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Abstract—In many practical applications including re-

mote sensing, multi-task learning, and multi-spectrum

imaging, data are described as a set of matrices sharing a

common column space. We consider the joint estimation

of such matrices from their noisy linear measurements.

We study a convex estimator regularized by a pair of

matrix norms. The measurement model corresponds to

block-wise sensing and the reconstruction is possible only

when the total energy is well distributed over blocks.

The first norm, which is the maximum-block-Frobenius

norm, favors such a solution. This condition is analogous

to the notion of low-spikiness in matrix completion or

column-wise sensing. The second norm, which is a tensor

norm on a pair of suitable Banach spaces, induces low-

rankness in the solution together with the first norm. We

demonstrate that the joint estimation provides a significant

gain over the individual recovery of each matrix when

the number of matrices sharing a column space and the

ambient dimension of the shared column space are large

relative to the number of columns in each matrix. The

convex estimator is cast as a semidefinite program and

an efficient ADMM algorithm is derived. The empirical

behavior of the convex estimator is illustrated using Monte

Carlo simulations and recovery performance is compared

to existing methods in the literature.

Index Terms—Sketching, low rank matrices, tensor

norm, convex program.

I. INTRODUCTION

We consider the problem of joint reconstruction of

rank-r matrices X1, . . . ,XK P RMˆN , which share

a common left factor U P RMˆr from the linear

measurements expressed as

yl,k “ xBl,k,Xky ` wl,k, (1)

with l P rLs :“ t1, . . . , Lu and k P rKs :“ t1, . . . ,Ku
and where Bl,k’s are a set of known “sensing matri-
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ces” and wl,k’s represent additive noise in the mea-

surements. Due to the assumption that X1, . . . ,XK

share a common left factor, there exist V1, . . . ,VK P
RNˆr such that Xk “ UV˚

k for all k P rKs. Let

X “ rX1 X2 ¨ ¨ ¨ XKs P RMˆNK . Then each yl,k
corresponds to a linear measurement of X given by

yl,k “ xAl,k,Xy ` wl,k, (2)

where Al,k “ e˚
k b Bl,k for all l P rLs and k P rKs. In

other words, the joint reconstruction of X1, . . . ,XK is

considered as “block-wise” sensing of the concatenated

rank-r matrix X.

The inverse problem for the model in (2) has been

investigated as a shared low-rank matrix regression in [1].

The authors provided a solution to the problem by using

non-convex optimization to regress the shared subspace

and the individual right factors separately. In particular,

the authors propose to use spectral initialization followed

by covariance estimation to solve for the shared subspace.

With this estimate, they further use ridge regression to

estimate the right factors.

This problem arises naturally in numerous practical

applications including remote sensing using satellite data

[1], multi-task learning [2, 3], and multi-channel data

acquisition [4]. Other applications include data compres-

sion in scientific simulations and multi-spectrum imag-

ing. For example, a similar sketching problem of linear

dimensionality reduction of streaming data has been con-

sidered [5], in which data generated during simulations

of fluid dynamics are shown to have a low-rank structure.

The sensing model in (2) applies to this application in

the following sense: blocks of data generated over time

(in this case, the data corresponds to the state of fluid

motion over time) can be sketched independently, since

they share a low-rank structure. Yet in another example,

in the Square Kilometer Array (SKA) [6], astronomical

data are collected using antenna elements spreading

across different continents. Astronomical data collected

via multi-channel acquisition show a low-rank structure

via a shared factor [4]. A similar multi-channel sensing

application was also considered in [7], where the linear

model for data acquisition at different frequencies follow

a nested subspace structure. Hence, the model in (2)

http://arxiv.org/abs/2210.07077v2
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is directly applicable to the problem of dimensionality

reduction before data aggregation.

With a rich context of relevant applications, this pa-

per investigates a fundamental question on the inverse

problem in the two equivalent models in (1) and (2).

The main question we address is whether one can obtain

a significant gain from the joint estimation by taking

advantage of the redundancy across the matrices. We

focus on statistical analysis in a scenario, where the mea-

surement matrices are independent copies of a random

matrix with i.i.d. Gaussian entries of zero mean and unit

variance, and the additive noise terms are independent

of the signal and i.i.d. Gaussian.

Note that the block-wise measurement model in (2)

takes linear measurements from a selected block at a

time. In an extreme case, where all blocks of X are zero

matrices except a single block of unknown index, the

measurements from zero blocks do not carry any useful

information about X. Since the index of the nonzero

block is unknown, ÕprpM ` Nqq1 measurements per

block are needed for “stable” recovery . In other words,

there is no gain from joint estimation.

One expects that a gain is achieved when the to-

tal energy of X is well distributed across all blocks

X1, . . . ,XK . To favor a solution with this property, we

consider an estimator regularized by the “maximum”

correlation of X with all possible measurement matrices

Ak,l’s. Let γl,k :“ xAl,k,Xy “ xBl,k,Xky. Then γl,k’s

are i.i.d. Gaussian. Recall that the maximum of i.i.d.

Gaussian random variables is upper-bounded with high

probability by the standard deviation within a logarith-

mic factor of the number of random variables. Following

this observation, we consider the maximum correlation

represented by

max
kPrKs,lPrLs

b
Eγ2l,k “ max

kPrKs
}Xk}F . (3)

The right-hand side of (3) is called the maximum-block-

Frobenius norm and will be denoted by

}rX1 X2 ¨ ¨ ¨ XK s}8,F “
›››››

Kÿ

k“1

e˚
k b Xk

›››››
8,F

“ max
kPrKs

}Xk}F ,
(4)

where ek P RK denotes the kth column of the K-by-K

identity matrix IK for k P rKs.
To account for the low-rankness of X, we introduce

another regularizer by a matrix norm given by

}X}$ “ inf
U,V:UV˚“X

}U}F }V˚}8,F, (5)

1The tilde-big-O notation is defined as follows: If a “ Õpbq, then

a is less than b times a logarithmic factor of considered parameters.

where the common number of columns in U and V

can be arbitrary while their product UV˚ coincides X.

In general, matrix norms are not necessarily easy to

compute. However, }X}$ can be computed via a standard

semidefinite program. Note that the optimization in (5)

is equivalent to

}X}$ “ inf
U,V:UV˚“X

max
`
}U}2F, }V˚}28,F

˘
,

where the infimum is achieved if }U}F coincides with

}V˚}8,F. Furthermore, it has been shown (e.g. [8]) that

there exist U and V such that X “ UV˚, W1 “ UU˚,

and W2 “ VV˚ if and only if

„
W1 X

X˚ W2


ľ 0.

Then we have }U}2F “ tracepW1q and }V˚}28,F “
maxkPrKs traceppe˚

k b IN qW2pek b IN qq. Therefore,

}X}$ can be computed via the following program:

}X}$ “ min
β,W1,W2

β

s.t. tracepW1q ď β

trace ppe˚
k b INqW2pek b IN qq ď β,

@k P rKs«
W1 X

X˚ W2

ff
ľ 0.

(6)

The following lemma, proved in Appendix D, demon-

strates how the above two norms characterize low-

rankness through interlacing inequalities.

Lemma 1. Suppose that X P RMˆNK satisfies

rankpXq ď r. Then we have

}X}8,F ď }X}$ ď
?
r }X}8,F . (7)

We consider an estimator given as the solution to

the following optimization program that minimizes the

quadratic loss constrained to the two inequality con-

straints given by the above norm regularizers:

minimize
XPκpα,βq

Lÿ

l“1

Kÿ

k“1

pyl,k ´ xe˚
k b Bl,k,Xyq2 , (8)

where the constraint set is given by

κpα, βq “ tX P R
MˆNK : }X}8,F ď α, }X}$ ď βu.

(9)
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Due to the characterization of the $-norm in (6), the

convex estimator in (8) is obtained as a solution to

minimize
X,W1,W2

Lÿ

l“1

Kÿ

k“1

pyl,k ´ xBl,k,Xpek b IN qyq2

subject to tracepW1q ď β

trace ppe˚
k b IN qW2pek b IN qq ď β,

k P rKs,
}X}8,F ď α«
W1 X

X˚ W2

ff
ľ 0.

(10)

Our main results characterize the estimation problem

with respect to the model κpα, βq by an achievable error

bound and a minimax lower bound. We first present an

upper bound on the estimation error by convex program

in (8) in the following theorem.

Theorem 1. Let pyl,kq be measurements of blocks of X P
RMˆKN as described in (2). Suppose that Bl,k’s are

independent copies of a random matrix whose entries

are drawn i.i.d. from N p0, 1q. Furthermore, suppose that

the noise entries γl,n’s are drawn from N p0, σ2q and

independent from everything else. Then there exists a

numerical constant C such that if

L ě Cpβ{αq2N
ˆ
N ` M

K

˙
plnKq3, (11)

then it holds with probability 1 ´ ζ that the estimate pX
of X by (8) satisfies

} pX ´ X}2F À Kα2
´
1 _ σ

α

¯

¨
c

pβ{αq2NpM ` NKqplnKq3 ` lnp1{ζq
LK

(12)

for all X P κpα, βq.2

To interpret the result of Theorem 1 in the context of

joint estimation, we introduce the spikiness parameter µ

defined by

µ :“
?
K }X}8,F

}X}F
.

The parameter µ of X represents how the total energy of

X spreads over the blocks. A larger µ implies that there

exist few blocks consuming most of the total energy. We

also define the signal-to-noise-ratio (SNR) by

SNR “
řL

l“1

řK
k“1 ErxAl,k,Xy2s

řL
l“1

řK
k“1 Erw2

l,ks
“ }X}2F

Kσ2
.

2We use a shorthand notation for the minimum and maximum

of two numbers given by minpa, bq “ a^ b and maxpa, bq “ a_ b.

