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Abstract—Motivated by control with communication con-
straints, in this work we develop a time-invariant data com-
pression architecture for linear–quadratic–Gaussian (LQG) con-
trol with minimum bitrate prefix-free feedback. For any fixed
control performance, the approach we propose nearly achieves
known directed information (DI) lower bounds on the time-
average expected codeword length. We refine the analysis of
a classical achievability approach, which required quantized
plant measurements to be encoded via a time-varying lossless
source code. We prove that the sequence of random variables
describing the quantizations has a limiting distribution and that
the quantizations may be encoded with a fixed source code
optimized for this distribution without added time-asymptotic
redundancy. Our result follows from analyzing the long-term
stochastic behavior of the system, and permits us to additionally
guarantee that the time-average codeword length (as opposed to
expected length) is almost surely within a few bits of the minimum
DI. To our knowledge, this time-invariant achievability result is
the first in the literature.

Index Terms—Control systems, control with communication
constraints, network control theory, source coding.

I. INTRODUCTION

IN this work we consider LQG control over communication
networks. Our motivation is a scenario where measure-

ments from a remote sensor platform are conveyed wirelessly
to a controller. In such a system, the bitrate of the feedback
channel can be tied directly to the amount of physical layer
resources (e.g., time, bandwidth, and power) that must be
allocated to attain satisfactory control performance. Such
resources are inherently scarce. This motivates approaches
to control that minimize communication overhead; potentially
enabling, for example, automated factories where many agents
share the communication medium [1].

We attack this problem via data compression; we develop
quantizers and variable-length codecs for the LQG feedback
link. We consider a setup where at each discrete timestep an
encoder, co-located with a sensor that can fully observe the
plant, conveys a variable-length packet of bits to a decoder
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co-located with the controller. We discuss various prefix con-
straints that can be imposed on the packets. Such constraints
allow the decoder, and possibly other users sharing the same
communication medium, to uniquely identify the end of the
encoder’s transmission. This can enable efficient resource shar-
ing. The packet bitrate provides a notion of communication
cost. We prove that for a fixed control performance, the
approach we propose nearly achieves known lower bounds
on the minimum achievable bitrate. We presently summarize
our contribution.

A. Our Contribution

There have been several data compression architectures
proposed in the prior literature for LQG control with near-
minimum bitrate variable-length feedback. While several ap-
proaches are known to satisfy fixed constraints on the con-
trol cost with near-minimum bitrates, e.g. [2][3][4], these
approaches generally require that the output of a quantizer
be losslessly encoded using a time-varying source code; nom-
inally a lossless code perfectly adapted to the probability
distribution of the quantizer’s output at every time t. In this
work, we use tools from ergodic theory to demonstrate that an
architecture based on that of [3] can be used to achieve near
minimum prefix-free bitrate LQG control with a completely
time-invariant quantizer and prefix-free code design. As the
prefix-free code used to encode the quantizer output is fixed,
the scheme satisfies a well-motivated time-invariant prefix
constraint that is significantly stronger than those considered
in the prior art. To our knowledge, this is the first such result
in the literature.

B. Literature Review

This work considers minimum bitrate LQG control via
dithered uniform quantization and variable length coding.
An early paper to consider stabilizing a linear system with
uniformly quantized feedback measurements was [5]. For a
deterministic system, [5] analyzed the long-term behavior
of the chaotic dynamics of the state vector using ergodic
theory. The problem of stabilizing a Gauss–Markov plant over
a feedback channel with a random, time-varying rate was
considered in [6]. In the scalar case, a necessary and sufficient
condition for stabilization was derived. In contrast, our work
considers the problem of attaining a fixed control cost with
variable-length coding (the number of bits to be transmitted at
each time is chosen by the encoder, not by nature). This line of
research follows from a model for LQG control with minimum
rate variable-length feedback from [2]. For scalar plants, [2]
lower bounded the time average expected bitrate of a prefix-
free source codec used as an LQG feedback channel in terms
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of Massey’s directed information (DI) [7]. This motivated
a rate-distortion problem for the tradeoff between (a lower
bound on) communication cost, quantified by the DI, and LQG
control performance. The rate distortion problem was solved
for a restricted class of encoders in [2] and a more general class
in [8]. Using entropy-coded dithered uniform quantization
(ECDQ), [2] and [8] demonstrated that the DI lower bound
was nearly achievable. ECDQ uses uniform quantizers and a
sequence of independent, identically distributed (IID) uniform
random variables shared between the encoder and decoder to
effectively whiten the reconstruction error [9]. While under
some assumptions (e.g. high quantizer resolutions and smooth
source densities [10]), the reconstruction error in uniform
quantization is approximately uniform over the quantizer cell
and uncorrelated with the input, if a dither is used these hold
exactly. Furthermore, ECDQ has an intuitive rate analysis.
In [2] and [8] it was assumed that at every timestep a
quantized measurement is encoded using Shannon-Fano-Elias
(SFE) prefix coding. In the codeword length analysis, it is
assumed that the SFE codec used is designed optimally at each
timestep for the conditional probability mass function (PMF)
of the quantizer output given the dither realization. The proof
of the near-achievability of the lower bounds then followed
from [9]’s rate analysis.

The quantizer and source codec designs we propose follow
from analyzing a DI/LQG cost rate-distortion function. While
the DI-based bitrate lower bound in [2] purported to apply
to systems using dithering, an error was discovered in [11].
Revised proofs in [11] (see also [12]) and [13] established
that the DI lower bound on time average bitrate holds even
when the encoder and decoder share randomness. The rate-
distortion formulation of [8] was extended to MIMO plants
in [14]. In particular, [14] analyzed the optimization over a
randomized encoder and decoder policy space. This lead to
a formulation of an optimal test channel consisting of an
“encoder” that conveys a linear/Gaussian plant measurement
to a “decoder/controller” consisting of a Kalman filter (KF)
and certainty equivalent controller. The minimal DI attainable
for any limit on LQG control performance was shown to be
a convex (log-det) optimization. In [4], via [15], the DI lower
bound for prefix-free codes was extended to the more general
class of uniquely decodable codes. Analytical lower bounds
on the DI cost as a function of control performance were
also derived. The lower bounds in [4] are applicable to plants
with non-Gaussian process noise. Our work is also related to
nonanticipative rate distortion theory and its application to the
causal tracking of Gauss/Markov sources (cf. [16] and [17]). In
particular, a rate-distortion lower bound on the bitrate required
to asymptotically estimate the state of an uncontrolled system
is computed in [18] and [19] via dynamic programming and
reverse waterfilling.

In [3], the achievability approach from [2] was extended to
MIMO plants. In [3], linear measurements, dithered element-
wise uniform quantization, KFs, and certainty equivalent con-
trol are used to develop a system where the feedback from
plant to controller is discrete but with system variables with
identical means and covariances to those in [14]’s optimal test
channel. This ensures that the LQG performance is equivalent

to that in the test channel, and leads to an asymptotic bound
on the conditional entropy of the quantizer output (given
the dither) within a few bits of the DI lower bound. This
result proved that conveying the quantized measurements from
the encoder to the decoder via a time-varying SFE codec
that accounts for the dither asymptotically achieves a time
average bitrate near the lower bound. Dithered quantization
and time-varying entropy coding is likewise used in [19]
to demonstrate the near-achievability of the respective lower
bounds. An achievability approach not relying on dithered
quantization was provided in [4]. The approach in [4] uses
lattice quantization and entropy coding. In particular, using a
bound on the output entropy of a lattice quantizer from [20],
[4] demonstrates that the entropy of quantized innovations is
close to a corresponding lower bound in the high rate/strict
control cost regime. While the quantization/coding approaches
in [3], [4], and [19] can be shown to nearly achieve respec-
tive lower bounds, they rely on time-varying lossless source
codecs.

The upper bounds on achievable rate in [2], [3] and [4]
are developed in terms of the output entropy of a quantizer.
While a lossless codec can be used to encode the quantizations
into a variable-length binary string without delay and with an
expected length close to this entropy, this generally requires
the codec to be adapted, at every timestep, to the probability
distribution of the quantizer output. This complication is com-
pounded in [2] and [3], as the source codec must be adapted to
the conditional probability distribution of the quantizer output
given the dither.

Work on control with fixed-length feedback is also rel-
evant. It is well established that a linear plant driven by
unbounded process noise cannot be stabilized in the mean
square sense with feedback that undergoes time-invariant,
memoryless, fixed-length quantization [21]. The problem of
minimum bitrate stabilization with fixed-length feedback was
considered in [22], [23], and [24]. Stabilization via an adap-
tive (zooming) fixed-length quantizer was considered in [22].
Using tools from ergodic theory, [22] analyzed the long-term
behavior of the state and quantizer parameters and proved
the existence of limiting distributions. It is proven that a
particular quantizer achieves finite control cost [22]. In the
present work, we will use similar theory to prove time-
invariant achievability results for variable-length coding under
a constraint on LQG cost. In [23], a theoretical analysis was
conducted to determine the minimum necessary and sufficient
fixed-length feedback bitrate required to stabilize an unstable
scalar linear system driven by process noise with a bounded
α moment. The minimum bitrate required to asymptotically
stabilize the system in any moment β < α is shown to
exceed the plant’s autoregressive coefficient by at most one
bit. This analysis unified special cases appearing in prior
work. A fixed-length stabilization algorithm (a time-varying
quantizer design) that achieves [23]’s fundamental limit in the
presence of unbounded process noise was proposed in [24].
In [25], fixed-length quantizers were designed to minimize
control cost. Using a Lloyd-Max style quantizer designed at
each timestep, an optimal greedy control policy was developed
and exhibited competitive performance [25]. In our work we
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consider the less restrictive variable-length feedback setting.
There is also relevant work pertaining to fixed and vari-

able length strategies for joint-source channel coding. In an
early work considering feedback over noisy communication
channels, [26] proposed to design fixed-length encoder and
controller strategies to minimize LQG cost via an alternating
optimization. Dynamic programming optimizations for the
optimal controller given a fixed encoder, the optimal encoder
given fixed controllers, and related structural results were
derived. More recently [27] developed a family of stabilizing
codes for stabilizing and controlling linear systems over a
packetized erasure channel. Essentially, sequences of packet
messages are designed such that performance guarantee holds
given that some fraction of the packets arrive.

In this work, we refine the analysis on the dithered quantizer
output entropy from [3]; restating classical results that reduce
the space-filling gap and and bound the unconditioned output
entropy of the quantizer. We use ergodic theory to analyze
the long-term behavior of the system, and demonstrate that
it is sufficient to encode the quantizer outputs using a fixed,
time-invariant entropy code without incurring an appreciable
increase in communication cost over [3]. In particular, we
use results from [28] to prove the existence of an invariant
measure for the Markov chain that describes the quantizer’s
inputs. We then use theorems from [29] to verify that the
chain both converges to the invariant measure and has an
ergodic property. Our proof of this measure’s existence follows
from an analysis of Lebesgue weakly transient sets, which, for
Markov chains in Euclidean spaces, provide a necessary and
sufficient condition for the existence of an invariant measure
with a strictly positive probability density function (PDF).
The convergence and ergodicity of the chain is more-or-less
immediate via the verification of an irreducibility condition
often encountered in the literature on Markov Chain Monte
Carlo [29]. We propose to encode the quantizations using
a fixed time-invariant SFE–style source codec designed for
the quantizer output PMF induced the invariant measure. Our
use of a fixed prefix code ensures that the system satisfies
a stronger prefix constraint with respect to prior approaches.
The ergodic property leads to a novel “almost sure” guarantee
on the system’s time average codeword length (as opposed to
time average expected length). We then use basic information
theoretic inequalities to demonstrate that the Kullback–Leibler
(KL) divergence (relative entropy) between the true quantizer
output at time t and the output induced by the invariant
measure tends to zero as t → ∞. This recovers a guarantee
on the time average expected codeword length. After the
initial submission of this work, we generalized our initial
results on time-invariant achievability to a more general class
of LQG control systems. This work’s revision incorporates
these generalizations, some of which appear in the conference
proceedings [30].

