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Abstract—Reed-Muller (RM) codes achieve the capacity of
general binary-input memoryless symmetric channels and are
conjectured to have a comparable performance to that of random
codes in terms of scaling laws. However, such results are
established assuming maximum-likelihood decoders for general
code parameters. Also, RM codes only admit limited sets of
rates. Efficient decoders such as successive cancellation list (SCL)
decoder and recently-introduced recursive projection-aggregation
(RPA) decoders are available for RM codes at finite lengths. In
this paper, we focus on subcodes of RM codes with flexible rates.
We first extend the RPA decoding algorithm to RM subcodes.
To lower the complexity of our decoding algorithm, referred
to as subRPA, we investigate different approaches to prune the
projections. Next, we derive the soft-decision based version of our
algorithm, called soft-subRPA, that not only improves upon the
performance of subRPA but also enables a differentiable decoding
algorithm. Building upon the soft-subRPA algorithm, we then
provide a framework for training a machine learning (ML) model
to search for good sets of projections that minimize the decoding
error rate. Training our ML model enables achieving very close
to the performance of full-projection decoding with a significantly
smaller number of projections. We also show that the choice of
the projections in decoding RM subcodes matters significantly,
and our ML-aided projection pruning scheme is able to find
a good selection, i.e., with negligible performance degradation
compared to the full-projection case, given a reasonable number
of projections.

Index Terms—Reed-Muller (RM) codes, Machine learning,
low-complexity decoding, recursive projection-aggregation (RPA)
decoding, projection pruning.

I. INTRODUCTION

REED-MULLER (RM) codes are among the first families
of error-correcting codes, invented almost seven decades

ago [2], [3]. They have received significant renewed interest
after the breakthrough invention of polar codes [4], given
the close connection between the two classes of codes. The
generator matrices for both RM and polar codes can be
obtained from the same square matrices – the Kronecker
powers of a 2 × 2 matrix – though by different rules for
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selecting the rows. In fact, such a selection of rows for
polar codes is channel-dependent but the RM encoder picks
the rows with the largest Hamming weights, resulting in a
universal construction. RM codes are also conjectured to have
characteristics similar to those of random codes in terms of
both weight enumeration [5] and scaling laws [6]. Moreover,
Reeves and Pfister have recently shown that RM codes achieve
the capacity of general binary-input memoryless symmetric
(BMS) channels [7] under the bit maximum-a-posteriori (bit-
MAP) decoding. This solves a long-standing open problem in
coding theory while leaving the problem of finding efficient
decoders for RM codes to provably achieve (or perform close
to) such an excellent performance open.

Among the earlier results on decoding RM codes [2], [8]–
[13], Dumer’s recursive list decoding algorithm [8]–[10] pro-
vides a trade-off between the decoding complexity and the er-
ror probability. In other words, it is capable of achieving close
to the maximum likelihood decoding performance for large
enough, e.g., exponential in blocklength, list sizes. Recently,
Ye and Abbe [14] proposed a recursive projection-aggregation
(RPA) algorithm for decoding RM codes. The RPA algorithm
first projects the received corrupted codeword onto its cosets.
It then recursively decodes the projected codes to, finally,
construct the decoded codeword by properly aggregating the
intermediate decoding results. Building upon the projection
pruning idea in [14], a method for reducing the complexity of
the RPA algorithm has also been explored in [15]. Moreover, a
framework for encoding and decoding RM codes based on the
product of smaller RM code components has been explored in
[16], with potential applications to low-capacity channels [17].
Furthermore, building upon the computational tree of RM (and
polar) codes, a class of neural encoders and decoders has been
proposed in [18] via deep learning methods.

Besides lacking an efficient decoder in general, the structure
of RM codes does not allow choosing a flexible rate. To clarify
this, let k and n denote the code dimension and blocklength,
respectively. Due to the underlying Kronecker product struc-
ture of RM codes, the code blocklength is a power of two, i.e.,
n = 2m, where m is a design parameter. Additionally, RM
codes posses another parameter r, that stands for the order of
the code, where 0 ⩽ r ⩽ m. Given the code blocklength n,
one can then only construct RM codes with m + 1 possible
values for the code rate, each corresponding to a given code
order r.

This research is inspired by the aforementioned two critical
issues of RM codes. More specifically, we target subcodes of
RM codes (with flexible rates that can take any code dimension
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from 1 to n), and our primary goal is to design low-complexity
decoders for the RM subcodes. To this end, we first extend
the RPA algorithm to what we call “subRPA” in this paper.
Similar to the RPA algorithm, subRPA starts by projecting the
received corrupted codeword onto the cosets. However, since
the projected codes are no longer RM codes of lower orders,
their corresponding generator matrices have different ranks
(i.e., different code dimensions). SubRPA applies the MAP
decoder at the bottom layer, which is feasible and efficient
given the low dimension of the projected codes at that layer.
It then aggregates the results back to recursively decode the
received codeword.

A major focus of this work is on reducing the complexity
of our proposed decoding algorithms by pruning many of
redundant projections. Through exploring different projection
pruning strategies, we empirically show that the choice of
projections can significantly impact the decoding performance
of RM subcodes. We first propose a method, referred to as
the minRank projection pruning scheme (incurring the lowest
decoding complexity, given a number of projections), that is
observed to deliver a very good performance in a variety of
scenarios. However, our results show that there are cases where
even a random pruning scheme may outperform the minRank
selection, especially when the number of projections used for
the decoding are significantly smaller than the full number of
projections. Motivated by these observations, we leverage the
recent advances in channel coding via machine/deep learning
[18]–[25] to pick the optimal sets of projections via training a
machine learning (ML) model. To this end, we first derive the
soft-decision based version of the subRPA algorithm, called
“soft-subRPA”, that not only improves upon the performance
of the subRPA algorithm but also provides a differentiable ver-
sion of our decoding algorithm. Enabled by our differentiable
soft-subRPA algorithm, we train an ML model to search for
the good sets of projections. We find out that carefully training
our ML model provides the possibility to find the best sets of
projections that achieve very close to the performance of full-
projection decoding with much smaller number of projections.

We would like to highlight that our work also adds to the
rich literature on soft-decision decoding of algebraic codes,
including the celebrated work by Koetter and Vardy on soft-
decision decoding of Reed-Solomon codes [26], which is also
used for soft-decision decoding of other algebraic codes such
as Hermitian codes [27] and elliptic codes [28], as well as
the work by Vardy and Be’ery on soft-decision decoding
of Bose–Chaudhuri–Hocquenghem (BCH) codes [29], among
others.