Then the error bound in (12) is rewritten as

} pX ´ X}2F
}X}2F

À µ2

ˆ
1 _ µ´1

SNR1{2

˙ c
pβ{αq2NpM ` NKqplnKq3

LK
.

(13)

Furthermore, in a low-SNR regime, where SNR “
Opµ´2 lnpLKqq, the error bound in (13) reduces to

} pX ´ X}2F
}X}2F

À µ

SNR1{2

c
pβ{αq2NpM ` NKqplnKq3

LK
.

This implies that for a fixed SNR, the error decays as

Õ

ˆb
µ2pβ{αq2NpM{K`Nq

L

˙
. Note that the spikiness pa-

rameter µ in the error bound remains the same regardless

of the distribution of columns norms within each block.

The upper bound on the estimation error becomes

tightest when α “ }X}8,F and β “ }X}$. In practice,

one needs to estimate those parameters so that α and β

are no less than the corresponding norms of X0. To illus-

trate the optimal performance, suppose that α “ }X}8,F,

β “ }X}$, and rankpXq ď r. Then, by Lemma 1, we

have

β “ }X}$ ď
?
r }X}8,F ď

?
rα,

which implies pβ{αq2 ď r. In the current scenario, the

individual recovery of each block can succeed from

ÕprpM ` Nqq samples per block, but the joint recov-

ery succeeds with ÕprNpM
K

` Nqq samples per block.

Therefore, if M ą N2 and K ą N , then the joint

recovery is feasible from fewer observations than the

individual recovery. The advantage of our method is

more pronounced for larger M and K (relative to N ). For

example, in the context of regression on hyperspectral

remote sensing data, M and K respectively counts

spectral bands and temporal samples while N measures

the size of a neighborhood of the target location in pixels,

from which the prediction is made. Typical hyperspectral

instruments have more than 200 spectral bands [9].

Furthermore, it is feasible to learn the regressor from

a large number of temporal samples. In this illustration,

the parameters M and K are large relative to N . Hence,

as discussed above, the joint recovery shows a significant

gain over the individual recovery.

Next, we compare the upper bound in Theorem 1 to

a matching minimax lower bound.
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Theorem 2. Suppose that pβ{αq2pM_NKq ě 48. Then

the minimax }¨}F-risk is lower-bounded as

inf
pX

sup
XPκpα,βq

1

K
E } pX ´ X}2F

ě α2

16

˜
1 ^ σ

8
?
2α

c
pβ{αq2pM _ NKq

LK

¸
.

Compared to the minimax bound by Theorem 2, the

error bound for the estimator of (8) in Theorem 1 is sub-

optimal in general. However, the bound is near-optimal

when the noise factor dominates and N “ Op1q. The

minimax error bound decays with a rate proportional to

1{
?
L, which is slower than the optimal rate „ 1{L.

We suspect that this is due to the relaxation of the

set of low-rank matrices to the convex set κpα, βq.

On the other hand, with the relaxed matrix model, it

applies to matrices with modeling error, for example, to

approximately low-rank matrices.

Related prior results: Recovery of low-rank matrices

under a structured measurement model has been of inter-

est for many years with various applications in signal pro-

cessing and statistics [10]. Our approach is aligned with

how the matrix completion problem was tackled with

nuclear norm [11] and max norm [12] without imposing

the incoherence via singular value decomposition. A

highly related model is column-wise sketching, which is

a special case of (2) with N “ 1. Recent work provided

sample complexity estimates using convex estimators

[13]. When N “ 1, the equivalence between the 2-

summing norm and the projective norm has been shown

when a factor in the tensor product is equipped with the

ℓ8 norm [13, Lemma 4.4]. However, the constraint set

in (9) is determined by tensor norms on the product of

two Banach spaces, neither of which uses the ℓ8 norm.

Hence, even though Theorem 1 produces the analogous

result for N “ 1 [13, Theorem 1.2], the extension in the

other direction is not trivial. Therefore, the scenario with

N ą 1 considered in this paper is significantly different

from the case when N “ 1. Importantly, as discussed

earlier, there are applications modelled only by N ą 1.

To the best of our knowledge, there is only one paper

which studied the exact inverse problem in (1). It has

been shown that the spectral method provides an ε-

accurate estimate of the column space of U, where the

error is measured by the sine of the largest principal

angle, from Op ǫ´2r4M
K

`Nq noise-free samples per block

with high probability [1]. In this paper, we improve

upon their work in the following aspects: First, they

only considered the recovery of only the column space

of U instead of UV˚, whereas the convex estimator

in (8) recovers the entire matrix. Second, our analysis

continues to hold in the presence of measurement noise

and model error, unlike the analysis in [1] which expects

noise-free measurements. Third, the unknown matrix in

their analysis is arbitrarily fixed. Therefore, the error

probability Op 1
M

q increases proportionally to the number

of instances as one repeatedly applies the error bound

to multiple instances. On the contrary, the error bound

by Theorem 1 provides a strong uniform guarantee that

applies to all instances within the given model with

high probability. It was proposed to further refine the

estimate from the spectral method via gradient descent

[1]. They demonstrated that the estimate by gradient

descent from the spectral method outperforms that by

random initialized gradient descent. In Section V, we

observed that gradient descent outperforms the convex

estimator in (8). However, any error bound for the

gradient descent estimator has not been established yet.

There has been a line of research on estimating low-

rank matrices from structured measurements by itera-

tive algorithms [14–17]. It has been shown that the

“sample-split” version of alternating minimization and

gradient descent from spectral initialization provides an

ǫ-accurate estimate from Õpr2pM ` Kq lnp1{ǫqq noise-

free phaseless measurements when the unknown matrix

of size M ˆ K is exactly rank-r. However, in practice,

the sample-split algorithms perform significantly worse

than the original counterpart. On the other hand, it has

been shown that the vanilla gradient descent without

sample splitting succeeds at a near optimal rate for phase

retrieval, matrix completion, and blind deconvolution

[18]. However, it remains an open question whether

the elegant analysis based on leave-one-out auxiliary

sequences for gradient descent extends to the linear

column-wise sensing. There also exists a convex opti-

mization approach to low-rank recovery from phaseless

measurements [19]. The considered linear models are

different from the column-wise sensing but they have

shown a near-optimal sample-complexity result without

requiring sample splitting.

The rest of this paper is organized as follows. Sec-

tion II introduces notation and definitions. Section III

derives the entropy estimate with respect to the $-norm

through its relation to the projective norm. The proof of

Theorem 1 is provided in Section IV, followed by dis-

cussions on numerical results in Section V. We conclude

with remarks and future directions in Section VI.

II. NOTATION

In this section, we introduce notation and definitions

used throughout. Symbols for column vectors (resp. ma-

trices) are denoted by boldface lower-case (upper-case)

letters. For linear operator T between vector spaces,



5

the adjoint will be denoted by T˚. In a special case

when T is a matrix, then T˚ denotes the transpose. For

vector space X, its algebraic dual is denoted by X˚. For

Banach space X, the norm dual is denoted by X˚. The

Kronecker product of two matrices A and B will be

written as A b B. The same symbol b is also used for

general tensor product. We use various norms on column

vectors and matrices throughout the paper. For column

vector x, the ℓp-norm is denoted by }x}p for p ě 1.

Then the Banach space of column vectors of length N

with the ℓp-norm is denoted by ℓNp . For matrix A, the

Frobenius and spectral norms are denoted respectively by

}A}F and }A}. The corresponding unit norm balls are

denoted by BF and BS. More generally, the unit ball in

a Banach space X will be denoted by BX . Furthermore,

the operator norm of linear operator T is written as

}T}op. For matrix A P RMˆN , the column vector of

length MN obtained by stacking the columns of A is

denoted by vecpAq. The maximum and minimum of two

real numbers a and b will be respectively denoted by a_b

and a ^ b.

The convex estimator in (8) induces a low-rank so-

lution via the constraint set defined as in (9) by the

max-block-Frobenius norm in (4) and the $-norm in (5).

The error analysis of the estimator is based on various

properties of the $-norm, which are characterized by

tensor norms. A brief review on related mathematical

background is provided in a companion paper [13, Sec-

tion 2]. Further details can be found in monographs on

tensor product [20, 21]. Here we recall the minimal set

of definitions which are necessary to state and derive the

main results.

For vector spaces X and Y , let X˚ and Y ˚ denote the

corresponding algebraic dual spaces, i.e. the collection

of all linear functionals. The algebraic tensor product,

denoted by X b Y , is the set of all blinear functions

on X˚ ˆ Y ˚. The algebraic tensor product is embedded

into the set of all linear maps from X˚ to Y , denoted

by LpX˚, Y q. In particular, if all vector spaces are finite

dimensional, then X b Y is identified to LpX˚, Y q.

Let X and Y be finite-dimensional Banach spaces. A

norm on X b Y is a tensor norm if it satisfies

}x b y} ď }x}X }y}Y , @x P X, y P Y

and its dual norm satisfies

}x˚ b y˚}˚ ď }x˚}X˚ }y˚}Y ˚ , @x˚ P X˚, y˚ P Y ˚.

Here, X˚ and Y ˚ denote the norm dual of Banach spaces

X and Y . In the remainder, we will use the following

tensor norms.

The first tensor norm defined by

}T}_ :“ sup
}x˚}

X˚ ď1,}y˚}
Y ˚ ď1

|xx˚ b y˚,Ty|

is called the injective norm. The resulting Banach space

equipped with the injective norm is denoted by X qb Y .

The injectivity implies that if Z is a closed subspace of

X, then Z qb Y is a closed subspace of X qb Y . This

property will play a crucial role in deriving the entropy

estimate in Section III. Furthermore, the injective norm

coincides with the operator norm from X˚ to Y .

The second tensor norm is the projective norm defined

by

}T}^ “ inf

#
nÿ

k“1

}xk}X}yk}Y : n P N, T “
nÿ

k“1

xk b yk

+
.

