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Local Decoding in Distributed Compression
Shashank Vatedka, Venkat Chandar, Aslan Tchamkerten

Abstract—It was recently shown that the lossless com-
pression of a single source Xn is achievable with a
notion of strong locality; any Xi can be decoded from
a constant number of compressed bits, with a vanishing in
n probability of error. By contrast, we show that for two
separately encoded sources pXn, Y nq, lossless compression
and strong locality is generally not possible. Specifically,
we show that for the class of “confusable” sources, strong
locality cannot be achieved whenever one of the sources is
compressed below its entropy. Irrespective of n, for some
index i the probability of error of decoding pXi, Yiq is
lower bounded by 2´Opdq, where d denotes the number of
compressed bits accessed by the local decoder. Conversely,
if the source is not confusable, strong locality is possible
even if one of the sources is compressed below its entropy.
Results extend to an arbitrary number of sources.

I. INTRODUCTION

The amount of data generated in many applications
such as astronomy and genomics has highlighted the
growing need for compression schemes that allow to
interact and manipulate data directly in the compressed
domain [2], [3], [4], [5], [6], [7], [8]. Indeed, traditional
compression schemes such as Lempel-Ziv [9], [10] are
suboptimal in this regard since the recovery of even
a single message symbol necessitates to decompress
the entire dataset. Accordingly, this paper focuses on
providing random access in the compressed domain,
where short fragments of data can be recovered without
accessing the entire compressed sequence.

For the single source setup, [11], [12] showed that a
strong notion of locality holds: for any rate above entropy
there exists an encoder and a local decoder which probes
a constant number d (independent of n) of compressed
symbols, and yet achieves vanishing error probability as
n grows. Note that the concatenation scheme where the
source is decomposed into n{b consecutive blocks of
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some size b, each of which independently compressed at
a desired rate R ą HpXq, is not strongly local. Indeed,
any Xi is independent of all n{b sub-block codewords,
except one which reveals b message symbols, and Xi in
particular. Hence, only “weak” locality holds in the sense
that for the local decoder error probability to vanish, the
number of probed symbols—here equal to the sub-block
codeword length b ¨R—must grow with n.

In this paper we address the question whether strong
locality extends to the Slepian-Wolf distributed compres-
sion of two sources Xn and Y n: given pR1, R2q within
the Slepian-Wolf rate region, is it possible to design a
fix-length compressor and a local decompressor with
d “ Op1q, and whose error probability is op1q as n
grows?

Obviously, if each source is compressed above its
entropy then strong locality holds simply by duplicat-
ing the results of [11], [12] separately for each of
the sources. Note also that the concatenation scheme—
wherein pXn, Y nq is decomposed into consecutive sub-
blocks of size b each of which encoded via Slepian-Wolf
coding—achieves weak locality at any pR1, R2q within
the Slepian-Wolf rate region. So the interesting question
is: does strong locality hold when at least one of the
sources is compressed below its entropy?

Our main result says that strong locality is generally
impossible. More precisely, suppose pXY is “confusable”
in the sense that, for every x1 and x2 in X there exists
y P Y such that pXY px1, yq ą 0 and pXY px2, yq ą 0. In
this case, we show that if R1 ă HpXq, the probability of
wrongly decoding pXi, Yiq is lower bounded by 2´Θpdq,
for some index 1 ď i ď n. Moreover, this conclusion
holds even if the decoder tries to decode only Xi with
the full cooperation of the Y -transmitter that provides
Y n uncompressed. Conversely, if pXY is not confusable,
then strong locality is possible for some R1 ă HpXq and
R2 “ HpY q.

Hence, when the source is confusable, the concate-
nation scheme is order optimal in the tradeoff between
local error probability and number of probes. However,
a drawback of the concatenation scheme is that both
the encoding and the decoding are tied to the sub-block
length b which governs the error probability of the local
decoder. Even if both codewords are entirely probed, that
is d “ npR1 ` R2q, the error probability remains the
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same as if d “ bpR1 ` R2q. Thus, to lower the error
probability of the local decoder, the encoding procedure
must be modified accordingly. We address this limitation
through a hierarchical compression scheme whose local
decoder achieves an error probability that decreases as d
increases, without modifying the encoding. Specifically,
for any pR1, R2q within the Slepian-Wolf rate region, and
for every 1 ą η ą 2´2Oplog nq

, the local decoder achieves
P
plocq
e ď η with d “ polyplogp1{ηqq.

A. Literature on locally decodable compression

Local decoding has been studied extensively in the
context of compressed data structures by the computer
science community; see, e.g., [13], [14], [15], [16], [17],
[18] and the references therein. Most of these results
hold under the word-RAM model which assumes that
operations (memory access, arithmetic operations) on w-
bit words take constant time. The word size w is typically
chosen to be Θplog nq bits, motivated in part by on-chip
type of applications where data transfer happens through
a common memory bus for both data and addressing
(hence w “ Θplog nq bits), and partly by the fact that
certain proof techniques work only when w “ Ωplog nq.

In the word-RAM model, it is possible to compress
any sequence to its empirical entropy and still be able
to locally decode any message symbol in constant
time [13], [14]. Most approaches modify the Lempel-
Ziv class of algorithms to provide efficient local de-
codability [19], [20], [21]. Similar results also hold
for compression of correlated data [22], and efficient
recovery of short substrings of the message [23], [24],
[25], [19]. However, all of these schemes require the
local decoder to probe at least Oplog nq compressed bits
to recover any source symbol.