Before concluding our discussion of the prior art, it worth
mentioning that the mathematical machinery used to estab-
lish our main result (namely the proofs pertaining to the
existence of the limiting distribution, its ergodic properties,
and proof of the chain’s convergence in the KL sense) are
not the only relevant tools available. In particular, in [31] a

generalization of the notion of Feller regular Markov kernels
(cf. e.g. [32]) was introduced and used to study the invariance
and convergence properties of various adaptive quantization
schemes. In the context of quantized control over an erasure
channel, the theory of petite sets was used in [33] to establish
positive Harris recurrence for the general state space Markov
chain describing the adapted quantizer bin size and the system
state. Such chains necessarily admit an invariant probability
measure [33]. There is recent work relating a general state
space Markov chain’s convergence to an invariant measure
in the total-variation sense to convergence in sense of KL
divergence [34]. In [35], this result is used to analyze the
stochastic stability of nonlinear filters in controlled dynamical
dynamical systems. A nonasymptotic analysis of the KL-sense
convergence of Langevin Markov chain Monte Carlo was
performed in [36] via viewing the diffusion as a gradient flow
(path of steepest descent) in the space of probability measures.
For completeness, in this work we provide a direct, simple
proof via Shannon-type inequalities that the our quantizer’s
outputs converge in the KL sense to the relevant limiting
distribution.

Notation and Organization: Constant scalars and vectors
are denoted by lower-case letters x. If x is a vector, [x]i
denotes its ith element. For vectors let ∥x∥2 denote the
Euclidean norm, and let ∥x∥∞ = maxi |[x]i|. Matrices are
denoted by capital letters X , the identity matrix in Rm×m by
Im, the 0 vector in Rm by 0m, and the 0 matrix in Rm×m

by 0m×m. Let ∥X∥2 denote the largest singular value of
X . Let ρmax(X) denote the spectral radius of X , namely
ρmax(X) = max |λ| s.t. λ is an eigenvalue of X . We write
P(S)D for “symmetric positive (semi)definite”, and let Sm

+

denote the set of m ×m PSD matrices. We let ≻, ⪰ denote
the standard partial order on the PSD cone, e.g. if A,B ∈ Rm,
we write A ≻ B if A − B is PD, likewise A ⪰ B if A − B
is PSD. Random scalars or vectors are written in boldface x.
If a is discrete, we write Pa[a = a] = Pa[a], likewise for
conditional PMFs. We write a ⊥⊥ b to denote that a and b
are independent. We write a

a.s.
= b if Pa,b[a = b] = 1, and

define
a.s.
≥ b,

a.s.
< b, etc. analogously. For x a random vector,

cov(x) = E[xxT]−E[x]E[x]T. Denote the set of finite-length
binary strings {0, 1}∗. For time domain sequences, let {xt}
denote (x0,x1, . . . ), xb

a = (xa, . . . ,xb) if b ≥ a, and xb
a = ∅

otherwise. We let xb = xb
0. For a topological space X, let

B(X) denote the standard Borel σ-algebra of X. For Euclidean
spaces, let λ denote the Lebesgue measure (e.g., if X is Rn,
then for K ∈ B(X), λ(K) is the volume of K in Rn). For a
set K, define the indicator function of x ∈ K as 1x∈S .

In Section II we formulate the problem of LQG control with
minimum rate prefix-free coding in the feedback link. Section
III restates the rate-distortion formulation and overviews the
optimal test channel from [14]. Our main results are in Section
IV. We begin by overviewing the achievability approach and
its key ingredients in Section IV-A. Section IV-B provides an
overview of our time-invariant availability approach, together
with a statement of our main result. We prove the main
result in Section IV-C, relegating the proofs of some lemmas
to Appendix A in the online supplementary material. We
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conclude in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the system model depicted in Fig. 1. We
consider a time-invariant MIMO plant controlled via a feed-
back model where communication occurs over an ideal (delay
and error free) binary channel. The plant is fully observ-
able to an encoder/sensor block, which conveys a variable-
length binary codeword at ∈ {0, 1}∗ over the channel to a
combined decoder/controller. Upon receipt of the codeword,
the decoder/controller designs the control input. Denote the
state vector xt ∈ Rm, the control input ut ∈ Ru, and let
wt ∼ N (0m,W ) denote processes noise assumed to be IID
over time. We assume W ≻ 0m×m, i.e., the process noise co-
variance is full rank. We assume assume that x0 ∼ N (0, X0)
for some X0 ⪰ 0. For A ∈ Rm×m the system matrix and
B ∈ Rm×u the feedback gain matrix, for t ≥ 0 the plant
dynamics are given by

xt+1 = Axt +But +wt. (1)

To ensure finite control cost is attainable, we assume (A,B)
are stabilizable.

For generality, we assume that the encoder/sensor and the
decoder/controller may be randomized. In Fig. 1, we assume
that the encoder/sensor and decoder/controller share access
to a common random dither signal, {δt}. The dither is
assumed to be IID over time. In real-world systems, this
shared randomness can be effectively accomplished using two
synchronized pseudorandom number generators at the encoder
and decoder. The encoder/sensor policy in Fig. 1 is a sequence
of causally conditioned Borel measurable kernels denoted

PE[a
∞
0 ||δ∞0 ,x∞

0 ] =
{

PE,t = Pat|at−1
0 ,δt

0,x
t
0

}
t
. (2)

The corresponding decoder/controller policy is given by

PC[u
∞
0 ||a∞0 , δ∞0 ] =

{
PC,t = Put|at

0,δ
t
0,u

t−1
0

}
t
. (3)

Note that under the dynamics (1), xt
0 is a deterministic

function of x0, at−1
0 , ut−1

0 , and wt−1
0 . We enforce condi-

tional independence assumptions in the system model by a
factorization of the one-step transition kernels for at, δt, ut,
and wt. The assumed conditional independence relationships
induced between the system variables are illustrated through
the factorizations of the transition kernels in (4) at the top
of the following page, and are discussed in Fig. 1. For
A,D,U ,W measurable subsets, for t ≥ 0, we assume the
transition kernels factorize via (4a). The conditional measure
of (a0, δ0,u0,w0) given x0 is given in (4b).

The length of the codewords {at} quantifies the communi-
cation cost. For a codeword at ∈ {0, 1}∗, denote its length
in bits by ℓ(at). The problem of interest is to minimize
the time average expected bitrate subject to a constraint on
control performance, quantified via the standard LQG cost. We
will impose prefix constraints on the codewords {at}. These
constraints will allow the decoder (and possibly other agents
sharing the same communication medium) to uniquely identify
the end of the transmission from the encoder. Three possible
prefix constraints are:

Prefix Constraint 1. For any realizations (at−1
0 = at−1

0 , δt0 =
δt0,u

t−1
0 = ut−1

0 ), for all distinct a1, a2 ∈ {0, 1}∗ with
Pat|at−1

0 ,δt
0,u

t−1
0

[at = a1|at−1
0 = at−1

0 , δt0 = δt0,u
t−1
0 =

ut−1
0 ] > 0 and Pat|at−1

0 ,δt
0,u

t−1
0

[at = a2|at−1
0 = at−1

0 , δt0 =

δt0,u
t−1
0 = ut−1

0 ] > 0, a1 is not a prefix of a2.

Prefix Constraint 2. For all distinct a1, a2 ∈ {0, 1}∗ with
Pat

[at = a1] > 0 and Pat
[at = a2] > 0, a1 is not a prefix of

a2.

Prefix Constraint 3. For all i, j and distinct a1, a2 ∈ {0, 1}∗
with Pai

[ai = a1] > 0 and Paj
[aj = a2] > 0, a1 is not a

prefix of a2.

Prefix Constraints 1 and 2 were defined in [13]. Constraint
1 is the least strict. It allows any agent with knowledge
of the information possessed by the decoder at time t to
uniquely identify the end of the encoder’s transmission at
time t. A downside, however, is that this information may
be necessary to determine the end of the codeword. This
complicates the system architecture and may inhibit other
agents from recognizing the end of the transmission. Con-
straint 2 is notionally stricter; it guarantees that any agent
who knows the codebook used by the encoder at time t
(precisely, the set {b ∈ {0, 1}∗ : Pat

[at = b] > 0}) can
uniquely identify the end of the transmission. Under Constraint
2, agents on the same network can identify the end of the
transmission without knowing (at−1

0 , δt0,u
t−1
0 ). Constraint 3 is

a time-invariant version of Constraint 2. Constraint 3 requires
that the prefix condition holds across time, ensuring that any
codeword used at time t is not a prefix of any codeword used
at time t + m for any m. Any user with knowledge of the
set {b ∈ {0, 1}∗ : ∃ t s.t. Pat

[at = b] > 0} can uniquely
identify the end of the transmission at any time t. Notably, to
identify the end of the transmission, a user need not know the
codebook used at time t, but only the strings lying in the union
of codebooks across time. Note that Constraint 3 is satisfied
if the same prefix-free code is used for all t.

We are interested in the optimization, for codewords con-
forming to Prefix Constraints 1–3:

inf
PE,PC

lim sup
T→∞

1

T + 1

∑T

t=0
E[ℓ(at)]

s.t. lim sup
T→∞

1

T + 1

∑T

t=0
E[∥xt+1∥2Q + ∥ut∥2Φ] ≤ γ,

(5)

where Q ⪰ 0, Φ ≻ 0m×m, and γ is the maximum tolerable
LQG cost. The minimization is over admissible sensor/encoder
and decoder/controller policies described by (2) and (3). In
Section III, we discuss a lower bound on (5) that applies to all
encoder and decoder policies conforming to (4) and any of the
Prefix Constraints 1–3. These bounds follow from [13]. Note
that Constraint 1 was the notion of prefix-free considered in
[2] and [3], while the “prefix-free” version of the approach in
[4] conforms to Constraint 2. To our knowledge, no variable-
length compression architecture for LQG control in the prior
work is known to both satisfy Constraint 3 and also achieve
a codeword length provably close to any known lower bound
on the optimization in (5).
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P[(at+1 ∈ A) ∩ (δt+1 ∈ D) ∩ (ut+1 ∈ U) ∩ (wt+1 ∈ W)|at0, δ
t
0,u

t
0,w

t
0,x0] =

PE,t+1[at+1 ∈ A|at0, δ
t+1
0 ,xt+1

0 ]PC,t+1[ut+1 ∈ U|at+1
0 , δt+1

0 ,ut
0]P[δt+1 ∈ D]P[wt+1 ∈ W], t ≥ 0, (4a)

P[(a0 ∈ A) ∩ (δ0 ∈ D) ∩ (u0 ∈ U) ∩ (w0 ∈ W)|x0] = P[δ0 ∈ D]PE,0[a0 ∈ A|x0, δ0]PC,0[u0 ∈ U|a0, δ0]P[w0 ∈ W] (4b)

Fig. 1. The system model with dithering. The encoder policy allows the
codeword at to be generated randomly given “all the information known
to the encoder at time t”. When at arrives at the decoder, the decoder can
randomly generate its control input given at as well as its previous knowledge.
Notably, both the encoder and decoder share access to δt, an IID sequence
generated “independently” of all past system variables.

III. RATE DISTORTION LOWER BOUND

We summarize the relevant results from [13] and [14] into
the following theorem.

Theorem III.1. Let the minimum communication cost attained
by the optimization in (5) for an LQG cost constraint γ be de-
noted L(γ). Let S be a stabilizing solution to the discrete alge-
braic Riccati equation (DARE) ATSA−S−ATSB(BTSB+
Φ)−1BTSA + Q = 0m×m, K = −(BTSB + Φ)−1BTSA,
and Θ = KT(BTSB + Φ)K. Define the convex log-det
optimization

R(γ) =



inf
P,Π,∈Rm×m

P,Π⪰0m×m

1

2
(− log2 detΠ + log2 detW )

s.t. Tr(ΘP ) + Tr(WS) ≤ γ,

P ⪯ APAT +W ,[
P −Π PAT

AP APAT +W

]
⪰ 02m×2m.