The resulting Banach space with the projective norm is

denoted by X pbY . The projectivity implies that if Z is a

subspace of X, then pX{Zq pbY is a quotient of X pbY ,

where X{Z denotes the quotient of X with respect to

Z . Therefore, there exists a surjection from X pb Y to

pX{Zq pb Y .

In a special case where X “ ℓK8 and Y “ ℓN2 , the

injective norm on ℓK8 bℓN2 coincides with the max-block-

2-norm defined by

}px1, . . . ,xN q}ℓK8pℓN
2

q :“ max
kPK

}xk}2 , x1, . . . ,xK P ℓN2 .

The corresponding Banach space is denoted by ℓK8pℓN2 q.

The norm dual of ℓK8pℓN2 q, denoted by ℓK1 pℓN2 q, is

equipped with the norm given by

}px1, . . . ,xN q}ℓK
1

pℓN
2

q :“
Kÿ

k“1

}xk}2 , x1, . . . ,xK P ℓN2 .

III. ENTROPY ESTIMATE

The main machinery enabling the proof of Theorem 1

is Maurey’s empirical method [22], which provides tail

bounds on random processes arising in the analysis.

In this section, we present and prove the key entropy

estimate on the linear operators related to the estimator in

(8). We first recall the notion of the covering number to

state the entropy estimate results. For symmetric convex

bodies D and E, the covering number NpD,Eq is

defined by

NpD,Eq :“ min
!
l : Dy1, . . . ,yl P D, D Ă

ď

1ďjďl

pyj ` Eq
)
.

Then Maurey’s empirical method [22] provides an upper

bound on the integral of the square root of the log-

covering number for linear operators from ℓn1 . We use a

version of this result [23], summarized as the following

lemma.
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Lemma 2 ([23, Lemma 3.4]). Let T P Lpℓn1 , ℓm8pℓd2qq.

Then ż 8

0

b
lnNpTpB1q, ηB8,2qdη

À
a

1 ` lnpm _ nq p1 ` lnpm ^ nqq3{2}T}_.

Lemma 2 considers the case where the range of T is

ℓm8pℓd2qq. Note that the upper bound by Lemma 2 is

independent of the dimension d. This is a special case

of the original result by Carl [22], in which the range

space is a Banach space of type-2.

We utilize Lemma 2 in order to get an entropy estimate

with respect to the $-norm. The result is obtain in the

following two steps. The following lemma, proved in

Appendix E, shows that the 2-summing norm of X˚ is

equivalent to the projective norm of X up to
?
2N .

Lemma 3. Let T P ℓK8pℓN2 q b ℓM2 . Then }T}$ satisfies

}T}$ ď }T}^ ď
?
2N }T}$ .

Lemma 3 implies that the unit $-norm ball is contained in

the projective norm ball of radius
?
2N . Then it remains

to obtain an upper bound on the entropy integral with

respect to the projective norm. The result is stated in the

following lemma. The proof is provided in Appendix F.

Lemma 4. Let X “ ℓK8pℓN2 q pb ℓM2 , Y “ ℓm8pℓd2q, and

T P LpX,Y q. Suppose that m ď 2NK`M . Then
ż 8

0

a
lnNpTpBXq, ηBY qdη

À
a

1 ` lnm _ pNK ` Mq p1 ` lnmq3{2}T}op.

IV. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1. By

the optimality of pX, we obtain a basic inequality given

by

Lÿ

l“1

Kÿ

k“1

´
yl,k ´ xAl,k, pXy

¯2

ď
Lÿ

l“1

Kÿ

k“1

pyl,k ´ xAl,k,Xyq2 ,

which implies

Lÿ

l“1

Kÿ

k“1

xAl,k, pX ´ Xy2 ď 2

Lÿ

l“1

Kÿ

k“1

xAl,k, pX ´ Xywl,k.

(14)

Recall the constraint set κpα, βq is given as the

intersection of two norm balls. Since pX P κpα, βq, it

satisfies } pX}8,F ď α and } pX}$ ď β. Furthermore,

since X P κpα, βq, we also have }X}8,F ď α and

}X}$ ď β. Since the two norms are sub-additive, we

have } pX ´ X}8,F ď 2α and } pX ´ X}$ ď 2β. In other

words, we have

pX ´ X P κp2α, 2βq.

Then a lower-bound (resp. an upper bound) on the

left-hand side of (14) (resp. the right-hand side of (14))

is obtained respectively by the following two lemmas,

whose proofs are given in Appendix G and H.

Lemma 5. Under the hypothesis of Theorem 1, it holds

with probability 1 ´ ζ that

sup
ZPκpα,βq

ˇ̌
ˇ̌
ˇL }Z}2F ´

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2
ˇ̌
ˇ̌
ˇ

À α2 lnp2ζ´1q ` α2K

˜
ρ `

c
L lnp2ζ´1q

K

¸
,

(15)

where

ρ :“
c

pβ{αq2NpNK ` MqplnKq3
LK

. (16)

Lemma 6. Under the hypothesis of Theorem 1, it holds

with probability 1 ´ ζ that

sup
ZPκpα,βq

Lÿ

l“1

Kÿ

k“1

xAl,k,Zywl,k À ασ
´
LKρ `

a
LK lnpζ´1q

¯
,

(17)

where ρ is defined in (16).

By plugging in the results by these lemmas to (14),

we obtain that (14) implies

} pX ´ X}2F À α2 lnpζ´1q
L

` α2K

˜
ρ `

c
lnpζ´1q
LK

¸

` αKσ

˜
ρ `

c
lnpζ´1q
LK

¸
.

Finally, the simplified upper bound in Theorem 1 is

obtained since the first summand in the right-hand side

is dominated by the other summands.

V. NUMERICAL RESULTS

We performed Monte Carlo simulations on synthe-

sized data to study the empirical performance of the

tensor-norm-based convex estimator in (8) relative to the

spectral method and its refinement via gradient descent

[1]. The sensing matrices and measurement noise are

generated as in Theorem 1 so that Bk,l’s are independent

copies of a random matrices whose entries are drawn i.i.d.

from N p0, 1q and wk,l’s are i.i.d. N p0, σ2q. The ground-

truth matrix is generated as a rank-r matrix given by

U P RMˆr uniformly distributed on a Stiefel manifold

and Vk’s are independent copies of a random matrix with

i.i.d. standard Gaussian entries. The convex estimator

uses the estimates of the parameters α and β given
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by the corresponding norms computed from the rank-r

approximation of

pX0 “ 1

L

Lÿ

i“1

Kÿ

k“1

yl,k pe˚
k b Bk,lq P R

MˆNK .

Convex programs for both the $-norm computation and

the convex estimator are implemented as ADMM algo-

rithms, which are derived in Appendix J. We observe the

median estimation error from 20 instances in the Monte

Carlo simulations.

We first compare the estimates of the ground-truth

column space respectively by the convex estimator and

the spectral method [1]. The error is measured by the sine

of the largest principal angle between two subspaces.
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(b) Spectral estimator

Fig. 1. The log-base-10 of the estimation error of the ground-truth

column space in the noisy case (SNR “ 20dB, M “ 100, N “
20, r “ 2).

Figure 1 compares the estimation error by the convex

estimator and the spectral method in the noisy case with

SNR 20dB. The errors by both estimators decay with

larger L and K. However, in all observed regime of

the parameters, the convex estimator outperforms the

spectral estimator. As shown in Figure 2, the compar-

ison between the two estimator remains similar in the

noiseless case.
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(b) Spectral estimator

Fig. 2. The log-base-10 of the estimation error of the ground-truth

column space in the noiseless case (M “ 100, N “ 20, r “ 2).

Next we compare the performance of estimating the

entire ground-truth matrix X by the convex estimator

and the gradient descent from spectral initialization [1].

In this comparison, the metric is chosen as the nor-

malized reconstruction error given by } pX ´ X}2F{}X}2F,

where pX denotes an estimate of X .
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(b) Gradient descent

Fig. 3. The log-base-10 of the estimation error of the ground-truth

matrix (SNR “ 20 dB, M “ 100, N “ 20, r “ 2).

Figure 3 demonstrates that the gradient descent pro-

vides a better empirical phase transition than the convex

estimator. However, while our main result provides a

rigorous estimation error bound for the convex estimator,

such a theoretical analysis of the gradient descent method

has yet to be established. For both estimators, the error

decays with larger K and L. The phase transition be-

tween success (error ď 10´1.5) and failure by the convex

estimator occurs on a boundary in which the threshold

on L decays with K until M{K is dominated by N .

This corroborates the theoretical analysis in Theorem 1.

Furthermore, unlike the result in Theorem 1, the estima-

tion error by the convex estimator continues to decrease

with higher SNR. As shown in Figure 4, the normalized

estimation error is below 10´2.5 when L is above the

displayed threshold. The convex estimator provides a

significantly improved estimation performance in the

noiseless case. In particular, the phase transition by the

convex estimator is comparable to that by the gradient

descent method.
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Fig. 4. The log-base-10 of the estimation error of the ground-truth

matrix in the noiseless case (M “ 100, N “ 20, r “ 2).
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VI. CONCLUSION

In this paper, we proposed a convex program that

jointly estimates a set of low-rank matrices sharing

a common column space. The data model arises in

many applications in practice including remote sensing,

multi-class learning, and multi-spectrum imaging. The

estimation problem is equivalently rewritten as block-

wise sensing of a low-rank matrix. We have shown that

the proposed convex estimator leads to a more favorable

sample complexity than the individual recovery of each

block when the number of blocks K and the dimension

M are high relative to the number of columns per block

N . We provide an ADMM algorithm to tackle large-

sized problems. In the future work, we will investigate

the performance of the convex estimator with faster

sketching models via fast Johnson-Lindenstrauss trans-

forms [24].

