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Abstract—Information leakage to a guessing adversary in
index coding is studied, where some messages in the system
are sensitive and others are not. The non-sensitive messages
can be used by the server like secret keys to mitigate leakage
of the sensitive messages to the adversary. We construct a
deterministic linear coding scheme, developed from the rank
minimization method based on fitting matrices (Bar-Yossef et
al. 2011). The linear scheme leads to a novel upper bound on
the optimal information leakage rate, which is proved to be
tight over all deterministic scalar linear codes. We also derive a
converse result from a graph-theoretic perspective, which holds
in general over all deterministic and stochastic coding schemes.

I. INTRODUCTION

Index coding [1], [2] is a canonical problem in network
information theory, where a server tries to efficiently broad-
cast messages to multiple receivers with side information.
In this work, we study the information leakage in index
coding when the broadcast codeword is eavesdropped by
a guessing adversary. The adversary tries to maximize the
probability of correctly guessing its messages of interest
within a single trial. Our goal is to minimize the leakage
to this adversary, which is defined as the ratio between
the adversary’s probability of successful guessing after and
before observing the codeword [3]–[5].

Our previous work [6] studied the information leakage with
an underlying assumption that the server aims to protect all of
the messages against the adversary. Indeed, such assumption
holds in most existing works [7]–[11] where the security
and privacy aspects of index coding are investigated. Nev-
ertheless, in many practical circumstances, some messages
may be sensitive while the others are non-sensitive, and thus
secrecy loss should be measured over only those sensitive
messages. For example, consider a data storage system with
a number of messages. Some messages are private and needs
to be protected from any adversary, while the other messages
are non-private and thus need not be protected. There are
a number of clients, each of which may request access to
some messages, whether private or non-private, and may have
stored some other messages already as side information. The
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goal is to satisfy the clients’ requirements while keeping the
private messages as safe as possible from the adversary. A
similar setting can also be motivated from the adversary’s
perspective as it may only be interested in a subset of
messages and thus these messages should be considered as
sensitive by the server. This distinction between sensitive and
non-sensitive messages enables the server to treat the non-
sensitive messages like secret keys and design a smart way
of coding to simultaneously satisfy the receivers and mitigate
information leakage to the adversary. Figure 1 serves as a toy
example showing how the server can reduce the information
leakage by smartly designing coding schemes.

Server

Receiver 1
knows X2, X3

Receiver 2
knows X1, X4

Receiver 3
knows X1, X4

Receiver 4
knows X2, X3

Guessing
adversary

(X1, X2) =?

Y = f (X1, X2, X3, X4)

X1 =?

X2 =?

X3 =?

X4 =?

X1
X2
X3
X4

Figure 1. There are four binary messages Xi, i ∈ [4], where X1, X2 are
sensitive and X3, X4 are non-sensitive. A guessing adversary eavesdrops
the broadcast codeword Y and tries to guess the sensitive messages. When
guessing blindly (without knowing Y ), the probability of the adversary
correctly guessing (X1, X2) is only 1/4. To satisfy the legitimate receivers,
the server can generate Y as Y = (X1 ⊕X2, X3 ⊕X4). However, such
Y leads to certain amount of information leakage as the adversary’s correct
guessing probability when observing it becomes 1/2. To simultaneously
satisfy the receivers and prevent any information leakage, the server can
broadcast Ỹ = (X1 ⊕X3, X2 ⊕X4). In this way, the sensitive messages
are protected against the adversary using non-sensitive messages.

We study the problem of both achievability and converse.
In Section II, we describe the system model and provide
necessary preliminaries. In Section III, we propose a prac-
tical linear coding scheme based on the rank minimization
method over fitting matrices [2]. The scheme is proved to
yield optimal (minimum) information leakage rate over all
deterministic scalar linear codes. In Section IV, we develop
a general lower bound on the optimal leakage rate that holds
over any coding schemes, even stochastic ones. To show the
lower bound, we use the confusion graph representation of
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index coding problems [12] and apply graph-theoretic tools.

II. PROBLEM FORMULATION

A. System Model and Preliminaries

We consider a server containing n uniformly distributed
and independent messages Xi, i ∈ [n]. Each message is a
sequence of length t that takes values from X t for some
finite field X = Fq . For any S ⊆ [n], set XS

.
= (Xi, i ∈ S),

xS
.
= (xi, i ∈ S), and XS

.
= X |S|t. Thus X[n] denotes the

tuple of all n messages, and x[n] ∈ X[n] denotes a realization
of the message n-tuple. By convention, X∅ = x∅ = X∅ = ∅.