Finally, besides designing efficient decoding algorithms,
we also provide some insights on encoding RM subcodes
by empirically investigating their performance. Our results
show that constructing the code generator matrix with respect
to a lower complexity for our algorithms results in a supe-
rior performance compared to a higher complexity generator
matrix. Also, our empirical results for pruning projections
mostly suggest a superior performance for the projection sets
incurring a lower decoding complexity. This together with our
observation on the encoding part unravels a two-fold gain for
our proposed algorithms: a better performance for a lower

complexity.
The rest of the paper is organized as follows. In Section

II, we provide some preliminaries on RM codes and RPA
decoding. In Section III, we present the subRPA and soft-
subRPA algorithms for decoding RM subcodes. We empiri-
cally investigate encoding of RM subcodes and present several
ad-hoc projection pruning schemes in Section IV. Section V
is devoted to our ML-aided projection pruning algorithm, and
Section VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review RM codes and the RPA
algorithm. The reader is referred to [14] for additional details
on the RPA algorithm.

A. RM Codes

Let k and n denote the code dimension and blocklength,
respectively. Also, let m = log2 n. The r-th order RM code
of length 2m, denoted by RM(m, r), is then defined by the
following set of vectors as the basis

{vm(A) : A ⊆ [m], |A| ⩽ r}, (1)

where [m] := {1, 2, . . . ,m}, |A| denotes the size of the set A,
and vm(A) is a row vector of length 2m whose components
are indexed by binary vectors z = (z1, z2, . . . , zm) ∈ {0, 1}m
as

vm(A, z) =
∏
i∈A

zi, (2)

with the convention of
∏

i∈∅ zi := 1. It follows from (1) that
RM(m, r) has the dimension of

k =

r∑
i=0

(
m

i

)
. (3)

Given the basis in (1), the (codebook of) RM(m, r) code
is defined as the following set of binary vectors

RM(m, r) :=

 ∑
A⊆[m],|A|⩽r

u(A)vm(A) : u(A) ∈ {0, 1} ∀A

 .

(4)

Therefore, considering a polynomial ring F2[Z1, Z2, . . . , Zm]
of m variables, the components of vm(A) are the evaluations
of the monomial

∏
i∈A Zi at points z in the vector space

E := Fm
2 . Moreover, each codeword c = (c(z), z ∈ E) ∈

RM(m, r), that is also indexed by the binary vectors z, is
defined as the evaluations of an m-variate polynomial with
degree at most r at points z ∈ E.

B. RPA Decoding Algorithm

The RPA algorithm is comprised of the following three main
phases.
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1) Projection: The RPA algorithm starts by projecting the
received corrupted binary vector (in the case of BSC) or the
log-likelihood ratio (LLR) vector of the channel output (in the
case of general binary-input memoryless channels) onto the
subspaces of E. Considering B as a s-dimensional subspace
of E, with s ⩽ r, the quotient space E/B contains all the cosets
of B in E. Each coset T ∈ E/B has the form T = z + B for
some z ∈ E. Then, in the case of BSC, the projection of the
channel binary output y = (y(z), z ∈ E) onto the cosets of
B is defined as

y/B :=
(
y/B(T ), T ∈ E/B

)
, s.t. y/B(T ) :=

⊕
z∈T

y(z), (5)

where
⊕

denotes the coordinate-wise addition in F2. For the
binary-input memoryless channels the RPA algorithm works
on the projection of the channel output LLR vector l. In the
case of a one-dimensional subspace B, the projected LLR
vector can be obtained as l/B := (l/B(T ), T ∈ E/B), where

l/B(T )=ln
(
exp

(∑
z∈T

l(z)
)
+1
)
−ln

(∑
z∈T

exp(l(z))
)
. (6)

In the case of a general s-dimensional subspace B, the quotient
space E/B contains 2m−s cosets T each of size 2s. Then,
one can follow a similar approach to the proof of [14, Eq.
(13)] to prove that l/B(T ), for each coset T , can be obtained
recursively as

l/B(T ) = ln

(
1 + exp

(
l/B(T1:2s−1) + l/B(T1+2s−1:2s)

)
exp

(
l/B(T1:2s−1)

)
+ exp

(
l/B(T1+2s−1:2s)

)) ,

(7)

where the notation Ti:j is used to denote the subset of T
containing all the elements from index i to j. For the base
case of the recursive equation (7) one can use s = 1 to obtain
(6) as the base case. Alternatively, we can set s = 0 as the
base case with the convention of l/B(T ) := l(z) for a set T
containing a single element z. In the latter case, we can derive
(6) as a special case of (7) by setting s = 1.

2) Decoding the Projected Outputs: Once the decoder
projects the channel output (y or l), it starts recursively
decoding the projected outputs, i.e., it projects them onto new
subspaces and continues until the projected outputs correspond
to order-1 RM codes. The decoder then applies the fast
Hadamard transform (FHT) [30] to efficiently decode order-1
codes. By using the FHT algorithm, one can implement the
MAP decoder for the first-order RM codes with the complexity
O(n log n) instead of O(n2). Once the first-order codes are
decoded, the algorithm aggregates the outputs (as explained
next) to decode the codes at a higher layer. The decoder may
also iterate the whole process, at each middle decoding step,
several times to ensure the convergence of the algorithm.

3) Aggregation: At each layer in the decoding process
(and each node in the decoding tree), the decoder needs to
aggregate the output of the channel at that node with the
decoding results of the next (underneath) layer to update the
channel output. Note that the channel output at a given node
can be either the actual channel output (y or l) or the projected
ones, depending on the depth of that node in the decoding
tree of the recursive algorithm. Several aggregation algorithms

are presented in [14] for one- and two-dimensional subspaces.
We refer the reader to [14] for the details on the aggregation
methods.

III. EFFICIENT DECODING OF RM SUBCODES

A. Problem Setting

An equivalent description of the RM encoder can be ob-
tained through the so-called polarization matrix. Indeed, the
generator matrix of an RM(m, r) code, denoted by Gk×n,
can be obtained by choosing rows of the following matrix that
have a Hamming weight of at least 2m−r:

P n×n =

[
1 0
1 1

]⊗m

, (8)

where F⊗m is the m-th Kronecker power of a matrix F . The
resulting generator matrix Gk×n can then be partitioned into
sub-matrices as

Gk×n =


G0

G1
...