(6)

For a system conforming to Fig. 1, (4), and any of Prefix
Constraints 1–3 we have L(γ) ≥ R(γ).

The proof of Theorem III.1 is immediate from [13] given
that Constraint 3 is more stringent than Constraint 2. The
interpretation of the optimization in (6) is aided by the three-
stage test channel illustrated in Fig. 2. The test channel
consists of an “encoder” that conveys a linear/Gaussian plant
measurement to a “decoder”/controller. The decoder has a
time-invariant KF to track the state, followed by a standard
certainty equivalent controller. Denote the minimizing P from
(6) by P̂ . Let C ∈ Rm×m and V ∈ Rm×m, V ≻ 0m×m be
any such matrices that satisfy

P̂−1 − (AP̂AT +W )−1 − CTV −1C = 0m×m. (7)

Fig. 2. The time-invariant three-stage test channel does not conform to
the system model in Fig. 1, but will be used to analyze the approaches we
propose.

The decoder receives the measurement yt = Cxt + vt where
vt ∼ N (0m, V ) IID and vt ⊥⊥ xt

0. Let P̂+ = AP̂AT +W
and let J = P̂+C

T(CP̂+C
T + V )−1. Denote the filter’s

sequence of prior and posterior state estimates as {xt|t−1}
and {xt|t}. Let x0|−1 = 0. The filtering recursion is xt|t =
xt|t−1 + J(yt −Cxt|t−1) and xt|t−1 = Axt−1|t−1 +But−1.
Define the prior and posterior error processes and their re-
spective covariances via et = xt − xt|t−1, P t|t−1 = E[eteTt ]
and et|t = xt − xt|t, P t|t = E[et|teTt|t]. Note that for all
t ≥ 0, E[et] = 0 and E[et|t] = 0. When W ≻ 0, a discrete
Lyaponov equation can be used to establish that for any C
satisfying (7), (A,C) is detectable; see [37, below (25)] for a
similar argument. Since W ≻ 0m×m, (A,W

1
2 ) is stabilizable.

This implies that limt→∞ P t|t−1 = P̂+ and limt→∞ P t|t = P̂
[38]. Recall K = −(BTSB+R)−1BTSA. The control input
at time t given by ut = Kx̂t|t. It can be shown (see [14])
that, in the architecture of Fig. 2 the control cost satisfies

lim
T→∞

∑T
t=0 E[∥xt+1∥2Q + ∥ut∥2R]

T + 1
= Tr(SW ) + Tr(P̂Θ)

≤ γ, (8)

where (8) follows as P̂ is a feasible solution of (6). The
minimum of (6) is given by (see [14])

R(γ) =
1

2
log2

det P̂+

det P̂
. (9)

We reiterate that (9) lower bounds the communication cost
attainable in the (original) architecture in Fig. 1. We will
use (8), (9), and the test channel in the following section on
achievability.

IV. UPPER BOUNDS (ACHIEVABILITY)

In this section, we present theoretical results demonstrating
that, assuming access to a uniform dither signal in the archi-
tecture of Fig. 1, uniform (dithered) quantization coupled with
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time-invariant prefix-free source coding strategies can be used
to achieve nearly optimal communication bitrate (with respect
to the DI lower bound in (6)). We propose one approach where
quantizations are encoded conditioned on the realization of the
dither, but without any other time adaptation. This approach
conforms to Prefix Constraint 1, and is shown to achieve
the same communication cost as the architecture in [3]. We
then propose an approach where quantization is performed
with dither, but the encoding of the discrete quantizations into
codewords is done without regard to the dither realization. This
leads to a completely time-invariant approach; the same prefix-
free codec is used to encode the quantizations at all time. This
latter approach conforms to Prefix Constraint 3, and achieves
a bitrate at most one-bit-per-plant-dimension worse that the
time-varying approach in [3].

Fig. 3 illustrates an overview of the framework we will
use to demonstrate achievability in this section. The approach
conforms to the architecture in Fig. 1 with the dither signal
chosen as an IID seqeuence of element-wise mutually indepen-
dent uniform random vectors. At a high level, at every time
t, encoder produces a particular linear measurement of the
plant, which it then quantizes into a discrete random variable
(a quantization), qt, using an elementwise uniform quantizer
with subtractive dither. Each element of the dither sequence δt
has IID elements with [δt]i uniform on [−∆

2 , ∆
2 ]. The encoder

then encodes qt into a codeword, at, using a lossless Shannon-
Fano-Elias (SFE) prefix-free code. The decoder recovers qt

exactly, and then designs the control input ut using qt, δt, and
a previous KF estimate. In the next subsection, we describe
SFE codes and dithered uniform quantization in the detail
necessary to proceed with our analysis.

Fig. 3. The achievability architecture. The dither sequence {δt} are
shared random vectors that are IID uniform on [−∆/2,∆/2]m. The dither
realization may be used by the entropy codec, but need not be (we consider
both cases).

A. Key ingredients

1) Shannon-Fano-Elias codes [39]: In this section we
briefly outline the SFE approach to prefix-free source coding.
We will pursue a general treatment, but will specialize the
results to the quantization architecture in Fig. 3.

Let q denote a discrete random variable with (countable)
range A. Without loss of generality, it can be assumed that A =
N (if the alphabet is countably infinite) or A = {0, 1, . . . , r},

and that Pq[q] > 0 ∀ q ∈ A. Let δ be a random variable
on support X assumed to be known to both the encoder and
decoder. Consider the problem of encoding q into a prefix-
free codeword, such that it can be recovered at a decoder. In
this scenario, we view q as a quantization, and δ as shared
randomness, akin to the dither sequence. Let Fq|δ(q|δ) =
Pq[q < q|δ]+Pq|δ[q|δ]/2. Define what we will refer to as the
“unsorted, conditional” encoding CU

q|δ : A ⊗ X → {0, 1}∗ as

CU
q|δ(q|δ) =

(
the binary expansion of Fq|δ(q|δ)

truncated to ⌈− log2(Pq|δ[q|δ])⌉+ 1 bits.
)

(10)

It can be shown that for any realization δ = δ and q1, q2 ∈ A
with Pq|δ[q1|δ],Pq|δ[q2|δ] > 0 (e.g. any two quantizations q1
and q2 with nonzero probability of occurring given δ = δ),
CU

q|δ(q1|δ) is not a prefix of CU
q|δ(q2|δ) and vice versa [39,

Chapter 5.9]. This property mirrors Prefix Constraint 1, e.g.
codewords are prefix-free given the knowledge shared by the
encoder and decoder. If CU

q|δ is used to encode q (given the
realization of δ), then the codeword length satisfies

H(q|δ) ≤ Eq,δ[C
U
q|δ(q|δ)] ≤ H(q|δ) + 2. (11)

We now state a construction that achieves a stronger prefix
constraint. Define Fq(q) = Pq[q < q] + Pq[q]/2, and define
the “unsorted, unconditional” encoding function CU

q : A →
{0, 1}∗ as

CU
q (q) =

(
the binary expansion of Fq(q) truncated

to ⌈− log2(Pq[q])⌉+ 1 bits. ) (12)

If can be shown that for any distinct q1, q2 ∈ A with
Pq[q1],Pq[q2] > 0, CU

q (q1) is not a prefix of CU
q (q2) and

vice-versa. The encoding CU
q satisfies a prefix-property like

that in Constraint 2; namely the codewords are “prefix-free”
irrespective of the realization of δ [39, Chapter 5.9]. This
encoding scheme achieves a codeword length of H(q) ≤
Eq,δ[C

U
q (q)] ≤ H(q)+2. It turns out that the upper bound on

codeword length can be reduced is the encoder prepossesses
q to produce a random variable that is “sorted” in order
of decreasing probability mass. Assuming without loss of
generality that A = N, let s : A → A be a bijection that re-
indexes the support of q such that Pq[s(0)] ≥ Pq[s(1)] ≥
Pq[s(2)] . . .. Such a bijection s always exists, however it may
be extremely difficult and/or computationally unreasonable to
find [15]. Let q = s(q) and the function Fq : A → [0, 1)
by Fq(q) = Pq[q < q] = Pq[q < q]. Define the “sorted,
unconditional” SFE code CS : A → {0, 1}∗ by

CS
q(q) = (the binary expansion of Fq(s(q)) truncated

to ⌈− log2(Pq[s(q)])⌉ bits. ) (13)

It can be shown that for distinct q1, q2 ∈ A, we have that
a1 = CS

q(q1) is not a prefix a2 = CS
q(q2) and vice versa

(cf. [39, Problem 5.28]). We have that H(q) = H(q) and
H(q) ≤ Eq[C

S
q(q)] ≤ H(q) + 1. We could also define a

“conditional sorted” codec CS
q|δ which would allow the upper

bound in (11) to be reduced by one bit. In general however, this
would require the sorting function to depend on the realization
of δ.
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2) Uniform quantizers with subtractive dither: In this sec-
tion, we introduce some key properties pertaining to element-
wise uniform quantization with subtractive dither. These re-
sults are not new; many are generalizations of results from
[9] described in detail in [3]. Let (∆Z)m denote the set of
m-tuples of integer multiples of ∆, e.g., r ∈ (∆Z)m if, for
some r0, . . . , rm−1 ∈ Z, r = (r0∆, r1∆, . . . , rm−1∆). Define
an element-wise uniform quantizer with stepsize ∆ > 0 as
Q∆ : Rm → (∆Z)m via

[Q∆(x)]i = k∆, if [x]i ∈ [k∆−∆/2, k∆+∆/2), (14)

where x ∈ Rm, i ∈ {0, . . . ,m−1}. Let z be a random variable
with range in Rm. Let δ = [δ0, . . . , δm−1]

T be independent
of z and such that the [δ]i are IID uniform on [−∆

2 , ∆
2 ]. When

z is quantized with an element-wise uniform quantizer with
subtractive dither, the quantization is the random variable with
range (∆Z)m defined by

q = Q∆(z+ δ), (15)

the reconstruction is defined as q̃ = q−δ, and the reconstruc-
tion error as v = q̃−z. The following proposition summarizes
some well-known, useful properties of dithered elementwise
uniform quantizers. We use these properties to analyze the
compression architecture of Fig. 3.

Proposition IV.1. Let z, δ, q, q̃, and v be as defined above.
Assume that E[z] < ∞, and that E[zzT] = Z where Z ≺ ∞
. We have the following.

(i) The ith element of the reconstruction error [v]i is
uniformly distributed on the interval [−∆

2 , ∆
2 ]. The m

elements of v are mutually independent, and v is inde-
pendent of z.

(ii) We have H(q)−H(q|δ) ≤ m.
(iii) Let n be a random vector whose elements are IID uniform

random variables on [−∆
2 ,

∆
2 ], and let n ⊥⊥ z. Let N ∈

Rm×m be diagonal with [N ]i,i = ∆2/12. We have:

H(q|δ) = h(z+ n)− h(n) (16)

= h(z+ n) +
1

2
log2

(
( 2πe12 )m

det (2πeN)

)
, (17)

which implies that

H(q|δ) ≤
1

2
log2

(
det (Z +N)

det (N)

)
+

m

2
log2

(
2πe

12

)
. (18)

Proof: Claim (i) is a classic result. See [40, Thm. 4.1.1]
for a general proof or [3, Lemma 1] for one specialized to
this case. To see (ii), note that H(q) − H(q|δ) = I(q; δ).
Note also both I((q, z); δ) = I(q; δ) + I(z; δ|q) and also
I((q, z); δ) = I(z; δ) + I(q; δ|z), and thus as z ⊥⊥ δ,
I(q; δ) ≤ I(q; δ|z). It is immediate that I(q; δ|z) = H(q|z).
Consider the scalar case (m = 1) and recognize that given
z = z, q can be determined to be in either the quantization
“bin” that contains z, or in one particular adjacent bin. Thus,
for m = 1, H(q|z) ≤ 1. For a general m, the result follows
as H(q|z) ≤

∑m−1
i=0 H([q]i|[z]i).