In this work, the decoding cost is measured by the
number of compressed bits that need to be accessed
in order to recover a single source symbol, sometimes
referred to as the local decodability [26], or the bit-probe
complexity in the literature [27].

The problem of locally decodable source coding of
random sequences was first studied by [28], [26]. These
works showed that any compressor with d “ 2 cannot
achieve a rate below the trivial rate log |X |, and any
linear source code that achieves d “ Θp1q necessarily
operates at a trivial compression rate (R “ 1 for
binary sources). Later, [11] showed that for any ε ą 0,
rate HpXq ` ε is achievable with local decodability
d “ Θp1

ε log 1
ε q. Moreover, for non-dyadic sources,

d “ Ωplogp1{εqq for any compression scheme that
achieves rate HpXq`ε. Inspired by [11], a compressor of
Markov sources was given in [12] which achieves a rate-
locality tradeoff pR “ HpXq ` ε, d “ Θp 1

ε2 log 1
ε q. A

common feature of the code construction in both papers
is the use of the bitvector compressor of Buhrman et
al. [29] which is based on a nonexplicit construction of
expander graphs.

All the above papers on the bit-probe model consider
fixed-length block coding. Variable-length source coding
was investigated by Pananjady and Courtade [30] who
gave upper and lower bounds on the achievable rate
for the compression of sparse sequences under local
decodability constraints.

The works [31], [32] considered simultaneous local
decodability and update efficiency. In particular, [31]
designed a compressor whose average-case local decod-
ability (defined as the expected number of bits that need
to be probed to recover any Xi) and the average-case
update efficiency (the expected number of bits that need
to be read and written in order to update a single Xi) both
scale as O

`

1
ε2 log 1

ε

˘

. In fact, our scheme for distributed
compression with locality is inspired by the multilevel
compression scheme in [31]. The paper [32] designed a
compression scheme whose worst-case local decodabil-
ity and update efficiency scales as Oplog lognq. More
recently, [33], [34] implemented different versions of the
concatenation scheme and evaluated its performance on
practical datasets.

B. Paper organization

In Section II, we introduce notions of localities and
formally define the problem. In Section III, we present
our results. In Sections IV, V, and VI we prove the
results, and in Section VII, we discuss the extension
to more than two sources. In Section VIII, we draw
concluding remarks.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Distributed compression without locality

Let pXn, Y nq be n independent copies of a pair of
random variables pX,Y q „ pXY defined over some
finite alphabet X ˆ Y , with |X | ě 2, |Y| ě 2. Without
loss of generality, we assume that X “ tx : pXpxq ą 0u
and Y “ ty : pY pyq ą 0u.

Sequences Xn and Y n represent two sources of
information separately encoded into binary codewords
CnR1 and CnR2 at rates R1 and R2, respectively. Upon
receiving these codewords, a receiver outputs the sources
estimates pX̂n, Ŷ nq and makes an error with probability

Pe
def
“ PrrpX̂n, Ŷ nq ‰ pXn, Y nqs.

The rate region is the closure of the set of rate pairs
pR1, R2q for which Pe Ñ 0 as nÑ8, and is given by:
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Theorem 1 (Slepian-Wolf, [35], [36]). The rate region
of a source pXY is the set of pairs pR1, R2q that satisfy

R1 ě HpX|Y q

R2 ě HpY |Xq

R1 `R2 ě HpX,Y q. (1)

Moreover, for any pR1, R2q in the interior of the rate
region, and any ε ą 0, there exist a sequence of coding
schemes operating at rates at most R1 ` ε and R2 ` ε
such that

Pe
def
“ PrrpX̂n, Ŷ nq ‰ pXn, Y nqs ď 2´npE´εq,

where E is a constant that is specified by R1, R2

and pXY .

B. Distributed compression with locality

1) Local decoder: Given encodings CnR1 and CnR2 ,
a local decoder takes as input i P rns,1 probes/reads
a fixed set Ii of components from CnR1 and CnR2 ,
which we denote as CIi

, and outputs an estimate pX̂i, Ŷiq
of pXi, Yiq. The worst-case local decodability and error
probability are defined as

d
def
“ max

1ďiďn
dpiq, (2)

where dpiq def
“ |Ii|, and

P plocq
e

def
“ max

1ďiďn
PrrpX̂i, Ŷiq ‰ pXi, Yiqs.

Note that Ii may contain different sets of components
from CnR1 and CnR2 , but these components should be
chosen non-adaptively; conditioned on the index i, set
Ii should be independent of pXn, Y nq. Note also that a
sequence of d adaptive (random) queries takes at most
2d different values.2 Therefore, a lower bound on the
probability of error for locality-d nonadaptive decoders
(the main contribution of this paper), translates into a
lower bound for locality-log d adaptive decoders. Finally,
notice that even though Ii is non-adaptively chosen, it
could still be a random set, in which case dpiq is defined
as the essential supremum of |Ii|.

Remark 1. Note that the notation Ii leaves out any
reference to the underlying sources. In particular, if both
sources Xn and Y n are compressed, then the set Ii may

1
rns

def
“ t1, 2, . . . , nu

2A sequence of d random adaptive queries can be represented as a
complete binary decision tree of depth d, where any node (including
the root and the leaves) is labelled with a codeword component
(among the npR1 ` R2q possible), and where each edge is labelled
0 or 1. Any instance of d adaptive queries describes one of the 2d

path from the root to a leaf.

contain coordinates from both CnR1 and CnR2 , and if
only source Xn is compressed, then the set Ii contains
components from CnR1 only.