Gr−1

Gr

 , (9)

where G0 is a length-n all-one row vector, and G1 is an m×n
matrix that lists all the n = 2m unique length-m binary vectors
{0, 1}m as the columns. Moreover, Gi, for 1 ⩽ i ⩽ r, is an(
m
i

)
× n matrix whose each row is obtained by the element-

wise product of a distinct selection of i rows from G1 [31].
Accordingly, Gk×n has exactly

(
m
i

)
rows with the Hamming

weight n/2i, for 0 ⩽ i ⩽ r.
As seen, the RM encoder does not allow choosing any de-

sired code dimension; it should be of the form k =
∑r

i=0

(
m
i

)
for some r ∈ {0, 1, · · · ,m}. Suppose that we want to con-
struct a subcode of RM(m, r) with a dimension k such that
kl < k < ku, where kl :=

∑r−1
i=0

(
m
i

)
and ku :=

∑r
i=0

(
m
i

)
for some r ∈ [m]. Given that the construction of RM codes
corresponds to picking rows of P n×n that have the highest
Hamming weights, the first kl rows of the generator matrix
Gk×n will be the same as the generator matrix of the lower-
order RM code, i.e., RM(m, r − 1), that has a Hamming
weight of at least 2m−r+1. It then remains to pick extra k−kl
rows from P n×n. These will be picked from the additional
ku − kl =

(
m
r

)
rows in Gr since they all have the same

Hamming weight of 2m−r, which is the next largest Hamming
weight. In a sense, we limit our attention to RM subcodes that,
roughly speaking, sit between two RM codes of consecutive
orders. More specifically, they are subcodes of RM(m, r) and
also contain RM(m, r − 1) as a subcode, for some r ∈ [m].
The question is then how to choose the extra k − kl rows
out of those

(
m
r

)
rows of weight 2m−r to construct an RM

subcode of dimension k as specified above. This important
question requires a separate follow-up work and is beyond the
scope of this paper. In the meantime, we provide some insights
regarding the encoding of RM subcodes in Section IV-A after
describing our decoding algorithms in Sections III-B and III-C
with respect to a generic generator matrix Gk×n. Our results
show that randomly selecting a subset of those rows is not
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always good. Indeed, some selections are better that the others,
and also the set of good rows can depend on the underlying
decoding algorithm.

B. SubRPA Decoding Algorithm

Before delving into the description of our decoding algo-
rithms, we first need to emphasize some important facts.
Remark 1. The result of the projection operation corresponds
to a code with the generator matrix that is formed by merging
(i.e., binary addition of) the columns of the original code
generator matrix indexed by the cosets of the projection
subspace. This is clear for the BSC model, as formulated
in (5). Additionally, for general BMS channels, the objective
is to estimate the projected codewords c/B(T )’s, T ∈ E/B,
based on the channel (projected) LLRs [14]; hence, the same
principle follows for any BMS channels.

Proposition 1. Let C be a subcode of RM(m, r) with
dimension k such that kl < k < ku, where kl :=

∑r−1
i=0

(
m
i

)
and ku :=

∑r
i=0

(
m
i

)
for some r ∈ [m]. The projection of this

code onto s-dimensional subspaces of E, 1 ⩽ s ⩽ r−1, results
in subcodes ofRM(m−s, r−s). It is also possible for the pro-
jected codes to be RM(m−s, r−s) or RM(m−s, r−1−s)
codes.

Proof: Please refer to Appendix A.
Hereafter, for the sake of brevity, we simply say that the

projections of a subcode of RM(m, r) code onto the s-
dimensional subspaces of E are subcodes ofRM(m−s, r−s);
however, we still mean the precise statement in Proposition 1.
Now, we are ready to present our decoding algorithms for
RM subcodes. Our algorithms are based on projecting onto
one-dimensional (1-D) subspaces. However, they can be gen-
eralized to the case of s-dimensional subspaces by following
a similar approach.

As schematically shown in Fig. 1, the subRPA algorithm
proceeds in a similar way to the RPA algorithm. More
precisely, it first projects the code C, that is a subcode of
RM(m, r), onto 1-D subspaces to get subcodes of RM(m−
1, r − 1) at the next layer. It then recursively applies the
subRPA algorithm to decode these projected codes. Next, it
aggregates the decoding results of the next layer with the
output LLRs of the current layer (similar to [14, Algorithm
4]) to update the LLRs. Finally, it iterates this process several
times to ensure the convergence of the algorithm, and takes the
sign of the updated LLRs to obtain the decoded codewords.

The main distinction between the subRPA and RPA algo-
rithms, however, is the decoding of the projected codes at
the bottom layer. Based on Proposition 1, after r − 1 layers
of 1-D projections, the decoder ends up with subcodes of
RM(m−r+1, 1) at the bottom layer. These projected codes
can have different dimensions though all are less than or equal
to m− r + 2. Therefore, the subRPA algorithm, manageably,
applies the MAP decoding at the bottom layer.

Given that the projected codewords at the bottom layer
are not all from the same code, the MAP decoding should
be carefully performed. Based on Remark 1, the projected
codes at the bottom layer can be obtained from the so-called

ℛℳ($, &)
Subcode

ℛℳ($ − 1, & − 1)
Subcode

ℛℳ($ − 1, & − 1)
Subcode

ℛℳ($ − & + 1,1)
Subcode

. . .
+, +-.

/, = 22 − 1
1-D projections

&−
1

layers of 1-D
 projections

. . .+′, +′-4
/5 = 226, − 1

. . .

. . .
Apply (soft-) MAP decoding at the bottom layer

. . .

. . . . . .
ℛℳ($ − & + 1,1)

Subcode

Fig. 1. Schematic diagram of the subRPA and soft-subRPA algorithms.

projected generator matrices of dimension k× 2m−r+1, after
r−1 times (binary) merging of the 2m columns of the original
generator matrix Gk×n. However, many of these k rows of the
projected generator matrices are linearly dependent. In fact,
all of these matrices have ranks (i.e., code dimensions) of
less than or equal to m − r + 2. In order to facilitate the
MAP decoding at the bottom layer, we can pre-compute and
store the codebook of each projected code at the bottom layer.
Particularly, let Rt be the rank of the t-th projected generator
matrix G(t)

p at the bottom layer, t ∈ [T ], where T is the total
number of projected codes at the bottom layer (which depends
on the number of layers as well as the number of projections
per layer). We can then pre-compute the codebook C(t)p that
contains the 2Rt length-(n/2r−1) codewords c

(t)
p,it

, it ∈ [2Rt ],
of the t-th projected code at the bottom layer. Now, given
the projected LLR vector l(t)p of length n/2r−1 at the bottom
layer, we pick the codeword c

(t)
p,i∗ that maximizes the MAP

rule for BMS channels [14], i.e.,

ŷt = c
(t)
p,i∗ , s.t. i∗ = argmax

it∈[2Rt ]

⟨l(t)p , 1− 2c
(t)
p,it
⟩, (10)

where ⟨·, ·⟩ denotes the inner (dot) product of two vectors. An
efficient algorithm for computing C(t)p given G(t)

p is presented
in Algorithm 2 in Section III-C.