The server encodes the n messages to some codeword Y
and broadcasts it to m receivers via a noiseless channel.
Receiver i ∈ [m] wants to know messages XWi

and has
XAi

as side information. We allow degenerated receivers in
the system, who wants nothing (i.e., Wi = ∅). Such a receiver
can always decode what it wants perfectly by definition.

More formally, a (t,M, f,g) index code is defined by

• One stochastic encoder f : Xnt → {1, 2, . . . ,M} at the
server that maps each message tuple x[n] ∈ Xnt to a
codeword y ∈ {1, 2, . . . ,M}, and

• m deterministic decoders g = (gi, i ∈ [m]), one for
each receiver i ∈ [m], such that gi : {1, 2, . . . ,M} ×
X |Ai|t → X |Wi|t maps the codeword y and the side
information xAi to some estimated sequence x̂Wi .

We say a (t,M, f,g) index code is valid if and only if
(iff) every receiver can perfectly decode its wanted messages.
A compression rate R is achievable iff there exists a valid
(t,M, f,g) code such that R ≥ (logqM)/t. The optimal rate
β, also called the broadcast rate, can be defined as [13]

β = lim
t→∞

min
valid (t,M, f, g) code

logqM

t
. (1)

Remark 1: Broadcast rate can also be defined allowing
vanishing decoding error. However, for index coding, the
zero-error and vanishing-error broadcast rates are equal [14].

Any index coding instance is described by the parameter
tuple (n,m, (Wi, i ∈ [m]), (Ai, i ∈ [m])).

B. Confusion Graph

Any index coding instance can also be characterized by a
family of confusion graphs, (Γt, t ∈ Z+) [12]. For a given
sequence length t, the confusion graph Γt is an undirected
graph defined on the message tuple alphabet X[n]. That is,
the vertex set V (Γt) = X[n]. Vertex x[n] in Γt corresponds
to the realization x[n]. Any two different vertices x[n], z[n]
are adjacent in Γt iff there exists some receiver i ∈ [m] such
that xWi

6= zWi
and xAi

= zAi
. We call any pair of vertices

satisfying this condition confusable at receiver i, or simply
confusable. Hence, the edge set E(Γt) = {{xt[n], z

t
[n]} :

xWi
6= zWi

and xAi
= zAi

for some i ∈ [m]}.
For correct decoding at all receivers, any two values

x[n], z[n] can be mapped to the same codeword y with
nonzero probabilities iff they are not confusable [12]. See
Figure 2 below for a toy example of an index coding instance

and its confusion graph. For the definitions for basic graph-
theoretic notions, see any textbook on graph theory (e.g.,
Scheinerman and Ullman [15]).

(0, 0)

(1, 1)

(1, 0) (0, 1)

Figure 2. The confusion graph Γ1 with t = 1 for the index coding instance
(2, 2, ({1}, {2}), ({2}, {1})). Note that, for example, x[n] = (0, 0) and
z[n] = (0, 1) are confusable at receiver 2, because xW2

= x2 = 0 6=
zW2

= z2 = 1 and xA2
= x1 = 0 = z1 = zA2

. Suppose (0, 0) and
(0, 1) are mapped to the same codeword y with certain nonzero probabilities.
Then upon receiving this y, receiver 2 will not be able to tell whether the
value for X2 is 0 or 1 based on its side information of X1 = 0.

To simplify the notation, we may use Γ to denote an
index coding instance characterized by (Γt, t ∈ Z+). We
denote the broadcast rate of the problem Γ as β(Γ) when
this dependence needs to be emphasized.

Consider any set J ⊆ [n]. The subproblem induced by
message subset J is characterized by the tuple (|J |,m, (Wi∩
J, i ∈ [m]), (Ai ∩ J, i ∈ [m])). Let Γ(J) and Γt(J) denote
the subproblem induced by J itself and the confusion graph
of message length t of the subproblem, respectively.

The broadcast rate β(Γ) can be characterized by the
confusion graphs (Γt, t ∈ Z+) as

β(Γ) = lim
t→∞

1

t
logq χ(Γt) = lim

t→∞

1

t
logq χf(Γt), (2)

where χ(·) and χf(·) respectively denote the chromatic
number and fractional chromatic number of a graph. The
proof of (2) can be found in [13, Section 3.2].