Equation (16) in (iii) is well-established [40, Theorem
5.2.1][3, Lemma 1 (b)], (17) follows from expanding h(n),
and (18) follows as cov(z + n) = Z + N and Gaussian
distributions have the maximum differential entropy among
all distributions with the same covariance matrix.

We use Prop. IV.1 (iii) and (ii) to develop bounds on
codeword length in the closed loop system of Fig. 3. Prop.,
IV.1(i) is likewise used to analyze the control performance.

B. Time-invariant near-achievability of the lower bound:
Overview

In this section, we describe the internal variables in the
closed loop system in Fig. 3. Our description is sequential
but necessarily recursive. Initially, we will abstract lossless
source coding from the system; namely we will assume that
at each time t the encoder in Fig. 3 produces a discrete
quantization, qt which is conveyed exactly to the decoder.
This leads naturally to an analysis of the system’s incurred
control cost. We then propose two strategies to losslessly
encode the quantizations into prefix-free codewords {at} in
a time-invariant manner. Finally, we state our main result,
namely that these strategies can attain communication costs
that nearly achieve the lower bound in Section III.

Consider the system in Fig. 3, and define C and V to be
chosen optimally via the rate-distortion formulation in (6).
Since C and V are defined with respect to the minimizers of
(6) via (7), we can take V = vIm for some v > 0 without loss
of generality (defining C so that P̂−1 − (AP̂AT +W )−1 =
CTV −1C, where P̂ minimizes (6)). The encoder in Fig.
3 includes a elementwise uniform quantizer with sensitivity
∆. The encoder and decoder share access to a common
dither sequence of uniform random vectors, denoted {δt}. The
components of each δt vector are IID uniformly distributed
on [−∆

2 ,
∆
2 ] and the sequence {δt} is both IID over time

and conforms to the conditional independence relationships
implied by (4). With foresight, let the quantizer sensitivity
and dither support be ∆ =

√
12v.

In Fig 3, both the encoder and the decoder operate identical
time-invariant KFs. We denote the a priori and a posteriori
estimates computed by these filters as xt|t−1 and xt|t, the
corresponding estimator errors as et = xt − xt|t−1 and
et|t = xt − xt|t, and the error covariance matrices P t|t−1 =
cov(et) and P t|t = cov(et|t). The initial a priori estimate is
x0|−1 = 0. The general intuition behind the architecture in
Fig. 3 is that the state vector xt, the estimates xt|t−1 and xt|t,
and the control input ut are equivalent to those in the three-
stage separation architecture of Fig. 2 up to second order. We
demonstrate this presently.

Assume that at time t, the encoder and decoder’s time-
invariant KFs have identical a priori estimates xt|t−1 (this
holds by design at t = 0). We describe the system in Fig.
3 beginning from the encoder’s input (the upper right of the
figure) in a step-by-step fashion.

1) The encoder forms the linear measurement of the plant
state, Cxt, and the associated Kalman innovation Cet.

2) Assume that the dither sequence satisfies δt ⊥⊥
(at−1, δt−1,ut−1,wt−1, et,xt). This is consistent with
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the assumptions in (4). The encoder then produces a
dithered quantization of the innovation, computing qt =
Q∆(Cet + δt).

3) The encoder encodes qt (a discrete random variable) into
the codeword at ∈ {0, 1}∗ using a lossless source code.
The codeword at is conveyed to the decoder. As the
coding is lossless, the decoder recovers qt exactly.

4) The decoder uses the recovered quantization and the com-
mon dither to compute the reconstruction q̃t = qt − δt.
Let vt = q̃t −Cet. From Proposition IV.1, we have that
vt is a vector with IID elements uniformly distributed
on [−∆

2 ,
∆
2 ] and that vt ⊥⊥ et. By assumption, the

decoder-side KF’s a priori estimate is also xt|t−1. The
decoder uses this to compute the centered measurement
yt = q̃t + Cxt|t−1, equivalently,

yt = Cxt + vt. (19)

Via (19), yt is a linear measurement of the plant state with
additive uniform noise. Given that vt is a deterministic
function of δt and et, we have δt ⊥⊥ (et,xt), and that
vt ⊥⊥ et, it can be verified that vt ⊥⊥ xt. The effective
measurement matrix is C, and we have E[vt] = 0m and
cov(vt) =

∆2

12 I = V .
5) Note that since the encoder has access to qt, δt,

and xt|t−1, it can also compute the centered measure-
ment yt. Both the decoder and the encoder update
their time-invariant KF estimate using yt. Letting J =
P̂+C

T(CP̂+C
T + V )−1 as in Section III, the encoder

and decoder compute xt|t = xt|t−1 + J(yt − Cxt|t−1).
6) Let K = −(BTSB + Φ)−1BTSA as in Sec. III. The

decoder forms the certainty-equivalent control input via
ut = Kxt|t, which can also be computed at the encoder.
The decoder feeds the control input into the plant, and
both the encoder and decoder KFs compute prediction
updates via xt+1|t = Axt|t + But. Under this feedback
arrangement, one can demonstrate that the sequence of
reconstruction errors {vt} are IID and that vt ⊥⊥ xt for
all t.

Since the {vt} is a temporally white sequence with covariance
V , and since vt ⊥⊥ xt, the linear measurement model in
(19) is, to second order, identical to the one in the optimal
three-stage test channel discussed in Section III. The principal
distinction is that in Fig. 3, the measurement noise is uniform,
rather than Gaussian (cf. (19)). As the measurement models
are the same to second order, the sequences of KF error
covariance matrices, {P t|t−1} and {P t|t} will satisfy the same
recursions as the time-invariant KF in Section III’s three-stage
test channel. Thus, we have for P̂ the minimizing P from
(6) and P̂+ = AP̂AT + W , (cf. the discussion before (8))
limt→∞ P t|t−1 = P̂+ and limt→∞ P t|t = P̂ . This leads to
the following, via the equality preceding (8).

Proposition IV.2. Consider the system of Fig. 3 as described
above. So long as qt is recovered by the decoder at every t,
the system attains lim

T→∞
1

T+1

∑T
t=0 E[∥xt+1∥2Q + ∥ut∥2R] ≤ γ.

Regardless as to which lossless encoding scheme is used to
encode the qt into the codewords at, Prop. IV.2 guarantees

that the system in Fig. 3 achieves the desired constraint on
LQG cost.

In much of the prior work (cf. e.g. [3], [4]), it was
proposed to encode quantizations {qt} using time-varying
codebooks that were optimized, at every time t, to either
the conditional PMF of qt given the dither realization δt or
the unconditional PMF, i.e. producing codewords at via e.g.
at = CU

qt|δt
(qt|δt) or at = CS

qt
(qt). Time-asymptotic bounds

on either lim supt→∞ H(qt|δt) or lim supt→∞ H(qt) were
generally derived, and a Cesáro mean argument then used
to upper bound the time-average expected codeword length.
As the {qi} are not identically distributed, these approaches
are time-varying in that the mapping from quantizations qt

(in the unconditioned case) or from quantizations and dither
realizations δt (in the conditioned case) must generally vary
at every t. Such “perfect” adaptivity require great deal of
computational overhead, and preclude arguments that suggest
that the same bound on communication cost can be achieved
with online, adaptive lossless coding schemes would seek
to “learn” the PMF of qt over time. This motivates an
investigation of time-invariant coding schemes.

In this work, we propose to encode the {qt} in a “time-
invariant” manner. In one approach, we encode qt condi-
tionally with an SFE code designed for a fixed conditional
distribution Pq|δ . In this case, the codewords at are computed
via at = CU

q|δ(qt|δ). This approach will still satisfy Prefix
Constraint 1. While this approach is time-invariant in the sense
that if (qt, δt) = (x, y) and also (qt+1, δt+1) = (x, y), then
at = at+1, using a “conditional” codebook essentially requires
that a different prefix-free codec (of the form (12) or (13)) be
constructed for every potential realization of one of the δts
(i.e. the conditional encoding uses the realization of the dither
to select which codebook to use). For that reason, we also
consider using a fixed time-invariant codebook of the form
(12) or (13) at all t. In other words, we “unconditionally”
encode {qt} with a fixed code of the form (13) designed using
some fixed PMF Pq, i.e. we assume that the codewords at are
given by at = CS

q(qt). Since a fixed prefix code is used at
all t, the system will conform to Prefix Constraint 3, which is
the strongest, time-invariant constraint.

While generally speaking, the use of a fixed codebook
would result in an increased codeword length, our main
result is that for an unconditional (resp. conditional) code-
book designed for a particular fixed PMF (resp. conditional
PMF) Pq (resp. Pq|δ), there is not an appreciable increase
in communication cost. In particular, {qt, δt} is a Markov
chain. We prove our main result by demonstrating that this
chain has a limiting distribution, and that, in fact, encoding
the qt with a lossless code adapted to the limiting PMF of
qt (resp. conditional limiting PMF of qt given δqt) attains
a communication cost close to the lower bound R(γ). The
analysis also provides new “almost sure” bounds on the time-
average codeword length (as opposed to expected length). This
result is summarized in the following, and is proven in Section
IV-C.

Theorem IV.3. (i) There exists a conditional PMF Pq|δ :
(∆Z)m × [−∆/2,∆/2]m → [0, 1] such that if CU

q|δ is
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as defined in (10) with respect to Pq|δ , and if the source
codec in Fig. 3 encodes the quantization qt with CU

q|δ
given the dither δt at every t (i.e., at = CU

q|δ(qt|δt)
for all t), the {at} satisfy Prefix Constraint 1 and their
lengths will almost surely satisfy

lim
T→∞

1

T + 1

T∑
i=0

ℓ(at) ≤ R(γ) +
m

2
log2

(
2πe

12

)
+ 2,

(20)

and furthermore

lim
T→∞

1

T + 1

T∑
i=0

E[ℓ(at)] ≤

R(γ) +
m

2
log2

(
2πe

12

)
+ 2. (21)

(ii) With Pq|δ defined as in (i), define Pq(q) =
1

∆m

∫
s∈[−∆/2,∆/2]m

Pq|δ(q|s)ds. Let CS
q be the “sorted”

SFE code for q∞ as defined in (13) with respect to Pq. If
the system in Fig. 3 uses CS

q to encode the quantization qt

at every t (i.e., at = CS
q(qt) for all t), then the codewords

{at} will satisfy Prefix Constraint 3, their lengths will
almost surely satisfy

lim
T→∞

1

T + 1

T∑
i=0

ℓ(at) ≤

R(γ) +m

(
1 +

1

2
log2

(
2πe

12

))
+ 1, (22)

and the time-average of expected codeword lengths sat-
isfies

lim
T→∞

1

T + 1

T∑
i=0

E[ℓ(at)] ≤

R(γ) +m

(
1 +

1

2
log2

(
2πe

12

))
+ 1. (23)

(iii) Regardless of which lossless codec is used in Fig. 3, in ad-
dition to the bound in Prop. IV.2, the control cost almost
surely satisfies lim sup

T→∞

1
T+1

∑T
t=0∥xt+1∥2Q+∥ut∥2R < γ.

In Theorem IV.3, one can view Pq,δ as the limiting dis-
tribution of the Markov chain for {qt, δt}. Theorem IV.3
provides two approaches to losslessly encode the quantizations
qt that are notionally time-invariant. The approach in Theorem
IV.3(i) proposes to encode and decoder qt conditioned on the
realization of the dither δt, which is known at the decoder. In
this approach, the prefix-free codebook used at each t will
generally change, however in contrast to the work in [3],
the codec need not be adapted in both time and with the
dither realization. On the other hand, the approach in Theorem
IV.3(ii) is truly time-invariant. At every time t, qt is encoded
with a fixed codebook, adapted to the limiting distribution of
the {qt}. This permits us to claim that this approach satisfies
the “time-invariant” Prefix Constraint 3. Notably, Theorem
IV.3 additionally provides an “almost sure” bound on the

realization of the time-average codeword length. In addition to
bounds on the “time average of expectations” communication
cost defined in (9), the bounds in (20) and (22) imply that
under the proposed encodings, the realizations of the long-
term time average codeword lengths will almost surely satisfy
the same upper bounds. The result for control performance in
Theorem IV.3(iii) is analogous.