REFERENCES

[1] Y. Gigi, S. Nevo, G. Elidan, A. Hassidim, Y. Ma-

tias, and A. Wiesel, “Spectral algorithm for shared

low-rank matrix regressions,” in 2020 IEEE 11th

Sensor Array and Multichannel Signal Processing

Workshop (SAM). IEEE, 2020, pp. 1–5.

[2] A. C. Lozano and G. Swirszcz, “Multi-level lasso

for sparse multi-task regression,” in Proceedings of

the 29th International Coference on International

Conference on Machine Learning, ser. ICML’12.

Madison, WI, USA: Omnipress, 2012, p. 595–602.

[3] Y. Zhang and Q. Yang, “A survey on multi-task

learning,” IEEE Transactions on Knowledge and

Data Engineering, 2021.

[4] A. Abdulaziz, A. Dabbech, A. Onose, and

Y. Wiaux, “A low-rank and joint-sparsity model

for hyper-spectral radio-interferometric imaging,”

in 2016 24th European Signal Processing Confer-

ence (EUSIPCO), 2016, pp. 388–392.

[5] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher,

“Streaming low-rank matrix approximation with an

application to scientific simulation,” SIAM Journal

on Scientific Computing, vol. 41, no. 4, pp. A2430–

A2463, 2019.

[6] R. Spencer, “The square kilometre array: The ul-

timate challenge for processing big data,” in IET

Seminar on Data Analytics 2013: Deriving Intelli-

gence and Value from Big Data. IET, 2013, pp.

1–26.

[7] R. S. Srinivasa, M. A. Davenport, and

J. Romberg, “Trading beams for bandwidth:

Imaging with randomized beamforming,” SIAM

Journal on Imaging Sciences, vol. 13,

no. 1, pp. 317–350, 2020. [Online]. Available:

https://doi.org/10.1137/19M1242045

[8] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola,

“Maximum-margin matrix factorization,” in Pro-

ceedings of the 17th International Conference on

Neural Information Processing Systems. Cam-

bridge, MA, USA: MIT Press, 2004, p. 1329–1336.

[9] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls,

P. Scheunders, N. Nasrabadi, and J. Chanussot,

“Hyperspectral remote sensing data analysis and

future challenges,” IEEE Geoscience and remote

sensing magazine, vol. 1, no. 2, pp. 6–36, 2013.

[10] M. A. Davenport and J. Romberg, “An overview of

low-rank matrix recovery from incomplete observa-

tions,” IEEE Journal of Selected Topics in Signal

Processing, vol. 10, no. 4, pp. 608–622, 2016.

[11] S. Negahban and M. J. Wainwright, “Estimation

of (near) low-rank matrices with noise and high-

dimensional scaling,” The Annals of Statistics, pp.

1069–1097, 2011.

[12] T. T. Cai and W.-X. Zhou, “Matrix completion

via max-norm constrained optimization,” Electronic

Journal of Statistics, vol. 10, no. 1, pp. 1493–1525,

2016.

[13] K. Lee, R. S. Srinivasa, M. Junge, and J. Romberg,

“Approximately low-rank recovery from noisy and

local measurements by convex program,” arXiv

preprint arXiv:2110.15205, 2021.

[14] N. Vaswani, S. Nayer, and Y. C. Eldar, “Low-

rank phase retrieval,” IEEE Transactions on Signal

Processing, vol. 65, no. 15, pp. 4059–4074, 2017.

[15] S. Nayer, P. Narayanamurthy, and N. Vaswani,

“Phaseless PCA: Low-rank matrix recovery from

column-wise phaseless measurements,” in Interna-

tional Conference on Machine Learning. PMLR,

2019, pp. 4762–4770.

[16] S. Nayer and N. Vaswani, “Sample-efficient low

rank phase retrieval,” IEEE Transactions on Infor-

mation Theory, vol. 67, no. 12, pp. 8190–8206,

2021.

[17] ——, “Fast and sample-efficient federated low

rank matrix recovery from column-wise lin-

ear and quadratic projections,” arXiv preprint

arXiv:2102.10217, 2021.

[18] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit

regularization in nonconvex statistical estimation:

Gradient descent converges linearly for phase re-

trieval, matrix completion, and blind deconvolu-

tion,” Foundations of Computational Mathematics,

vol. 20, pp. 451–632, 2020.

[19] K. Lee, S. Bahmani, Y. C. Eldar, and J. Romberg,

“Phase retrieval of low-rank matrices by anchored

https://doi.org/10.1137/19M1242045


9

regression,” Information and Inference: A Journal

of the IMA, vol. 10, no. 1, pp. 285–332, 2021.

[20] A. Defant and K. Floret, Tensor norms and opera-

tor ideals. Elsevier, 1992, vol. 176.

[21] J. Diestel, A. Grothendieck, J. Fourie, and

J. Swart, The Metric Theory of Tensor Products:
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APPENDIX

A. Concentration Inequalities

We use a set of concentration inequalities for the

proofs in this paper. The first lemma provides a tail

bound on the ℓ1-norm of an image of an arbitrary column

vector via a Gaussian random matrix.

Lemma 7 ([25, Lemma 2.1]). Let a1, . . . ,am be inde-

pendent copies of a „ N p0, Inq. Let K Ă Rn be a

bounded subset. Thenˇ̌
ˇ̌
ˇ
1

m

mÿ

i“1

|xai,xy| ´
c

2

π
}x}2

ˇ̌
ˇ̌
ˇ

ď 4wpKq?
m

` dpKq
a

2 lnp2ζ´1q?
m

holds with probability at least 1´ζ , where wpKq denote

the Gaussian width of K and dpKq “ supxPK }x}2.

Remark. Lemma 7 implies that there exists a numerical

constant c such that ℓn2 is embedded into a subspace

of ℓm1 via some Φ P Rmˆn with m “ cδ´2n so that

| }x}2 ´ }Φx}1 | ď δ for all x P Sn´1.

The next lemma is a consequence of Dudley’s inequality

and provides a tail bound on the supremum of a Gaussian

random process.

Lemma 8 ([26, Theorem 8.1.6]). Let ξ „ N p0, Inq, ∆ Ă
Rn, and ζ P p0, 1q. Then

sup
fP∆

|f˚ξ| À
ż 8

0

a
lnNp∆, ηB2qdη`diamp∆q

a
lnpζ´1q

holds with probability 1´ζ , where diamp∆q denotes the

diameter of ∆ in ℓn2 .

We also use the results on the suprema of second-

order chaos processes [27], summarized as the following

theorem.

Theorem 3 (Theorem 3.1 in [27]). Let ξ P Rn be a

Gaussian vector with Erξs “ 0 and Erξξ˚s “ In. Let

∆ Ă Rmˆn. Then

sup
QP∆

ˇ̌
ˇ}Qξ}22 ´ Er}Qξ}22s

ˇ̌
ˇ

À E ` V
a
lnp2ζ´1q ` U lnp2ζ´1q
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holds with probability 1 ´ ζ , where

E :“ γ2p∆q rγ2p∆q ` dFp∆qs ,
V :“ dSp∆q rγ̃2p∆q ` dFp∆qs ,
U :“ d2Sp∆q.

Here γ2p∆q denotes the Talagrand γ2-functional of the

metric space given by the spectral norm, and dSp∆q and

dFp∆q denotes the radii of ∆ with respect to the spectral

norm and the Frobenius norm, respectively.

B. Embedding ℓN1 to ℓ2
N

8

Let ι : ℓN1 Ñ ℓ2
N

8 denote a linear map defined by

ι
`
pxnqNn“1

˘
“

˜
Nÿ

n“1

ǫnxn

¸

pǫnqNn“1
Pt˘1uN

.

Then ℓN1 is isometrically embedded into ℓ2
N

8 , i.e.

››ιppxnqNn“1q
››

8 “ max

#ˇ̌
ˇ̌

Nÿ

n“1

ǫnxn

ˇ̌
ˇ̌ : pǫnqNn“1 P t˘1uN

+

“
››pxnqNn“1

››
1
.

Let X “ ℓ2
N

8 and E “ ιpℓN1 q Ă X. Then the dual

space of linear functionals on X is denoted by X˚ “ ℓ2
N

1 .

We denote the vector space of linear functionals on E

by E˚. First we note that the restriction of ι˚ on E˚ is

an isometric bijection. Indeed, we have

}y}E˚ “ sup
}ιpxq}

8
ď1

xιpxq,yy “ sup
}x}

1
ď1

xx, ι˚pyqy

“ }ι˚pyq}8 , @y P E˚.

Next, due to the Hahn-Banach theorem, for any y P
E˚, there exists a linear functional ỹ P X˚ such

that }ỹ}X˚ “ }y}E˚ . Consequently, there exists an

isometric bijection map ̺ from X˚{EK to E˚, where

EK “ ty P X˚ : xy,xy “ 0,@x P Eu and x¨, ¨y denotes

the canonical bilinear transform on X˚ ˆ X. Therefore,

the map ι˚ ˝ ̺ : X˚{EK Ñ ℓN8 is an isometric bijection.

Furthermore, the quotient map q : X˚ Ñ X˚{EK is a

metric surjection [28, Eqs. (1.3.2) and (2.2.5)], i.e.

qpBX˚ q “ BX˚{EK ,

where BX˚ and BX˚{EK denote the unit norm ball

respectively in X˚ and X˚{EK. Finally, we deduce that

ι˚ ˝ ̺ ˝ q : ℓ2
N

1 ։ ℓN8 is a metric surjection.

C. Duality

Let X and Y be finite-dimensional Banach spaces. Let

A : X Ñ Y be a linear operator such that

|}Ax}Y ´ }x}X | ď δ }x}X , @x P X. (18)

Let E “ ApXq denote the image of X via A, which is

a subspace of Y , i.e. X ãÑ E Ă Y . Let EK :“ ty P
Y ˚ : xy,xy “ 0,@x P Eu. Then, by the Hahn-Banach

theorem, E˚ is isometrically isomorphic to Y ˚{EK and

there exists an isometric bijection ̺ from Y ˚{EK to E˚.