C. Soft-SubRPA Algorithm

In this section, we derive the soft-decision version of the
subRPA algorithm, referred to as soft-subRPA in this paper.
As schematically shown in Fig. 1, the soft-subRPA algorithm
obtains soft decisions at the bottom layer instead of performing
hard MAP decodings; this process is called soft-MAP in this
paper. Additionally, the decoder applies a different rule to
aggregate the soft decisions obtained from the next layers
with the LLRs available at the current layer; we refer to
this aggregation process as soft-aggregation. The soft-subRPA
algorithm not only improves upon the performance of the
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subRPA but also replaces the hard MAP decodings at the
bottom layer with a differentiable operation that, in turn,
enables training an ML model as delineated in Section V.

The soft-MAP algorithm for making soft decisions on the
projected codes at the bottom layer, that are subcodes of first-
order RM codes, is presented in Algorithm 1 for the case
of the additive white Gaussian noise (AWGN) channel. The
process is comprised of two main steps : 1) obtaining the LLRs
of the information bits, and 2) obtaining the soft decisions
(i.e., LLRs) of the coded bits using that of information bits.
Note that we invoke max-log and min-sum approximations, to
be clarified later, in Algorithm 1. For the sake of brevity, let
us drop the superscript t. Particularly, let R be the rank of
the projected generator matrix Gp of a projected code at the
bottom layer with codebook Cp. Also, assume a 2R×k matrix
U that lists all 2R length-k sequences of bits that generate the
codebook Cp (through modulo-2 matrix multiplication UGp).

An efficient algorithm for computing matrix U and code-
book Cp for a given projected generator matrix Gp is presented
in Algorithm 2. In Algorithm 2, gfrank(A, 2) is a function
that computes the rank of the matrix A over the binary field.
Moreover, de2bi(a : b,m) is a function that outputs a
(b − a + 1)×m matrix whose rows are the length-m binary
representations of all the integers from a to b. The algorithm
first iterates over the rows of Gp to find the index of the
(first) R linearly independent rows, i.e., the index of the rows
forming a basis for Gp. The algorithm stops iterating over the
remaining rows as soon as R linearly independent rows are
found (i.e., when r = R) to avoid unnecessary work. Once
the set Uind of those indices is found, the 2R × k matrix U is
formed by inserting all distinct binary vectors of length R in
the R columns of U indexed by the set Uind, and freezing the
remaining k−R columns to zero. Finally, the codebook Cp is
obtained by the matrix multiplication of UGp over F2. The
memory required to store the projected generator matrices and
codebooks at the bottom layer is quantified in Appendix B.

Given that only R indices of the length-k sequences in U
contain the information bits (and the remaining bit positions
are frozen to 0), the objective of the first step of the soft-
MAP algorithm is to obtain the LLRs of the R information bits
using the available projected LLR vector lp. This can be done,
using (16) in Appendix C invoking max-log approximation, as
described in Algorithm 1. Note that the LLRs of the k − R
indices that do not carry information are set to zero.

Once the LLRs of the information bits are calculated, they
can be combined according to the columns of Gp to obtain
the LLRs of the encoded bits lenc. The codewords in Cp are
obtained by the multiplication of UGp, i.e., each j-th coded
bit, j ∈ [n′], where n′ is the code length, is obtained based on
the linear combination of the information bits ui’s according
to the j-th column of Gp. Therefore, we can apply the well-
known min-sum approximation to calculate the LLR vector of
the coded bits as lenc := (lenc(j), j ∈ [n′]), where

lenc(j) =
∏
i∈∆j

sign(linf(i))× min
i∈∆j

|linf(i)|, (11)

where ∆j is the set of indices defining the nonzero elements
in the element-wise multiplication of linf (to skip the frozen

Algorithm 1 Soft-MAP Algorithm for the AWGN Channel
Input: The LLR vector lp; the generator matrix Gp; the
codebook Cp; and the matrix U of the information sequences
Output: Soft decisions (i.e., the updated LLR vector) l̂

1: k ← number of rows in Gp

2: linf ← 0k ▷ initialize linf as a length-k all-zero vector
3: C̃ ← 1− 2C ▷ C is the codebook matrix (in binary)
4: l̃← lpC̃

T
▷ matrix mul. of lp with the transpose of C̃

5: for i = 1, 2, · · · , k do ▷ obtaining inf. bits LLRs
6: if U(:, i) ̸= 0 (i-th column is not frozen to 0) then
7: linf(i)← max

i′∈{i′:U(i′,i)=0}
l̃(i′) − max

i′∈{i′:U(i′,i)=1}
l̃(i′)

8: end if
9: end for

10: n′ ← number of columns in Gp

11: lenc ← 0n′ ▷ initialize lenc as a length-n′ all-zero vector
12: Initialize lenc as an all-zero vector of length n′

13: L← repeat(lTinf , 1, n
′) ▷ make n′ copies of lTinf

14: V ← L⊙Gp ▷ element-wise matrix multiplication
15: for j = 1, 2, · · · , n′ do
16: v ← vector containing nonzero elements of V (:, j)
17: lenc(j)←

∏
j′ sign(v(j

′))×minj′ |v(j′)|
18: end for
19: l̂← lenc
20: return l̂

bit positions under the formulation of this paper) with the j-th
column of Gp. This process is summarized in Algorithm 1
in an efficient way. The decoder may also iterate the whole
process several times to ensure the convergence of the soft-
MAP algorithm.

Finally, given the soft decisions at the bottom layer, the
decoder needs to aggregate the decisions with the current
LLRs. In the following, we first define the “soft-aggregation”
scheme as an extension of the aggregation method in [14,
Algorithm 4] for the case of soft decisions.

Definition 1 (Soft-Aggregation). Let l be the vector of the
channel LLRs, with length n = 2m, at a given layer. Suppose
that there are Q 1-D subspaces Bq , q ∈ [Q], to project this LLR
vector at the next layer (in the case of full-projection decoding,
there are n− 1 1-D subspaces, hence Q = n− 1). Also, let l̂q
denote the length-n/2 vector of soft decisions of the projected
LLRs according to Algorithm 1. The “soft-aggregation” of l
and l̂q’s is defined as a length-n vector l̃ := (̃l(z), z ∈ Fm

2 )
where

l̃(z) =
1

Q

Q∑
q=1

tanh
(
l̂q ([z + Bq]) /2

)
l(z ⊕ zq). (12)

where zq is the nonzero vector of the 1-D subspace Bq , and
[z +Bq] is the coset containing z for the projection onto Bq .