C. Proof of Theorem IV.3

In this subsection, we establish a proof of Theorem IV.3.
We establish that the Markov chain {qt, δt} converges to
some (q, δ). In particular, we demonstrate convergence is such
that the time-average expected communication cost does not
increase. These results follow from a long-term analysis of
the stochastic process {et, δt}. Our analysis relies on well-
established results from ergodic theory from [28] and [29].

Some properties of {et, δt} will be especially useful. Let
L = AJ and R = (A − LC). Recall that by definition vt =
q̃t − Cet = Q∆(Cet + δt) − δt − Cet. Define the function
M : (x, y) ∈ Dm → Rm via

M(x, y) = Rx− L(Q∆(Cx+ y)− y − Cx). (24)

Via (1) and the KF equations, it can be seen that {et} obeys
the recursion

et = M(et−1, δt−1) +wt−1, (25)

equivalently et = Ret−1−Lvt−1+wt−1. Since x0|−1 = 0m,
e0 ∼ N (0, X0), and as (A,W

1
2 ) is stabilizable and (C,A)

is detectable, R is stable with eigenvalues strictly inside
the complex unit circle, i.e. ρmax(R) < 1 [41][38]. Since
wt ⊥⊥ (et, δt) and δt+1 ⊥⊥ (et+1,wt), via (25), {et, δt} is a
time-homogeneous first order Markov chain on the state space
Dm = Rm⊗[−∆/2,∆/2]m. The transition probabilities of the
chain are described via a well-defined conditional PDF. Define
the “Gaussian PDF” function N(r;µ,Ψ) : Rm ×Rm ×Sm

+ →
R+ via N(r;µ,Ψ) = 1√

(2π)m detΨ
e−

1
2 (r−µ)TΨ−1(r−µ). To

simplify notation, let ft+1|t = fet+1,δt+1|et,δt
. Via (25), the

transition PDF ft+1|t : Dm × Dm → R+ is

ft+1|t(et+1, δt+1|et, δt) =
1δt+1∈[−∆

2 ,∆2 ]m

∆m
N(et+1;M(et, δt),W ), (26)

where the indicator function in (26) is “always on” if
(et+1, δt+1) ∈ Dm, and is only included to emphasize
that the support of each of the δt is the m−dimensional
hypercube [−∆

2 ,
∆
2 ]

m. The transition PDF defines a well-
defined regular conditional probability: for K ∈ B(Dm),
we have Pet+1,δt+1|et,δt

[(et+1, δt+1) ∈ K|et, δt]
a.s.
=∫∫

Dm 1(x,y)∈Kft+1|t(x, y|et, δt)dxdy. The Markov chain
{et, δt} has some useful properties that will be used to
construct the encoding PMFs Pq|δ and Pq. Namely, the chain
converges to an invariant measure and has an ergodic prop-
erty. These results are summarized in the following technical
lemmas, proven in Appendix A. The proof of the first result
uses the theory of weakly transient sets, namely [28, Thm. 5],
to establish the existence of a potential limiting distribution.
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Lemma IV.4. The Markov chain on Dm defined by (26) admits
an invariant PDF; i.e., there exists a function ginv : Dm → R+

such that

ginv(e+, δ+) =∫∫
(e,d)∈Dm

ft+1|t(e+, δ+|e, δ)ginv(e, δ)dedδ (27)

and ginv(e, d) > 0 for all (e, d) ∈ Dm. In other words, the
Markov chain admits an invariant probability measure Pinv :
B(Dm) → [0, 1] defined by Pinv[K] =

∫∫
(e,δ)∈K ginv(e, δ)dedδ

that is equivalent to the Lebesgue measure on Dm (i.e., Pinv

has a strictly positive PDF).

For intuition, note that if the initial conditions of a Markov
chain are drawn from the invariant measure (e.g., (e0, δ0) ∼
Pinv) then for i ≥ 1 we will have (ei, δi) ∼ Pinv. The
next lemma states that if the initial conditions (e0, δ0) are
continuous random variables, the Pei,δi

converge to Pinv and
that an ergodic property holds. The analysis follows from [29,
Thm. 4].

Lemma IV.5. For λ almost every initial condition, the n-
step transition probabilities of the Markov chain defined by
(26) converge in total variation to the invariant measure, i.e.,
for λ almost every (e0, δ0), limt→∞ supK∈B(Dm) |Pinv[K] −
Pet,δt|e0,δ0

[et, δt ∈ K|e0 = e0, δ0 = δ0]| = 0. Furthermore,
if (e0, δ0) are continuous random variables then for any
function θ : Dm → R with

∫∫
Dm |θ(e, δ)|ginv(e, δ)dedδ < ∞,

a “law of large numbers” holds for {ei, δi} in the sense that
limT→∞

1
T+1

∑T
i=0 θ(ei, δi)

a.s.
= E(e,δ)∼ginv [θ(e, δ)].

Let (e, δ) ∼ Pinv, e.g. let Pe,δ[e, δ ∈ K] = Pinf [K] so
that (e, δ) have the joint PDF fe,δ = ginv. Since (e0, δ0)
are continuous random variables on Dm, an immediate con-
sequence of Lemma IV.5’s convergence in total variation is
that the sequence of (et, δt) converge in distribution to (e, δ).
We now combine Lemmas IV.4 and IV.5 to prove some useful
facts about Pinv.

Corollary IV.6. Let (e, δ) ∼ Pinv. The marginal PDF of e is
fe(e) =

∫
[−∆/2,∆/2]m

ginv(e, δ)dδ. We have that e ⊥⊥ δ and
that δ is a random vector whose elements are IID with [δ]i ∼
Uniform[−∆/2,∆/2]. This implies that that the invariant
PDF, ginv, factorizes via ginv(e, d) =

fe(e)
∆m for (e, d) ∈ Dm.

Furthermore, we have E[e] = 0 and E[eeT] = P̂+.

Proof: If A is an open interval in Rm and D an open
interval in [−∆/2,∆/2]m then A × D ∈ B(Dm). Using the
definition of the invariant PDF (27) and the formula for ft|t−1

from (26), it can be shown that if K = A×D then, Pe,δ[K] =∫
A fe(e)de

λ(D)
∆m . By Dynkin’s π−λ theorem, this proves that

e ⊥⊥ δ (see e.g., [42, Prop. 2.13]).
Define v = (Q∆(Ce+ δ)− (Ce+ δ)). By definition,

M(e, δ) = Re − Lv. By the result just established, δ ⊥⊥ e
and the [e]i are IID uniformly distributed on [−∆/2,∆/2].
Thus, we can apply the properties of dithered quantizers from
Prop. IV.1. Namely, by Prop. IV.1(i) we have v ⊥⊥ e and
that the components [v]i are IID uniform random variables on

[−∆/2,∆/2]. It can be shown that

E[eeT] = W +RE[eeT]RT + LV LT. (28)

The equality (28) follows from (29)-(34) shown at the top
of the following page. In particular, (30) follows from the
definition of the invariant PDF, (31) follows from the Fu-
bini/Tonelli Theorem, (32) follows from (26) (i.e., since given
(et−1, δt−1), et is normal with mean M(et−1, δt−1) and
variance W ), (33) follows from (24) and the definition of
v above, and finally (34) (equivalent to (28)) follows from
the aforementioned properties of v and the definition V =
∆2

12 Im×m. We recognize that the identity (28) is a Lyaponov
equation in E[eeT]. This equation has a unique PSD solution
[43, Prob. 4.9]. It turns out that this unique solution to (28) is
E[eeT] = P̂ . To see this, note that by definition P̂+ satisfies
the DARE

P̂+ =

A
(
P̂+ − P̂+C

T(CP̂+C
T + V )−1CP̂+

)
AT +W. (35)

Substituting the explicit formulas R = A − LC, L =
AP̂+C

T(CP̂+C
T + V )−1 and setting E[eeT] = P̂+ in the

right-hand side of (28) exactly recovers the right-hand side
of (35). This proves the result. Since e ∈ L2, we have
e ∈ L1. Given this, reductions analogous to (29) through (28)
demonstrate that E[e] = RE[e]. Since ρmax(R) < 1, it must
be that E[e] = 0m.

An immediate consequence of Lemma IV.5 and the corol-
lary is the “almost sure” guarantee on the realization of
the time-average control cost in Theorem IV.3(iii). By the
lemma and corollary, we have that lim

T→∞
1

T+1

∑T
t=0∥xt+1∥2Q+

∥ut∥2R
a.s.
= Tr(ΘP̂ ) + Tr(WS). Since Tr(ΘP̂ ) + Tr(WS) <

γ, this proves Theorem IV.3(iii). With (e, δ) ∼ Pinv, let
q = Q∆(Ce + δ). The random variable q is describes the
quantizer output when its inputs are drawn from the invariant,
limiting distribution. It can likewise be shown that the (qt, δt)
converge in total variation to (qt, δt). Our general strategy
is to design prefix-free codes for encoding the qt using the
limiting conditional and unconditional PMFs Pq|δ and Pq.
Both of these are well-defined; namely for r ∈ Rm, let
B∆(r) = {x ∈ Rm : ∥x − r∥∞ ≤ ∆

2 } denote a hypercube
centered at r. For z ∈ (∆Z)m, we have Pq|δ[z|δ = δ] =
Pe[Ce ∈ B∆(z − δ)]. Likewise, again for z ∈ (∆Z)m,
Pq[z] =

1
∆m

∫
δ∈[−∆

2 ,∆2 ]m
Pe[Ce ∈ B∆(z − δ)]dδ.

Assume first that the “unconditional”, “sorted” encoding
adapted to q is used, i.e. at every t, at = CS

q(qt). By the
definition of CS

q(qt), the codeword length satisfies ℓ(at) ≤
− log2 (Pq(qt)) + 1 .The “law of large numbers” afforded by
Lemma IV.5 gives

lim sup
T→∞

1

T + 1

T∑
i=0

ℓ(at) ≤ lim
T→∞

∑T
i=0 − log2 (Pq(qt))

T + 1
+ 1

a.s.
≤ H(q) + 1, (36)

where (36) follows since E(e,δ)∼Pinv
[Pq(q)] = H(q).

At every t, the expected codeword length satisfies
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E[eeT] =
∫∫

(e,d)∈Dm

eeTginv(e, δ)dedδ (29)

=

∫∫
(e,d)∈Dm

eeT
∫∫

(s,t)∈Dm

ft+1|t(e, δ|s, t)ginv(s, t)dsdtdedδ (30)

=

∫∫
(s,t)∈Dm

(∫∫
(e,d)∈Dm

eeTft+1|t(e, δ|s, t)dedδ

)
ginv(s, t)dsdt (31)

=

∫∫
(s,t)∈Dm

(
W +M(s, t)M(s, t)T

)
ginv(s, t)dsdt (32)

= W + E(e,δ)∼Pinv
[(Re− Lv)(Re− Lv)T] (33)

= W +RE[eeT]RT + LV LT, (34)

E[ℓ(at)] ≤ Eqt

[
− log2

(
Pqt

(qt)
)
+ log2

(
Pqt (qt)

Pq(qt)

)
+ 1
]
;

equivalently, we have

H(qt) +DKL(qt||q) ≤ E[ℓ(at)] (37)
≤ H(qt) +DKL(qt||q) + 1. (38)

We will use these observations directly to establish The-
orem IV.3(ii); namely we will use (36) together with a
bound on H(q) to establish (22). Likewise, to establish
(23), we will bound lim supt→∞H(qt) and prove that
lim supt→∞DKL(qt||q) = 0. Taking the Cesáro mean then
completes the argument. The analyses used to establish IV.3(i)
is completely analogous. If at every t, the system encodes
qt given the realization of δt using an unsorted encoding
adapted to Pq|δ , e.g. assume at = CU

q|δ(qt|δt). By the
definition of CU

q|δ(qt|δt), the upper bound in (36) is replaced
by lim sup

T→∞

1
T+1

∑T
i=0 ℓ(at) ≤ H(q|δ) + 2, and the bound in

(38) is replaced with

H(qt|δt) +DKL(qt||q|δt) ≤
E[ℓ(at)] ≤ H(qt|δt) +DKL(qt||q|δt) + 2 (39)

where the conditional KL divergence is DKL(qt||q|δt) =

Eqt,δt
[log2

(
Pqt|δt (qt|δt)

Pq|δ(qt|δt)

)
]. We bound H(q|δ) to establish

(20), and we both bound lim supt→∞H(qt|δt) and prove that
lim supt→∞DKL(qt||q|δt) = 0 to establish (21).