It follows from (18) that B “ A˚|E˚ satisfies

|}By}X˚ ´ }y}E˚ | ď δ }y}E˚ , @y P E˚.

Therefore, we obtain that B ˝ ̺ : Y ˚{EK
։ X˚ is a

bijection satisfying }B ˝ ̺} ď 1 ` δ. Furthermore, the

quotient map q : Y ˚ Ñ Y ˚{EK is a metric surjection.

D. Proof of Lemma 1

Let U P RMˆr and V P RMKˆr satisfy that X “
UV˚ and U˚U “ Ir. Then we have

}X}$ ď }U}F }V˚}8,F ď
?
r }U} }V˚}8,F

“
?
r }UV˚}8,F “

?
r }X}8,F ,

which implies the upper bound in (7).

To derive the lower bound in (7), we consider U and

V satisfy that X “ UV˚ and }X}$ “ }U}F }V}8,F.

The common number of columns of U and V is not

necessarily r this time. Let Xk “ Xpek b IN q and

V˚
k “ V˚pek b IN q denote the kth block of X and

V˚, respectively. Let k‹ “ argmaxkPrKs }Xk}F. Then

}X}8,F “ }Xk‹
}F “

››UV˚
k‹

››
F

ď }U}F
››V˚

k‹

››
F

“ }U}F }V˚}8,F “ }X}$ .
This completes the proof.

E. Proof of Lemma 3

We first show that the $-norm is a valid tensor norm.

Let x P ℓK8pℓN2 q and y P ℓM2 . Since x b y is rank-1,

the optimal factorization in the definition of the $-norm

is through the trivial 1-dimensional space and hence it

follows that

}x b y}$ “ }x}ℓK8pℓN
2

q }y}ℓM
2

.

Similarly, for x˚ P ℓK1 pℓN2 q and y˚ P ℓM2 , the dual norm

of $-norm on x˚ b y˚ is written as

sup
}x}

ℓK8 pℓN
2

qď1

}y}
ℓM
2

ď1

xpx˚ b y˚qx, yy “ sup
}x}

ℓK8 pℓN
2

qď1

}y}
ℓM
2

ď1

xx˚, xy xy˚, yy

“ }x˚}ℓK
1

pℓN
2

q }y˚}ℓM
2

,
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where xx˚, xy denotes the dual bracket representing the

evaluation of the linear functional x˚ on x. Therefore,

we have shown that the $-norm is a tensor norm. Then,

since the projective norm is the largest tensor norm, it

follows that }T}$ ď }T}^.

To show the remaining inequality }T}^ ď
?
2N }T}$,

we use the 2-summing norm of of T P X b Y defined

as the smallest constant c ą 0 that satisfies
ÿ

k

}Tx˚
k}2Y ď c2 sup

}x}
X˚˚ ď1

ÿ

k

|xx,x˚
ky|2

for all sequences px˚
kq Ă X˚. Here, X˚˚ denotes the

double dual, which coincides with X since we consider

the finite-dimensional case. The 2-summing norm will

be denoted by π2pTq. In the finite-dimensional case, the

2-summing norm π2 is self-dual by satisfying

trpST˚q ď π2pSqπ2pT˚q. (19)

To be self-contained, below we present the derivation of

the inequality in (19). The arguments are taken from

[29]. We first recall µp defined on a finite sequence

px1, . . . , xkq in a normed space X as

µppx1, . . . , xkq :“ sup

$
&
%

˜
kÿ

j“1

|fpxjq|p
¸1{p

: f P BX˚

,
.
- ,

where BX˚ denotes the unit ball in the dual space X˚.

Then p-nuclear norm of a linear operator T from a

normed space X to another normed space Y is defined

by

νppTq

:“ inf

$
&
%

˜
kÿ

i“1

}fi}p
¸1{p

µp1py1, . . . , ykq : T “
kÿ

i“1

fi b yi

,
.
- ,

where p1 satisfies 1{p` 1{p1 “ 1. Then by the definition

of the trace, we have

trpST˚q ď ν1pST˚q. (20)

Moreover, by the definition of the nuclear norm and 2-

summing norm, it has been shown [29, 4.2] that

ν1pST˚q ď π2pSqν2pT˚q. (21)

Finally, since we consider the finite-dimensional case,

the 2-summing norm and the 2-nuclear norm coincides

[29, Theorem 5.11]. Therefore, the inequality in (19)

follows from (20) and (21).

Armed with the inequality in (19), we proceed to

the remainder of the proof of Lemma 3. By the trace

duality, the projective norm of T˚ P ℓM2 b ℓK8pℓN2 q “
LpℓM2 , ℓK8pℓN2 qq is written as

}T˚}^ “ supttrpST˚q : S P LpℓK8pℓN2 q, ℓM2 q, }S}_ ď 1u.
(22)

Then, by the trivial decomposition of S “ S ˝ id via

ℓNK
8 , we have

π2pS : ℓK8pℓN2 q Ñ ℓM2 q
ď }id : ℓK8pℓN2 q Ñ ℓNK

8 } ¨ π2pS : ℓNK
8 Ñ ℓM2 q

ď
?
2 }S : ℓNK

8 Ñ ℓM2 }
ď

?
2 }id : ℓNK

8 Ñ ℓK8pℓN2 q} ¨ }S : ℓK8pℓN2 q Ñ ℓM2 }
ď

?
2N }S : ℓK8pℓN2 q Ñ ℓM2 },

(23)

where the second inequality follows from [29, Proposi-

tions 9.3 and 9.8]. By plugging in (19) and (23) into

(22), we obtain

}T˚}^ ď
?
2N π2pT˚q.

Furthermore, since all Banach spaces here are finite-

dimensional, it follows from [29, Proposition 1.13] that

}T}^ “ }T˚}^. Therefore, we have shown that

}T}^ ď
?
2N π2pT˚q. (24)

The following lemma provides an alternative character-

ization of the 2-summing norm so that one can compare

the $-norm and the 2-summing norm on the dual of

ℓK8pℓN2 q b ℓM2 .

Lemma 9 ([13, Lemma 3.3]). Let T P LpX˚, Y q with

X complete. Then the 2-summing norm of the adjoint

T˚ is expressed as

π2pT˚q :“ inftπ2pT˚
1q}T˚

2}_ : d P N, T˚
1 P LpY ˚, ℓd2q,

T˚
2 P Lpℓd2,Xq, T˚ “ T˚

2T
˚
1u.

Let T P ℓK8pℓN2 q b ℓM2 “ LpℓK1 pℓN2 q, ℓM2 q be factorized

as T “ UV˚ via ℓd2 with V˚ P LpℓK1 pℓN2 q, ℓd2q and U P
Lpℓd2, ℓM2 q for some d P N. Then it follows that

}V}_ “ }V˚}_ “ }V˚}8,S ,

where }¨}8,S denotes the maximum-block-spectral norm

defined by

}rV˚
1 V˚

2 ¨ ¨ ¨ V˚
Ks}8,S “

›››››
Kÿ

k“1

e˚
k b V˚

k

›››››
8,S

“ max
kPrKs

}V˚
k} .

Furthermore, since U˚ P Lpℓd2, ℓM2 q “ ℓd2 b ℓM2 , the 2-

summing norm and Frobenius norm of U˚ coincide, i.e.

π2pU˚q “ }U˚}F “ }U}F .

Therefore, the 2-summing norm of T˚ is written as

π2pT˚q “ inf
U,V:UV˚“T

}U}F }V˚}8,S,
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Then we deduce that the $-norm defined in in (5) satisfies

π2pT˚q ď }T}$ ,
which together with (24) implies }T}^ ď

?
2N }T}$.

This completes the proof.

F. Proof of Lemma 4

Recall that the dual of ℓK8pℓN2 q is given by

pℓK8pℓN2 qq˚ “ ℓK1 pℓN2 q. Similarly, the range space ℓm8 qbℓd2
is identified to ℓm8pℓd2q. Due to Lemma 7 in Appendix A

(also see the remark after the lemma), there exists a linear

map ΦN : ℓN2 ãÑ ℓcδ
´2N

1 such that

|}ΦNx}1 ´ 1| ď δ, @x P S
N´1.

Similarly, ℓM2 is also embedded into ℓcδ
´2M

1 via ΦM :

ℓM2 ãÑ ℓcδ
´2M

1 so that

|}ΦMx}1 ´ 1| ď δ, @x P S
M´1.

By the injectivity of the injective norm, Ψ “ pIK b
ΦN q b ΦM embeds ℓK1 pℓN2 q qb ℓM2 into ℓK1 pℓcδ´2N

1 q qb
ℓcδ

´2M
1 – ℓcδ

´2NK
1

qb ℓcδ
´2M

1 , where – denotes the

equivalence through an isometric isomorphism. Further-

more, it has been shown in Appendix B that ℓcδ
´2NK

1

(resp. ℓcδ
´2M

1 ) is isometrically embedded into ℓ2
cδ´2NK

8
(resp. ℓ2

cδ´2M

8 ). Therefore, due to the injectivity of the

injective tensor norm, ℓcδ
´2NK

1
qbℓcδ

´2M
1 is embedded into

ℓ2
cδ´2NK

8 qbℓ2
cδ´2M

8 – ℓ2
cδ´2pNK`Mq

8 via an isometric injec-

tion ι. Moreover, the subspace E “ ΨpℓK1 pℓN2 q qb ℓM2 q is

also isometrically embedded to ℓ2
cδ´2pNK`Mq

8 .

Let Y “ ℓ2
cδ´2pNK`Mq

8 and F “ ιpEq. Similar to

Appendix B, by the Hahn-Banach theorem, there exists

an isometric bijection ̺ : Y ˚{FK Ñ F ˚ and the

quotient map q : Y ˚ Ñ Y ˚{FK is a metric surjection.