2) Strong vs. weak locality: A rate pair pR1, R2q is
said to be achievable with strong locality if

P plocq
e “ op1q and d “ Θp1q as nÑ8.

That is, by probing only a constant number (independent
of n) of symbols, the error probability of the local
decoder goes to zero as the blocklength increases. By
contrast, pR1, R2q is said to be achievable with weak
locality if

P plocq
e “ op1q and d “ ωp1q as nÑ8.

Weak locality is always achievable through the con-
catenation scheme where source sequences Xn and Y n

are decomposed into length b sequences

Xbpjq
def
“ Xjb

pj´1qb`1

def
“ pXpj´1qb`1, Xpj´1qb`1, . . . , Xjbq

Y bpjq
def
“ Y jb

pj´1qb`1

def
“ pYpj´1qb`1, Ypj´1qb`1, . . . , Yjbq

for j “ 1, 2, . . . and each block pXbpjq, Y bpjqq is
independently compressed using a Slepian-Wolf code
operating at the desired pR1, R2q. Given i P rns, the
local decoder decodes block j “ ri{bs (thereby reading
bpR1 `R2q compressed bits), and outputs the estimates
of the i-th bit of Xn and Y n. By letting d “ bpR1`R2q

in Theorem 1 we get:

Corollary 1 (Concatenation). For any source pXY and
any pR1, R2q in the interior of the rate region (1), the
concatenation scheme achieves weak locality:

P plocq
e ď 2´Θpdq.

C. Statement of the problem

By contrast with weak locality, whether strong locality
is generally achievable is much less clear. In fact, it
is only recently that strong locality was shown to be
achievable for the single source setup at any lossless
compression rate R ą HpXq [11], [12]. For the Slepian-
Wolf setup at hand, this result implies that strong locality
holds for any pR1, R2q such that R1 ą HpXq and
R2 ą HpY q. In this regime, sources can be encoded
using the single source strongly local codes of [11], [12],
separately for source Xn and source Y n—and ignore
dependency between Xn and Y n. Does this conclusion
extend to the regime where at least one of the sources
is encoded at a rate below its entropy?
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III. MAIN RESULTS

Our main result answers the above question in the
negative: if the source is “confusable”, strong locality is
impossible whenever one of the sources is compressed
below its entropy.

Definition 1 (Source confusability). Source pXY is said
to be X -confusable if for every x1, x2 P X , there exists
y P Y such that pX|Y px1|yq ą 0 and pX|Y px2|yq ą 0—
recall that pY pyq ą 0 for any y P Y , see Section II-A.

Any source with full support, i.e., such that
pXY px, yq ą 0 for all px, yq P X ˆ Y , is both X - and
Y-confusable. An example of an X -confusable source
which does not have full support is pXY where pY “
Bernoulli(p), 0 ă p ă 1, and where pX|Y is a Z channel
with crossover parameter 0 ă ε ă 1. Instead, if pX|Y
is the erasure channel, source pXY is not X -confusable.
If X “ Y “ t0, 1u, source pXY is always X -confusable
except if pX|Y is the noiseless channel.

Theorem 2. Suppose source pXY is X -confusable. Sup-
pose Xn is encoded into codeword CnR1 with R1 ă

HpXq, and suppose the code has a local decoder with
worst-case local decodability d P rns. Then

max
1ďiďn

PrrX̂ipCIi
, Y nq ‰ Xis ě 2´Θpdq,

where X̂ipCIi
, Y nq denotes any estimator of source

symbol Xi given observations CIi
and Y n.

This result says that if the source is X -confusable, then
strong locality is impossible whenever R1 ă HpXq; not
even the full cooperation of the Y -transmitter through
the uncompressed source Y n allows to achieve strong
locality. A particular version of this theorem for dou-
bly symmetric sources, where pX is the Bernoulli(1{2)
distribution and where pY |X corresponds to a BSC(ρ)
for some crossover parameter 0 ă ρ ă 1{2, was proved
in [1]. Finally note that for adaptive probing the lower
bound given in Theorem 2 becomes

max
1ďiďn

PrrX̂ipCIi
, Y nq ‰ Xis ě 2´Θp2dq.

Hence, if the source is X -confusable and if R1 ă HpXq
strong locality cannot be achieved even under adaptive
probing. The X -confusability property turns out to be
necessary for Theorem 2 to hold:

Theorem 3. Suppose source pXY is not X -confusable.
Then, strong locality is achievable at some R1 ă HpXq
and R2 “ HpY q.

From Corollary 1, for any pR1, R2q in the interior
of the rate region the concatenation scheme achieves a
local error probability that decays as 2´Θpdq, and this

is order optimal by Theorem 2 for confusable sources.
However, note that the local decoding error-probability
of the concatenation scheme is tied to a specific value of
d which is equal to the sub-block length b. In particular,
if b “ Θp1q, then, because the concatenation scheme
encodes each sub-block independently, it is impossible
to recover pXn, Y nq with vanishing probability of error
as n grows, even after probing the entire compressed
sequences(!) To lower the error-probability, the parame-
ter b, hence the encoding procedure, should be modified
accordingly.

Our second contribution is a compression scheme
whose local decoder has an error probability that de-
creases as the number of probed symbols increases,
without changing the encoding. The performance of this
scheme is given in the following theorem:

Theorem 4. For any pR1, R2q in the interior of the
rate region, there exists a rate pR1, R2q encoder and
a local decoder such that for every 1 ą η ą 2´2Oplog nq

the local decoder achieves P
plocq
e ď η while probing

d “ polyplogp1{ηqq bits.

