X̃n := g(n)(f (n)(Xn)). Moreover, as shown at

the end of Appendix B,

lim
n→∞

P(Xn ∈ A) = 0. (42)

So with δ chosen small enough, the circular symmetry

of the coding scheme (conditioned on Xn ∈ B) ensures

that pX̄t
, t ∈ [1 : n], are uniformly close to pX̃ under

the total variation distance and consequently

d(pX , pX̄t
) ≤ P, t ∈ [1 : n],

for all sufficiently large n. As the rate overhead for

transmitting q∗ is negligible, the new coding scheme

indeed has the desired properties.

7Use a prescribed deterministic tie-break rule if the minimizer is

not unique.
8If we modify the coding scheme by setting (m∗, q∗) =

(f (n)(xn), 0) for xn ∈ B0, then the distortion might increase for

xn ∈ B\B0.
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However, there is a subtle issue regarding the partition

of B into B0,B1, · · · ,Bn−1. The existence of such a par-

tition is in a certain sense guaranteed. Note that B is the

union of a collection of disjoint equivalent classes, where

each equivalent class consists of n different sequences

that can be converted from one to another via circular

shifting. We can form B0 by choosing one sequence from

each equivalent class in B; then Bi is uniquely specified

due to the requirement Bq = {s(n)q (xn) : xn ∈ B0},

q ∈ [1 : n− 1]. It can be seen that there is considerable

freedom in creating this kind of partitions. When X is

finite or countably infinite, the resulting sets are always

measurable. But in a more general setting, certain par-

titions might yield non-measurable sets.

Here we show that this issue can be resolved by

performing the partition judiciously when X is a Polish

space (as assumed throughout this paper). First consider

the case X = R. We shall start with a simple example

where n = 3. There are totally 6 permutations on [1 : 3],
namely, (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
and (3, 2, 1). Pick two permutations that are not related

via circular shifting9. Each permutation (a, b, c) can

be used to specificy a region in R
3 according to the

following rule: (a, b, c) 7→ {x3 ∈ R
3 : xa ≥ xb ≥ xc}.

Now we can let B0 be the union of the regions specified

by the two picked permutations with the elements in A
excluded. Then B1 and B2 are also uniquely determined.

In general, there are n! permutations on [1 : n]. We

can pick (n − 1)! permutations that are not related

via circular shifting, and use these permutations to

specify (n− 1)! regions in R
n (according to the obvious

extension of the aforementioned rule). Then define B0 by

taking the union of these (n− 1)! regions and excluding

the elements in A. It can be verified that the induced

partition B0,B1, · · · ,Bn−1 is free of the measurability

issue.

This method can be generalized to any Polish space.

Note that any Borel space on a Polish space is Borel

isomorphic to a measurable subspace of R. We can

simply map the Polish space X to a measurable sub-

space Y of R via an isomorphism f , which naturally

induces a map from X n to Yn via the isomorphism

f (n) := (f, f, ..., f). We then perform the partition {Bi}
for the high probability subset Ac of Rn as above, and

take intersections {Bi ∩ Yn} to produce a partition for

the high probability subset of Yn. Mapping this back to

the Polish space X n, we obtain a desired partition.

Proof of (42): Note that given q ∈ [1 : n − 1], we

9For example, (1, 2, 3) and (1, 3, 2) are not related via circular

shifting while (1, 2, 3) and (3, 1, 2) are since applying s
(3)
2 to (1, 2, 3)

gives (3, 1, 2).

can divide [1 : n] into k := gcd(n, q) subsets of size
n
k

, and the elements in each subset differ by a multiple

of q (modulo-n). For example, when n = 6 and q = 4,

we have two subsets {1, 3, 5} and {2, 4, 6}. In this case,

Xn = s
(n)
q (Xn) means X1 = X3 = X5 and X2 = X4 =

X6; as a consequence

P(Xn = s(n)q (Xn)) ≤ P(X1 = X3 and X2 = X4)

= τ2,

where τ := P(Xi = Xj) for i 6= j. In general, it can

be verified that Xn = s
(n)
q (Xn) implies at least ⌊ n

2k ⌋k
independent events of the kind Xi 6= Xj , which, together

with the fact ⌊ n
2k ⌋k ≥ n

4 , further implies

P(Xn = s(n)q (Xn)) ≤ τ
n

4 .

