
1

Efficient Algorithms for
the Bee-Identification Problem

Han Mao Kiah∗, Alexander Vardy†, and Hanwen Yao†
∗School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

†Department of Electrical & Computer Engineering, University of California San Diego, LA Jolla, CA, USA
Emails: hmkiah@ntu.edu.sg, avardy@ucsd.edu, hay125@eng.ucsd.edu

Abstract

The bee-identification problem, formally defined by Tandon, Tan and Varshney (2019), requires the
receiver to identify “bees” using a set of unordered noisy measurements. In this previous work, Tandon,
Tan and Varshney studied error exponents and showed that decoding the measurements jointly results in
a significantly smaller error exponent.

In this work, we study algorithms related to this joint decoder. First, we demonstrate how to perform
joint decoding efficiently. By reducing to the problem of finding perfect matching and minimum-cost
matchings, we obtain joint decoders that run in time quadratic and cubic in the number of “bees” for the
binary erasure (BEC) and binary symmetric channels (BSC), respectively. Next, by studying the matching
algorithms in the context of channel coding, we further reduce the running times by using classical tools
like peeling decoders and list-decoders. In particular, we show that our identifier algorithms when used
with Reed-Muller codes terminates in almost linear and quadratic time for BEC and BSC, respectively.

Finally, for explicit codebooks, we study when these joint decoders fail to identify the “bees” cor-
rectly. Specifically, we provide practical methods of estimating the probability of erroneous identification
for given codebooks.

I. INTRODUCTION

Imagine M bees, each tagged with a unique barcode, flying in a beehive. We take a picture of the bees
and obtain an unordered set of noisy barcodes. The bee-identification problem – proposed and formally
defined by Tandon et al.– requires one to uniquely identify each bee from the noisy measurements
[2]. Besides problems involving multiple target tracking [3], [4], the bee-identification problem is also
relevant to other applications (see [2], [5] for other examples). One recent possible application is that of
pooled testing for viral RNA like COVID-19. In a recent experiment [6], Schmid-Burgk et al. developed a
procedure where multiple DNA samples are pooled, sequenced and analyzed en masse for the COVID-19
infection. In their procedure, barcodes with high Levenshtein distance were inserted in the DNA samples
and by decoding the barcodes individually, they were able to identify the viral DNA samples. Later, the
procedures were validated by other groups who performed similar experiments [7]–[10].

Indeed, to recover the original barcodes, a naive approach is to look at each barcode separately and
decode them independently. However, certain bees/DNA samples may be assigned to the same barcode

Parts of this work were presented in the IEEE International Symposium on Information Theory (ISIT2021) [1].
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and in this case, we fail to identify all the bees/DNA samples. In contrast, one can look at all the barcodes
jointly and determine the best way to assign the barcodes so that likelihood of correct identification is
maximized. The latter is termed as joint decoding and in [2], Tandon et al. showed that joint decoding
results in significantly smaller probability of wrong or failed identification. Specifically, they quantified
the gap between the error exponents of independent and joint decoding. Interestingly, in a follow up work,
Tandon et al. showed that the error exponents are the same for both independent and joint decoding when
bees are absent with certain probability [11].

In [2], Tandon et al. wrote that the lower error exponent of joint decoding comes at a “cost of
increased computational complexity”. They then posited that joint decoding entails a computationally
prohibitive exhaustive search amongst the M ! possible permutations and explored ideas that combine
both independent and joint decoding.

Fortunately, an exhaustive search is not necessary and in this work, we demonstrate that efficient joint
decoding is achievable. Specifically, for the binary erasure and binary symmetric channels, we reduce
the bee-identification problem to the problem of finding a perfect matching and minimum-cost matching,
respectively. Hence, applying the well-known Hopcraft-Karp algorithm [13] and Hungarian method [14],
respectively, we can identify the bees in time polynomial in M .

We then study the (minimum-cost) matching problem in the context of channel coding and show that
the complexity of bee-identification problem can be further reduced. In particular, for the binary erasure
channel, we showed that when we deploy the celebrated Reed-Muller codes, the bee-identification problem
can be resolved in almost O(M) time on average. This is essentially optimal as Ω(M) time is required
to read all M barcodes. Therefore, not only is the “cost of increased computational complexity” for joint
decoding acceptable, but, in some cases, the additional complexity cost is negligible.

Finally, we also investigate the probability of erroneous identification for these joint decoders. Specifi-
cally, in this work, by relating these probability computations to the problem of permanent computation,
we develop practical methods of analyzing and estimating these error probabilities for any code of interest.
In contrast, in [11], Tandon et al. fixed a certain code rate R > 0 and determined a corresponding
probability estimate p(R). Then using random coding techniques, they showed the existence of a code
whose rate is approximately R with the property: under joint decoding, the probability of erroneous
identification is at most p(R).

In the next section, we formally describe the bee-identification problem given in [11] and then state
our technical contributions. For the ease of exposition, we study the bee-identification problem for the
binary erasure channel (BEC) and binary symmetric channel (BSC). The methods in this paper can be
extended for larger alphabets and to perform joint maximum-likelihood decoding for other channels.

Finally, to conclude this introduction, we mention certain work that followed the conference version of
this work. In [12], motivated by applications that involve DNA strands, Chrisnata et al. studied a version
of the bee-identification problem where multiple outputs (from a single input) are available. In the same
paper, Chrisnata et al. also studied the bee-identification problem in the context of deletion channels.
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II. PROBLEM DEFINITION

For an integer M , we let [M ] denote the set of integers {1, 2, . . . ,M}. The set of all permutations
over [M ] is denoted by SM and we write a permutation σ ∈ SM as σ(1)σ(2) · · ·σ(M).

Consider a binary code C ⊆ {0, 1}n of length n with M codewords x1, x2, . . . , xM . Consider, in
addition, a binary channel where each output y given an input x is received with probability P (y|x). We
send all M codewords over the channel and obtain an unordered set of M outputs {y1,y2, . . . ,yM}. Note
that yi is not necessarily the channel output of xi and in fact, the task of the bee-identification problem
is to find a length-M permutation σ so that yσ(i) is indeed the channel output of the input xi for all
i ∈ [M ]. Assuming the channels are independent, the joint decoder finds a length-M permutation σ∗ that
maximizes the probability

∏
i∈[M ] P (yσ(i)|xi). In other words, the joint decoder returns a permutation

σ∗ such that
σ∗ ∈ arg max

σ∈SM

∏
i∈[M ]

P (yσ∗(i)|xi) .

In this paper, we first study efficient ways of performing joint decoding, that is, computing the
permutation σ∗. Since the input to our problem is a set of M n-bit codewords, a trivial lower bound on
complexity is Ω(Mn) and our running time analysis in most parts will be with respect to the parameter
M . Also, as the code size M represents “the number of bees”, we assume a reasonable growth rate of
M with respect to n, that is, polynomial in n. Hence, in most parts of the paper, we suppress factors
involving n in the big-O notation. We note that this is somewhat different from the setting in [2] where
M = 2Rn for some positive rate R.