Theorems 2,3, and 4 easily generalize to more than
two sources, see Section VII.

Note: The present paper differs from the ISIT paper
[1] mainly in that it establishes the impossibility of
strong locality (Theorem 2) for the most general class
of sources (confusable sources), and not only for the
specific class of doubly symmetric binary sources. In
fact, the arguments used in [1] do not extend beyond
sources with full-support. The arguments used here are
not only more general, but also more direct than those in
[1]. Theorem 3 is new and [1] contains mostly a sketch
of the proof of Theorem 4. Theorems 5, 6, and 7 that
extend the above results to more than two sources (see
Section VII) did not formally appear in [1].

IV. PROOF OF THEOREM 2

A. Preliminaries

One key element in proving Theorem 2 is the follow-
ing coupling. Given pX,Y define random variable rX so
that

X ´ Y ´ rX

forms a Markov chain and so that

pX|Y “ p
rX|Y

.

Observe that if pXY is X -confusable, then for any given
px, rxq P X ˆ X there exists y, with pY pyq ą 0 (recall
that without loss of generality pY pyq ą 0 for any y P Y),
such that

p
X, rX

px, rx|yq “ pX|Y px|yqp rX|Y
prx|yq ą 0.
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Hence, we have:

Lemma 1. If pXY is X -confusable, then p
X rX

has full
support.

In turn, since distributions with full support (and finite
alphabet) are reverse hypercontractive [37, Theorem 1],
we get:

Lemma 2. If pXY is X -confusable then, for every
A,B Ă X n, we have

PrrXn P A, rXn P Bs ě pPrrXn P Asqα
´

Prr rXn P Bs
¯β

for some finite constants α, β.3

The other key element in proving Theorem 2 is the
following general lemma:

Lemma 3. Fix source pXY . Suppose Xn is encoded into
codeword CnR1 at some rate R1 ě 0. Fix i P rns and let
X̂ipCIi

, Y nq be an estimator of Xi given CIi
and Y n.

Then, for any realization c of CIi
, we have:

PrpX̂ipCIi
, Y nq ‰ Xi, CIi

“ cq

ě PrrXi “ x̄, CIi
“ c, rXi ‰ x̄, C̃Ii

“ cs

where

x̄
def
“ arg max

x
PrrXi “ x|CIi

“ cs, (3)

and where C̃Ii
is obtained by encoding rXn with the

same code as for Xn.

The last ingredient for proving Theorem 2 is the fol-
lowing result which follows from a basic rate-distortion
argument:

Lemma 4. Suppose Xn is encoded into codeword CnR1

at some rate R1 ă HpXq. Suppose the code has a
local decoder with worst-case local decodability d “

max1ďiďn dpiq P rns. Then, there exists a constant δ ą 0
that depends only on R (and pX ), an index i P rns, and
a realization c of CIi

such that

PrrX̂ipCIi
q ‰ Xi, CIi

“ cs ě δ2´d.

Lemmas 3 and 4 are proved in Section IV-C.

B. Proof of Theorem 2

Suppose the source is confusable and suppose Xn is
compressed at rate R1 ă HpXq. Using Lemma 3 then

3More precisely, α and β are in p1,8q (see [37]), but for our
purpose the values of α and β (as functions of pXĂX ) are irrelevant.

Lemma 2, we have that for some finite constants α and
β, any index i P rns, and any realization c of CIi

PrpX̂ipCIi
, Y nq ‰ Xi, CIi

“ cq

ě pPrrXi “ x̄, CIi
“ csqα

ˆ pPrr rXi ‰ x̄, C̃Ii
“ csqβ (4)

where x̄ is defined in (3).
As a last step, we now show that, for some index i P

rns and some realization c P t0, 1udpiq, each of the two
probability terms on the right-hand side of the inequality
(4) is lower bounded by 2´Θpdq. By summing both sides
of inequality (4) over c’s, we then deduce that

PrpX̂ipCIi
, Y nq ‰ Xiq ě 2´Θpdq

for some i P rns, thereby completing the proof of
Theorem 2.

Let us start with the second term. Since rXn has the
same distribution as Xn, from Lemma 4 there exist a
constant δ ą 0, an index i P rns, and a local codeword
c P t0, 1udpiq, with dpiq ď d, such that

Prr rXi ‰ x̄, C̃Ii
“ cs ě δ2´d ě δ|X |´d, (5)

where the second inequality in (6) holds since |X | ě 2
(see Section II-A).

For the first term, note that

PrrXi “ x̄|CIi
“ cs ě

1

|X |
, (6)

for otherwise the probabilities would not sum to one.
From (5) and (6) it then follows that

PrrXi “ x̄, CIi
“ cs

“ PrrXi “ x̄|CIi
“ csPrrCIi

“ cs

ě
1

|X |
δ|X |´d

ě δ|X |´d´1. (7)

This establishes the desired claim.

C. Proofs of Lemmas 3 and 4

Proof of Lemma 3. For any estimator X̂ipCIi
, Y nq of

Xi, we have

PrpX̂ipCIi
, Y nq ‰ Xi, CIi

“ cq

ě PrpÊpCIi
, Y nq ‰ EpXiq, CIi

“ cq

“
ÿ

yn
PrpÊpCIi

, Y nq ‰ EpXiq, CIi
“ c|Y n “ ynq

ˆ PrpY n “ ynq

ě
ÿ

yn
PrpY n “ ynq
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ˆmin
!