Now one can readily prove (42) since

P(Xn ∈ A) ≤
n−1
∑

q=1

P(Xn = s(n)q (Xn))

≤ (n− 1)τ
n

4

→ 0 as n → ∞,

where the last step is due to τ ∈ [0, 1).

APPENDIX C

VERIFICATION OF ASSUMPTION 3

Here we verify Assumption 3 for the case E[X2] < ∞
and ∆(x, x̂) := (x− x̂)2.

According to the definition of R(D, 0), for any D > 0
and δ ∈ (0,D), there exists a random variable X̌ such

that

I(X; X̌) ≤ R(D − δ, 0) + δ,

E[(X − X̌)2] ≤ D − δ,

pX̌ = pX .

Let X̃ be a quantized version of X̌, obtained by mapping

X̌ to its nearest point in 1√
N
[−N : N ], where N is a

positive integer. By the data processing inequality,

I(X; X̃) ≤ I(X; X̌) ≤ R(D − δ, 0) + δ.

As R(D, 0) is convex in D and consequently10 con-

tinuous for D > 0, we have R(D − δ, 0) + δ ≤
R(D, 0) + ǫ by choosing a sufficiently small δ. Let X̂
be the mirror version of X̌ with respect to X̃ in the

sense that p
XX̌X̃X̂

= pXX̌pX̃|X̌p
X̂|X̃ and p

X̂|X̃ = pX̌|X̃ .

10It is shown in Appendix A that R(D, 0) < ∞ for D > 0.
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Obviously, X ↔ X̌ ↔ X̃ ↔ X̂ form a Markov chain

and p
X̂

= pX̌ = pX . Moreover,

E[(X − X̂)2]

= E[((X − X̌) + (X̌ − X̃) + (X̃ − X̂))2]

= E[(X − X̌)2] + E[(X̌ − X̃)2] + E[(X̃ − X̂)2]

+ 2E[(X − X̌)(X̌ − X̃)] + 2E[(X − X̌)(X̃ − X̂)]

+ 2E[(X̌ − X̃)(X̃ − X̂)]

≤ E[(X − X̌)2] + E[(X̌ − X̃)2] + E[(X̃ − X̂)2]

+ 2

√

E[(X − X̌)2]E[(X̌ − X̃)2]

+ 2

√

E[(X − X̌)2]E[(X̃ − X̂)2]

+ 2

√

E[(X̌ − X̃)2]E[(X̃ − X̂)2] (43)

= E[(X − X̌)2] + 4E[(X̌ − X̃)2]

+ 4

√

E[(X − X̌)2]E[(X̌ − X̃)2] (44)

≤ D − δ + 4E[(X̌ − X̃)2] + 4

√

(D − δ)E[(X̌ − X̃)2],

where (43) is due to the Cauchy-Schwarz inequality,

and (44) is due to E[(X̌ − X̃)2] = E[(X̃ − X̂)2]
(implied by the fact that pX̃X̌ = p

X̃X̂
). Since pX̌ = pX ,

it follows that E[X̌2] < ∞, which further implies

E[(X̌−X̃)2] → 0 as N → ∞. Therefore, we can ensure

E[(X − X̂)2] ≤ D by setting N large enough. This

completes the verification.

APPENDIX D

PROOF OF THEOREM 4

According to Assumption 3, for any ǫ > 0, there exist

X̃ and X̂ such that X ↔ X̃ ↔ X̂ form a Markov chain,

the support of X̃, denoted X̃, satisifies |X̃| < ∞, and

I(X; X̃) ≤ R(D, 0) + ǫ,

E[∆(X, X̃)] ≤ D,

p
X̂

= pX .

We shall treat the conditional distribution pX|X̃ in-

duced by p
XX̃X̂

specified above as a memoryless chan-

nel and establish a soft-covering lemma that is needed

for the proof of Theorem 4.