C. Information Leakage Metric
We assume the broadcast codeword is eavesdropped by

a guessing adversary, knowing a subset of messages XK

as side information. The rest of the messages XKc are
divided into two groups, where the sensitive messages are
denoted by XS and the non-sensitive ones are denoted by
XU . The information leakage from Y to the adversary will
be measured only over the sensitive messages XS . Upon
observing the broadcast codeword, the adversary makes a
single guess on the value of XS according to the maximum
likelihood rule. Note that K,S,U are non-overlapping and
[n] = K ∪ S ∪ U . Let k, s, u denote the cardinality of sets
K,S,U , respectively.

Consider any valid (t,M, f,g) index code. Before eaves-
dropping the codeword Y , the expected probability of the
adversary successfully guessing xS is

Ps(XK) = EXK

[
max
xS

PXS |XK
(xS |XK)

]
= |X |−ts,

and the expected successful guessing probability after ob-
serving Y is

Ps(XK , Y ) = EY,XK

[
max
xS

PXS |Y,XK
(xS |Y,XK)

]
.



The leakage L is defined as the logarithm of the ratio be-
tween the expected probabilities of the adversary successfully
guessing xQ after and before observing Y [3], [4]. That is,

L
.
= logq

Ps(XK , Y )

Ps(XK)
(3)

= logq

∑
xK ,y

max
xS

PY,XK |XS
(y, xK |xS). (4)

The leakage rate of the code is L = t−1L and the optimal
leakage rate can then be defined as

L∗ .= lim
t→∞

inf
(t,M, f, g) codes

L. (5)

Remark 2: The idea of measuring leakage as the ratio of
the adversary’s successful guessing probabilities has been
introduced and explored in various contexts [3]–[5]. The
leakage L is equal to the maximal leakage [5] from XS to
Y given side information XK , which is also equal to the
maximum min-entropy leakage [4] from XS to Y given XK .

III. A DETERMINISTIC LINEAR INDEX CODE

In the following, we construct a deterministic linear index
code based on the minrank method and fitting matrices, which
were developed for the original index coding problem without
adversary [2]. We then show that the proposed scheme
achieves the optimal leakage rate over all valid deterministic
scalar linear index codes. Throughout the section, we set
t = 1 as we are considering only scalar linear codes.

Unless otherwise stated, we use bold-faced capital letters
to denote matrices and vectors, e.g., X[n] = [X1 . . . Xn]T .
Let r(·) denote the rank of a matrix over the Galois field Fq .

Note that for any receiver i requiring more than one
messages (i.e. |Wi| ≥ 2), we can transform the problem into
a new equivalent problem by removing the receiver i and
adding |Wi| new receivers, where every new receiver has
the same side information set Ai and each receiver wants a
unique message in set Wi. Therefore, we can, without loss
of generality, always assume Wi = {wi} being a singleton
set for every receiver i ∈ [m].

For any given problem, a size m× n fitting matrix M of
Galois field Fq is a matrix such that for any receiver i ∈ [m],

Mij = 1, for j = wi, (6)
Mij = 0, for any message j ∈ [n] \ (Wi ∪Ai). (7)

As Mij can be any element in Fq if j ∈ Ai, there can be
multiple fitting matrices for a given problem. For example,
for the problem with n = 5 messages and m = 3 receivers,
where Wi = {i},∀i ∈ [3], A1 = {3, 4}, A2 = {1, 4, 5},
A3 = {2, 5}, any matrix of the form below is a fitting matrix,1 0 ? ? 0

? 1 0 ? ?
0 ? 1 0 ?

 (8)

where “?” means that the entry can be any element in Fq .
If the server generates codeword Y by multiplying

a fitting matrix M by the message vector X[n] =
[X1 X2 . . . Xn]T , every receiver i ∈ [m] can recover its

wanted message because the i-th element of Y is a linear
combination of only Xwi

and some of its side information.
Moreover, note that any row of M can be generated by
r(M) independent rows of M. Thus, to satisfy the decoding
requirements at the receivers, the server needs only to trans-
mit the linear combination of the messages with coefficients
from r(M) independent rows of M. In this way, for a given
problem, the minimum rank over all the fitting matrices,
namely, the minrank value, establishes an upper bound on
its broadcast rate, which has been proved to be optimal over
all deterministic scalar linear codes [2].

For analysis of information leakage based on the fitting
matrix framework, we can split M into three submatrices
formed by different groups of columns in M according to
sets K, S, and U . For brevity, we simply write

M = [K S U]. (9)

The following theorem characterizes the minimal leakage
rate among all codes based on the fitting matrix framework.