PrrXi “ x̄, CIi
“ c|Y n “ yns,

PrrXi ‰ x̄, CIi
“ c|Y n “ yns

)

, (8)

where ÊpCIi
, Y nq is an estimator of the binary random

variable EpXiq, defined to be equal to zero if Xi “ x̄
and one if Xi ‰ x̄; and where the right-hand side of the
second inequality is the error probability of the optimal
(MAP) estimator X̂ with the foreknowledge of Y n.

By multiplying the minimum on the right-hand side
by the maximum of the same terms (which is at most
one), we get

PrpX̂ipCIi
, Y nq ‰ Xi, CIi

“ cq

ě
ÿ

yn
PrpY n “ ynq

ˆ

mint¨u ˆmaxt¨u

˙

“
ÿ

yn
PrpY n “ ynqPrrXi “ x̄, CIi

“ c|Y n “ yns

ˆ PrrXi ‰ x̄, CIi
“ c|Y n “ yns

“
ÿ

yn
PrpY n “ ynqPrrXi “ x̄, CIi

“ c|Y n “ yns

ˆ Prr rXi “ x̄, C̃Ii
“ c|Y n “ yns

“ PrrXi “ x̄, CIi
“ c, rXi ‰ x̄, C̃Ii

“ cs

where the second equality holds since pX|Y “ p
rX|Y

.
This yields the desired result.

Proof of Lemma 4. The converse to Shannon’s lossy
source coding theorem implies that if R ă HpXq, then
there exists a δ “ δpRq ą 0 such that

EdHpXn, X̂nq “

n
ÿ

i“1

PrrX̂ipCIi
q ‰ Xis ě nδ

where dHpXn, X̂nq denotes the Hamming distance be-
tween Xn and X̂n. Hence,

δ ď PrrX̂ipCIi
q ‰ Xis

for at least one index i P rns.
Expanding the right-hand side and assuming a worst-

case local decodability of d P rns, we have

δ ď PrrX̂ipCIi
q ‰ Xis

“
ÿ

cPt0,1udpiq

PrrX̂ipCIi
q ‰ Xi, CIi

“ cs

ď 2d max
cPt0,1udpiq

PrrX̂ipCIi
q ‰ Xi, CIi

“ cs

which concludes the proof.

V. PROOF OF THEOREM 3

If pXY is not X -confusable, then there exists x1, x2 P

X such that, for any y P Y , either pXY px1, yq ą 0 or
pXY px2, yq ą 0 (recall that without loss of generality
pY pyq ą 0 for any y P Y). Therefore, conditioned on
X P tx1, x2u, the knowledge of Y reveals X .

Let X “ t1, 2, . . . , |X |u, and suppose without loss of
generality that px1, x2q “ p1, 2q. Define the new source
Un over the reduced alphabet t2, 3, . . . , |X |u as

Ui “

#

2 if Xi P t1, 2u

Xi if Xi ‰ t1, 2u.

Clearly, HpUq ă HpXq and pU, Y q determines pX,Y q.
We can therefore compress Un and Y n independently at
rates R1 “ HpUq ă HpXq and R2 “ HpY q using the
compressors of [12], [11] to achieve strong locality.

VI. PROOF OF THEOREM 4

We want a scheme that achieves the following: For
any fixed δ ą 0 and pR1, R2q within the Slepian-Wolf
rate region,
‚ The sequences pXn, Y nq are independently com-

pressed to rates pR1 ` δ,R2 ` δq respectively.
‚ For any i P rns and 1 ą η ą 2´2Oplog nq

specified at the receiver, the local decoder
probes polyplogp1{ηqq compressed bits, and outputs
pX̂i, Ŷiq which satisfies

P plocq
e “ PrrpX̂i, Ŷiq ‰ pXi, Yiqs ď η.

Our coding scheme is inspired by that in [31], and is
a hierarchical compression scheme. The compressed bits
consist of various blocks that are spread across multiple
“levels” 1 ď ` ď `max. The compressed bits at level
` “ 0 is obtained by applying the concatenation scheme
defined in Section II-B2 with b “ Op1q. This guarantees
that any pair of source symbols can be recovered with
2´Θpbq “ Op1q probability of error. The compressed bits
at higher levels ` ě 1 can be viewed as additional refine-
ment bits that are probed only when we desire a lower
probability of error. By probing blocks corresponding
to higher levels, we obtain a more reliable estimate of
pXi, Yiq. The compressed blocks at level ` are obtained
by using a random binning scheme applied to blocks of
size n`, where n` is growing superexponentially with
`. However, the rates for higher levels is chosen to
decay exponentially with `. The key challenge is to
choose the parameters carefully so that the additional
bits corresponding to higher levels provide a negligible
contribution to the overall compression rates.
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1) Parameters: We choose4 a sufficiently small ε0 ą

0, positive integers
b0 “ n0 (9)

which are constants independent of n, and

k
p1q
0 “ rpR1 ` ε0qb0s and kp2q0 “ rpR2 ` ε1qb1s (10)

such that the probability of error of a Slepian-Wolf code
for sequences of length b0 satisfies

PrrpX̂b0 , Ŷ b0q ‰ pXb0 , Y b0qs ď 2´βε0b0 ď δ1

where β ą 0 depends on pXY , R1, R2 only and 0 ă δ1 ă
1 is a parameter that determines an upper bound on the
probability of local decoding error that can be achieved.