Next, for a fixed code C, we also investigate when the joint decoder fails to return the correct
permutation σ. Namely, if σ∗ is the permutation returned by the joint decoder, we provide estimates
on the quantity, Perror (C), the probability of the event where σ 6= σ∗. Similar estimates were given in
[11]. Specifically, for a fixed value 0 < R < 1, Tandon et al. found an exponent e(R) > 0 such that the
following holds: there exists a family of codes {Cn}n≥1 with blocklengths n and rates approaching R so
that Perror (Cn) ≤ 2−e(R)n. As their derivations rely on random coding techniques, it is unclear whether
their estimates apply to explicit codes. In contrast, we fix a specific code C in this work and provide
practical methods of estimating Perror (C).

A. Our Contributions

We summarize our contributions here.

• For the BEC, we provide a joint decoder – Joint Erasure Decoding Identifier (JEDI) – that runs in
O(M2) time. For the family of r-th order Reed-Muller codes and any small ε, we show that on
average, JEDI terminates in O(M1+ε) time when r ≥ 2 and in O(M2+ε) time when r = 1.

• For the BSC, we provide a joint decoder – Joint Minimum-Distance Decoding Identifier (JMDI)–
that runs in O(M3) time. To improve the running time, we approximate the exact solution using
ideas from list-decoding and propose the Joint List Decoding Identifier (JLDI). For the family of
r-th order Reed-Muller codes, we show that for sufficiently small crossover probability p, JLDI
terminates in O(M2+ε) time for any small ε and is almost as good as JMDI (see Theorem 8 for the
formal statement).
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• Finally, for a fixed code C, we provide probability estimates on when our joint decoders are erroneous.
Specifically, using trellis-based techniques, we provide methods to compute upper and lower bounds
for error probability in O(M2M ) and O(M3/222M ) time, respectively. We also derive a closed
formula that computes a weaker upper bound efficiently.

III. JOINT ERASURE DECODING IDENTIFIER

In this section, we consider the binary erasure channel (BEC). Even though the case for BECs was
not studied in [2], we investigate the joint decoder for the erasure channel as it illustrates certain key
graph theoretic concepts for the Joint Minimum-Distance Decoding Identifier described in Section IV.

Given an integer M , a balanced bipartite graph G of order M is an undirected graph with 2M nodes:
M left and M right nodes, where every edge connects a left node to a right node. A matching M of
G is a subset of edges where no two edges are incident on the same node. Clearly, any matching of a
balanced bipartite graph G of order M has at most M edges. If a matching M contains exactly M edges,
we say that M is perfect.

Let us label the left and right nodes of a balanced bipartite graph G of order M with the M inputs
x1, x2, . . . , xM and the M outputs y1,y2, . . . ,yM , respectively. Suppose that we have a perfect matching
M of G. Then we can write the edges of M as (x1, yσ(1)), (x2, yσ(2)), . . . , (xM , yσ(M)) and it follows
from the definition of a matching that σ is a permutation of length M . In other words, we can represent a
perfect matching with a length-M permutation. Conversely, given a length-M permutation σ, we obtain
a perfect matching of G if (xi,yσ(i)) is an edge of G for all i ∈ [M ]. Therefore, for the rest of this paper,
we use permutations and matchings interchangeably.

We are now ready to describe the main contribution of this section: an efficient implementation of a
joint decoder for erasures.

Joint Erasure Decoding Identifier (JEDI).
INPUT: A codebook C = {x1, x2, . . . , xM} ⊆ {0, 1}n of size M and a set of M channel outputs
{y1,y2, . . . ,yM} ⊆ {0, 1, ?}n.

OUTPUT: A permutation σ such that yi matches xσ(i) for all i ∈ [M ] if there is a unique σ. Otherwise,
the decoder declares FAILURE.

(1) We draw a balanced bipartite graph G of order M . Here, the M codewords are the left nodes while
the M channel outputs are the right nodes. For i, j ∈ [M ], we draw an edge between xi and yj if
and only if yj matches xi. Here, we say that y matches x if both y coincides with x on positions
that are not erased. Henceforth, we refer to this graph G as the input-output graph.

(2) Determine if there is a unique perfect matching in G. If the matching σ is unique, return σ. If the
matching is not unique, return FAILURE.

Here, we discuss the running time of JEDI. For general codebooks, Step 1 can be implemented in
O(M2) time. Next, we let G be the input-output graph constructed in Step 1 and E to be the number of
edges in G. Before we analyze Step 2, we first state some properties of G. For each codeword x ∈ C, let
Y (x) be its corresponding channel output and we have that Y (x) matches x. Therefore, the set of edges
{(x, Y (x)) : x ∈ C} is a perfect matching of G. Hence, we have two sub-tasks in Step 2: finding a perfect
matching (since it exists) and determining if the matching is unique. For the first sub-task, we can use
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the Hopcraft-Karp algorithm [13] to find a perfect matching in O(E
√
M) time. For the second sub-task,

we can follow the methods described in Fukada [15] and Hoang et al. [16], and then determine if another
perfect matching exists in O(M + E) = O(E) time (since M ≤ E). Hence, combining the analysis of
both sub-tasks, we have that Step 2 can be implemented in O(E

√
M) = O(M2.5) time. Therefore, this

simple analysis shows that JEDI runs in O(M2.5) time.
Nevertheless, the complexity of JEDI can be further reduced. We do so by improving the running

time of Step 2. Crucially, we exploit the fact that G contains a perfect matching. Now, if we are able
to determine early if there is more than one perfect matching, we need not continue to find a perfect
matching. To do so, we modify the classic peeling decoders used in graph-based codes [17]. Intuitively,
we search for degree-one nodes in the graph G. For any such node u, the edge uv incident to u necessarily
belongs to a perfect matching and hence, we add it to the matching. We then remove both nodes u and
v, and all other edges incident to v and repeat the search for degree-one nodes. We have two scenarios.
In the first scenario, we remove all nodes from G and end up with a perfect matching. In the second
scenario, all remaining nodes have degree at least two and it can be shown that G contains at least two
perfect matchings (see Section III-B). Thus, in this case, we can terminate our search earlier. A formal
description is given below.

Peeling Matching Algorithm (PMA).
INPUT: A bipartite graph G (with M left and M right vertices) that contains at least one perfect matching.

OUTPUT: A perfect matching M of G if it is unique. Otherwise, FAILURE is declared.

(1) Initialize M to the empty set.
(2) Find a node u in G with degree one. Here, u may be a left or right node. If there is no such node,

go to Step 6.
(3) Let uv be the unique edge incident to u and add uv to M.
(4) Remove nodes u and v and all edges incident to v.
(5) Repeat Step 2.
(6) If M is a perfect matching, return M. Otherwise, |M| < M and we declare FAILURE.