Definition 6. Given a codebook C(n) ⊆ X̃ n, let poutC(n)

denote its induced distribution of the output sequence

generated through memoryless channel pX|X̃ by a code-

word randomly picked from C(n) according to the uni-

form distribution.

Lemma 2. For any R > I(X̃ ;X) and δ > 0, there

exists a sequence of codebooks {C(n)}∞n=1 with C(n) ⊆
T (n)
δ (pX̃) and |C(n)| ≤ 2nR such that

lim
n→∞

dTV(p
out
C(n) , pnX) = 0,

where T (n)
δ (pX̃) denotes the set of δ-typical sequences

with respect to pX̃ .

Proof: We first briefly review some basic definitions

in information-spectrum methods. The limsup in proba-

bility of a sequence of random variables {Wn}∞n=1 is

defined as

p- lim sup
n→∞

Wn := inf
{

τ : lim
n→∞

P{Wn > τ} = 0
}

.

Correspondingly, the liminf in probability is defined as

p- lim inf
n→∞

Wn := −p- lim sup
n→∞

−Wn.

For a sequence of pairs of random variables (W,V) :=
{(W n, V n)}∞n=1, the sup-information rate of (W,V) is

defined as

Ī (W,V) := p- lim sup
n→∞

1

n
ıWn;V n(W n;V n)

where ıWn;V n := log dpWnV n

d(pWnpV n ) denotes the informa-

tion density of (W n, V n). For a sequence of distribu-

tions {(pWn , pV n)}∞n=1, the inf-relative-entropy rate of

{(pWn , pV n)}∞n=1 is defined as

D ({pWn}∞n=1‖{pV n}∞n=1) := p- lim inf
n→∞

1

n
log

dpWn

dpV n

(W n).

Now we are in a position to prove Lemma 2. Construct

a sequence of pairs of random variables (X̃,X) :=
{(X̃n,Xn)}∞n=1 with (X̃n,Xn) ∼ pn

X̃X
and another

sequence of pairs of random variables (Ỹ,Y) :=
{(Ỹ n, Y n)}∞n=1 with (Ỹ n, Y n) ∼ pỸ npY n|Ỹ n , where

p
Y n|Ỹ n := pn

X|X̃ and p
Ỹ n is a truncated version pn

X̃
in

the sense that

pỸ n(y
n) :=

{

pn

X̃
(yn)

P(X̃n∈T (n)
δ

(pX̃))
, yn ∈ T n

δ (pX̃),

0 yn ∈ X̃n\T n
δ (pX̃).

By the general soft-covering lemma [21, Theorem 4] [22,

Corollary VII.4], for any R > Ī(Ỹ;Y), there exists

a sequence of codebooks with C(n) ⊆ T (n)
δ (pX̃) and

|C(n)| ≤ 2nR such that

lim
n→∞

dTV(p
out
C(n) , pY n) = 0.

Note that

dTV(pY n, pnX) ≤ dTV(pỸ n , p
n
X̃
) (45)

= P(X̃ /∈ T (δ)
n )

→ 0 as n → ∞,
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where (45) is due to the data processing inequality for the

total variation distance. Moreover, in light of the triangle

inequality for the total variation distance,

dTV(p
out
C(n) , p

n
X) ≤ dTV(p

out
C(n) , pY n) + dTV(pY n , pnX).

So it suffices to prove I(X̃ ;X) ≥ Ī(Ỹ;Y).
It can be verified that

Ī(Ỹ;Y) = p- lim sup
n→∞

1

n
log

dpỸ nY n

d
(

pỸ npY n

)(Ỹ n, Y n)

= p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(Ỹ n, Y n)

+
1

n
log

dpnX
dpY n

(Y n)

≤ p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(Ỹ n, Y n)

+ p- lim sup
n→∞

1

n
log

dpnX
dpY n

(Y n) (46)

= p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(Ỹ n, Y n)

−D({pY n}∞n=1‖{pnX}∞n=1),

where (46) follows by [23, p. 14, the third inequality

from the bottom]. Since limn→∞ P(X̃n ∈ T (n)
δ (pX̃)) =

1 and the conditional distribution of (X̃n,Xn) given

X̃n ∈ T (n)
δ (pX̃) is the same as pỸ n,Y n , we must have

p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(Ỹ n, Y n)

= p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(X̃n,Xn).