For each ` “ 1, 2, . . . , `max, define

ε` “ ε`´1{2 “ ε0{2
`

b` “ 16b`´1 “ 16`b0

n` “ b`n`´1 “ 4`p``1qb``1
0

k
p1q
` “ ε`n`

ˆ

β ` |X | ` b`
n`

log
e2`

ε0

˙

k
p2q
` “ ε`n`

ˆ

β ` |Y| ` b`
n`

log
e2`

ε0

˙

(11)

2) Codes for various levels: At the heart of our
construction is a multilevel random binning argument
that can be described by a sequence of random codes
C0, C1, . . . , C`max

.
The code C` at level ` consists of two encoders

Φ` : X n` Ñ t0, 1uk
p1q
` and Ψ` : Yn` Ñ t0, 1uk

p2q
` , where

k
p1q
` and k

p2q
` are as defined previously. For each xn` P

X n` , we assign a codeword Φ`px
n`q drawn uniformly at

random from t0, 1uk
p1q
` . Similarly, for each yn` P Yn` ,

we assign a codeword Ψ`py
n`q drawn uniformly at

random from t0, 1uk
p2q
` . For any uk

p1q
` P t0, 1uk

p1q
` and

vk
p2q
` P t0, 1uk

p2q
` , we have PrrΦ`px

n`q “ uk
p1q
` s “ 2´k

p1q
`

and PrrΦ`px
n`q “ vk

p2q
` s “ 2´k

p2q
` . The codes are known

to the decoder and the respective encoders.
3) Encoder: We now describe the encoding of the

sequences Xn and Y n. Let us suppose that user 1 has
Xn and user 2 has Y n.

The codeword generated by each user comprises of
various blocks spread over multiple levels, and the
encoding is done independently at each level. Consider
any level 0 ď ` ď `max. Each user partitions its source
sequence into blocks of n` symbols each. For i “
1, 2, . . . , n{n`, define the ith (source) block at level ` to
be Xn`p`, iq “ Xin`

pi´1qn``1, and Y n`p`, iq “ Y in`

pi´1qn``1.

4Since we only aim to get order-optimal results, we have not
attempted to optimize over the various parameters.

Let Uk
p1q
0 p`, iq fi Φ`pX

n`p`, iqq be the i’th level-` code-
word for user 1, and V k

p1q
0 p`, iq fi Ψ`pY

n`p`, iqq be the
i’th level-` codeword for user 2.

The codeword for Xn is obtained by taking the
concatenation of all level ` codewords for 0 ď ` ď `max.
This is equal to pUk

p1q
0 p`, iq : 0 ď ` ď i, 1 ď i ď n{n`q.

Similarly, the codeword for Y n is equal to pV k
p2q
0 p`, iq :

0 ď ` ď i, 1 ď i ď n{n`q.
An illustration of the encoding process is provided

in Fig. 1. The level-0 codewords correspond to the
concatenation scheme, and most of the entropy of the
compressed sequence lies in the level-0 codewords. The
level ` ě 1 codewords give extra information that allow
us to reduce the probability of local decoding error.
The rates kp1q` {n` and kp2q` {n` are exponentially decaying
functions of `, and the overall sum rates of all the level
` “ 1, 2, . . . , `max codewords is negligible.

4) Local decoder: The local decoder takes two pa-
rameters as input: a location i P rns, and `d P

t0, 1, 2, . . . , `maxu. The first parameter specifies which
pXi, Yiq the decoder wishes to recover. The second
parameter specifies the number of bits to probe (which
decides the probability of error). For a specified `d, the
local decoder probes 2Op`

2
dq compressed bits, and the

probability of error is 2´2Õp`2
d
q

. This statement will be
made more precise shortly.

The decoder works by probing compressed bits up to
level `d as follows:
‚ The decoder first finds which level-`d chunk the

desired location i lies in. In other words, it sets
i`d “ ri{n`ds. It then reads all the compressed
chunks up to level `d corresponding to the symbols
X
idn`d

pid´1qn`d
`1.

‚ The decoder now iteratively improves its estimate
by processing the compressed bits from level 0 to
level `d as follows:
– At level 0, the decoder uses the Slepian-

Wolf decoder to obtain the level-0 esti-
mates of X

idn`d

pid´1qn`d
`1. Call this estimate as

X̂
idn`d

pid´1qn`d
`1p0q.

– For all subsequent levels ` P t1, 2, . . . , `du,
the decoder does the following. Suppose
that for some i, we want to estimate
pXn`p`, iq, Y n`p`, iqq assuming that we already
have the level ` ´ 1 estimate5. The decoder
outputs pX̂n`p`, iq, Ŷ n`p`, iqq “ pxn` , yn`q if
pxn` , yn`q is the unique pair of sequences which
match Uk

p1q
` p`, iq, V k

p2q
` p`, iq and also match at

5The level `´1 estimate is obtained by decoding all the compressed
bits up to level `´ 1 corresponding to pXin`

pi´1qn``1, Y
in`
pi´1qn``1q.
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Level 0 codewords

input
... ...

... ...

Level 1 codewords

Level 2 codewords

Fig. 1: A depiction of the encoding structure for user 1. For ease of illustration, we have chosen `max “ 2, b2 “ 4b1,
and b1 “ 2b0. To obtain the codewords at level `, the source Xn is partitioned into blocks of n` symbols each, and
the j’th level-` codeword Uk

p1q
` p`, jq “ Φ`pX

n`p`, jqq. The overall codeword is the concatenation of all the level
` “ 0, 1, . . . , `max codewords. A similar encoding process is performed by user 2 but using Ψ`. Consider decoding
Xn0p0, 2q. The local decoder may choose to probe Uk

p1q
0 p0, 2q, V k

p2q
0 p0, 2q and use the standard Slepian-Wolf (joint

typicality) decoder. If a lower probability of error is required, then it additionally probes Uk
p1q
` p`, 0q, V k

p2q
` p`, bq for

` “ 1, or ` “ 1, 2 depending on the target probability of error. The additional bits are then used to refine the
estimate of Xn0p0, 2q.

least p1 ´ ε`qb` of the level-p` ´ 1q estimated
blocks. If there is no such unique sequence, then
the level-` decoder outputs the zero sequence.