Example 1. Consider the simplex code of length seven. More concretely, we consider the linear code

with M = 8 codewords generated by the matrix

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

.

(a) Suppose the channel outputs are:

00?????, 001????, ??????0, ?0?0?1?,

11????0, ????001, 0??????, ????110.

Then the bipartite graph G constructed in Step 1 of JEDI is given below. Highlighted in blue is the
unique bipartite matching M in G.
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0000000
1000111
0101011
0011101
1101100
1011010
0110110
1110001

00?????
001????
??????0
?0?0?1?
11????0
????001
0??????
????110

Here, we list the edges in the order they are added to M according to PMA.

(1000111, ?0?0?1?), (0101011, 0??????), (1011010, ??????0), (1110001, ????001),

(0011101, 001????), (1101100, 11????0), (0110110, ????110), (0000000, 00?????).

(b) Suppose the channel outputs are:

0000000, ?0??1?1, 0110110, ?0??1?1,

1101100, 1110001, 0110110, 1011010.

Then the bipartite graph G constructed is given below.
0000000
1000111
0101011
0011101
1101100
1011010
0110110
1110001

0000000
?0??1?1
0110110
?0??1?1
1101100
1110001
0110110
1011010

Highlighted in red is the edges remaining after all degree-one nodes are removed. Hence, PMA
declares FAILURE.

The following lemma on the correctness of PMA and its running time can be proved using the notion
of stopping sets in peeling decoders [17]. For completeness, we provide a detailed proof in Section III-B.

Lemma 1. Let G be a balanced bipartite graph of order M with E edges. Suppose that G contains at
least one perfect matching. If the perfect matching is unique, then the output M of PMA is the perfect
matching. Otherwise, PMA declares FAILURE. Furthermore, PMA terminates in O(E) time.

Therefore, since E ≤ M2, we have that JEDI terminates in O(M2) time. Now, this running time
analysis assumes the worst case where G is a complete bipartite graph. By design, the codebook C is
chosen such that most erasure patterns are correctable with high probability. In other words, each right
node or channel output is expected to match with exactly one left node or codeword, and so, we expect
the graph G to be sparse.

It turns out that the expected number of edges in G is given by the distance enumerator (see for
example [18]). Specifically, given a code C of length n, we define Bi to be the number of pairs of (not
necessarily distinct) codewords of distance d. So, we have that B0 = M and

∑n
i=0Bi = M2. We then

define the distance enumerator of code C to be polynomial B(z) =
∑n

i=0Biz
i.

Lemma 2. Consider a BEC with erasure probability p. If the distance enumerator of code C is B(z),
then expected number of edges in G constructed in JEDI is given by B(p).
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Proof. Consider two codewords x and z and let x̃ be the channel output of x. We first compute the
probability that there is an edge between the nodes z and x̃ in JEDI. Suppose the distance between x
and z is d. Then there is an edge between z and x̃ if the d bits where x and z differ are erased. In other
words, there is an edge between z and x̃ with probability pd. By linearity of expectation, we have that
the expected number of edges is

∑
x,z∈C z

dH(x,z) = B(z). Here, dH(x, z) denotes the Hamming distance
of x and z.

Remark 2. Alternatively, given C = {x1, x2, . . . , xM}, we can define an (M ×M)-matrix TBEC whose
(i, j)-entry is given by pdH(xi,xj). Then the sum of all M2 entries in TBEC yields the distance enumerator
for C. While this method of determining the expected number of edges is computationally equivalent, it
turns out the permanent of the matrix TBEC can be used to estimate the error probability of JEDI. We
describe this in detail in Section V.

Next, we consider a family of block codes and we determine sufficient conditions such the expected
running of JEDI is linear in the block sizes Mn.

Theorem 3. Consider a BEC with erasure probability p. Let C be a linear code of size M with minimum
distance d. Then the expected number of edges of G is at most M +

(
M
2

)
pd. Hence, the expected running

time of JEDI is O
(
M +

(
M
2

)
pd +Mn3

)
.

Furthermore, suppose that {Cn}n≥0 is a family of linear codes such that Cn is a linear code of size
Mn with minimum distance dn. If

(
Mn

2

)
pdn = o(1), then the expected running time of JEDI tends to

O(Mnn
3).

Proof. First, we consider a code C with minimum distance d. Then we have that B1 = B2 = · · · =

Bd−1 = 0. Since pi ≤ pd for i ≥ d, we have that B(p) = B0 +
∑n

i=dBip
i ≤ M +

(
M
2

)
pd. Therefore,

the expected number of edges in G is at most M +
(
M
2

)
pd. Hence, Step 2 runs in O(M +

(
M
2

)
pd) time.

So, it remains to improve the running time of Step 1, i.e. the time to construct the input-output graph
G. Since C is a linear code of length n, then for any channel output y, we can find all x such that y
matches x in O(n3) time by matrix inversion. Therefore, G can be constructed in O(Mn3) time.

The asymptotic analysis for {Cn}n≥0 follows from the preceding argument.

A. Reed-Muller Codes

In this subsection, we apply Theorem 3 to the ubiquitous class of Reed-Muller codes [19] and derive
the expected running time of JEDI on this class of linear codes.

Theorem 4. Fix r ≥ 1 and consider the family of r-th order Reed-Muller codes. Then for any ε > 0,
the expected running time of JEDI is O(M1+ε) when r ≥ 2,

O(M2+ε) when r = 1.

Proof. Consider 1 ≤ r ≤ m. Recall that the Reed-Muller code RM(r,m) has the following parameters:
n = 2m, logM =

∑r
i=0

(
m
i

)
and d = 2m−r.
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First, we demonstrate the expected running time tends to O(Mn3). Following Theorem 3, it remains
to show that

(
M
2

)
pd tends to zero as m→∞, or equivalently,

log

(
M

2

)
+ d log p→ −∞. (1)

Now, for RM(r,m), we have that logM ≤ (r + 1)mr. Since d = 2m−r, the left hand side of (1) is
upper bounded by 2(r+ 1)mr + (2−r log p)2m. When p < 1, this upper bound tends to −∞ and hence,
we have that

(
M
2

)
pd tends to zero, as required. This means that the input-output graph G has expected

number of edges at most M .
Next, we bound the time required to construct G. Let ε be a positive constant.

• When r ≥ 2, we use matrix inversion to construct G as in the proof of Theorem 3 and we claim
that n3 = O(M ε). Indeed, M ε = 2ε(

∑r
i=0 (mi )) ≥ 2γm

r

for some constant γ. On the other hand,
n3 = 23m. Since 3m = o (γmr), we have that 23m = O

(
2γm

r)
= O(M ε).