Therefore, the map ̺ ˝ q : Y ˚ Ñ F ˚ is a metric

surjection. Note that the restriction of ι˚ on F ˚, denoted

by ι˚|F˚ : F ˚ Ñ E˚, is an isometric bijection. Then the

composition map Q “ ι˚|F˚ ˝̺˝q is a metric surjection.

Moreover, the restriction of Ψ˚ on E˚, denoted by

Ψ˚|E˚ : E˚ Ñ pℓK8 qbℓN2 q pbℓM2 is a bijection. Therefore,

there exists a map pΨ˚|E˚q´1 such that Ψ˚ ˝pΨ˚|E˚ q´1

is the identity on pℓK8 qb ℓN2 q pb ℓM2 . The embedding maps

are illustrated in the following commutative diagram.

Y ˚ “ ℓ2
cδ´2pNK`Mq

1

E˚ ℓm8pℓd2q

pℓK8 qb ℓN2 q pb ℓM2

Q
TΨ˚Q

TΨ˚

pΨ˚|E˚ q´1 T

Then the assertion follows from Lemma 2 due to the

surjectivity of the entropy number [28, p. 12] and the

fact that }Ψ} ď p1 ` δq2.

G. Proof of Lemma 5

Let ξ P RLMN be a random vector defined by

ξ :“

»
———–

vecpB1,1q
vecpB2,1q

...

vecpBL,Kq

fi
ffiffiffifl . (25)

Since vecpBl,kq’s are i.i.d. following N p0, L´1IMN q, it

follows that ξ „ N p0, ILMN q. Next, we define a matrix

QZ P RLKˆLMN determined by Z by

QZ :“»
———–

IL b vecpZ1q˚ 0 ¨ ¨ ¨ 0

0 IL b vecpZ2q˚ 0
...

. . .

0 0 IL b vecpZKq˚

fi
ffiffiffifl ,

where Zk “ Zpek b IN q for k P rKs so that Z “
rZ1 Z2 ¨ ¨ ¨ ZKs. Then we have

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2 “ }QZξ}22 .

Furthermore, by taking the expectation on both sides, we

obtain

E

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2 “ E }QZξ}22 “ }QZ}2F “ L }Z}2F .

Therefore, the left-hand side of (15) is written as the

supremum of a second-order chaos as follows:

sup
ZPκpα,βq

ˇ̌
ˇ̌
ˇL }Z}2F ´

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2
ˇ̌
ˇ̌
ˇ

“ sup
ZPκpα,βq

ˇ̌
ˇ}QZξ}22 ´ E }QZξ}22

ˇ̌
ˇ .

We compute a tail bound on the right-hand side by using

the results on suprema of chaos processes [27], which

is summarized as Theorem 3 in Appendix A. To invoke

Theorem 3 for ∆ “ tQZ : Z P κpα, βqu, we derive

upper bounds on the radii and the γ2-functional of ∆.

The radii of ∆ with respect to the spectral norm and the

Frobenious norm satisfy

dSp∆q “ sup
ZPκpα,βq

}QZ} “ sup
ZPκpα,βq

max
kPrKs

}Zk}F ď α

and

dFp∆q “ sup
ZPκpα,βq

}QZ} “ sup
ZPκpα,βq

?
L }Z}F ď

?
LKα.
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Note that }QZ ´ QZ1} “ }Z ´ Z1}8,F and κpα, βq “
αB8,FXβB$. Then Dudley’s inequality implies that the

γ2-functional of ∆ is upper-bounded by

γ2p∆q À
ż 8

0

a
lnNp∆, ηBSqdη

ď β

ż 8

0

b
lnN pB$, ηB8,Fq dη.

Furthermore, Lemma 3 implies

B$ Ă
?
2NBpℓK8 qbℓN

2
q pbℓM

2

.

Therefore, we obtainż 8

0

b
lnN pB$, ηB8,Fqdη

ď
ż 8

0

c
lnN

´?
NBpℓK8 qbℓN

2
q pbℓM

2

, ηB8,F

¯
dη

ď
?
N

ż 8

0

c
lnN

´
BpℓK8 qbℓN

2
q pbℓM

2

, ηBℓK8 pℓMN
2

q
¯
dη

À
?
N

?
NK ` MplnKq3{2,

where the last step follows from Lemma 4 together with

the fact that
››id : pℓK8 qb ℓN2 q pb ℓM2 Ñ ℓK8 qb ℓMN

2

››
op

ď 1,

which holds by Lemma 1. Combining these results

provides

γ2p∆q À β
a

NpNK ` MqplnKq3.
Then, the parameters E, V , and U in Theorem 3 are

upper-bounded by

E “ γ2p∆q rγ2p∆q ` dFp∆qs
À α2

a
pβ{αq2NpNK ` MqplnKq3

¨
´a

pβ{αq2NpNK ` MqplnKq3 `
?
LK

¯
,

“ α2LKρ pρ ` 1q ,
V “ dSp∆q rγ2p∆q ` dFp∆qs

À α2
´a

pβ{αq2NpNK ` MqplnKq3 `
?
LK

¯

“ α2
?
LKpρ ` 1q,

U “ d2Sp∆q ď α2.

Then, by plugging in these parameters into Theorem 3,

we obtain that

sup
ZPκpα,βq

ˇ̌
ˇ̌
ˇ}Z}2F ´

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2
ˇ̌
ˇ̌
ˇ

À α2 lnp2ζ´1q ` α2LK pρ ` 1q
˜
ρ `

c
lnp2ζ´1q

LK

¸
,

(26)

holds with probability 1 ´ ζ . Finally, by choosing C

in (11) large enough, we have ρ ď 1, which further

simplifies (26) into (15). This completes the proof.

H. Proof of Lemma 6

Let ||| ¨ ||| denote the norm defined so that the unit norm

ball is κpα, βq, i.e.

κpα, βq “ tX P R
MˆNK : |||X ||| ď 1u.

Then the left-hand side of (17) is written as

sup
ZPκpα,βq

Lÿ

l“1

Kÿ

k“1

xAl,k,Zywl,k “
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zywl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚
,

(27)

where ||| ¨ |||˚ denotes the dual norm of ||| ¨ |||. Conditioned

on Al,k’s, the quantity on the right-hand side of (27)

becomes a Gaussian empirical process. Due to [30,

Theorem 4.7], it holds with probability 1 ´ ζ
3 that

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zywl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚

ď σEpgl,kq

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zygl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚

` σπ

gffe lnp6ζ´1q
2

¨ sup
|||Z|||ď1

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2,

(28)

where gl,k’s are i.i.d. Gaussian with zero mean and unit

variance.

The last term in the right-hand side of (28) is upper-

bounded by using the following result. Due to Lemma 5,

there exists a numerical constant C , for which it holds

with probability 1 ´ ζ
3 that

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2 ď }Z}2F

` C

«
α2 lnp6ζ´1q

L
` α2K

˜
ρ `

c
lnp6ζ´1q

LK

¸ff

for all Z P κpα, βq. Furthermore, we also have

sup
ZPκpα,βq

}Z}2F ď sup
ZPκpα,βq

K }Z}8,F ď α2K.

Therefore, we obtain

sup
ZPκpα,βq

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy2

À α2 lnp6ζ´1q
L

` α2K

˜
ρ `

c
lnp6ζ´1q

LK
` 1

¸
.
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Furthermore, due to [31, Equation (4.9)], the expecta-

tion term in the right-hand side of (28) is upper-bounded

by

Epgl,kq

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zygl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚

À
a

lnpLK ` 1qEpǫl,kq

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zyǫl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚
,

where pǫl,kq is a Rademacher sequence, i.e. ǫl,k’s are

independent copies of random variable ǫ satisfying

P pǫ “ 1q “ P pǫ “ ´1q “ 1
2 .

Then, due to the symmetry of the distribution of Al,k’s,

we obtain the following identity, which holds in the sense

of distribution with respect to Al,k’s:

Epǫl,kq

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Lÿ

l“1

Kÿ

k“1

xAl,k,Zyǫl,k

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
˚

(29)

“ sup
|||Z|||ď1

ˇ̌
ˇ̌
ˇ
Lÿ

l“1

Kÿ

k“1

xǫl,kAl,k,Zy
ˇ̌
ˇ̌
ˇ

“ sup
|||Z|||ď1

ˇ̌
ˇ̌
ˇ
Lÿ

l“1

Kÿ

k“1

xAl,k,Zy
ˇ̌
ˇ̌
ˇ

“ sup
|||Z|||ď1

Lÿ

l“1

Kÿ

k“1

xAl,k,Zy

“ sup
|||Z|||ď1

Lÿ

l“1

Kÿ

k“1

xe˚
k b Bl,k,Zy, (30)

where the third step follows due to the symmetry in

κpα, βq and the last step used Al,k “ e˚
k b Bl,k.

Let ξ P RLMN be defined in (25). Furthermore, with

a shorthand notation Zk :“ Zpek b IN q P RMˆN , we

define a column vector fZ P RLMN given by

fZ :“

»
———–

1L,1 b vecpZ1q
1L,1 b vecpZ2q

...

1L,1 b vecpZN q

fi
ffiffiffifl ,

where 1L,1 P RL denotes the column vector with all

entries set to 1. Then the last term in (30) is written as

sup
|||Z|||ď1

Lÿ

l“1

Kÿ

k“1

xBl,k,Zpek b IN qy “ sup
|||Z|||ď1

xfZ, ξy.

Note that the right-hand side is the supremum of a

Gaussian process. To obtain an upper bound, we will

use Lemma 8 in Appendix A. To invoke Lemma 8 for

the set ∆ “ tfZ : |||Z ||| ď 1u and ξ „ N p0, ILMN q, we

compute the diameter and covering number of ∆ with

respect to the ℓ2-norm. Since

}fZ ´ fZ1}2 “
?
L

››Z ´ Z1››
F

ď
?
LK

››Z ´ Z1››
8,F

,

it follows that diamp∆q ď
?
LKα and

Np∆, ηB2q ď N
´
B|||¨|||, ηpLKq´1{2B8,F

¯
.