In Lemma 5, we derive an upper bound on the
local decodability. We then derive an upper bound on
the probability of local decoding error in Lemma 6.
Combining the two gives us Theorem 4.

Lemma 5. For any given parameters pi, `dq, the number
of bits probed by the local decoder is

dp`dq ď b`d`1
0 4`dp`d`1qpR1 `R2 ` γ1ε0q ď 2γ2`

2
d

where γ1 is a constant that only depends
on pXY , R1, R2, while γ2 may depend on
pXY , R1, R2, ε0, b0.

Proof. The total number of compressed bits probed is
equal to

dp`dq “
`d
ÿ

`“0

n`d
n`
pk
p1q
` ` k

p2q
` q

ď n`dpR1 `R2 ` γ2ε0q

“ b`d`1
0 4`dp`d`1qpR1 `R2 ` γ1ε0q

where γ1 is a constant that only depends on pXY , R1, R2.

Lemma 6. For any given parameters pi, `dq, the proba-
bility of error of decoding Xn`d , Y n`d after decoding up
to level `d is upper bounded as follows

P p`dqe ď 2´βpε0b0q
``12`2

“ 2´2Oplog dp`dqq

Proof. We will derive the bound by obtaining an upper
bound on P p`qe in terms of P p`´1q

e . For ` “ 0, we know
that

P p0qe ď 2´βε0b0

for a suitable constant β ą 0.
For decoding at level ` ą 1, there are two possible

error events:

1) Event E1: More than ε`b` blocks were decoded
incorrectly at level `´ 1

2) Event E2: There is an incorrect pair of sequences
prxn` , ỹn`q that has the same level-` hash/codeword
as the true sequence and matches the p`´ 1q-level
decoded sequence on at least p1´ ε`qb` blocks.
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The overall probability of error is then

P p`qe ď PrrE1s ` PrrE2|Ec1s.

We will bound the two terms separately. For the first
term, observe that

PrrE1s ď

ˆ

b`
ε`b`

˙

´

P p`´1q
e

¯ε`b`

ď

˜

eP
p`´1q
e

ε`

¸ε`b`

ď

˜

e2´βpε0b0q
`2p`´1q2

ε0{2`

¸ε0b08`

where in the last step, we have assumed that P p`´1q
e ď

2´βpε0b0q
`2p`´1q2

. Rewriting the right-hand side, we get

PrrE1s ď exp2

˜

´ βpε0b0q
``12`

2```1

` ε0b08` log

ˆ

e2`

ε0

˙

¸

Since ε0b0 is large enough, the absolute value of the first
term in the exponent is at least twice that of the second.
Therefore,

PrrE1s ď exp2

´

´βpε0b0q
``12`

2``
¯

ď
2´βpε0b0q

``12`2

2
(12)

To compute the probability of the second error event,
let us define EA2 (resp. EB2 ) to be the event that there is
an incorrect sequences rxn` (resp. ỹn`q) that has the same
hash as the true sequence and matches the p`´ 1q-level
decoded sequence on at least p1´ε`qb` blocks. We have,

PrrEA2 |Ec1s ď
ˆ

b`
ε`b`

˙

|X |ε`n`2´k
p1q
`

ď

ˆ

e

ε`

˙ε`b`

|X |ε`n`2´k
p1q
`

Substituting for kp1q` in the above and simplifying, we
get

PrrEA2 |Ec1s ď 2´βε`n` ď
2´βpε0b0q

``12`2

4
(13)

Similarly,

PrrEB2 |Ec1s ď 2´βε`n` ď
2´βpε0b0q

``12`2

4
(14)

Combining (12), (13) and (14), we get

P p`qe ď PrrE1s ` PrrEA2 |Ec1s ` PrrEB2 |Ec1s

ď 2´βpε0b0q
``12`2

,

which completes the proof.

VII. EXTENSION TO k ą 2 SOURCES

We first extend Theorem 2 to a k-source distribution
pX1,...,Xk

defined over alphabet X1 ˆ ¨ ¨ ¨ ˆ Xk. Let the
source be X1-confusable if for every x1, x

1
1 P X1, there

exist px2, x3, . . . , xkq for which pX1,...,Xk
px1, . . . , xkq ą

0 and pX1,...,Xk
px11, . . . , xkq ą 0. Observe that this

condition holds if and only if for every x1, x
1
1 P X1,

there exist an index i ě 2 and xi P Xi for which
pX1Xi

px1, xiq ą 0 and pX1,Xi
px11, xiq ą 0. Now if we

repeat the same line of arguments as for the proof of
Theorem 2, but with the side information Y n replaced
by all sources except Xn

1 , that is Xn
2 , . . . , X

n
k , we get:

Theorem 5 (Confusable, k ě 2 sources). Suppose
source pX1,...,Xk

is X1-confusable. If Xn
1 is compressed

at rate R1 ă HpX1q, then

max
1ďiďn

PrrX̂1ipCI1i
pXn

1 q, X
n
2 , . . . , X

n
k q ‰ X1is ě 2´Θpdq,

where X̂1ipCI1i
pXn

1 q, X
n
2 , . . . , X

n
k q is any estimator of

the i-th symbol of source Xn
1 given at most d components

CI1i
pXn

1 q of CnR1pXn
1 q and pXn

2 , . . . , X
n
k q.