In order to observe (12), recall that the objective of the
aggregation step is to update the length-n channel LLR
vector l to l̃ given the soft decisions of the projected codes.
l̂q ([z + Bq]) serves as a soft estimate of the binary addition
of the coded bits at positions z and z ⊕ zq . Hence, by
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Algorithm 2 Matrix U and codebook Cp Finder
Input: The projected generator matrix Gp

Output: Matrix U of the information sequences; and code-
book Cp of the projected code

1: k ← number of rows in Gp

2: Uind ← {} ▷ initialize Uind as an empty set
3: r ← 0
4: Gtmp

p ← [ ] ▷ initialize Gtmp
p as an empty matrix

5: R← gfrank(Gp, 2)
6: i← 1
7: while i ⩽ k and r < R do ▷ iterate over the rows of Gp

8: Add the i-th row of Gp to Gtmp
p

9: i← i+ 1
10: if gfrank(Gtmp

p , 2) > r then
11: r ← r + 1
12: Add i to Uind
13: end if
14: end while
15: U ← 02R×k ▷ initialize U as an all-zero 2R × k matrix
16: U(:,Uind)← de2bi(0 : 2R − 1, R) ▷

fill out the columns in U indexed by the set Uind with the
2R distinct binary vectors of length R

17: C ← UGp mod 2 ▷ matrix multiplication over F2

18: Cp ← rows of C ▷ list all rows of C in Cp
19: return U and Cp

following similar arguments to [14], if that combined bit is
0, then the updated LLR at position z should take the same
sign as the channel LLR at position z ⊕ zq . Note that this
happens with probability a0 := 1/

[
1+exp

(
− l̂q ([z + Bq])

)]
.

Similarly, with probability a1 := 1/
[
1 + exp

(
l̂q ([z + Bq])

)]
the combined bit is 1, and hence the updated LLR at position
z and l(z⊕ zq) should have different signs. Therefore, given
a projection subspace Bq , one can update the channel LLR as
a0× l(z⊕zq)+a1×−l(z⊕zq). Taking the average over all
Q projections then results in the soft-aggregation rule in (12).

It is worth mentioning that one can also update the channel
LLR as

l̃ls(z) =
1

Q

Q∑
q=1

ln

(
1 + el̂q([z+Bq ])+l(z⊕zq)

el̂q([z+Bq ]) + el(z⊕zq)

)
. (13)

The rationale behind (13) follows by similar arguments as
above and then deriving the LLR of the sum of two binary
random variables given the LLRs of each of them. Therefore,
(13) is an exact expression assuming independence among
the involved LLR components. Our empirical observations,
however, suggest almost identical results for either aggrega-
tion methods. Therefore, given the complexity of computing
expressions like (13), one can reliably apply our proposed soft-
aggregation method in Definition 1.
Remark 2. The subRPA and soft-subRPA decoding algorithms
reduce to the original RPA decoding algorithm [14] and its soft
version, respectively, when applied to an RM code instead of
an RM subcode (i.e., when the code dimension k, for a given
m, follows Eq. (3)). The only difference is the decoding at the
bottom layer, where the FHT decoding can then be directly

applied given that all projected codes are order-1 RM codes.
Therefore, the proposed ML training approach in Section V
can be readily applied to the RM codes as well. However, we
will empirically establish (see Fig. 10) that the performance of
a pruned-projection decoding of an RM code is (almost) the
same regardless of the selection of the projections. Therefore,
not much (if any) gain can be expected from ML training
for projection selection in RPA decoding of RM codes, and
simply a random selection of the projections may be sufficient
for RPA decoding of RM codes.

Before concluding this section, in the following proposition,
we characterize the complexity of our proposed decoding
algorithms under different settings

Proposition 2. The decoding complexity of our proposed (soft-
) subRPA algorithm in decoding a subcode of an RM(m, r)
code, r > 1, is O(nr−1C(m − r + 1, 1)), where C(m′, 1)
stands for the complexity of decoding a subcode of an
RM(m′, 1) code. Assuming (soft-) MAP at the bottom layer,
C(m − r + 1, 1) = O(n2/22r−3), and the overall decoding
complexity simplifies to O(nr+1). The decoding complexity
reduces to O(n2) for pruned-projection decoding with factor
β = O(1/n). The overall complexity further reduces to O(n)
if 2Rt = O(1), ∀t ∈ [T ], in addition to β = O(1/n), where
Rt stands for the rank of the t-th projected generator matrix
at the bottom layer.

Proof: Please refer to Appendix D.

IV. ENCODING INSIGHTS AND AD-HOC PROJECTION
PRUNING

A. Encoding Insights

Although the main objective of this paper is to develop low-
complexity schemes for decoding RM subcodes, meanwhile,
in this subsection, we provide some insights on how the design
of the encoder can affect the decoding complexity as well as
the performance. Throughout the paper, we define the signal-
to-noise ratio (SNR) as SNR := 1/(2σ2) and the energy-per-
bit Eb to the noise ratio as Eb/N0 := n/(2kσ2), where σ2 is
the noise variance. Additionally, the number of outer iterations
for our recursive algorithms is set to Nmax = 3 to ensure
the convergence of the algorithms. In this section, we mainly
present the results for relatively short RM subcodes in order to
have the ability to obtain the MAP decoding performance for
additional insights and comparison. In Section V, we present
the results for relatively larger RM subcodes.

First, in order to further highlight the efficiency of RM
subcodes, in Fig. 2, we compare the block error rate (BLER)
performance of RM subcodes with the performance of time-
sharing (TS) between RM codes under the optimal MAP
decoding. We consider two RM subcodes with parameters
(n, k) = (64, 14) and (64, 18). The generator matrix construc-
tion for these codes is based on having the largest ranks for
the projected generator matrices (i.e., Gmax) which will be
clarified at the end of this subsection. The TS performance
is obtained by assuming that the transmitter employs an
RM(6, 2) encoder in α fraction of time and an RM(6, 1)
encoder in the remaining (1−α) fraction. In this experiment,



7

Fig. 2. Simulation results for the BLER of various codes under the MAP
decoding. The comparison with the time-sharing scheme between RM(6, 1)
and RM(6, 2) to achieve the same rates 14/64 and 18/64 is also included.

we set α = 7/15 and 11/15 to achieve the same code rates
of 14/64 and 18/64, respectively, as the RM subcodes. It
is observed that the RM subcodes with the rates 14/64 and
18/64 achieve more than 1 dB and 0.4 dB gains, respectively,
compared to the TS counterparts. Also, the performance of the
RM subcode with rate 18/64 is almost 0.2 dB better than the
performance of the lower rate code with TS. Note that all the
simulation results in this paper are obtained from more than
105 trials of random codewords (except RM(6, 2) under the
MAP decoding that has 104 trails).