Furthermore, since

B|||¨||| “ κpα, βq “ αB8,F X βB$,

by Lemma 3, we have

B|||¨||| Ă βB$ Ă β
?
2NBpℓK8 qbℓN

2
q pbℓM

2

.

Therefore, we obtain
ż 8

0

b
lnN

`
B|||¨|||, ηpLKq´1{2B8,F

˘
dη

ď β
?
LKN

ż 8

0

c
lnN

´
BpℓK8 qbℓN

2
q pbℓM

2

, ηBℓK8 pℓMN
2

q
¯
dη

À β
?
LKN

?
NK ` MplnKq3{2,

where the last step follows from Lemma 4 and Lemma 1.

By plugging in this result to Lemma 8, we obtain that

sup
|||Z|||ď1

xfZ, ξy

À β
?
LKN

?
NK ` MplnKq3{2 ` α

a
LK lnp3ζ´1q

“ αLKρ ` α
a

LK lnp3ζ´1q

holds with probability 1 ´ ζ
3 .

I. Proof of Theorem 2

We establish the minimax lower bound in Theorem 2

by following the two-step strategy outlined below. We

first show that there exists a packing set of κpα, βq of a

desirable size and a packing density. Then a minimax

bound is derived via a multi-way hypothesis testing

argument and Fano’s inequality.

Let us first recall the notion of a packing set (e.g. see

[26, Definition 4.2.4]). A subset P of a metric space S

is called ǫ-packing of S if dpx, x1q ą ǫ for all distinct

x, x1 P P, where the parameter ǫ denotes the packing

density. The following lemma constructs a packing set

of κpα, βq with respect to the metric induced by the

Frobenius norm.

Lemma 10. Let γ ď 1 satisfy that
β2

γ2α2 is an integer.

Then there exists a subset H Ă κpα, βq with cardinality

|H| “
Z
exp

ˆpβ{αq2pNK _ Mq
16γ2

˙^

with the following properties:

1) Every H P H satisfies that rankpHq ď β2

α2γ2 and

each entry is from t˘ γα?
MN

u, thereby }H}8,F “
γα and }H}2F “ Kγ2α2.
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2) Any two distinct Hi,Hj P H satisfy

››Hi ´ Hj
››2
F

ě Kγ2α2

2
.

Proof: We adapt the proof of [12, Lemma 3.1]

to our setting. The idea is to show the existence of a

packing set by the empirical method. We first consider

the case where NK ě M . Let S “ texpp pβ{αq2KN
16γ2 qu

and B “ β2

α2γ2 . We generate H1, . . . ,HS as independent

copies of a random matrix H constricted as follows. The

entries of the first B rows of H are i.i.d. following the

uniform distribution on t˘ γα?
MN

u. The remaining rows

are determined from the first B rows by

Hm,n “ Hm1,n, @m,m1 P rM s : m1 ” m pmodBq,
@n P rNKs.

Since the magnitude of all entries of H are fixed to

the constant γα?
MN

, it follows that }H}8,F “ γα and

}H}F “
?
Kγα. Furthermore, by Lemma 1, we also

have

}H}$ ď
?
B }H}8,F “ β

γα
¨ γα “ β,

thereby, Hi P κpα, βq for all i P rSs, or equivalently,

H Ă κpα, βq.

For any Hi ‰ Hj , we have

››Hi ´ Hj
››2
F

“
Mÿ

m“1

NKÿ

n“1

pH i
m,n ´ Hj

m,nq2

ě
Z
M

B

^ Bÿ

m“1

NKÿ

n“1

pH i
m,n ´ Hj

m,nq2

ě 4α2γ2

MN

Z
M

B

^ Bÿ

m“1

KNÿ

n“1

δm,n,

where δm,n’s are i.i.d. symmetric Bernoulli random vari-

ables. By Hoeffding’s inequality, we obtain

P

˜
Bÿ

m“1

KNÿ

n“1

δm,n ď BNK

4

¸
ď e´ BKN

8 .

By the union bound argument over all
`
S
2

˘
possible

distinct pairs pHi,Hjq, we obtain that

min
i‰j

››Hi ´ Hj
››2
F

ą α2γ2
Z
M

B

^
BKN

MN
ě α2γ2K

2

holds with probability at least 1 ´
`
S
2

˘
expp´BNK

8 q ě
1 ´ S2

2
expp´BNK

8
q ě 1

2
. In other words, the second

property is satisfied with nonzero probability, thereby,

there exists such an instance. If M ą NK, then we con-

struct H˚ by the same procedure. Then the existence of

a desired packing set is shown similarly. This concludes

the proof.

Lemma 11 (Equivalence to multiple hypothesis testing).

[Lemma 6.2, [13]] Let H be a δ-packing set of κpα, βq
and let rH “ argminHPH }H ´ pH}F . Then we have

inf
pH

sup
HPκpα,βq

E } pH ´ H}2F ě δ2

4
min
rHPH

P

´
rH ‰ H˚

¯
,

where H˚ is uniformly distributed over H.

We now proceed to a lower bound on

min rHPH P

´
rH ‰ H˚

¯
. To this end, we use the

following version of Fano’s inequality stated in [12].

Lemma 12 (Fano’s inequality). Let rH “
argminHPH }H ´ pH}F . Then we have

Pp rH ‰ H˚q

ě 1 ´
`|H|

2

˘´1 ř
i‰j EpBl,iqDKLpHi }Hjq ` ln 2

ln |H| ,

(31)

where DKLpHi }Hjq denotes the Kullback–Leibler di-

vergence between the joint distributions of yl,k’s in the

measurement model (2) conditioned on measurement

matrices Bl,k’s for Hi and Hj .

It remains to compute the KL divergence in (31) so that

we can invoke Fano’s inequality in Lemma 12. The joint

probability density of yl,k’s given Bl,k’s is given by

p ptyl,ku|tBl,kuq

“
Lź

l“1

Kź

k“1

1?
2πσ2

exp

˜
´

`
yl,k ´ xBl,k,H

k
i y

˘2

2Lσ2

¸
.

Then we obtain

ln

ˆ
ppy|Hiq
ppy|Hjq

˙

“
Lÿ

l“1

Kÿ

k“1

pyl,i ´ xBl,k,H
j
kyq2 ´ pyl,k ´ xBl,k,H

i
kyq2

2σ2

“
Lÿ

l“1

Kÿ

k“1

xBl,k,H
i
k ´ H

j
ky2

2σ2

`
Lÿ

l“1

Kÿ

k“1

pyl,k ´ xBl,k,H
i
kyqxBl,k,H

i
k ´ H

j
ky

2σ2
,

where Hi
k “ Hipek b IN q denotes the kth block of Hi

of size M ˆ N for k P rKs. Hence it follows that

DKLpHi }Hjq “
ż 8

´8
ppy|Hiq ln

ˆ
ppy|Hiq
ppy|Hjq

˙
dy

“ 1

2σ2

Lÿ

l“1

Kÿ

k“1

xBl,k,H
k
i ´ Hk

j y2.
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Furthermore, by taking the expectation with respect to

Bl,k’s, we obtain

EpBl,kqDKLpHi }Hjq “ L

2σ2

››Hi ´ Hj
››2
F

(32)

We consolidate the above sequence of results to es-

tablish the minimax lower bound in Theorem 2. Re-

call that the packing set H by Lemma 10 satisfies››Hi
››
F

“
?
Kγα for all Hi P H. It immediately

follows that
››Hi ´ Hj

››2
F

ď 4Kγ2α2 for all Hi,Hj P H.

Furtheremore, we have

ln |H| ď pβ{αq2pNK _ Mq
16γ2

.

Plugging in these result together with (32) into (31), we

obtain

Pp rH ‰ H˚q

ě 1 ´ 16γ2

pβ{αq2pNK _ Mq

ˆ
2LKγ2α2

σ2
` ln 2

˙
ě 1

2

provided that γ4 ď pβ{αq2pNK_Mqσ2

128LKα2 and pβ{αq2pNK _
Mq ě 48.

If it is satisfied that
pβ{αq2pNK_Mqσ2

128LKα2 ě 1, then we

choose γ “ 1. In this case, by Lemma 11, we obtain

inf
pH

sup
HPκpα,βq

E } pH ´ H}2F ě δ2

4
¨ 1
2

ě Kα2

16
,

where the second inequality follows since the packing

density of H was δ “ γα

b
K
2 . This implies

inf
pH

sup
HPκpα,Rq

E
1

K
} pH ´ H}2F ě α2

16
.

Otherwise, we choose γ “
´

pβ{αq2pNK_Mqσ2

128LKα2

¯1{4
so that

inf
pH

sup
HPκpα,Rq

E } pH ´ H}2F

ě δ2

4
¨ 1
2

ě Kασ

16
¨

c
pβ{αq2pNK _ Mq

128LK
,

which follows from Lemma 11. Therefore, we have

inf
pH

sup
HPκpα,βq

E
1

K
} pH ´ H}2F

ě α2

16 ¨ 8
?
2

¨ σ
α

c
pβ{αq2pNK _ Mq

LK
.

Finally, combining the two results, we obtain

inf
pH

sup
HPκpα,Rq

1

K
E } pH ´ H}2F

ě α2

16

˜
1 ^ σ

8
?
2α

c
pβ{αq2pNK _ Mq

LK

¸
.

This completes the proof.

J. ADMM algorithms

The optimization formulations in (6) and (8) can be

rewritten into a standard semidefinite program and be

solved by off-the-shelf solvers like SeDuMi [32] or

SDPT3 [33]. However, these software packages do not

scale well to large instances. To alleviate the limitation,

we develop Alternating Direction Method of Multipliers

(ADMM) algorithms, wherein each subproblem admits a

closed-form solution or casts as a simple program easily

solved by standard linear algebra packages.