Moreover, by the weak law of large numbers,

p- lim sup
n→∞

1

n
log

dpn
X|X̃

dpnX
(X̃n,Xn) = I(X̃;X).

Finally, invoking the fact that D({pY n}∞n=1‖{pnX}∞n=1) ≥
0 [23, Lemma 3.2.1] completes the proof of Lemma 2.

Now we proceed to prove Theorem 4. Given R >
I(X̃ ;X) and δ > 0, let {C(n)}∞n=1 be a sequence of

codebooks with the properties specified in Lemma 2.

Construct C(n)
q by applying the shift operator s

(n)
q to

every codeword of C(n), q ∈ [0 : n − 1]. Let Q be uni-

formly distributed over [0 : n− 1], and Y̌ n be uniformly

distributed over C(n)
i given Q = q, q ∈ [0 : n − 1].

Denote the output sequence generated by Y̌ n through

memoryless channel pX|X̃ as Ȳ n. For q ∈ [0 : n− 1],

dTV(pȲ n|Q=q, p
n
X) = dTV(pȲ n|Q=0, p

n
X) (47)

= dTV(p
out
C(n) , p

n
X),

where (47) holds because pȲ n|Q=q is simply a shifted

version of pȲ n|Q=0 while pnX is shift-invariant. Since

dTV(·, ·) is convex in its first argument, it follows that

dTV(pȲ n , pnX) ≤ dTV(p
out
C(n) , pnX)

and consequently must converge to 0 as n → ∞.

Our coding scheme can be illustrated using the fol-

lowing probablistic graphical model:

Xn ց
↓
X̌n ր

X̃n −→ X̂n

The encoder first leverages the conditional distribution

pY̌ n|Ȳ n induced by pY̌ nȲ n to generate X̌n based on Xn.

Note that we have Xn ∈ X n, X̌n ∈ ∪n−1
q=0C

(n)
q , and

pXnX̌n = pnXpX̌n|Xn = pnXpY̌ n|Ȳ n . For t ∈ [1 : n],

dTV(pXtX̌t
, pXX̃)

≤ dTV(pXtX̌t
, pȲtY̌t

) + dTV(pȲtY̌t
, pXX̃) (48)

≤ dTV(pXnX̌n , pȲ nY̌ n) + dTV(pȲtY̌t
, pXX̃) (49)

= dTV(p
n
X , pȲ n) + dTV(pY̌t

, pX̃),

where (48) and (49) are due to the triangle inequal-

ity and the data processing indequality for the total

variation distance, respectively. Furthermore, we have

dTV(p
n
X , pȲ n) → 0 as n → ∞, and dTV(pY̌t

, pX̃) → 0
uniformly for all t as δ → 0. Therefore,

dTV(pXtX̌t
, pXX̃) ≤ ǫδ

for t ∈ [1 : n] and all sufficiently large n, where ǫδ → 0
as δ → 0.

For each t ∈ [1 : n], let11

pX̌tX̃t|Xt
(x̌, x̃|x)

:= bX′
t|Xt

(x̌|x)1x̌=x̃(x̌, x̃)

+

{

1
κt(x)

rX̌t|Xt
(x̌|x)rX̃t|Xt

(x̃|x), κt(x) > 0,

0, κt(x) = 0,

(x, x̌, x̃) ∈ X × X̃ × X̃ ,

11Since pY̌ n is shift-invarint and pX|X̃ is memoryless, it follows

that pȲ nY̌ n and consequently pY̌ n|Ȳ n are shift-invariant as well,

which further implies the shift-invariance of pXnX̌n in view of

the fact pXnX̌n = pnXpY̌ n|Ȳ n . Therefore, pX̌t|Xt
, bX′

t
|Xt

, rX̌t|Xt
,

rX̃t|Xt
, κt, and pX̌tX̃t|Xt

are all time-invariant.
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where

bX′
t|Xt

(x′|x) := min{pX̌t|Xt
(x′|x), pX̃ |X(x′|x)},

rX̌t|Xt
(x̌|x) := pX̌t|Xt

(x̌|x)− bX′
t|Xt

(x̌|x),
rX̃t|Xt

(x̃|x) := pX̃|X(x̃|x)− bX′
t|Xt

(x̃|x),
κt(x) := dTV(pX̌t|Xt=x, pX̃ |X=x)