Theorem 1: For any index coding problem, there exists a
deterministic scalar linear index code that yields the follow-
ing leakage rate,

L = min
M

(r([S U])− r(U)). (10)

Furthermore, this result is leakage-wise rate optimal for all
deterministic scalar linear codes.

Proof: We first show the achievability. Consider any
fitting matrix M = [K S U] and any encoding matrix
E formed by a set of row vectors of M such that the row
space of M is the same as that of E and thus by receiving
Y = EX every receiver can decode its wanted message. As
t = 1, we have

L = logq

∑
xK ,y

max
xS

PY,XK |XS
(y, xK |xS)

= logq

∑
xK ,y

max
xS

∑
xU

PY,XK ,XU |XS
(y, xK , xU |xS)

(a)
= logq

∑
xK ,y

max
xS

∑
xU

PY |X[n]
(y |x[n]) · PXK∪U

(xK∪U )

(b)
= logq

(
q−k−u

∑
xK

∑
y

max
xS

∑
xU

1(Y = EX)
)

(c)
= logq

(
q−k−u

∑
xK

∑
y

qu−r(U)
)

(d)
= r([S U])− r(U),

where (a) is due to the messages being independent, (b) is due
to the code being deterministic, where 1(·) is the indicator
function, (c) follows from the fact that given any fixed y
and xK∪S , there are qu−r(U) possible xU values that satisfy
Y = EX, and (d) follows from the fact that given any fixed
xK , there are qr([S U]) possible y values. Therefore, by
minimizing over all fitting matrices, the leakage rate in (10)
can be achieved.

Now we prove the converse part of the theorem. Suppose
a ` × n matrix Ẽ of Galois field Fq is the encoding matrix



of an arbitrary valid deterministic scalar linear index code.
Note that Ẽ need not be a fitting matrix. We split Ẽ into three
submatrices formed by different groups of columns according
to sets K, S, and U as

Ẽ = [K̃ S̃ Ũ]. (11)

Following a similar argument as in the achievability proof of
the theorem, we can show that the leakage rate caused by the
codeword Y = ẼX is

LẼ = r([S̃ Ũ])− r(Ũ). (12)

It remains to show that LẼ is lower bounded by (10).
According to the proof of [2, Theorem 1], there exists some

fitting matrix M = [K S U] of the problem such that the
row vectors of M lie in the row space of Ẽ. In other words,
there exists some n× ` matrix B such that BẼ = M, or, if
we only consider the submatrices according to sets S and U ,
B[S̃ Ũ] = [S U]. Also, there exists some matrix D such
that Ũ = [S̃ Ũ]D, U = [S U]D = B[S̃ Ũ]D. Hence,

r([S U]) + r(Ũ) = r(B[S̃ Ũ]) + r([S̃ Ũ]D)

(a)

≤ r([S̃ Ũ]) + r(B[S̃ Ũ]D)

= r([S̃ Ũ]) + r(U),

where (a) is due to Frobenius inequality [16]. By reorganizing
the above result, we have LẼ = r([S̃ Ũ]) − r(Ũ) ≥
r([S U]) − r(U), which, together with the fact that M is
a fitting matrix, completes the proof.

Remark 3: Following similar arguments as in the proof
of Theorem 1, we can show that when the mutual in-
formation1 I(XS ;Y |XK) is used as the leakage metric,
minM(r([S U]) − r(U)) still characterizes the minimal
leakage rate over all deterministic scalar linear index codes. It
seems that the rank r(U) can be viewed as a rough measure
of the level of protection against the adversary provided by
the non-sensitive messages XU .

Remark 4: Computing (10) for index coding instances
with a large number of messages and receivers can be
computationally challenging. When there is no non-sensitive
messages, computing (10) reduces to computing the minrank
value for the index coding instance over the finite field Fq ,
which has been shown to be NP-complete [22].

The example below shows the efficacy of the scheme.
Example 1: Consider the problem Γ with n = 5 binary

messages and m = 5 receivers with Wi = {i}, i ∈ [m] and

A1 = {4, 5}, A2 = {1}, A3 = {2}, A4 = {3}, A5 = {4}.

Assume for the adversary, K = {5}, S = {1, 3}, U = {2, 4}.
The fitting matrix

M =


1 0 0 1 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1

 (13)

1Note that mutual information between sensitive variables and codeword
has been commonly used as a leakage metric in the literature [17]–[21].

achieves the broadcast rate of β = r(M) = 4. It also gives

L = r([S U])− r(U) = 3− 2 = 1,

which is indeed the optimal leakage rate as we will show in
Example 3 in the next section. The linear code given by (13)
is optimal in both leakage and compression senses.