As discussed earlier, our decoding algorithms perform the
MAP or soft-MAP decoding at the bottom layer. Also, the
dimension of the projected codes at the bottom layer (i.e.,
the rank of the projected generator matrices) can be different.
This is in contrast to the RM codes that always result in the
same dimension for the projected codes at the bottom layer.
Therefore, an immediate approach for encoding RM subcodes
to achieve a lower decoding complexity is to construct the
code generator matrix such that the projected codes at the
bottom layer have smaller dimensions, and thus the decodings
at the bottom layer have lower complexities. In other words, let
L :=

∑T
t=1 2

Rt represent a rough evaluation of the decoding
complexity at the bottom layer, i.e., the decoding complexity
at the bottom layer is roughly a constant times L. Then, among
all
(
ku−kl

k−kl

)
possible selections of the generator matrix Gk×n,

we can choose the ones that achieve a smaller L. This encoding
scheme leads to reduction in the decoding complexity of our
algorithms but it can also affect the performance.

In order to investigate the effect of the aforementioned
encoding methodology, in Fig. 3, we consider four different
selections of the generator matrix for the (64, 14) RM subcode.
In particular, Gmax and Gmax2 have the first and second
largest values of L = 2568 and 2532, respectively, among all
possible selections, while Gmin having the minimum value
of L = 1482. Also, Gmin,15 has the minimum value of∑

t 2
Rt = 108 on 15 projections but a relatively large value

of L = 2412 on all 63 projections. Fig. 3 suggests a slightly
better performance under the MAP decoder for larger values

Fig. 3. Simulation results for the (64, 14) RM subcodes under the MAP
and subRPA decoding given four different selections of the generator matrix
Gk×n.

of L. However, surprisingly, our decoding algorithm exhibits
a completely opposite behavior, i.e., a better performance is
achieved for our subRPA algorithm with smaller values of
L. This is then a two-fold gain: a better performance for
an encoding scheme that results in a lower complexity for
our decoding algorithm. We did extensive sets of experiments
which all confirm this empirical observation. However, still,
further investigation is needed to precisely characterize the
performance-complexity trade-off as a result of the encoding
process.

B. Ad-Hoc Projection Pruning

One direction for reducing the complexity of our decoding
algorithms is to prune the number of projections at each layer.
Particularly, let us assume that, at each layer and node in
the decoding tree, the complexity of decoding each branch
(that corresponds to a given projection) is the same. This
is not precisely true given that the projected codes at the
bottom layer may have different dimensions. Now, assuming
the complexity of the aggregations performed at each layer
is the same, pruning the number of projections by a factor
β ∈ (0, 1) is roughly equivalent to reducing the complexity
by a factor of β at each layer. In other words, if we have
a subcode of RM(m, r), then there are r − 1 layers in the
decoding tree and hence, the projection pruning exponentially
reduces the decoding complexity by a factor of βr−1. This is
essential to make the decoding of higher order RM subcodes
practical. One can also opt to choose a constant number of
projections per layer (i.e., prune the number of projections at
upper layers with smaller β’s) to avoid high-degree polynomial
complexities.

Given that the projected codes at the bottom layer can
have different dimensions (in contrast to RM codes), the
projection subspaces should be carefully selected to reduce the
complexity without having a notable effect on the decoding
performance. Our empirical results show that the choice of
the sets of projections can significantly affect the decoding
performance of RM subcodes. To see this, in Fig. 4, we
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Fig. 4. Performance of subRPA and soft-subRPA under full-projection decod-
ing as well as different projection pruning schemes, i.e., picking according to
the minimum ranks, maximum ranks, and training a machine learning model.
The generator matrix Gmin,15 is considered for the encoding process of a
(64, 14) RM subcode.

consider the generator matrix Gmin,15 for encoding a (64, 14)
RM subcode. In addition to full-projection decoding (i.e., 63
1-D subspaces), we also evaluate the performance of subRPA
and soft-subRPA with 15 projections picked according to three
different projection pruning schemes.

First, we consider a subset of 15 subspaces that results in
maximum ranks for the projected generator matrices at the
bottom layer. In this setting, denoted by “maxRank” in Fig. 4,
all the 15 projections result in the same rank of 6. It is observed
that this selection of the projections significantly degrades the
performance (almost 1 dB gap with full-projection decoding).
Our extensive simulation results with other generator matrices
and code parameters also confirm the same observation that,
although it requires a higher complexity for the MAP or soft-
MAP decoding of the projected codes at the bottom layer,
the maxRank selection fails to achieve a good performance
compared to the other considered projection pruning schemes.

Next, we consider the other extreme of projection selection,
i.e., we select 15 subspaces that result in minimum ranks
for the projected codewords. This proposed method for the
selection of projections is referred to as the “minRank” scheme
in this paper. In this case, three of the ranks are equal to
2 and the remaining are equal to 3. Therefore, the decoder
in this case can perform the MAP and soft-MAP decodings
at the bottom layer almost 9 times faster than the maxRank
selection (note that L = 108 and 960 for the minRank and
maxRank selections, respectively). Surprisingly, despite its
lower complexity compared to the maxRank selection, the
minRank selection is capable of achieving very close to the
performance of the full-projection decoding (≈ 0.1 dB gap
in the case of both the subRPA and soft-subRPA decoding).
Our additional simulation results – some of which presented in
Section V – mostly confirm the same observation and suggest
a promising performance for the minRank projection pruning
scheme or schemes that result in relatively low L’s (if not the
minimum L).

Even though the minRank selection scheme is capable of

achieving very close to the performance of full-projection
decoding, one cannot guarantee that it is the best selection
in terms of minimizing the decoding error rate. In practice,
we may want to prune most of projections per layer to
allow efficient decoding at higher rates (equivalently, higher
order RM subcodes) with a manageable complexity. In such
scenarios, we may, inevitably, have a meaningful gap with
full-projection decoding, more than what we observed here
for minRank selection (i.e., ≈ 0.1 dB). Therefore, one needs
to ensure that the sets of the selected projections are the
ones that minimize the decoding error rate, i.e., the gap to
the full-projection decoding. As we will show in Section V,
there are scenarios where the performance of the minRank
selection significantly diverges from that of the full-projection
decoding performance, and it may even perform worse than
a random selection of the projections. The failure of the
ad-hoc projection pruning schemes in guaranteeing a good
performance is the major motivation behind our ML-aided
projection pruning scheme presented in the next section.