=
∑

x̌∈X̃

rX̌t|Xt
(x̌|x)

=
∑

x̃∈X̃

rX̃t|Xt
(x̃|x)

= 1−
∑

x′∈X̃

bX′
t|Xt

(x′|x).

We claim that pX̌tX̃t|Xt
is a regular conditional distribu-

tion. Indeed, on one hand, given each x, pX̌tX̃t|Xt=x is a

distribution (more precisely, a probability mass function)

since pX̌tX̃t|Xt
(x̌, x̃|x) ≥ 0, (x̌, x̃) ∈ X̃ 2, and

∑

x̌,x̃∈X̃

pX̌tX̃t|Xt
(x̌, x̃|x) =

∑

x̌

bX′
t|Xt

(x̌|x) + κt(x) = 1;

on the other hand, given each (x̌, x̃), x 7→
pX̌tX̃t|Xt

(x̌, x̃|x) is measurable (which is due to the fact

that both x 7→ pX̌t|Xt
(x̌|x) and x 7→ pX̃|X(x̃|x) are

measurable), and so is x 7→ p̌X̌tX̃t|Xt
(B|x) for each

B ⊆ X̃ 2. Moreover, given each x, p̌X̌tX̃t|Xt=x is in fact

a maximal coupling of pX̌t|Xt=x and pX̃|X=x since
∑

x̌,x̃∈X̃ :x̌6=x̃

pX̌tX̃t|Xt
(x̌, x̃|x)

=
1

κt(x)

∑

x̌∈X̃

rX̌t|Xt
(x̌|x)

∑

x̃∈X̃ :x̃6=x̌

rX̃t|Xt
(x̃|x)

=
1

κt(x)

∑

x̌∈X̃

rX̌t|Xt
(x̌|x)(κt(x)− rX̃t|Xt

(x̌|x))

= κt(x)−
1

κt(x)

∑

x̌∈X̃

rX̌t|Xt
(x̌|x)rX̃t|Xt

(x̌|x)

= κt(x)

= dTV(p̌X̃i|Xi=x, pX̃ |X=x), κt(x) > 0,

which clearly also holds when κt(x) = 0.

The encoder leverages pX̃t|XtX̌t
induced by

pXtX̌tX̃t
:= pXpX̌tX̃t|Xt

to generate X̃t from (Xt, X̌t),

t ∈ [1 : n]. Note that pXtX̃t
= pXX̃ and

P(X̌t 6= X̃t) =

∫

P(X̌t 6= X̃t|Xt = t)dpX(x)

=

∫

dTV(pX̌t|Xt=x, pX̃|X=x)dpX(x)

= dTV(pXtX̌t
, pXX̃)

≤ ǫδ, t ∈ [1 : n],

when n is sufficiently large.

The encoder then sends X̃n to the decoder. We have

1

n
H(X̃n) ≤ 1

n
H(X̌n) +

1

n
H(X̃n|X̌n)

≤ R+
log n

n
+

1

n
H(X̃n|X̌n)

≤ R+
log n

n
+

1

n

n
∑

t=1

H(X̃t|X̌t)

≤ R+
log n

n
+

1

n

n
∑

t=1

(Hb(P(X̌t 6= X̃t))

+ P(X̌t 6= X̃t) log |X̃ |)
(50)

≤ R+
log n

n
+Hb(ǫδ) + ǫδ log |X̃ |, (51)

where (50) is due to Fano’s inequality, and (51) holds

when ǫδ ≤ 1
2 and n is sufficiently large.