However, as we show by the simple two-receiver example
below, it is not always possible to simultaneously achieve the
optimal compression and leakage rates.

Example 2: Consider the problem Γ with n = 4 binary
messages and m = 2 receivers, where

W1 = {1},W2 = {2}, A1 = {2, 3}, A2 = {1, 4}.

Assume for the adversary, K = ∅, S = {1, 2}, U = {3, 4}.
The fitting matrix M =

[
1 1 0 0
1 1 0 0

]
achieves the broad-

cast rate of β = r(M) = 1 while resulting in a leakage rate of
L = r(M)− r(U) = 1−0 = 1. The following fitting matrix

M̃ =

[
1 0 1 0
0 1 0 1

]
gives L = r(M̃)− r(Ũ) = 2− 2 = 0,

indicating that zero leakage (i.e., perfect secrecy) can be
achieved for the problem. However, M̃ leads to a suboptimal
compression rate of r(M̃) = 2. In fact, in the following we
use Shannon-type inequalities [23, Chapter 14] to show that
the compression rate of any index code that attains zero leak-
age is at least 2. Recall that we are considering binary uni-
form messages that are independent to each other. Thus, t = 1
and H(XJ) = |J |,∀J ⊆ [4]. Consider any (t,M, f,g) index
code that achieves zero leakage, i.e., L = I(X{1,2};Y ) = 0.
We have 2 = H(X{1,2}) = H(X{1,2}|Y ) = H(X1|Y ) +
H(X2|Y,X1) = H(X2|Y ) + H(X1|Y,X2), which implies
that H(X2|Y,X1) = H(X1|Y,X2) = 1. Then, we have

H(X3 |Y,X{1,2})
= H(X3 |Y,X2)−H(X1 |Y,X2) +H(X1 |Y,X{2,3})
(a)
= H(X3 |Y,X2)− 1 ≤ H(X3)− 1 = 0,

where (a) follows since that H(X1|Y,X2) = 1 and
H(X1|Y,X{2,3}) = 0 due to the decoding requirement that
receiver 1 must be able to recover X1 from Y and X{2,3}. As
entropy is always non-negative, we have H(X3|Y,X{1,2}) =
0. Similarly, we can show that H(X4|Y,X{1,2}) = 0 and
hence H(X{3,4}|Y,X{1,2}) = 0. Thus, we have

t−1 logqM ≥ H(Y )

≥ I(Y ;X{3,4} |X{1,2})
= H(X{3,4} |X{1,2})−H(X{3,4} |Y,X{1,2})
= H(X{3,4})−H(X{3,4} |Y,X{1,2}) = 2.

That is, the compression rate of any index coding attaining
zero leakage must be at least 2. Therefore, β = 1 and L∗ = 0
can never be simultaneously achieved for this problem.

IV. A GENERAL LOWER BOUND ON L∗

We derive the following lower bound on the leakage rate
that holds generally over any valid index codes.



Theorem 2: For any index coding problem Γ, we have

L∗(Γ) ≥ β(Γ̃(S ∪ U))− u, (14)

where Γ̃ denotes the index coding problem constructed by
adding an extra receiver, indexed by m + 1, to the original
problem, which knows side information Am+1 = K ∪S and
wants messages Wm+1 = U .

Proof: Consider any valid (t,M, f,g) index code. For
any (xK , y) value and any J ⊆ S ∪ U , let

XJ(xK , y) = {xJ ∈ XJ : PY,XK∪J
(y, xK∪J) > 0}

denote the set of XJ values jointly possible with (xK , y).
Now consider the problem Γ̃, which is constructed from

Γ by adding an extra receiver m + 1 with Am+1 = K ∪ S
and Wm+1 = U . Notice that by adding a receiver we are
essentially adding more edges into the confusion graph (i.e.,
E(Γt) ⊆ E(Γ̃t)). We first show the following inequality:

max
xK ,y

|XS(xK , y)| ≤ α(Γ̃t(S ∪ U)), (15)

where α(·) denotes the independence number of a graph.
We prove the inequality via contradiction. Assume there

exists some (xK , y) value such that |XS(xK , y)| > α(Γ̃t(S∪
U)). Consider a subset I of the vertex set XS∪U (xK , y) in
the subgraph Γt(S∪U) such that for every xS ∈ XS(xK , y),
there is exactly one vertex in vS∪U ∈ I such that vS = xS .
Thus |I| = |XS(xK , y)|. For a visualization of the construc-
tion of I, see the schematic graph in Figure 3.