In the next section, we shed light on how the proposed soft-
subRPA algorithm enables training an ML model to search
for the optimal set of projections. This will then establish
the fact that the combination of our soft-subRPA decoding
algorithm with our ML-aided projection pruning framework
enables efficient decoding (in terms of both decoding error
rate and complexity) of RM subcodes. To see the potentials
of this scheme, in Fig. 4 the results of our decoding algorithms
with 15 projections picked by training our ML model are also
included. It is observed that the trained model also has the
tendency to pick projections that result in smaller ranks for
the projected generator matrices, i.e., 3 rank-2, 6 rank-3, and
6 rank-4 projections are picked by the ML model (resulting
in L = 156). Fig. 4 demonstrates identical performance to
full-projection decoding, for both subRPA and soft-subRPA
algorithms, which is the best one can hope for with the pruned-
projection decoding. Additionally, it is observed that the soft-
subRPA algorithm can improve upon the performance of the
subRPA algorithm by almost 0.1 dB.

V. ML-AIDED PROJECTION PRUNING

As mentioned earlier, the goal is to train an ML model to
find the best subset of projections. To do so, as schematically
shown in Fig. 1, we assign a weight metric wq to each q-th
projection such that wq ∈ [0, 1] and

∑Q
q=1 wq = 1, where

Q is the number of full projections for a given (projected)
code in the decoding process. The objective is then to train an
ML model to pick a subset of Q0 projections (i.e., prune the
number of projections by a factor β = Q0/Q) that minimize
the training loss. Building upon the success of stochastic
gradient descent methods in training complex models, we
want to use gradients for this search. In other words, the ML
model updates the weight vector w := (wq, q ∈ [Q]) such
that picking the Q0 projections corresponding to the largest
weights results in the best performance.

There are two major challenges in training the aforemen-
tioned ML model. First, the MAP decoding that needs to be
performed at the bottom layer (see (10)) is not differentiable
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Fig. 5. The training procedure of the proposed ML-aided projection pruning scheme for decoding RM subcodes.

since it involves the argmax(·) operation which is not a
continuous function. Therefore, one cannot apply the gradient-
based training methods to our subRPA algorithm. However,
the proposed soft-subRPA algorithm overcomes this issue by
replacing the non-differentiable MAP decoder at the bottom
layer with the differentiable soft-MAP decoder1. The second
issue is that the combinatorial selection of Q0 largest elements
of the vector w is not differentiable. To address this issue,
we apply the SOFT (Scalable Optimal transport-based diF-
ferenTiable) top-k operator, proposed very recently in [32],
to obtain a smoothed approximation of the top-k operator
whose gradients can be efficiently approximated. It is worth
mentioning that the SOFT top-k function is a generalization of
the soft-max function, which is a soft version of the argmax
function. In other words, the SOFT top-k function can be
viewed as a soft version of the top-k function.

The training procedure is schematically shown in Fig. 5,
and is briefly explained next. We use the PyTorch library
of Python to first implement our soft-subRPA decoding al-
gorithm in a fully differentiable way for the purpose of
the gradient-based training. We initialize the weight vector
as w0 := (1/Q, · · · , 1/Q), i.e., equal weights for all the
projections. For each training iteration, we randomly generate
a batch of B codewords of the RM subcode, and compute their
corresponding LLR vectors given a carefully chosen training
SNR. Then we input these LLR vectors to the soft-subRPA
decoder to obtain the soft decisions at each layer. During the
soft-aggregation step, instead of unweighted averaging of (12),
the weighted averages of the soft decisions at all Q projections

1Note that the soft-MAP algorithm involves max(·) function which, unlike
argmax(·), is a continuous function. Also, the derivative of the function
max(0, x) is defined everywhere except in x = 0 which is a rare event to
happen. Accordingly, advanced training tools, such as PyTorch library (that is
used in this research), easily handle and treat max(·) as a differentiable func-
tion. For example, the rectified linear unit function ReLU(x) := max(0, x)
is a widely used activation function in neural networks.

are computed as

l̃(z) =

Q∑
q=1

wq tanh
(
l̂q ([z + Bq]) /2

)
l(z ⊕ zq). (14)

Ideally, the top-k operator should return nonzero weights
only for the top Q0 elements. However, due to the smoothed
SOFT top-k operator, all Q elements of w may get nonzero
weights though the major accumulation of weights will be
on the largest Q0 elements once the training is completed.
Therefore, the above weighted average is approximately equal
to the weighted average over the largest Q0 weights (i.e., (14)
represents a proper approximation of the aggregation in the
case of the pruned-projection decoding). Note that we apply
the same procedure for all (projected) RM subcodes at each
node and layer of the recursive decoding algorithm while we
define different weight vectors (and possibly different Q0’s)
for each sets of projections corresponding to each (projected)
codes. We also consider fixed weight vectors for decoding all
B codewords at each iteration.

Once the soft decoding of the codewords are obtained, the
ML model updates all weight vectors at each iteration to
iteratively minimize the training loss. To do so, we apply
the “Adam” optimization algorithm [33] to minimize the
training loss while using “BCEWithLogitsLoss” [34] as the
loss function, which efficiently combines a sigmoid layer with
the binary cross-entropy (BCE) loss. By computing the loss
between the true labels from the generated codewords and the
predicted LLRs from the decoder output, the optimizer then
moves one step forward by updating the model, i.e., the weight
vectors.

Finally, once the model converges after enough number
of iterations, we save the weight vectors to perform optimal
projection pruning. Note that in order to reduce the decoding
complexity and the overload of training process, we only train
the model for a given, properly chosen, training SNR. In other
words, once the training is completed, we fix the decoder by
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Fig. 6. Performance comparison of the MAP decoder with full- and pruned-
projection soft-subRPA decoding for a (64, 14) RM subcode encoded using
the generator matrix Gmin,15. The performance of the ML-aided projection
pruning is also compared to several random selections of projections.

picking only the subsets of projections according to the largest
values of the weight vectors. We then test the performance of
our algorithms given the fixed decoder (i.e., the fixed subsets
of projections) for all codewords and across all SNR points.
One can apply the same procedure to train the model for each
SNR point, or even actively for each LLR vector, to possibly
improve upon the performance of our fixed projection pruning
scheme at the expense of increased model complexity and
training overload.