Given X̃n, the decoder simply generates X̂n using the

conditional distribution p
X̂n|X̃n := pn

X̂|X̃ . It is clear that

p
XtX̂t

= p
XX̂

, t ∈ [1 : n], and consequently

1

n

n
∑

t=1

E[∆(Xt, X̂t)] = E[∆(X, X̂)] ≤ D,

p̌
X̂t

= pX , t ∈ [1 : n].

Finally, by choosing ǫ, δ sufficiently small, R sufficiently

close to I(X; X̃), and n sufficiently large, we can make

R+
log n

n
+Hb(ǫδ) + ǫδ log |X̃ |

as close to R(D, 0) as we want. This completes the proof

of Theorem 4.

APPENDIX E

VERIFICATION OF UNIFORM INTEGRABILITY

Here we verify uniform integrability for the case

E[X2] < ∞, E[X̂2] < ∞, and ∆(x, x̂) := (x− x̂)2.

By the Cauchy-Schwarz inequality,

E[(X − X̂)21E (X, X̂)]

≤ (

√

E[X21E(X, X̂)] +

√

E[X̂21E (X, X̂)])2.

Note that for any χ > 0,

E[X21E (X, X̂)]

= P(X2 ≤ χ)E[X21E (X, X̂)|X2 ≤ χ]

+ P(X2 > χ)E[X21E (X, X̂)|X2 > χ]

≤ χP((X, X̂) ∈ E) + P(X2 > χ)E[X2|X2 > χ]

≤ χδ + P(X2 > χ)E[X2|X2 > χ].
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Similarly, we have

E[X̂21E (X, X̂)] ≤ χδ + P(X̂2 > χ)E[X̂2|X̂2 > χ].

Since E[X2] < ∞ and E[X̂2]} < ∞, it follows by

the dominated convergence theorem that both P(X2 >
χ)E[X2|X2 > χ] and P(X̂2 > χ)E[X̂2|X̂2 > χ]
converge to 0 as χ → ∞. Therefore, there exists χ∗ > 0
such that P(X2 > χ∗)E[X2|X2 > χ∗] ≤ ǫ

8 and

P(X̂2 > χ∗)E[X̂2|X̂2 > χ∗] ≤ ǫ
8 . Setting δ = ǫ

8χ∗

ensures

E[(X − X̂)21E (X, X̂)] ≤
(

2

√

χ∗ ǫ

8χ∗ +
ǫ

8

)2

= ǫ.

APPENDIX F

PROOF OF THEOREM 6

We shall first prove ϕ(D) ≥ R(D2 ). For any p
UX̂|X

satisfying (17), (18), and (19), let V := E[X|U ] and

V̂ := E[X̂ |U ]. Since X ↔ U ↔ X̂ form a Markov

chain (see (18)), it follows that

E[(X − X̂)2]

= E[(X − V )2] + E[(V − V̂ )2] + E[(X̂ − V̂ )2],

which, together with (17), implies

min{E[(X − V )2],E[(X̂ − V̂ )2]} ≤ D

2
.

Now consider the case E[(X − V )2] ≤ D
2 . Note that

max{I(X;U); I(X̂ ;U)} ≥ I(X;U)

≥ I(X;V ) (52)

≥ R(
D

2
),

where (52) is due to the data processing inequality. By

symmetry (see (19)), max{I(X;U); I(X̂ ;U)} ≥ R(D2 )

continues to hold if E[(X̂ − V̂ )2] ≤ D
2 . This proves

ϕ(D) ≥ R(D2 ).
Next we proceed to prove ϕ(D) ≤ R(D2 ). For any

pV |X satisfying (22), let U := E[X|V ]. We have

E[(X − U)2] ≤ E[(X − V )2],

which, together with (22), implies E[(X − U)2] ≤ D
2 .

Now construct p
X̂U |X such that p

X̂U |X = pU |Xp
X̂|U

and p
X̂|U = pX|U . Note that (18) and (19) are satisfied.

Moreover,

E[(X − X̂)2] = E[(X − U)2] + E[(X̂ − U)2]

= 2E[(X − U)2]

≤ D.