• When r = 1, it is no longer true that n3 = O(M ε). Instead of using matrix inversion to construct G,
we use the Fast Hadamard Transform (FHT) [20], [21] to determine the edges. Specifically, for each
channel output y, we can use FHT to find all x that matches y in O(M logM) time. Therefore, G
can be constructed in O(M2 logM) = O(M2+ε) time and we have the expected running time of
JEDI as desired.

To end this subsection, we comment that the derived running time is essentially optimal. As mentioned
earlier, since we have to read all M codewords of length n, a lower bound for the running time of any
joint decoder is trivially Ω(Mn). For Reed-Muller codes of order r ≥ 2, we have n = o(M) and the
expected running time of O(M1+ε) is almost optimal. When r = 1, we note that n = Θ(M) and thus,
Ω(Mn) = Ω(M2). Again, the expected running time of O(M2+ε) is almost optimal.

B. Correctness and Running Time of PMA

For completeness, we provide a detailed proof of Lemma 1. Following Fukada [15] and Hoang et
al. [16], we define the notion of alternating cycle. Formally, consider a bipartite graph G with a perfect
matching M. A cycle O in G is alternating with respect to M if the edges in O alternate between in M

and not in M. We have the following lemma.

Lemma 5. Let M be a perfect matching in a balanced bipartite G. Then M is the unique perfect matching
in G if and only if there is no alternating cycle with respect to M.

Correctness of PMA. Applying Lemma 5, it suffices to show the following claim.

Let G be a balanced bipartite graph with a perfect matching M. If all the degrees of G are at
least two, then there is an alternating cycle with respect to M.

Indeed, we construct an alternating cycle as follow. Pick any left node u1 in G. Since M is a perfect
matching, we can find a right node v1 such that u1v1 belongs to M. Now, as the degree of v1 is at least
two, we can find u2 such that u2v1 is an edge not belonging to M. We then repeat the process to find
v2 and u3 such that u2v2 ∈ M and u3v2 /∈ M. Since the degrees of all nodes are at least two, we are
always able to find a left node ui and eventually, we have two left nodes that coincide and obtain an
alternating cycle with respect to M.
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Running Time of PMA. We briefly describe a data structure that implements PMA in time linear in the
number of edges. Recall that G has E edges and 2M nodes with E ≥ V .

We maintain an adjacency list for the nodes. In other words, for each node v, we maintain a list N(v)

of nodes adjacent to v. Also, we maintain a queue Q of degree-one nodes.
Whenever Q is nonempty, we remove the first node u and its neighbor v and update the adjacency

lists of the neighbors of v. If any node becomes degree-one, we add it to the Q. We continue this process
until the queue is empty. Since the number of updates to the adjacency lists is at most the number of
edges, the running time of PMA is O(M + E) = O(E).

IV. JOINT MINIMUM-DISTANCE DECODING IDENTIFIER

We propose an efficient joint decoder for the binary symmetric channel (BSC). While our exposition
assumes a BSC channel, we remark that the decoder can be modified to serve as a joint maximum
likelihood decoder for other channels (see Section VI).

As with Section III, we reduce the problem of permutation recovery to that of finding a minimum-cost
matching. Specifically, consider a balanced bipartite graph G of order M . In addition, we associate each
edge e in G with a cost c(e) and the cost of a matching M is the sum of the costs of all edges in M.
Suppose that G contains at least one perfect matching. A perfect matching in G is minimum-cost if its
cost is at most the cost of any other perfect matching in G. When G is a complete bipartite graph, the
problem of finding a minimum-cost matching in G is also known as the assignment problem and the
Hungarian method finds a minimum-cost assignment in O(M3) time [14].

As with before, we use the codewords and channel outputs as the left and right nodes of a balanced bi-
partite graph G. Then for any codeword-output pair (x,y), we connect them with an edge of cost dH(x,y).
Then the problem of finding a permutation σ that maximizes the the probability

∏
i∈[M ] P (yσ(i)|xi) is

equivalent to minimizing the cost of a perfect matching in G. A formal description of the decoder is
given below.
Joint Minimum-Distance Decoding Identifier (JMDI).
INPUT: A codebook C = {x1, x2, . . . , xM} of size M and a set of M channel outputs {y1,y2, . . . ,yM} ⊆
{0, 1}n.

OUTPUT: A permutation σ such that the quantity
∑

i∈[M ] dH(xi,yσ(i)) is minimized.

(1) We draw a balanced bipartite graph G of order M . Here, the M codewords are the left nodes while
the M channel outputs are the right nodes. For i, j ∈ [M ], we draw an edge between xi and yj and
set its cost to be dH(xi,yj). Again, we refer to this bipartite graph G as the input-output graph.

(2) Find a minimum-cost matching in G.

We discuss the running time of JMDI. In Step 1, we can compute the distance between all pairs of
words in O(M2n) time. In Step 2, we can apply the Hungarian method [14] and hence, we have the
following theorem.

Theorem 6. JMDI finds a permutation in O(M3 +M2n) time.

Unlike the input-output graph constructed for the BEC, the input-output graph obtained by the JMDI
is necessarily complete. So, to improve the running time for the case of BSC channels, we relax our goal
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of finding the exact solution. Instead, we approximate it by determining a minimum-cost matching in a
sparse subgraph H of G.

Specifically, for this sparse subgraph H, we consider only edges whose cost is at most R for some
R < n. Then the degree of each right node/channel output y is given by the number of codewords whose
distance is at most R from y. When C is a code with minimum distance d and R ≤ (d − 1)/2, this
number is one. When R > (d− 1)/2, this quantity is studied in the context of list decoding.

Formally, a C is (R,L)-list-decodable if for all y ∈ {0, 1}n, we have that |{x ∈ C : dH(x,y) ≤ R}| is
at most L. Then we modify Step 1 of JMDI by only including edges with weight at most R. Let H be the
resulting bipartite graph and from the list-decoding property of C, we have that H has at most ML edges.
We then proceed as in Step 2 to find a minimum-cost matching and we call this method joint list decoding
identifier (JLDI). For sparse bipartite graphs with V nodes and E edges, a minimum-cost matching can
be found in O(V 2 log V + V E) time [22], [23] and hence, JLDI terminates in O(M2(logM + L+ n))

time.

Example 3. Consider the linear code C with M = 4 codewords generated by the matrix

[
1 1 1 0 0

0 0 1 1 1

]
.

Suppose the channel outputs are:

y1 = 10000, y2 = 11101, y3 = 00011, y4 = 10001.

Below we present the bipartite graph G constructed by JMDI. To reduce clutter, we use a 4 × 4-table
whose (i, j) entry is given by the cost of the edge (xi,yj), i.e. dH(xi,yj). We refer to this table as the
cost matrix of G.

Cost Matrix of G:

y1 y2 y3 y4

x1 = 00000 1 4 2 2
x2 = 11100 2 1 5 3
x3 = 00111 4 3 1 3
x4 = 11011 3 2 2 2

Highlighted in blue are the edges in a minimum-cost matching of G. Here, the minimum-cost matching
M is given by {(xi,yi) : i ∈ [4]}.