Similarly, Theorem 3 immediately generalizes to

Theorem 6 (Non-confusable, k ě 2 sources ). Suppose
source pX1,...,Xk

is not X1-confusable. Then, it is possible
to achieve strong locality at some R1 ă HpX1q and
Ri “ HpXiq, i P t2, . . . , ku.

The coding scheme of Section VI easily extends to
more than two sources, with the same encoding scheme
for each source, and an identical local decoder:

Theorem 7 (Hierarchical coding scheme, k ě 2
sources). For any pR1, R2, . . . , Rkq in the interior
of the Slepian-Wolf rate region, there exists a rate
pR1, R2, . . . , Rkq distributed compression scheme such
that for every 1 ą η ą 2´2Oplog nq

, the local decoder
achieves d “ polyplogp1{ηqq and P plocq

e ď η.

VIII. CONCLUDING REMARKS

In contrast with the single source set up, we showed
that for multiple sources lossless compression and strong
locality can generally not be accommodated. For the
broad class of confusable sources, for strong locality to
hold all sources must be compressed at rates above their
respective entropies. On the other hand, if the distribution
is not confusable, an arguably peculiar situation, strong
locality may hold even if compression rates are below
individual entropies. For this case, the characterization of
all rate pairs for which strong locality can be achieved
remains an open problem.
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Our compression scheme is able to achieve d “

polyplogp1{ηqq for any target probability of local de-
coding error η specified at the decoder. Note that from
our lower bound, d “ Ωplogp1{ηqq and our scheme
is suboptimal by a polynomial factor. Designing an
improved scheme that achieves this lower bound is left
as future work.

In this paper, we only considered the problem of
local decodability in the context of distributed com-
pression. One may also require provisioning of local
substitutions/insertions/deletions of source symbols in
the compressed domain. This is an interesting problem
that warrants more attention.
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[24] R. González and G. Navarro, “Statistical encoding of succinct
data structures,” in Annual Symposium on Combinatorial Pat-
tern Matching. Springer, 2006, pp. 294–305.

[25] P. Ferragina and R. Venturini, “A simple storage scheme for
strings achieving entropy bounds,” in Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2007, pp. 690–
696.

[26] A. Makhdoumi, S.-L. Huang, M. Medard, and Y. Polyanskiy,
“On locally decodable source coding,” in 2015 IEEE Inter-
national Conference on Communications (ICC), London, Jun.
2015, pp. 4394–4399.

[27] P. K. Nicholson, V. Raman, and S. S. Rao, “A survey of
data structures in the bitprobe model,” in Space-Efficient Data
Structures, Streams, and Algorithms. Springer, 2013, pp. 303–
318.

[28] A. Makhdoumi, S.-L. Huang, M. Medard, and Y. Polyan-
skiy, “On locally decodable source coding,” arXiv preprint
arXiv:1308.5239, 2013.

[29] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and
S. Venkatesh, “Are bitvectors optimal?” SIAM Journal on
Computing, vol. 31, no. 6, pp. 1723–1744, 2002.

[30] A. Pananjady and T. A. Courtade, “The effect of local de-
codability constraints on variable-length compression,” IEEE
Transactions on Information Theory, vol. 64, no. 4, pp. 2593–
2608, 2018.

[31] S. Vatedka and A. Tchamkerten, “Local decode and update
for big data compression,” IEEE Transactions on Information
Theory, vol. 66, no. 9, pp. 5790–5805, 2020.

[32] S. Vatedka, V. Chandar, and A. Tchamkerten, “O (log log
n) worst-case local decoding and update efficiency for data
compression,” in 2020 IEEE International Symposium on In-



11

formation Theory (ISIT), Los Angeles, CA, USA, 2020, pp.
2371–2376.

[33] R. Vestergaard, Q. Zhang, and D. E. Lucani, “Enabling random
access in universal compressors,” in IEEE INFOCOM 2021-
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2021, pp. 1–6.

[34] S. Kamparaju, S. Mastan, and S. Vatedka, “Low-complexity
compression with random access,” in 2022 IEEE International
Conference on Signal Processing and Communications (SP-
COM). IEEE, 2022, pp. 1–5.

[35] D. Slepian and J. Wolf, “Noiseless coding of correlated in-
formation sources,” IEEE Transactions on Information Theory,
vol. 19, no. 4, pp. 471–480, 1973.

[36] I. Csiszár and J. Körner, “Towards a general theory of source
networks,” IEEE Transactions on Information Theory, vol. 26,
no. 2, pp. 155–165, 1980.

[37] S. Kamath, “Reverse hypercontractivity using information mea-
sures,” in 2015 53rd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), Sep. 2015, pp.
627–633.


	I Introduction
	I-A Literature on locally decodable compression
	I-B Paper organization

	II Preliminaries and Problem Statement
	II-A Distributed compression without locality
	II-B Distributed compression with locality
	II-B1 Local decoder
	II-B2 Strong vs. weak locality

	II-C Statement of the problem

	III Main results
	IV Proof of Theorem 2
	IV-A Preliminaries
	IV-B Proof of Theorem 2
	IV-C Proofs of Lemmas 3 and 4

	V Proof of Theorem 3
	VI Proof of Theorem 4
	VI-1 Parameters
	VI-2 Codes for various levels
	VI-3 Encoder
	VI-4 Local decoder


	VII Extension to k>2 sources
	VIII Concluding Remarks
	References