Lemma IV.7. We have

H(q|δ) ≤ R(γ) +
m

2
log2

(
2πe

12

)
, (40)

H(q) ≤ R(γ) +m+
m

2
log2

(
2πe

12

)
, (41)

lim sup
t→∞

H(qt|δt) ≤ R(γ) +
m

2
log2

(
2πe

12

)
, and (42)

lim sup
t→∞

H(qt) ≤ R(γ) +m+
m

2
log2

(
2πe

12

)
. (43)

Proof: We first analyze H(q|δ). Since by definition
q = Q∆(Ce + δ) and by Corollary IV.6 e ⊥⊥ δ, we can
apply Proposition IV.1(iii). Setting z = Ce in the statement
of Prop. IV.1, noting that E[CeeTCT] = CP̂CT by Corollary
IV.6, and recalling that by definition V = ∆2

12 Im×m,

we have H(q|δ) ≤ 1
2 log2

(
det
(
CP̂CT + V

))
−

1
2 log2(det(V )) + m

2 log2
(
2πe
12

)
. Since by definition

P̂−1 = P̂−1
+ + CTV −1C (see (7)), the matrix determinant

lemma gives det(CP̂+C
T+V ) = det(P̂+) det(V ) det(P̂−1).

Since R(γ) = log2(det(P̂+)) + log2(det(P̂
−1)) via (9),

we have H(q|δ) ≤ R(γ) + m
2 log2

(
2πe
12

)
. By Prop.

IV.1(ii), H(q) ≤ m + H(q|δ). The derivation of the
bounds on lim supt→∞ H(qt|δt) and lim supt→∞ H(qt)
is completely analogous. Using Prop. IV.1(iii), we
have H(qt|δt) ≤ log2

(
det
(
CE
[
ete

T
t

]
CT + V

))
−

1
2 log2(det(V )) + m

2 log2
(
2πe
12

)
. Taking the limit of both

sides, and recalling that limt→∞ E
[
ete

T
t

]
= P̂ gives the

bound on lim supt→∞ H(qt|δt). As H(qt)−H(qt|δt) ≤ m,
the bound on lim supt→∞ H(qt) follows.

From the preceding discussion (cf. (36)), Lemma IV.7
proves the bounds on the realizations of time average code-
word length in Theorem IV.3’s (20) and (22). To use a Cesáro
argument to establish (21) and (23), we must demonstrate that
the KL divergences DKL(qt||q| δt), DKL(qt||q) tend to 0 as
t → ∞. This is the subject of the following lemma.

Lemma IV.8. We have limt→∞ DKL(qt||q| δt) = 0 and
limt→∞ DKL(qt||q) = 0.

Proof: It can be shown via Jensen’s inequality that if a,b
are random variables that are absolutely continuous with re-
spect to Lebesgue measure such that a is absolutely continuous
with respect to b, then DKL(Q∆(a)||Q∆(b)) ≤ DKL(a||b).
Thus, we have DKL(qt||q) ≤ DKL(Cet+ δt||Ce+ δ). Since
δt and δ are identically distributed, et ⊥⊥ δt, and e ⊥⊥ δ,
the data processing inequality (DPI) for KL divergences
(cf. [44, Theorem 2.15]) gives DKL(Cet + δt||Ce + δ) ≤
DKL(et||e). The proof that DKL(qt||q| δt) ≤ DKL(et||e) is
analogous. To begin, recognize that for each δ ∈ [−∆

2 ,
∆
2 ]

n,
DKL(qt||q| δt = δ) ≤ DKL(Cet + δ||Ce+ δ| δt = δ)
where both et ⊥⊥ δt and e ⊥⊥ δt. Applying the DPI for
every realization δ and using the fact that, by independence,
Pet|δt

= Pet and likewise Pe|δ = Pe completes the argu-
ment. Thus, we can prove the lemma by demonstrating that
limt→∞ DKL(et||e) = 0.

Let {νt} denote an IID sequence of random variables
uniformly distributed on [−∆/2,∆/2]m, let {ωt} be IID



IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY: “MODERN COMPRESSION” 12

with ωt ∼ N (0m,W ), and let λ ∼ N (0m, X0). Assume
{ωt}, {νt}, and λ are mutually independent. Let “D=” denote
“equality in distribution”, e.g., we write a

D
= b to imply a

and b are identically distributed. From (25), we have et =
Ret−1−Lvt−1+wt−1. Via Prop. IV.1(i) and the factorization
of system variables in (4), it can be verified that wt ⊥⊥
et,vt,wt−1 and vt ⊥⊥ et,vt−1,wt. Thus, by this recursive
definition of {et}, et

D
= Rtλ+

∑t−1
i=0 R

i(ωi−Lνi). Likewise,
by definition of e, we have that both e

D
= limt→∞ Rtλ +∑t−1

i=0 R
i(ωi − Lνi) and e

D
= limt→∞

∑t−1
i=0 R

i(ωi − Lνi),
which follows since Lemma IV.5’s convergence in total vari-
ation implies weak convergence. Define the random variables
g≤t =

∑t−1
i=0 R

iωi,
u≤t = −

∑t−1
i=0 R

iLνi, and s>t = limr→∞
∑r

i=t R
i(ωi −

Lνi) the limit is well defined by Kolmogorov’s two-series
theorem. By definition, et

D
= Rtλ + g≤t + u≤t and e

D
=

g≤t+u≤t+ s>t. Note that g≤t ∼ N (0m,
∑t−1

i=0 R
iW (Ri)T).

We have

DKL(et||e) = DKL(R
tλ+ g≤t + u≤t||g≤t + u≤t + s>t)

≤ DKL(R
tλ+ g≤t||g≤t + s>t) (44)

≤ DKL(R
tλ+ g≤t||g≤t + s>t

∣∣ s>t), (45)

where (44) follows from the data processing inequality for KL
divergence and (45) follows since conditioning increases KL
divergence (see [44, Theorem 2.14 (e)]).

Given s>t = s, (45) simplifies to a KL divergence be-
tween two m−dimensional multivariate Gaussians. Let Ψt =∑t−1

i=0 R
iW (Ri)T and Ψt = Ψt + RtX0(R

T)t. Since λ ⊥
⊥ g≤t by construction, Rtλ + g≤t ∼ N (0m,Ψt). Also by
construction (g≤t,λ) ⊥⊥ s>t. Thus, we have

DKL(R
tλ+ g≤t||g≤t + s>t

∣∣ s>t = s) =

DKL(N (0m,Ψt)||N (s,Ψt)), (46)

and

DKL(N (0m,Ψt)||N (s,Ψt)) =

1

2
loge(

detΨt

detΨt

) +
Tr(Ψ−1

t Ψt)

2
+

sTΨ−1
t s

2
− m

2
, (47)

where the divergence in (47) is in nats. Let dt = loge(
detΨt

detΨt
)+

Tr(Ψ−1
t Ψt) − m. Taking the expectation over realizations s,

we have

DKL(R
tλ+ g≤t||g≤t + s>t

∣∣ s>t) =

1

2
(dt +

Es>t [s
T
>tΨ

−1
t s>t]

2
). (48)

It is immediate that s>t ∈ L2, so (48) is always finite.
We analyze each of the terms in (48) in turn. Since Ψt ⪰
Ψt ⪰ W ≻ 0m×m, we have that detΨt,detΨt > 0. Since
R is globally asymptotically stable (with ρmax(R) < 1),
we have well defined, equal limits limt→∞ Ψt = Ψ∞ and
limt→∞ Ψt = Ψ∞ (see Proposition A.4 in Appendix A). Thus,
limt→∞ loge(

detΨt

detΨt
) = 0 and limt→∞ Tr(Ψ−1

t Ψt) = m,
implying limt→∞ dt = 0.

We now establish that limt→∞ Es>t
[sT>tΨ

−1
t s>t] = 0.

Let pt:r =
∑r

i=t R
i(ωi − Lνi). For any t, by definition

limr→∞ pt:rp
T
t:r = s>ts

T
>t, where we again note that the limit

is well defined by Kolmogorov’s two-series theorem. Then, we
then have for any t

E[sT>tΨ
−1
t s>t] = E

[
Tr
(
Ψ−1

t lim
r→∞

pt:rp
T
t:r

)]
(49)

≤ Tr
(
Ψ−1

t lim inf
r→∞

E[pt:rp
T
t:r]
)
, (50)

where (50) follows from Fatou’s lemma and
the linearity of the trace/expectation. Let Γ =
limj→∞

∑j
i=0 R

i
(
W + LV LT

)
(RT)i, where the limit

is well defined since R has ρmax(R) < 1. It is easy to see
directly that lim

r→∞
E[pt:rp

T
t:r] = RtΓ(RT)t. Consequently,

from (50), we have

E[sT>tΨ
−1
t s>t] ≤ Tr

(
Ψ−1

t RtΓ(RT)t
)
. (51)

It is immediate that Ψ−1
t ⪯ W−1. Since ρmax(R) < 1

taking the limit of both sides of (51) as t → ∞ gives
limt→∞ E[sT>tΨ

−1
t s>t] = 0. Since limt→∞ dt = 0, tak-

ing the limit of both sides of (48) as t → ∞ gives
that limt→∞ DKL(R

tλ+ g≤t||g≤t + s>t

∣∣ s>t) = 0. Since
D(et||e) ≤ DKL(R

tλ+ g≤t||g≤t + s>t

∣∣ s>t) this proves the
lemma.

Since DKL(qt||q) and DKL(qt||q| δt) both tend to to 0 as
t → ∞, taking the time averages of (38) and (39) and applying
Cesáro means gives (23) and (21) respectively.

V. CONCLUSION

In this work we demonstrated that dithered quantization can
enable a time-invariant encoding architecture to achieve near
minimum bitrate prefix-free feedback in LQG control systems.
There are several interesting opportunities for future work. An
extension of our time-invariant achievability argument to non-
singular codes is essentially immediate. In both the conditional
and unconditional “time-invariant” approaches presented in
this work, the difference between the upper and lower bounds
on time average bitrate is linear in plant dimension (e.g. for
the fully time-invariant scheme of Theorem IV.3(ii), the upper
bound in (23) is about 1+ 1.26m bits above the lower bound
R(γ)). In the time-varying (but dither free) scheme in [4],
the gap between upper and lower bounds is O(log(m))). This
follows from [4]’s use of more sophisticated lattice quantizers
[4]. We believe that using (dithered) lattice quantizers in place
of uniform quantizers in the present setup could reduce the
scaling of our upper bounds with plant dimension. Another
opportunity is to explore the ergodic properties of the quantizer
output in the achievability approach proposed in [4]; this could
lead to a dither-free time-invariant achievability result.

Another opportunity is to expand this work to a more
general class of MIMO plants. An extension to partially
observed plants (where the encoder has access only to a noisy
measurement of the plant) requires a modified converse (lower-
bound) analysis. An reasonable staring point for this line of
research is the rate distortion formulation in [14, Section VII].
It is notable that in several areas, our proofs rely on the fact
the process noise covariance is full rank (e.g. W ≻ 0m×m);
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in particular this assumption is used liberally in establishing
Lemmas IV.4 and IV.5. A starting point for relaxing this
assumption is the rate-distortion formulation of [14, Thm. 1],
which could be used to design an optimal test channel akin to
that of Section III. It would also be useful to formulate a non-
time-asymptotic analysis of the convergence of communication
and control costs in our proposed approach.