Now, we can verify that C is a (2, 3)-list-decodable code. Hence, if we apply JLDI with radius R = 2,
we obtain the bipartite graph H whose cost-matrix is as follows.

Cost Matrix of H:

y1 y2 y3 y4

x1 = 00000 1 – 2 2
x2 = 11100 2 1 – –
x3 = 00111 – – 1 –
x4 = 11011 – 2 2 2

Indeed, we observe that the degree of yi, i ∈ [4], is at most three, corroborating the list-decoding property
of C. In this case, we have that the minimum-cost matching of H is also M.

However, a minimum-cost matching in H may not be a minimum-cost matching in G. In other words,
JLDI may not return the same output as JMDI. Nevertheless, such cases occur with small probability
and we provide upper bounds on the probabilities of such events.
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Theorem 7. Consider a BSC channel with crossover probability p. Let C be an (R,L)-list-decodable code
of length n, size M and R > pn. Set γ = R/(pn)− 1. Then JLDI terminates in O(M2(logM +L+n))

time. Furthermore,

Prob (JLDI correctly finds σ | JMDI correctly finds σ) ≥
(
1− exp(−γ2pn/3)

)M
. (2)

Proof. The running time analysis of JLDI is described in the preceding paragraphs.
To derive the probability estimates, we consider the random variable Zi that measures the number of

errors in the output of codeword xi, i ∈ [M ]. In other words, Zi = dH(xi,yσ(i)). Let G and H be the
bipartite graphs constructed in JMDI and JLDI, respectively. To simplify our arguments, we assume that
the minimum-cost matchings in both graphs are unique and let them be MG and MH.

First, we argue that if Zi ≤ R for all i ∈ [M ] and JMDI is correct, then JLDI is necessarily correct.
Since JMDI is correct, we have that the matching MG corresponds to σ. Also, for all i, since Zi ≤ R,
we have the edge (xi,yσ(i)) has cost at most R. Therefore, the matching MG is still present in the graph
H and so, the minimum-cost matching MH is identical to MG and corresponds to σ. Hence, JLDI is
correct.

Next, we lower bound the probability that all values of Zi is at most R. Fix i ∈ [M ]. Using Chernoff’s
bound (see for example, [24]), we have that P (Zi ≥ R) = P (Zi ≥ (1 + γ)pn) ≤ exp(−γ2pn/3) and
so, P (Zi ≤ R) ≥ 1 − exp(−γ2pn/3). Since the values of Zi are independent of each other, the lower
bound (2) follows.

A. Reed-Muller Codes

Similar to before, we verify that the class of Reed-Muller codes satisfy the conditions of Theorem 7.

Theorem 8. Fix r ≥ 1 and consider the family of r-th order Reed-Muller codes. Consider further a BSC
with crossover probability p < 1/2r.

For any ε > 0, JLDI runs in O(M2+ε) time and event (2) occurs with probability approaching one.

To demonstrate the result, we apply the following result on the list-decoding capabilities of Reed-Muller
codes.

Theorem 9 (Bhomick and Lovett [25]). Fix r and α and set R = (1/2r −α)n. Then there is a constant
Lr,α (dependent only on r and α) such that the Reed-Muller code RM(r,m) is (R,Lr,α)-list-decodable
for all m.

Proof of Theorem 8. Choose some small α so that p < 1/2r − α and set R = (1/2r − α)n. Then
Theorem 9 states that the list size is upper bounded by a constant independent of n and M . Hence,
applying Theorem 7, we have the running time is O(M2(logM + L+ n)) = O(M2(logM + n)).

When r ≥ 2, we have that n = O(M ε) as in the proof of Theorem 4 and hence, the running time is
O(M2+ε). When r = 1, as before, we use FHT to compute the costs of the edges. Specifically, for each
channel output y, we use FHT to compute dH(x,y) for all codewords x in O(M logM) time. Therefore,
G can be constructed in O(M2 logM) = O(M2+ε) time.

Next, Theorem 7 also states that event (2) occurs with probability at least θn ,
(
1− exp(−γ2pn/3)

)M
for some constant γ. Recall that M is the code size 2

∑r
i=0 (mi ) ≤ 2(r+1)mr

= O(2λn) for all any constant



12

λ. So, we can choose λ small enough so that 2λ < exp(γ2p/3). Therefore, M exp(−γ2pn/3) approaches
zero and we have

lim
n→∞

θn = lim
n→∞

(1− exp(−γ2pn/3))M

= lim
n→∞

((
1− 1

exp(γ2pn/3)

)exp(γ2pn/3)
) M

exp(γ2pn/3)

= lim
n→∞

e−M exp(−γ2pn/3) = 1, as desired

V. PROBABILITY OF ERRONEOUS IDENTIFICATION

In this section, we provide probability estimates for the event where the joint decoders (described in
Sections III and IV) fail to identify the codewords / bees. Specifically, throughout this section, we let
C denote a code with M length-n codewords x1, x2, . . . , xM . As before, we send these M codewords
through a noisy channel and let {y1,y2, . . . ,yM} be the corresponding set of outputs. Then there exists
a permutation σ ∈ SM such that yσ(i) is the noisy output of xi for i ∈ [M ].

Let σ∗ be the permutation / matching returned by the joint decoder and our task to estimate the
probability that σ∗ 6= σ, or, equivalently, the probability that σ∗σ−1 6= id. Here, σ−1 denotes the inverse
permutation of σ while id denotes the identity permutation. Without loss of generality, we assume that
σ = id and we consider the following error events.

• Binary erasure channels (BEC). Recall that JEDI returns the correct perfect matching / permutation
id if and only if id is the unique perfect matching in the input-output graph G constructed in Step 1.
In other words, if the graph contains another matching σ ∈ S∗M , SM \ {id}, JEDI declares failure.
Hence, we are interested in the event where σ appears as a matching in the graph G and we denote
this event by I(σ). Note that Prob (I(id)) = 1.

• Binary symmetric channels (BSC). Recall that JMDI returns a minimum-cost perfect matching from
the weighted input-output graph constructed in Step 1. Hence, if the cost of the identity matching
id is smaller than all other matchings, JMDI necessarily returns id. Hence, for some non-identity
permutation σ ∈ S∗M , we study the event where the cost of matching σ is at most the cost of the
identity matching and for convenience, we also denote this event by I(σ). As with the binary erasure
channel, we have that Prob (I(id)) = 1.