x2S

x1S

x3S

Figure 3. Vertices in XS∪U (xK , y) are denoted by nodes in the figure.
Note that the figure is for illustrative purpose only; there is no limit on the
number of vertices in XS∪U (xK , y). We partition the nodes into subgroups
according to their xS values, and each subgroup is denoted by a dashed
circle with its corresponding xS value marked beside it. To construct I,
one needs only to arbitrarily pick one node from each dashed circle. For
example, I can be constructed by the blue nodes, one from each subgroup.
The number of distinct xS values in XS∪U (xK , y), |XS(xK , y)|, is equal
to the number of dashed circles in the graph, which is then equal to |I|.

By the definition of the confusion graph, XS∪U (xK , y) is
an independent set in the induced subgraph Γt(S∪U). Since
I ⊆ XS∪U (xK , y), I is also an independent set in Γt(S∪U).
Thus, any two vertices in I are not confusable at any receiver
i ∈ S ∪ U of the subproblem Γ(S ∪ U). Note that the extra
receiver m + 1 knows XS as side information. Since any
two vertices in I have different xS values by construction,
they are not confusable at the extra receiver m+ 1 either. In
conclusion, any two vertices in I are not confusable at any
receivers in the subproblem Γ̃(S ∪ U). In other words, any

two vertices in I are not adjacent in Γ̃t(S ∪ U), and hence
I is also an independent set of Γ̃t(S ∪ U). Therefore, we
must have |I| ≤ α(Γ̃t(S ∪ U)), which contradicts with the
assumption that |XS(xK , y)| = |I| > α(Γ̃t(S ∪ U)).

Having proved (15), we have∑
xK ,y

max
xS

PY,XK,S
(y, xK,S)

(a)

≥
∑
xK ,y

1

|XS(xK , y)|
∑

xS∈XS(xK ,y)

PY,XK,S
(y, xK,S)

(b)

≥ 1

α(Γ̃t(S ∪ U))

∑
xK ,y

∑
xS∈XS(xK ,y)

PY,XK,S
(y, xK,S)

=
1

α(Γ̃t(S ∪ U))
, (16)

where (a) follows since the maximum is larger than the
average, and (b) is due to (15). Finally, we have

L∗(Γ)

= lim
t→∞

1

t
min

(t,M, f, g) codes
logq

∑
xK ,y

max
xS

PY,XK |XS
(y, xK |xS)

(c)

≥ lim
t→∞

1

t
logq

|X |ts

α(Γ̃t(S ∪ U))

(d)
= lim

t→∞

1

t
logq

|V (Γ̃t(S ∪ U))| · |X |−tu

α(Γ̃t(S ∪ U))
(e)
= lim

t→∞

1

t
logq χf(Γ̃t(S ∪ U))− u

(f)
= β(Γ̃(S ∪ U))− u,

where (c) follows from (16) and the fact that all xS are
equally likely, (d) follows from |V (Γ̃t(S∪U))| = |X |t(s+u),
(e) follows since confusion graphs are vertex-transitive [15],
and (f) follows from (2).

Remark 5: While in the current work Γ̃ only appears as
a part of the computable expression of the converse result,
the deeper relationship between Γ and Γ̃ in both compression
and secrecy senses is worth investigating.

Remark 6: It can be shown using the generalized maximal
acyclic induced subgraph (MAIS) bound [2] that the lower
bound in Theorem 2 is always non-negative. In particular,
when there are no non-sensitive messages in the system (i.e.,
U = ∅), the extra receiver in Γ̃(S ∪ U) becomes trivial as it
knows all the messages in the system and wants nothing. In
such case, the lower bound in Theorem 2 reduces to that in
Corollary 1 in our previous work [6], and is always tight.

Theorem 2 can sometimes yield tight lower bounds on L∗.
Example 3: Consider the problem Γ in Example 1. Theo-

rem 2 gives L∗(Γ) ≥ β(Γ̃({1, 2, 3, 4}))− |{2, 4}| = 3− 2 =
1, where β(Γ̃({1, 2, 3, 4})) = 3 can be proved using the
MAIS bound [2] and the cycle covering scheme [24], [25].
The lower bound on L∗(Γ) above matches the achievability
result in Example 1 and thus establishes L∗(Γ).

Remark 7: It can be shown utilizing existing results on
broadcast rates [26, Theorem 1.1] that no constant gap exists
between the upper and lower bounds in Theorems 1 and 2.
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