So (17) is also satisfied. As a consequence,

ϕ(D) ≤ max{I(X;U), I(X̂ ;U)}.
The proof is complete in view of the fact that

max{I(X;U), I(X̂ ;U)} = I(X;U) ≤ I(X;V ).

APPENDIX G

PROOF OF THEOREM 7

In view of (20), the problem boils down to determining

R(D2 ) by solving the optimization problem in (21). To

this end, we need the following lemma.

Lemma 3. If there exist p∗V over a finite set V ⊆ [0, 1]
with p∗V (v) > 0, v ∈ V , and λ ≥ 0 such that

(1− ρ)2−λv2

∑

ṽ∈V p∗V (ṽ)2
−λṽ2 +

ρ2−λ(1−v)2

∑

ṽ∈V p∗V (ṽ)2
−λ(1−ṽ)2

= 1,

v ∈ V, (53)

(1− ρ)2−λv2

∑

ṽ∈V p∗V (ṽ)2
−λṽ2 +

ρ2−λ(1−v)2

∑

ṽ∈V p∗V (ṽ)2
−λ(1−ṽ)2

≤ 1,

v ∈ [0, 1]\V, (54)

(1− ρ)

∑

v∈V p∗V (v)2
−λv2

v2
∑

ṽ∈V p∗V (ṽ)2
−λṽ2

+ ρ

∑

v∈V p∗V (v)2
−λ(1−v)2 (1− v)2

∑

ṽ∈V p∗V (ṽ)2
−λ(1−ṽ)2

=
D

2
, (55)

then p∗
V |X given by

p∗V |X(v|x) := p∗V (v)2
−λ(x−v)2

∑

ṽ∈V p∗V (ṽ)2
−λ(x−ṽ)2

,

x ∈ {0, 1}, v ∈ V,
is an optimal solution to (21).

Proof: It is clear that there is no loss of generality

in assuming that V only takes value from [0, 1]. Let

V ′ be an arbitrary finite subset of [0, 1]. In view of the

standard Karush-Kuhn-Tucker conditions [15, pp. 362–

364], (53)–(55) ensures that p∗
V |X attains the infimum in

(21) when the alphabet of V is restricted12 to be V ∪V ′.
Moreover, according to the support lemma [24, p. 631],

it suffices to consider the finite alphabet case; in fact,

the alphabet size of V does not need to exceed 3 for the

purpose of preserving pX , H(X|V ), and E[(X − V )2].
So p∗

V |X must be an optimal solution to (21).

Now we are in a position to solve (21). It suffices to

consider the case D ∈ (0, 2ρ(1 − ρ)) since obviously

R(D2 ) equals Hb(ρ) when D = 0 and equals 0 when

D ≥ 2ρ(1− ρ).
Let V := {a, 1 − a} with

a :=
1−

√
1− 2D

2
.

Note that a ∈ (0, ρ). Define p∗V over V such that

p∗V (a) =
1− a− ρ

1− 2a
, p∗V (1− a) =

ρ− a

1− 2a
.

12We set p∗V |X(v|x) = 0 for v ∈ V ′\V .
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Moreover, let

λ :=
1

1− 2a
log(

1− a

a
),

which is clearly positive. We shall proceed to verify that

the constructed p∗V and λ satisfying (53)–(55).

Note that

(1− ρ)2−λa2

p∗V (a)2
−λa2 + p∗V (1− a)2−λ(1−a)2

+
ρ2−λ(1−a)2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

=
(1− ρ)

p∗V (a) + p∗V (1− a) a
1−a

+
ρ a
1−a

p∗V (a)
a

1−a
+ p∗V (1− a)

(56)

= 1,

where (56) is due to

2−λ(1−a)2 =
a

1− a
2−λa2

.

Similarly,

(1− ρ)2−λ(1−a)2

p∗V (a)2
−λa2

+ p∗V (1− a)2−λ(1−a)2

+
ρ2−λa2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

=
(1− ρ) a

1−a

p∗V (a) + p∗V (1− a) a
1−a

+
ρ

p∗V (a)
a

1−a
+ p∗V (1− a)

= 1.