Therefore, our task is to estimate the quantity Perror (C) , Prob
(⋃

σ∈S∗
M
I(σ)

)
. Now, by the union

bound, we have that Perror (C) ≤
∑

σ∈S∗
M

Prob (I(σ)). If we further define U ,
∑

σ∈SM Prob (I(σ)), it
is straightforward to see that

Perror (C) ≤ U − 1. (3)

On the other hand, by Bonferroni inequalities / principles of inclusion-exclusion, we have that

Perror (C) ≥
∑
σ∈S∗

M

Prob (I(σ))−
∑
σ 6=τ,
σ,τ∈S∗

M

Prob (I(σ) ∧ I(τ)) .
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Proceeding similar as before, we define V ,
∑

σ,τ∈SM Prob (I(σ) ∧ I(τ)) and we have

V =
∑
σ 6=τ,

σ,τ∈S∗M

Prob (I(σ) ∧ I(τ)) + 2
∑
σ∈SM

Prob (I(σ) ∧ I(id)) +
∑
σ∈SM

Prob (I(σ) ∧ I(σ))− 2Prob (I(id) ∧ I(id))

=
∑
σ 6=τ,

σ,τ∈S∗M

Prob (I(σ) ∧ I(τ)) + 2
∑
σ∈SM

Prob (I(σ)) +
∑
σ∈SM

Prob (I(σ))− 2

=
∑
σ 6=τ,

σ,τ∈S∗M

Prob (I(σ) ∧ I(τ)) + 3U − 2.

Therefore, together with the fact that
∑

σ∈S∗
M

Prob (I(σ)) = U − 1, we have that

Perror (C) ≥ (U − 1)− (V − 3U + 2) = 4U − V − 3 . (4)

Hence, following (3) and (4), to provide the required estimates on Perror (C), it suffices to determine U
and V . However, U and V involve M ! and (M !)2 summands, respectively, and in fact, we show later that
U can be expressed as a permanent function of a certain M ×M matrix T. Unfortunately, determining
the permanent of a general matrix is computationally intractable [26] and the state-of-the-art methods of
computing permanents, due to Nijenhuis-Wilf [27] and Glynn [28], have running time O(M2M−1). In
a recent work [29], we studied methods of computing permanents on trellises. While our trellis-based
techniques did not significantly improve the running time of state-of-the-art methods for general matrices,
we observed that, for structured matrices and permanent-like functions, we can borrow ideas from trellis
theory [30] to significantly reduce the running time. We apply these techniques here to determine V .
Specifically, in Subsection V-B, we show that V can be computed in O(M1.54M ) time.

A. Estimating U

In this subsection, we provide estimates for U using the following notion of permanents.

Definition 4. Let T be an M ×M -matrix whose (i, j)-th entry is Tij . Then the permanent of T is given
by the value

per(T) ,
∑
σ∈SM

∏
i∈[M ]

Tiσ(i) . (5)

Given a code C of size M with codewords x1, x2, . . . , xM . Recall that TBEC denote an (M ×M)-
matrix whose (i, j)-entry is given by pdH(xi,xj). On the other hand, we let T(u)

BSC and T(`)
BSC denote two

(M×M)-matrices. The (i, j)-th entry of T(u)
BSC is given by (4p(1− p))dH(xi,xj)/2, while the (i, j)-th entry

of T(`)
BSC is given by (p(1− p))dH(xi,xj)/2. Then the next proposition states that the permanents of these

matrices can be used to estimate U .

Proposition 10. Let C be a code and let 0 < p < 1/2. Recall that U ,
∑

σ∈SM Prob (I(σ)).

(i) If we transmit the codebook C through a BEC(p), then U = per(TBEC).
(ii) If we transmit the codebook C through a BSC(p), then per(T(`)

BSC) ≤ U ≤ per(T(u)
BSC).

Proof. In both cases, following the definition of permanent (9), it suffices to demonstrate a certain
relationship between Prob (I(σ)) and

∏
i∈[M ] Tiσ(i).

(i) First, we consider the binary erasure channel and fix some permutation σ. Then I(σ) is the event
that the input-output graph G contains the perfect matching corresponding to σ. In other words,
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for all i ∈ [M ], there is an edge between the input xi and the output of xσ(i). As we argued in
Lemma 2, this probability of given by pdH(xi,xσ(i)) and thus, Prob (I(σ)) =

∏
i∈[M ] p

dH(xi,xσ(i)).
Finally, the proposition then follows from the definition of TBEC.

(ii) Next, we consider the binary symmetric channel and again, fix some permutation σ. Then the
I(σ) is the event where the cost of the matching σ is at most the cost of the identity match-
ing. In other words, we have the (Mn)-length word xσ(1)xσ(2) · · · xσ(M) is closer to the output
y1y2 · · ·yM in terms of Hamming distance than the word x1x2 · · · xM . Let D denote the Hamming
distance between xσ(1)xσ(2) · · · xσ(M) and x1x2 · · · xM . Then the probability of event Iσ is given
by
∑D

j=dD/2e
(
D
j

)
pj(1 − p)D−j . Now, Barg and Forney [31, Section III] provided the following

estimates for the latter quantity. Specifically, they showed that

(p(1− p))D/2 ≤
D∑

j=dD/2e

(
D

j

)
pj(1− p)D−j ≤ (4p(1− p))D/2 . (6)

Then, using D =
∑

i∈[M ] dH(xi, xσ(i)), we obtain the proposition.

Unfortunately, as mentioned earlier, determining the exact value of the permanent of a general matrix
is computationally slow. Nevertheless, when the code has a certain minimum distance, we are able to
use analytic combinatorics [32] to provide an upper bound for U .

Theorem 11. Suppose that C is a code with minimum distance d. Set

θ =

pd, if the channel is BEC(p),

(4p(1− p))d/2 , if the channel is BSC(p),
(7)

Then

U ≤M !

M∑
i=0

θM−i(1− θ)i

i!
. (8)

Therefore, Perror (C) ≤
(
M !
∑M

i=0
θM−i(1−θ)i

i!

)
− 1 .

Proof. Let T be either TBEC or T(u)
BSC. Then using Proposition 10, it suffices to show that per(T) is at

most
(
M !
∑M

i=0 θ
M−i(1− θ)i/i!

)
.

Now, we consider U whose entries are such that Uii = 1 and Uij = θ if i 6= j. Then we observe that
Tij ≤ Uij for all i, j ∈ [M ]. Thus, per(T) is at most per(U). For each permutation σ ∈ SM , the product∏
i∈[M ] Uiσ(i) is given by

∏
i 6=σi θ = θM−f(σ), where θ = pd and f(σ) = |{i = σi : i ∈ [M ]}|. Note that

f(σ) is also known as the number of fixed points of a permutation σ.
Let Fj,M be the number of permutations of length M with exactly j fixed points. It turns out the

following exponential generating function is known (see [32, Theorem 7.12]).∑
j,M

Fj,M
M !

ujzM =
e(u−1)z

1− z

With this result, let us estimate
∑

σ∈SM θ
M−f(σ).
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∑
M≥0

1

M !
(
∑
σ∈SM

θM−f(σ))zM =
∑
M,j

Fj,M
M !

θM−jzM

=
∑
M,j

Fj,M
M !