Finally, it would also be interesting to examine adaptive
zero-delay source coding codecs in our present context; it
seems likely that the properties of the invariant measure
established in Section IV-C may be useful in analyzing the
asymptotic redundancy of such approaches.
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APPENDIX A
PROOFS OF TECHNICAL LEMMAS

To prove Lemmas IV.4 and IV.5, it is useful to denote the
n−step transition PDFs

ft+n|t(e, δ|ep, δp) = fet+n,δt+n|et,δt
(e, δ|ep, δp). (52)

Applying the standard Chapman-Kolmogorov equations to
(26), it can be seen that the n−step transition PDFs satisfy,
for (e, δ), (ep, δp) ∈ Dm × Dm,

ft+n|t(e, δ|ep, δp) = fet+n|et,δt
(e|ep, δp)fδt+n

(δ) (53)

= fet+n|et,δt
(e|ep, δp)

1δ∈[−∆
2 ,∆2 ]m

∆m
.(54)

A. Proof of Lemma IV.4

We prove the existence of the invariant PDF using results
from [28]. Formally speaking, we use the results of [28] to
verify that Markov chain described by (26) has an invariant
measure that is equivalent to the Lebesgue measure (i.e., it
has a PDF that is strictly positive). Generally speaking, when
restating definitions and theorems from [28], we will not do so
in full generality but rather adapt them to the present setting.
We begin with a definition.

Definition A.1 ([28, Definition 5]). A set F ∈ B(Dm) is
called weakly transient with respect to the Markov kernel
Pet+1,δt+1|et,δt

if there exists a sequence of positive integers
n1 < n2 < . . . such that

∞∑
i=1

Peni
,δni

|e0,δ0
[F |e0 = e0, δ0 = δ0] < ∞ (55)

holds for λ almost-every (e0, δ0).

A key result from [28] is the following.

Theorem A.2 ([28, Theorem 5]). There exists an invariant
PDF ginv satisfying (27) and
ginv(a, b) > 0 for all (a, b) ∈ Dm if and only if every weakly
transient set F has λ(F ) = 0.

We prove that the invariant PDF exists by demonstrating
that under the Markov model (26), any weakly transient set
must have Lebesgue measure 0. Recall from the discussion in
Section IV-A2 that the reconstruction at time t is given by

q̃t = Q∆(Cet + δt)− δt (56)

and the reconstruction error is then vt = q̃t − Cet. Recall
R = (A − LC), and that ρmax(R) < 1. The first lemma
derives the functional form of a particular conditional PDF
that will arise in future calculations.

Lemma A.3. Let

µn(e0, δ0, v
n−1
1 ) = Rn−1M(e0, δ0)−

n−2∑
i=0

RiLvn−1−i (57)

and

Σn =

n−1∑
i=0

RiW (RT)i. (58)

For all n ≥ 1 we have

fen|e0,δ0,v
n−1
1

(en|e0, δ0, vn−1
1 ) =

N(en;µn(e0, δ0, v
n−1
1 ),Σn) (59)

where M was defined in (24), and by convention vz
1 = ∅ if

z ≤ 0, σ2
1 = W , and µ1 = M(e0, δ0).

Proof: The proof follows from induction on n. The
base case for n = 1 is readily established from (26) after
marginalizing over δ1. Assume the formula (59) holds for
n = k − 1. We demonstrate that it must hold for n = k.
We have via Bayes’ Theorem that

fek|e0,δ0,v
k−1
1

(ek|e0, δ0, vk−1
1 ) =

fek,vk−1|e0,δ0,v
k−2
1

(ek, vk−1|e0, δ0, vk−2
1 )

fvk−1|e0,δ0,v
k−2
1

(vk−1|e0, δ0, vk−2
1 )

(60)

Since vk−1 is a measurable function of ek−1 and δk−1

and δk−1 ⊥⊥ (ek−1,v
k−2
1 , e0, δ0), it can be seen that

vk−1 ⊥⊥ (vk−2
1 , e0, δ0) given ek−1. By the properties of

dithered quantizers in Prop. IV.1(i), we have that vk−1 is
(pairwise) independent of ek−1. Together, these imply that
vk−1 ⊥⊥ (ek−1, e0, δ0,v

k−2
1 ). Thus, suppressing the implicit

dependence on realizations, we can derive

fek,vk−1|e0,δ0,v
k−2
1

=

fvk−1

∫
Rm

fek|ek−1,e0,δ0,v
k−1
1

fek−1|e0,δ0,v
k−2
1

dek−1, (61)

which is proven in (62)-(63) shown at the top of the subsequent
page. Thus, substituting (61) into (60) and using the fact that
vk−1 ⊥⊥ (e0, δ0,v

k−2
1 ) we can write

fek|e0,δ0,v
k−1
1

=∫
Rm

fek|ek−1,e0,δ0,v
k−1
1

fek−1|e0,δ0,v
k−2
1

dek−1. (64)

From the recursion relationship (25) and that wk−1 ⊥⊥
(ek−1, e0, δ0,v

k−1
1 ), we have that

fek|ek−1,e0,δ0,v
k−1
1

(ek|ek−1, e0, δ0, v
k−1
1 ) =

fek|ek−1,vk−1
(ek|ek−1, vk−1) (65)

and thus,

fek|ek−1,e0,δ0,v
k−1
1

(ek|ek−1, e0, δ0, v
k−1
1 ) =

N(ek;Rek−1 − Lvk−1,W ). (66)

Then, by the inductive assumption we have

fek−1|e0,δ0,v
k−2
1

(ek−1|e0, δ0, vk−2
1 ) =

N(ek−1;µk−1(e0, δ0, v
k−2
1 ),Σk−1). (67)

The integration in (64) is essentially a convolution of two
Gaussian PDFs, namely fek|e0,δ0,v

k−1
1

=
∫

Rm N(ek;Rek−1 −
Lvk−1,W )N(ek−1;µk−1(e0, δ0, v

k−2
1 ),Σk−1)dek−1.

Computing this convolution gives

fek|e0,δ0,v
k−1
1

=

N(ek;Rµk−1(e0, δ0, v
k−2
1 )− Lvk−1, RΣk−1R

T +W ).
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fek,vk−1|e0,δ0,v
k−2
1

=

∫
Rm

fek|ek−1,e0,δ0,v
k−1
1

fvk−1|ek−1,e0,δ0,v
k−2
1

fek−1|e0,δ0,v
k−2
1

dek−1 (62)

= fvk−1

∫
Rm

fek|ek−1,e0,δ0,v
k−1
1

fek−1|e0,δ0,v
k−2
1

dek−1 (63)

Substituting the assumed formulas (59) for Σk−1 and
µk−1(e0, δ0, v

k−2
1 ) into

Σk = RΣk−1R
T +W (68)

and

µk(e0, δ0, v
k−1
1 ) = Rµk−1(e0, δ0, v

k−2
1 )− Lvk−1 (69)

exactly recovers the formula (59) predicts for n = k.
Before continuing, we will state and prove a lemma that

describes some properties of the sequence of covariance ma-
trices {Σn} and the sequence of functions µn(e0, δ0, v

n−1
1 ) :

Dm× ([−∆
2 ,

∆
2 ]

m)n−1 → Rm described in Lemma A.3. First,
we recall a classic result from System Theory. Recall that for
a matrix X ∈ Rm×m, we defined ∥X∥2 as the maximum
singular value of X and ρmax(X) as X’s spectral radius (the
largest of the absolute values of X’s eigenvalues).

Proposition A.4 (Gelfand’s Theorem (cf. e.g. [43]) and a
Corollary). Gelfand’s theorem states that X ∈ Rm×m, then

lim
n→∞

(∥Xn∥2)
1
n = ρmax(X). (70)

If ρmax(X) < 1, then τ = (ρmax(X) + 1)/2 has τ < 1. An
immediate corollary of (70) is that there exists i ∈ N+ such
that for all j ≥ i, ∥Xj∥2 ≤ τ j .

In other words, Prop. A.4 guarantees that if ρmax(X) < 1,
limi→∞ Xj = 0m×m “geometrically fast”. The next lemma
concerns the sequence {Σn}.

Lemma A.5. Let {Σn} be the sequence of matrices in (58).
For all n, we have Σn ⪰ W ≻ 0m×m. Furthermore, there
exists a constant c such that ∥Σn∥2 ≤ c.

Proof: It is immediate from (58) that Σn ⪰ W . Note
also that Σn ⪰ Σn−1, so ∥Σn∥2 ≥ ∥Σn−1∥2. Recall that
ρmax(R) < 1, and let τ = (ρmax(R) + 1)/2. By Prop. A.4,
there exists j such that if i ≥ j, ∥Ri∥2 ≤ τ i.

∥Σn∥2 = ∥
n−1∑
i=0

RiW (RT)i∥2 (71)

≤ lim
n→∞

n−1∑
i=0

∥RiW (RT)i∥2 (72)

≤ lim
n→∞

n−1∑
i=0

∥Ri∥22∥W∥2 (73)

≤
j−1∑
i=0

∥Ri∥22∥W∥2 + lim
n→∞

n∑
i=j

τ2i∥W∥2 (74)

≤
j−1∑
i=0

∥Ri∥22∥W∥2 + ∥W∥2
1

1− τ2
, (75)

where (71) is the definition (58), (72) follows from the triangle
inequality and monotonicity, (73) is from the fact that the ma-
trix norm ∥◦∥2 is submultiplicative, (74) applies the corollary
in Prop. A.4, and finally (75) is the geometric series formula

(note τ < 1). Making the choice c =
j−1∑
i=0

∥Ri∥22∥W∥2 +

∥W∥2 1
1−τ2 proves the result.

The next lemma concerns the sequence of functions µn in
(57). Namely, it proves that the range of the functions lies
in compact set that does not depend on n or the realizations
vn−1
1 .

Lemma A.6. There exists constants α and β such that for
any n and choice of vn−1

1 ∈ ([−∆
2 ,

∆
2 ]

m)n−1 we have
∥µn(e0, δ0, v

n−1
1 )∥2 ≤ α∥M(e0, δ0)∥2 + β.

Proof: The proof is analogous to Lemma A.5. Let α =
maxn∈N+

∥Rn−1∥2. Since ρmax(R) < 1, we have α < ∞ by
the corollary in Prop. A.4. Let τ = (ρmax(R) + 1)/2 and let
j be as in the statement of Prop. A.4. The proof follows from
the inequalities (76)-(80), illustrated at the top of the following
page. For all n, (76) follows immediately from the triangle
inequality and submultiplicativity. Then, (77) follows by the
definition of α and the fact that since the vi ∈ [−∆

2 ,
∆
2 ]

m, they
have ∥vi∥2 ≤

√
m∆/2. Finally (79) and (80) are completely

analogous to (74) and (75).
With these in hand, we prove that the Markov process

{et, δt} satisfies the hypothesis of Theorem A.2.

Lemma A.7. All sets F ∈ B(Dm) that are weakly transient
with respect to the Markov kernel (26) have λ(F ) = 0.