1) ADMM algorithm to compute the $-norm in (6):

We first rewrite the optimization formulation in (6) into

an equivalent problem with a set of auxiliary variables:

minimize
β,W1,W2,E

β

subject to tracepW1q ď β

trace ppe˚
k b IN qW2pek b IN qq ď β,

@k P rKs

E “
«
W1 X

X˚ W2

ff

E ľ 0.
(33)

Then an augmented Lagrangian function of (33) is ob-

tained by penalizing the equality constraints as

Lρ pβ,W1,W2,E,Φq

“ β ` xΦ,E ´
„
W1 X

X˚ W2


y ` ρ

2

››››E ´
„
W1 X

X˚ W2

››››
2

F

,

where Φ P RpM`KNqˆpM`KNq denotes a dual variable.

ADMM finds a global minimizer to the convex program

in (33) by minimizing Lρ with respect to each of the

primal variables β,W1,W2,E sequentially followed by

the gradient ascent update of the dual variable Φ [34,

Section 3.1].

For brevity, we introduce the following shorthand

notations. We decompose E,Φ P RpM`NKqˆpM`NKq

into four blocks as

E :“
„
E11 E12

E˚
12 E22


and Φ “

„
Φ11 Φ12

Φ˚
12 Φ22


, (34)

where the size of each block is given by E11,Φ11 P
RMˆM , E12,Φ12 P RMˆNK , and E22,Φ22 P
RNKˆNK . Further, the kth block of size M ˆ N of

X P RMˆNK given by Xpek b IN q is denoted by Xk.

Similarly, the kth diagonal block of size N ˆ N of

W2 P RNKˆNK given by pe˚
k b IN qW2pek b IN q is

denoted by W2,k.

Given the above shorthand notations, we describe the

update rules of the ADMM algorithm. First, we consider

the updates of the first block of primal variables. We
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update β, W1, and tW2,kuKk“1 by solving the following

optimization problem:

minimize
W1,tW2,kuK

k“1
,β

ρ

2
}W1 ´ A}2F ` ρ

2

Kÿ

k“1

}W2,k ´ Bk}2
F

` β

subject to tracepW1q ď β

tracepW2,kq ď β, @k P rKs,
(35)

where

A :“ E11 ` ρ´1Φ11, and B :“ E22 ` ρ´1Φ22.

For fixed β, minimization decouples over the other

variables and the optimal solution is given by

xW1 “ argmin
tracepW1qďβ

}W1 ´ A}2F

and

xW2,k “ argmin
tracepW2qďβ

}W2,k ´ Bk}2
F
.

Furthermore, xW1 and xW2,k are expressed in a closed-

form respectively given by

xW1 “ A ´
ˆ
maxptracepAq ´ β, 0q

M

˙
IM (36)

and

xW2,k “ Bk ´
ˆ
maxptracepBkq ´ β, 0q

M

˙
IN . (37)

By plugging in the expression of the optimal solutions

in (36) and (37) for fixed β into (35), the optimization

formulation in (35) reduces to the minimization of a

univariate function given by

fpβq “ β ` ρmaxptracepAq ´ β, 0q2
2M

`
Kÿ

k“1

ρmaxptracepBkq ´ β, 0q2
2N

.

(38)

Due to the monotonicity of the summands in the right-

hand side of (38), the global minimizer β̂ can be

found by the bisection search on the interval from

0 to maxptracepAq,maxkPrKs tracepBkqq. Once β is

updated as β̂, then W1 (resp. W2,k) will be updated

as xW1 by (36) (resp. xW2,k by (37)). The off-diagonal

blocks of W2 are updated by

pe˚
j b IN qW2pek b IN q

“ pe˚
j b IN qpE22 ` ρ´1Φ22qpek b IN q, j ‰ k P rKs.

Next, the second block of primal variables consists of E,

which is updated as the solution to

pE “ argmin
Eľ0

xΦ,Ey ` ρ

2

››››E ´
„
W1 X

X˚ W2

››››
2

F

“ P
S
M`KN
`

ˆ„
W1 X

X˚ W2


´ ρ´1Φ

˙
,

where S
M`KN
` denotes the cone of positive semidefinite

matrices of size pM ` NKq. Finally, the dual variable

Φ is updated by gradient ascent with step size ρ.

2) ADMM algorithm for the convex estimator in (8):

The optimization in (10) is equivalently reformulated

with an auxiliary variable as

minimize
X,Z,W1,W2

Lÿ

l“1

Kÿ

k“1

pyl,k ´ xBl,k,Xpek b IN qyq2

subject to tracepW1q ď β

trace ppe˚
k b IN qW2pek b IN qq ď β,

k P rKs,
}X}8,F ď α

Z “
«
W1 X

X˚ W2

ff

Z ľ 0.
(39)

An augmented Lagrangian function is written as

Lρ pX,W1,W2,Z,Ψq

“
Lÿ

l“1

Kÿ

k“1

pyl,k ´ xBl,k,Xpek b IN qyq2

` xΨ,Z ´
„
W1 X

X˚ W2


y ` ρ

2

››››Z ´
„
W1 X

X˚ W2

››››
2

F

,

where Ψ P RpM`KNqˆpM`KNq denotes a dual variable.

Then the ADMM algorithm iterates the minimization of

Lρ with respect to primal-variable blocks pX,W1,W2q
and Z followed by the gradient ascent update of the dual

variable Ψ as shown below. For brevity, we consider the

decomposition of Z,Ψ P RpM`NKqˆpM`NKq into four

blocks given by

Z :“
„
Z11 Z12

Z˚
12 Z22


and Ψ “

„
Ψ11 Ψ12

Ψ˚
12 Ψ22


,

where the size of each block is given by Z11,Ψ11 P
RMˆM , Z12,Ψ12, P RMˆNK , and Z22,Ψ22 P
RNKˆNK .

First, we consider the update of X, W1, and W2 in

the first block. Note that the minimization of Lρ only

with respect to X reduces to a norm-constrained least
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squares problem. Due to the blockwise structure in the

measurement model, it decouples over blocks of X as

minimize
}Xk}Fďα

Lÿ

l“1

pyl,k ´ xBl,k,Xkyq2

´ xΨ12,k,Xky ` ρ

2
}Z12,k ´ Xk}2

F

(40)

for k P rKs. Then, (40) is written as

minimize
}vecpXkq}2ďα

}b ´ QvecpXkq}22 (41)

for Q and b satisfying Q˚Q :“ 2rB˚
k

rBk ` ρI and

Q˚b :“ 2rB˚
kyk ` vecpΨ12,kq ` ρ vecpZ12,kq where

rBk :“

»
———–

vecpB1,kq˚

vecpB2,kq˚

...

vecpBL,kq˚

fi
ffiffiffifl and yk :“

»
———–

y1,k
y2,k

...

yL,k

fi
ffiffiffifl .

Then (41) becomes a norm-constrained least square prob-

lem. Since (41) satisfies the Slater’s condition, the min-

imizer is obtained by the Karush–Kuhn–Tucker (KKT)

conditions through the Lagrangian function

LpvecpXkq, λq :“ }b´QvecpXkq}22`λ
´

}vecpXkq}22 ´ α2
¯

(42)

given by

}vecpXkq}2 ď α,

λ ě 0,

λ p}vecpXkq}2 ´ αq “ 0,

pQ˚Q ´ Q˚bq ` λ vecpXkq “ 0.

(43)

The optimal Lagrangian multiplier λ‹ can be found by a

binary search as outlined below. The unique minimizer

to (42), denoted by pXλ
k , is given by

vecp pXλ
kq “

´
2rB˚

k
rBk ` pρ ` λqI

¯´1

¨
´
2rB˚

kyk ` vecpΨ12,kq ` ρ vecpZ12,kq
¯
.

(44)

Then the KKT conditions (43) will be satisfied by the

optimal Lagrange multiplier λ‹ and vecp pXλ‹

k q. Note that

the solution in (44) satisfies the last condition in (43) for

all λ ě 0. Furthermore, since }vecp pXλ
kq}2 is a decreasing

function of λ, the optimal λ‹ can be found by a bisection

method. Moreover, since rBk depends only on Bl,k’s,

which do not vary over iterations, the solution in (44)

is easily obtained from a pre-compute the eigenvalue

decomposition of p rB˚
k

rBkq´1. The update of W1 is given

by

xW1 “ argmin
tracepW1qďβ

´xΨ11,W1y ` ρ

2
}Z ´ W1}2F ,

which yields a closed-form expression

xW1 “ Z11 ` ρ´1Ψ11

´
ˆ
maxptracepZ11 ` ρ´1Ψ11q ´ β, 0q

M

˙
IM .

Similarly, the diagonal blocks of W2 are updated as

xW2,k “ Z22,k ` ρ´1Ψ22,k

´
ˆ
maxptracepZ22,k ` ρ´1Ψ22,kq ´ β, 0q

N

˙
IN .

The off-diagonal blocks of W2 are copied from the

corresponding blocks of Z22 `ρ´1Ψ22. Next, the primal

variable Z in the second block is updated by

pZ “ argmin
Zľ0

xΨ,Zy ` ρ

2

››››Z ´
„
W1 X

X˚ W2

››››
2

F

“ P
S
M`KN
`

ˆ„
W1 X

X˚ W2


´ ρ´1Ψ

˙
,

where S
M`KN
` denotes the cone of positive semidefinite

matrices of size pM ` NKq. Finally, the dual variable

Ψ is updated by gradient ascent with step size ρ.

For fast convergence, we adopt a varying step size

for the dual ascent [34, Section 3.4.1], in which ρ is

updated in each iteration by keeping the primal and dual

residual norms within a constant factor of each other.

Furthermore, we employed a stopping criterion based on

the feasibility and relative change of primal variables [34,

Section 3.3.1], which has been widely used in practice.
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