θ−j(θz)M

=
e(θ

−1−1)θz

1− θz
=
e(1−θ)z

1− θz

Therefore,
∑

σ∈SM θ
M−f(σ) = M ![zM ] e

(1−θ)z

1−θz . Now, since 1
1−θz =

∑
i≥0(θz)

i and e(1−θ)z =
∑

i≥0(1−
θ)izi/i! , we have that ∑

σ∈SM

θM−f(σ) = M !

M∑
i=0

θM−i(1− θ)i

i!
,

as required.

B. Computing V

Recall that V ,
∑

σ,τ∈SM Prob (I(σ) ∧ I(τ)). As pointed out earlier, the quantity V comprises
(M !)2 = Θ

(
M(M/e)2M

)
summands and in this subsection, we borrow ideas from trellis theory [30] to

reduce the running time to O(M1.54M ).
Before we discuss about trellis theory, we recall the definition of the matrices TBEC, T(u)

BSC, and T(`)
BSC

and establish a relationship of the quantity V with the following permanent-like matrix function.

Definition 5. Let T be an M ×M -matrix whose (i, j)-th entry is Tij . For i, k ∈ [M ], we further define
φ(Tij , Tkj) = Tij if i = k and φ(Tij , Tkj) = TijTkj if i 6= k. Then the second-order permanent of T is
given by the value

per(2)(T) ,
∑

σ,τ∈SM

∏
j∈[M ]

φ(Tσ(j)j , Tτ(j)j) . (9)

We have the following analogue of Proposition 10.

Proposition 12. Let C be a code and let 0 < p < 1/2. Recall that V ,
∑

σ,τ∈SM Prob (I(σ) ∧ I(τ)).

(i) If we transmit the codebook C through a BEC(p), then V = per(2)(TBEC).
(ii) If we transmit the codebook C through a BSC(p), then per(2)(T(`)

BSC) ≤ V ≤ per(2)(T(u)
BSC).

Proof. The proof is similar to the proof of Proposition 10. Hence, we only sketch the proof for the binary
erasure channel. Fix a pair of permutations σ and τ . Then I(σ) ∧ I(τ) is the event that input-output
graph G contains both perfect matchings σ and τ . Hence, for all j ∈ [M ], if σ(j) 6= τ(j), we have both
edges: one edge between the input xj and the output of xσ(j), and another edge between the input xj
and the output of xτ(j). If σ(j) = τ(j), we have the edge between the input xj and the output of xσ(j).
To conclude the proof, we then proceed as in the proof of Proposition 10(i).

Therefore, to compute or estimate V , we determine the second-order permanents of TBEC, T(u)
BSC, and

T(`)
BSC. To do so, we adapt techniques from our recent work [29], where we proposed a very different

approach to exact permanent computation. In this subsection, we replicate and modify certain parts
from [29] for our computation task. Specifically, to compute the second-order permanents, we use a
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Fig. 1. Non-minimal trellis that computes per(2)(T) where T is a (3×3)-matrix. Here, the trellis has 47 vertices and 81 edges.
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graph structure called trellis. The trellis was invented by Forney [33] over fifty years ago to illustrate the
Viterbi decoding algorithm [34] for convolutional codes. It has since been studied extensively by coding
theorists; see [30] for an excellent survey.

A trellis T = (V,E,L) is an edge-labelled directed graph, where V is the set of vertices, E is the set of
ordered pairs (v, v′) ∈ V×V, called edges, and L is the edge-labelling function. Specifically, L is a real-
valued function that maps an edge e ∈ E to a real number. The defining property of a trellis is that the set
V of vertices can be partitioned into V0,V1, . . . ,VM such that every edge (v, v′) begins at v ∈ Vj−1 and
terminates at v′ ∈ Vj for some j ∈ [M ]. In addition, the subsets V0 and VM are singletons, containing
two distinguished vertices, called the root and the toor, respectively.

For each path p defined by its edge sequence e1e2 · · · et, we associate the path p with its value
val(p) ,

∏t
j=1 L(ej). Furthermore, we use P(T) to denote the multiset of all paths from the root to toor

and we are interested in the value of the trellis, defined by val(T) ,
∑

p∈P(T) val(p). Then the celebrated
Viterbi algorithm1 is an application of the dynamic programming method that computes val(p) efficiently.
Specifically, the Viterbi algorithm computes val(T) using exactly |E| − deg(root) multiplications and
exactly |(E| − |V|+ 1) additions.

Example 6. Set M = 3 and we consider a 3 × 3-matrix T. Then we can use the trellis T in Figure 1
to compute per(2)(T). In particular, val(T) = per(2)(T). We can readily check that |V0| = |V3| = 1,
|V1| = 9 and |V2| = 36 and so, |V| = 47 and |E| = 81. Therefore, the Viterbi algorithm computes
val(T) = per(2)(T) using 72 multiplications and 35 additions.

Consider some trellis T. Since the complexity of evaluating the value of T depends on its number
of vertices and edges, one key objective in the study of trellises in coding theory is to find a “smaller”
trellis T′ so that P(T′) = P(T). Formally, we say that T∗ = (V∗,E∗,L∗) is a minimal trellis for T if
P(T∗) = P(T) and the following holds:

for all other trellises T′ = (V,E,L) such that P(T′) = P(T), we have that |V∗j | ≤ |Vj | for all
j = 0, 1, . . . ,M .

There are examples of trellises that do not admit a minimal trellis representation. Nevertheless, if the
T obeys certain properties, we have that T admits a unique minimal trellis. Moreover, there is a simple
merging procedure that finds this trellis [35], [36]. Here, we omit the details of the merging process.
Instead, we simply describe the minimal trellis T∗M that computes per(2)(T) for some given matrix T.

Definition 7 (Trellis for Second-Order Permanents). Fix M and let T be an M ×M -matrix. Then the
second-order-permanent trellis T∗M is defined as follows.

• (Vertices) For 0 ≤ j ≤M , we set

V(1)
j , {X ⊂ [M ] : |X| = j},

V(2)
j , {{X1, X2} : X1, X2 ⊆ [M ], |X1| = |X2| = j} .

and let V(1)
j = Vj ∪V(2)

j . In other words, we have two types of vertices: the first type comprises all(
M
j

)
j-subsets of [M ]; while the second type comprises all

((Mj )
2

)
unordered pairs of j-subsets.

1We omit a detailed description of the Viterbi algorithm here and instead, refer the interested reader to the meticulous
exposition in [30]. The original algorithm was introduced by Viterbi [34] in 1967 to perform maximum-likelihood decoding of
convolutional codes. In [29], we described the Viterbi algorithm in the context of permanent computations.
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Fig. 2. Minimal trellis T∗3 that computes per(2)(T) where T is a (3 × 3)-matrix. To reduce clutter, edge labels have been
removed. Instead, green, blue, and red edges denote edges with labels of the form Tij , TijTkj , and 2TijTkj , respectively. We
refer the reader to Definition 7 for details of the labelling. Here, T∗3 has 14 vertices and 33 edges.