Proof: We proceed via the contrapositive. Namely, we
demonstrate that if F ∈ B(Dm) has λ(F ) > 0, then F is
not weakly transient with respect to the Markov kernel (26).
Assume that F ∈ B(Dm) has λ(F ) > 0. We will prove that
for every such F and initial condition e0, δ0 there exists ξ > 0
such that

Pen,δn|e0,δ0
[F |e0 = e0, δ0 = δ0] > ξ, for all n ∈ N+. (81)

This ensures that for every e0, δ0 and subsequence ni ∈ N

∞∑
i=1

Peni
,δni

|e0,δ0
[F |e0 = e0, δ0 = δ0] = ∞. (82)

Since F ⊂ Dm has positive Lebesgue measure, the reg-
ularity of Lebesgue measure (cf. [45, Thms. 2.14, 2.18])
implies that F must contain a compact set with strictly positive
Lebesgue measure; in other words, there exists a closed,
bounded H ⊂ F such that for some κ > 0, λ(H) = κ.
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∥µn(e0, δ0, v
n−1
1 )∥2 ≤ ∥Rn−1∥2∥M(e0, δ0)∥2 +

n−1∑
i=0

∥Ri∥2∥L∥2∥vn−1−i∥2 (76)

≤ α∥M(e0, δ0)∥2 +
n−1∑
i=0

∥Ri∥2∥L∥2
√
m

2
∆, (77)

≤ α∥M(e0, δ0)∥2 + lim
n→∞

n∑
i=0

∥Ri∥2∥L∥2
√
m

2
∆ (78)

≤ α∥M(e0, δ0)∥2 +
j−1∑
i=0

∥Ri∥2∥L∥2
√
m

2
∆ + lim

n→∞

n∑
i=j

τ i∥L∥2
√
m

2
∆ (79)

≤ α∥M(e0, δ0)∥2 +
j−1∑
i=0

∥Ri∥2∥L∥2
√
m

2
∆ +

1

1− τ
∥L∥2

√
m

2
∆ (80)

By countable additivity for all n ∈ N+

Pen,δn|e0,δ0
[(en, δn) ∈ F |e0 = e0, δ0 = δ0] ≥

Pen,δn|e0,δ0
[(en, δn) ∈ H|e0 = e0, δ0 = δ0]. (83)

Consider a fixed n ∈ N+. It is obvious that

Pen,δn|e0,δ0
[(en, δn) ∈ H|e0 = e0, δ0 = δ0] ≥

κ inf
(x,y)∈H

fn|0(x, y|e0 = e0, δ0 = δ0). (84)

We establish the result of the lemma by finding a lower
bound for the infimum on the right-hand side of (84) that
does not depend on n. Let He = {x ∈ Rm : ∃δ ∈
[−∆/2,∆/2]m with (x, δ) ∈ H} denote the “e−section” of
H . Note that He is a compact subset of Rm. Boundedness of
He is inherited from the boundedness of H . To see that He

is closed, let x be a limit point of He and the limit of the
sequence xi ∈ He. Since xi ∈ He, for each xi there exists a
δi such that (xi, δi) ∈ H . Since H is compact, a subsequence
of (xi, δi), denoted (xni , δni), converges in H; in other words,
there exists some δ such that limi(xni

, δni
) = (x, δ) and

(x, δ) ∈ H . Since (x, δ) ∈ H , x ∈ He. Since He contains its
limit points, it is closed. From the factorization of the n-step
transition PDF (54) and the fact that H is contained strictly
inside Dm we have

inf
(x,y)∈H

fn|0(x, y|e0, δ0) = inf
x∈He

fen|e0,δ0
(x|e0, δ0)

∆m
. (85)

By definition,

fen|e0,δ0
(x|e0, δ0) =

Evn−1
1 |e0=e0,δ0=δ0

[fen|vn−1
1 ,e0,δ0

(x|vn−1
1 , e0, δ0)]. (86)

Recall the reconstruction error satisfies vi ∈ [−∆
2 ,

∆
2 ]

m for all
i. Since “the minimum is less than or equal to the average”,
we have

inf
x∈He

fen|e0,δ0
(x|e0, δ0) ≥

inf
x∈He

vn−1
1 ∈([−∆

2 ,∆2 ]m)
(n−1)

fen|vn−1
1 ,e0,δ0

(x|vn−1
1 , e0, δ0) (87)

In Lemma A.3’s (59) we demonstrated that for any n, realiza-
tions of the reconstruction error vn−1

1 , and realizations of the
initial conditions e0, δ0 we have

fen|vn−1
1 ,e0,δ0

(x|vn−1
1 , e0, δ0) =

N(x;µn(e0, δ0, v
n−1
1 ),Σn). (88)

Note that for Σ ⪰ W ≻ 0 and µ, x ∈ Rm, the
function N(x;µ,Σ) is strictly positive and continuous in
(x, µ,Σ). Let c be as in the statement of Lemma A.5
and let α and β be as in the statement of Lemma A.6.
Define the set M(e0, δ0,m,L,R,∆) ⊂ Rm × Sm×m

+ via
M(e0, δ0,m,L,R,∆) = {µ ∈ Rm,Σ ∈ Sm×m

+ : Σ ⪰
W, ∥Σ∥2 ≤ c, ∥µ∥2 ≤ α∥M(e0, δ0)∥2 + β}. This set is
compact (closed and bounded). For any n and vn−1

1 ∈
([−∆

2 ,
∆
2 ]

m)
n−1

, Lemmas A.5 and A.6 guarantee that we have
that

(
µn(e0, δ0, v

n−1
1 ),Σn

)
∈ M(e0, δ0,m,L,R,∆).

Via (88) we have

inf
x∈He

vn−1
1 ∈([−∆

2 ,∆2 ]m)
(n−1)

fen|vn−1
1 ,e0,δ0

(x|vn−1
1 , e0, δ0) =

inf
x∈He

vn−1
1 ∈([−∆

2 ,∆2 ]m)
(n−1)

N(x;µn(e0, δ0, v
n−1
1 ),Σn). (89)

As for any choice of vn−1
1 ∈ ([−∆

2 ,
∆
2 ]

m)
(n−1)

we have(
µn(e0, δ0, v

n−1
1 ),Σn

)
∈ M(e0, δ0,m,L,R,∆) gives that

inf
x∈He

vn−1
1 ∈([−∆

2 ,∆2 ]m)
(n−1)

N(x;µn(e0, δ0, v
n−1
1 ),Σn) ≥

inf
x∈He

(µ,Σ)∈M(e0,δ0,m,L,R,∆)

N(x;µ,Σ), (90)

where we note that the lower bound in (90) does not depend
on n or vn−1

1 . Furthermore (90) is a minimization of a strictly
positive function over the compact (closed and bounded set)
given by C = {x ∈ Rm, µ ∈ Rm,Σ ∈ Sm

+ : x ∈ He, (µ,Σ) ∈
M(e0, δ0,m,L,R,∆)}. The function minimized, N(x;µ,Σ)
is continuous on C since Σ ≻ 0m×m. Thus, for some ϵ > 0

inf
x∈He

(µ,Σ)∈M(e0,δ0,m,L,R,∆)

N(x;µ,Σ) ≥ ϵ. (91)
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Connecting the chain of inequalities (83), (84), (85), (87), (89),
(90), and (91) gives:

Pen,δn|e0,δ0
[(en, δn) ∈ F |e0 = e0, δ0 = δ0] ≥

Pen,δn|e0,δ0
[(en, δn) ∈ H|e0 = e0, δ0 = δ0] (92a)

and, finally

Pen,δn|e0,δ0
[(en, δn) ∈ H|e0 = e0, δ0 = δ0] ≥

κ

∆m
ϵ. (92b)

Thus, choosing ξ = κ
∆m ϵ establishes (81). Thus, if F has

λ(F ) > 0, for any subsequence {ni} ∈ N and e0, δ0 there
exists ξ > 0 such that

r∑
i=1

Peni
,δni

|e0,δ0
[(eni , δni) ∈ F |e0 = e0, δ0 = δ0] ≥ rξ.

(93)

The series thus diverges as r → ∞ for any initial condition
e0, δ0. This implies that F is not weakly transient per Defini-
tion A.1, thus all weakly transient sets have Lebesgue measure
0.

Theorem A.2 guarantees that an invariant measure that is
equivalent to λ exists if all weakly transient sets have λ-
measure 0. Combining Lemma A.7 with Theorem A.2 proves
Lemma IV.4.

B. Proof of Lemma IV.5

We now demonstrate that the Markov chain describing
(jointly) the dither and innovation processes satisfies some
ergodic properties; in particular that the sequence of random
variables (et, δt) converge in distribution to the invariant
measure. We begin again with some definitions and a key result
from the survey [29].

Definition A.8 ([29]). A Markov chain {zi} on some state
space X is called ϕ-irreducible if there exists a nonzero σ-
finite measure ϕ such that for all measurable A ⊂ X with
ϕ(A) > 0 and all initial conditions z0 = z0 with z0 ∈ X we
can find an integer n such that

Pzn|z0
[zn ∈ A|z0 = z0] > 0. (94)

Definition A.9 ([29]). A Markov chain on X is called aperi-
odic if there does not exist d > 1 and disjoint nonempty mea-
surable subsets Z0,Z1, . . .Zd−1 such that when zn−1 ∈ Zi

Pzn|zn−1
[zn ∈ Zi+1 mod d|zn−1 = zn−1] = 1. (95)

Definition A.10 (Total Variation). Define the total variation
norm between two probability measures P1 : B(X) → [0, 1]
and P2 : B(X) → [0, 1] defined on the same measure space
via

∥P1 − P2∥T.V.
∆
= sup

A∈X
|P1(A)− P2(A)|. (96)

Theorem A.11 ([29, Theorem 4]). Consider a Markov chain
{ri} on a countably generated state space that is aperiodic,
ϕ-irreducible, and admits an invariant measure Pinv that is

absolutely continuous with respect to Lebesgue measure. For
λ-almost every initial condition r0 we have

lim
n→∞

∥Prn|r0 [rn ∈ ◦|r0 = r0]− Pinv(◦)∥T.V. = 0. (97)

Furthermore, the law of large numbers holds in the following
sense. Assume the initial state of the chain z0 is a random
variable that is absolutely continuous with respect to λ. For
all measurable functions η such that Er∼Pinv [|η(r)|] < ∞ and
Er0 [|η(r0)|] < ∞ we have

lim
N→∞

1

N + 1

N∑
i=0

η(ri)
a.s.
= Er∼Pinv

[η(r)]. (98)

In the present setting, the state space X = Dm. The Borel
σ - algebra on Dm is countably generated, and the Lebesgue
measure on Dm (denoted λ) is σ−finite. Thus, to guarantee
that the n-step conditional probability measures for the Markov
chain {et, δt} defined by (26) will converge to the stationary
distribution in total variation, and to verify that the law of
large numbers holds in the sense of (98), we can verify that
the chain is λ-irreducible and aperiodic.

Lemma A.12. The Markov chain induced by (26) and (26) is
λ-irreducible and aperiodic.

Proof: We first demonstrate λ−irreducibility. Let A ⊂
Dm be any set of positive Lebesgue measure. Take (e0, δ0) ∈
Dm. We have, by (26),

Pe1,δ1|e0,δ0
[(e1, δ1) ∈ A|e0 = e0, δ0 = δ0] =∫∫

A
ft+1|t(e1, δ1|e0, δ0)de1dδ1, (99)

∫∫
A
ft+1|t(e1, δ1|e0, δ0)de1dδ1 =∫∫

A

1

∆m

e−
1
2 (e1−M(e0,δ0))

TW−1(e1−M(e0,δ0))√
(2π)m detW

de1dδ1, (100)

and, finally,∫∫
A

1

∆m

e−
1
2 (e1−M(e0,δ0))

TW−1(e1−M(e0,δ0))√
(2π)m detW

de1dδ1 > 0.

This established that taking n = 1 always allows us to
satisfy the requirements for λ-irreducibility. This allows the
proof of aperiodicity to follow immediately. We proceed by
contradiction. Assume the chain is periodic (i.e., assume that
the chain is “not aperiodic” via Definition A.9); assume that
one has a set of d > 1 disjoint nonempty measurable subsets
S0,S1, . . . ,Sd−1 ⊂ Dm such that for all t and i when
(et, δt) ∈ Si, Pet+1|et

[(et+1, δt+1) ∈ Si+1 mod d|et = et, δt =
δt] = 1. Take (et, δt) ∈ S0. By assumption

P[(et+1, δt+1) ∈ S1|et = et, δt = δt] = 1. (101)

Note that by (26), λ(S1) > 0 or else P[(et+1, δt+1) ∈
S1|et = et, δt = δt] = 0. By our work proving the irreducibly
condition, it must be that S1 = R, i.e., the whole state space.
This is a contradiction, since the hypothesis of Definition A.9
is that S0 is nonempty and S0 ∩ S1 = ∅.
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Lemma A.12 verifies the hypothesis of Theorem A.11
and thus proves Lemma IV.5. Note that the convergence in
total variation implies weak convergence (i.e., convergence in
distribution).