So (53) indeed holds.

Next let

η(v) :=
(1− ρ)2−λv2

p∗V (a)2
−λa2

+ p∗V (1− a)2−λ(1−a)2

+
ρ2−λ(1−v)2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

.

We have

d

dv
η(v) = −

2
log e(1− ρ)λv2−λv2

p∗V (a)2
−λa2 + p∗V (1− a)2−λ(1−a)2

+

2
log 2ρλ(1− v)2−λ(1−v)2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

.

Clearly,

d

dv
η(v)

>
=
<
0

if and only if

ξ(v)
>
=
<

log

(

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

p∗V (a)2
−λa2 + p∗V (1− a)2−λ(1−a)2

)

,

where

ξ(v) := log

(

ρ(1− v)2−λ(1−v)2

(1− ρ)v2−λv2

)

.

It can be verified that

log

(

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

p∗V (a)2
−λa2 + p∗V (1− a)2−λ(1−a)2

)

= log

(

p∗V (a)
a

1−a
+ p∗V (1− a)

p∗V (a) + p∗V (1− a) a
1−a

)

= log(
ρ

1− ρ
).

On the other hand,

ξ(v)|v=a, 1
2
,1−a = log(

ρ

1− ρ
).

Moreover,

d2

dv2
ξ(v) =

(1− 2v)

v2(1− v)2
log e,

which shows that ξ(v) is a strictly convex function for

v ∈ (0, 12 ) and a strictly concave function for v ∈ (12 , 1).
So we must have

ξ(v)











> log( ρ
1−ρ

), v ∈ [0, a) ∪ (12 , 1− a),

= log( ρ
1−ρ

), v = a, 12 , 1− a,

< log( ρ
1−ρ

), v ∈ (a, 12) ∪ (1− a, 1],

and consequently

d

dv
η(v)











> 0, v ∈ [0, a) ∪ (12 , 1− a),

= 0, v = a, 12 , 1− a,

< 0, v ∈ (a, 12 ) ∪ (1− a, 1].

This together with (53) implies (54).

Finally, we have

(1− ρ)
p∗V (a)2

−λa2

a2 + p∗V (1− a)2−λ(1−a)2 (1− a)2

p∗V (a)2
−λa2 + p∗V (1− a)2−λ(1−a)2

+ ρ
p∗V (a)2

−λ(1−a)2 (1− a)2 + p∗V (1− a)2−λa2

a2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

= (1− ρ)
p∗V (a)a

2 + p∗V (1− a)a(1 − a)

p∗V (a) + p∗V (1− a) a
1−a

+ ρ
p∗V (a)a(1 − a) + p∗V (1− a)a2

p∗V (a)
a

1−a
+ p∗V (1− a)

=
D

2
,

which verifies (55).
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In light of Lemma 3, p∗
V |X is an optimal solution to

(21). Note that

p∗V |X(a|0) = p∗V (a)2
−λa2

p∗V (a)2
−λa2

+ p∗V (1− a)2−λ(1−a)2

=
p∗V (a)

p∗V (a) + p∗V (1− a) a
1−a

=
(1− a)(1− a− ρ)

(1− ρ)(1− 2a)
,

p∗V |X(a|1) = p∗V (a)2
−λ(1−a)2

p∗V (a)2
−λ(1−a)2 + p∗V (1− a)2−λa2

=
p∗V (a)

a
1−a

p∗V (a)
a

1−a
+ p∗V (1− a)

=
a(1− a− ρ)

ρ(1− 2a)
,

and

p∗V |X(1− a|0) = a(ρ− a)

(1− ρ)(1 − 2a)
,

p∗V |X(1− a|1) = (1− a)(ρ− a)

ρ(1− 2a)
.

The induced p∗
X|V is given by

p∗X|V (0|a) = 1− a, p∗V |X(1|a) = a,

p∗X|V (0|1 − a) = a, p∗V |X(1|1− a) = 1− a.

As a consequence,

R(
D

2
) = Hb(ρ)−Hb(a)

= Hb(ρ)−Hb(
1−

√
1− 2D

2
).
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