• (Edges and edge labels) First, we consider X ∈ V(1)
j−1 and so, |X| = j − 1.

– For i /∈ X , we draw the edge from X to X ∪ {i} and we label this edge with Tij .
– For i, k /∈ X and i < k, we draw an edges X {X ∪{i}, X ∪{k}}, and we label this edge with

2TijTkj .

Next, we consider {X1, X2} ∈ V(2)
j−1 and so, |X1| = |X2| = j − 1.

– Suppose that there exists |X3| = j such that X3 = X1 ∪ X2. Then we draw an edge from
{X1, X2} to X3 and label this edge with TijTkj , where {i} = X3 \X1 and {k} = X3 \X2.

– If i 6= k, i /∈ X1 and k /∈ X2, we draw an edge from {X1, X2} to {X1 ∪ {i}, X2 ∪ {k}} and
we label this edge with TijTkj .

– If i /∈ X1 ∪X2, we draw an edge from {X1, X2} to {X1 ∪ {i}, X2 ∪ {i}} and we label this
edge with Tij .

Example 8 (Example 6 continued). As before, set M = 3 and we consider a 3 × 3-matrix T. Then
second-order-permanent trellis T∗3 in Figure 2. We check that T∗3 has 14 vertices and 33 vertices. Hence,
applying to the Viterbi algorithm on T∗3, we compute per(2)(T) using only 27 multiplications and 20
additions. The number of arithmetic operations is significantly lesser than the number in Example 6.

Proposition 13. Let T∗M = (V∗,E∗,L∗) be as defined by Definition 7. Then we have that

|V∗| = 1

2

(
2M

M

)
+ 2M−1 ∼ 4M

2
√
πM

(10)

|E∗| ≤ M2

2

(
2M − 2

M − 1

)
+M(M + 1)2M−3 ∼ M1.54M−1

2
√
π

. (11)

Proof. First, we determine the total number of vertices. Now, for all j, we have that V(1)
j =

(
M
j

)
and

therefore,
∣∣∣⋃M

j=0V
(1)
j

∣∣∣ =
∑M

j=0

(
M
j

)
= 2M .
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On the other hand, for all j, we have that V(2)
j =

((Mj )
2

)
. So,

∣∣∣∣∣∣
M⋃
j=0

V(2)
j

∣∣∣∣∣∣ =

M∑
j=0

(
M
j

)
(
(
M
j

)
− 1)

2

=
1

2

M∑
j=0

(
M

j

)2

−
(
M

j

)

=
1

2

M∑
j=0

(
M

j

)2

− 1

2

M∑
j=0

(
M

j

)
=

1

2

(
2M

M

)
− 2M−1

Therefore, the total number of vertices is 1
2

(
2M
M

)
+ 2M−1, as required.

Next, we determine the total number of edges. Now, for all j, a vertex in either V(1)
j or V(2)

j has

out-degree at most (M − j)2. Therefore, the total number of edges exiting vertices in
⋃M
j=0V

(1)
j is at

most
M∑
j=0

(M − j)2
(
M

j

)
= M(M + 1)2M−2.

On the other hand, the total number of edges exiting vertices in
⋃M
j=0V

(2)
j is at most

M∑
j=0

(M − j)2
((M

j

)
2

)
=

1

2

M∑
j=0

(M − j)2
((

M

j

)2

−
(
M

j

))

=
M2

2

(
2M − 2

M − 1

)
−M(M + 1)2M−3.

Therefore, we have at most M2

2

(
2M−2
M−1

)
+M(M + 1)2M−3 edges, as required. Throughout this proof,

we have used a number of combinatorial identities obtained from [37]–[39] (detailed proofs can be found
in the references therein).

Therefore, we have the following method that computes per(2)(T) in O(M1.54M−1) = o((M !)2) time.

Corollary 14. Let T be an M ×M -matrix. We can compute per(2)(T) in O(M1.54M−1) time using the
trellis T∗M .

C. Simulation Results

To end this section, we corroborate our estimates given by (3), (4) and Theorem 11 with numerical
experiments. Specifically, we consider the binary erasure channel BEC(p) and estimate Perror (C), where
C are the codes defined in Examples 1 and 3. Then using the methods described in Section V-B, we
determine the values of U and V , and hence, obtain upper and lower bounds for Perror (C) using (3) and
(4), respectively. We also compute the upper bound provided by the closed formula in Theorem 11. We
then simulated 500,000 trials for various erasure probabilities p and determined numerically the average
failure rate. The results are plotted in Figure 3 and we observe that the estimates provided by (3) and
(4) are very sharp.
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(a) Linear code of length five from in Example 3 (b) Simplex code of length seven from in Example 1

Fig. 3. Estimates for the probability of erroneous identification Perror (C) for various codes C

VI. DISCUSSION AND FUTURE WORK

We discuss certain extensions and possible future work.

• General channels. As mentioned earlier, both JEDI and JMDI can extended to obtain a joint
maximum likelihood decoder for other channels. Specifically, suppose that a channel is described
by a probability distribution P where each output y given an input x is received with probability
P (y|x). In Step 1 of JEDI / JMDI, we can create the bipartite input-output graph G by drawing
an edge (x,y) whenever P (y|x) > 0, and then assigning the edge (x,y) the cost − logP (y|x).
Then finding a minimum-cost perfect matching in the G yields a permutation that maximizes the
likelihood of correct identification. As with the analysis of JEDI, the time to find a minimum-cost
perfect matching depends on the size of G, or the number of edges in G. In [12], Chrisnata et al.
determined the expected number of edges in G for both the insertion and deletion channels. It will
be interest to study this quantity for other channels.

• Handling absentee bees. In [11], the authors studied the bee-identification problem for the scenario
where bees were absent with certain probability. In other words, instead of M channel outputs, we
have M − a outputs where a > 0. Both JEDI and JMDI can be modified to handle these scenarios.
In both cases, we proceed as before and simply add a absentee right nodes to the bipartite graph G.
For the BEC case, we connect each absentee right node to all left nodes, while for the BSC case,
we connect each absentee right node to all left nodes and assign the cost to be zero. Then we find
a perfect matching or a minimum-cost perfect matching as before.

• Code Design. In this paper, given a code C, we can construct the matrices TBEC and T(u)
BSC as in

Section V, and then estimate certain performance metrics of JEDI and JMDI. Specifically, the sum
of entries of TBEC determines the running time of JEDI, while the permanents of TBEC and T(u)

BSC

provide upper bounds on the probability of erroneous identification. Alternatively, we can fix the
probability of erroneous identification ε, and design a code C such that Perror (C) ≤ ε. This was
partially studied in [2]. Specifically, for fixed ε, Tandon et al. showed that there exists a random
code C with rate close to R(ε) and Perror (C) ≤ ε. A natural question is to find an explicit family
of codes that achieve the same property.
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