The training SNR, which will be used to generate noisy
codewords as training data, is an important hyper-parameter
that needs to be carefully chosen to ensure a good perfor-
mance. In the context of training models for channel coding,
it is conventional to consider a smaller training SNR for the
decoder training schedule compared to the encoder training
schedule, as the former is often a more challenging task than
the latter. It is also possible to consider a range of training
SNR to further help the single trained model to generalize and
perform well across a wide range of SNR during the inference
phase (see, e.g., [35] for a thorough empirical investigation
on how the training SNR affects the training performance of
channel encoders and decoders). In this paper, we use a single
SNR point (not a range) for training the model to prune the
decoding projections. We use the result of the full-projection
pruning as a benchmark to select the training SNR point
(by considering the pruning effect). Specifically, if the full-
projection pruning requires γ dB to achieve the BLER of 10−3,
we pick the training SNR as γ+ϵ dB, for some positive offset
ϵ that needs to be adjusted according to the pruning factor (i.e.,
ϵ is larger if a larger fraction of projections are pruned). Note
that this heuristic approach is to pick a starting training SNR,
and the final training SNR may need to be adjusted by further
hyper-parameter tuning.

Fig. 6 demonstrates the potentials of our ML-aided soft
decoding algorithm, i.e., soft-subRPA with ML-aided pro-
jection pruning, in efficiently decoding RM subcodes. In
this experiment, Gmin,15 is used to encode a (64, 14) RM

Fig. 7. Performance comparison of the MAP decoder with the soft-subRPA
decoding for a (64, 14) RM subcode encoded using the generator matrix
Gmin. Full-projection decoding and pruning with P = 7 projections are
considered.

subcode.2 It is observed that our ML-based projection pruning
scheme, with only 15 projections, is able to achieve an
almost identical performance to that of the full-projection soft-
subRPA decoding with 63 projections. This is equivalent to
reducing the complexity by a factor of more than 4 without
sacrificing the performance. Our low-complexity ML-based
pruned-projection decoding has then only about 0.25 dB gap
with the performance of the MAP decoding. For comparison,
the performance of the pruned-projection decoding under
several random selections of 15 projections is also provided.
As seen, the choice of the projections can significantly impact
the decoding performance of RM subcodes, and randomly
selecting the subsets of projections cannot guarantee a com-
petitive performance.

Fig. 7 presents the performance of a (64, 14) RM
subcode encoded using the generator matrix Gmin. Pruned-
projection soft-subRPA decoding with very small number
of projections, i.e., P = 7, is considered. The ML-aided
projection-pruned decoding, with 9 times smaller number
of projections, is observed to have less than 0.4 dB gap
with the full-projection decoding. However, the minRank
selection significantly degrades the performance, resulting
in more than 1 dB gap with the ML-aided pruning scheme
at the BLER of 10−4. To train the ML model in Fig. 7,
Q0 was set to 5 during the training phase but P = 7
projections corresponding to the largest 7 weights were
selected for the testing. The rationale behind this selection
was that nearly 20% of the weights were distributed outside
the largest 5 weights (due to the SOFT top-k function),
as the sorted weight vector after training was wsorted =
[0.2012, 0.1781, 0.1519, 0.1444, 0.1279, 0.1277, 0.0689, 0.0000,

2We should emphasize that the proposed decoding algorithms and the ML-
aided projection pruning scheme are presented in general forms and are
not restricted to low rates and lengths. While decoding a higher-order RM
subcode requires a higher complexity, the ML-aided pruning scheme reduces
the complexity by a factor of βr−1 ensuring the best decoding performance
given a pruning factor. In our numerical experiments, we focus on subcodes
of order-2 RM codes that correspond to relatively small code dimensions (i.e.,
low rates). This should not be interpreted as a limitation of our schemes.
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Fig. 8. Performance of the full- and pruned-projection (P = 12 projections)
soft-subRPA decoding of a (64, 14) RM subcode encoded using Gmin.

· · · , 0.0000]. Out of 63 projected generator matrices of Gmin,
there are 1 with rank 1, 2 with rank 2, 28 with rank 4, and 32
with rank 5. Therefore, the projections picked by the minRank
selection scheme result in the set of ranks {1, 2, 2, 4, 4, 4, 4}.
The ML-based selection scheme, however, is observed to pick
projections that result in the set {2, 4, 4, 4, 4, 4, 4} of ranks,
implying that some useful information may be lost if the
decoder just picks the projections corresponding to minimum
ranks (and thus some higher-rank projections are needed)
when a significant fraction of projections are pruned3.

Fig. 8 shows the performance of a (64, 14) RM subcode,
encoded using Gmin, under the MAP and soft-subRPA de-
coding. The ML training was performed under Q0 = 7
projections. However, since there were 12 projections with
much larger weights, P = 12 projections are considered
for the testing plots of the pruned-projection decodings in
Fig. 8. It is observed that both the minRank and ML-aided
pruning schemes achieve very close to the performance of the
full-projection decoding, with the ML-aided scheme slightly
improving upon the minRank selection at higher SNRs (note
that 5×105 codewords were used to simulate the performance
at each SNR point). In terms of the rank statistics, it is
observed that both selection schemes pick the projections that
result in the minimum ranks, i.e., 1 rank-1, 2 rank-2, and 9
rank-4 projections are picked by both schemes. However, the
set of the selected projections are still different, as the two
schemes only have 6 projections in common, out of the total
12 projections. In this case, we can think of the ML model
breaking ties among the projections that result in the same
rank.

Note that the parameter Q0 is in general a hyper-parameter
that needs to be tuned during the training. However, our
experiments show that it is not very sensitive, i.e., a model
trained for a given Q0 may work well for different values of

3We should emphasize that this does not mean that the ML-based selection
scheme favors higher rank projections. Indeed, our extensive experiments
suggest that the ML-based selection mostly favors smaller-rank projections.
Specifically, it either results in the same set of ranks as the minRank selection
or only substitutes some very low-rank projections with (slightly) higher-rank
projections.

Fig. 9. Performance of the full- and pruned-projection soft-subRPA decoding
of a (256, 30) RM subcode generated through the Gmin encoding. P = 9
and 44 projections are considered for the pruned-projection decoding under
the minRank, ML-aided, and random pruning schemes. The plots for the
performance of the polar (256, 30) code under successive cancellation (SC)
decoding, SC-list (SCL) decoding, and cyclic redundancy check (CRC) aided
SCL (CA-SCL) are also included.

P (i.e., the number of projections during testing/inference).
In an ideal case, to use a fixed number P of projections
for pruned-projection decoding, one can set the parameter
Q0 = P for training. However, this choice may not be the
best option. First, due to the SOFT top-k operator, we may
not observe a sharp drop of trained weights after exactly Q0

largest weights. Second, it is possible that some projections
are equally good/bad and it is hard for the ML model to
perfectly distinguish among them, so the ML model may end
up assigning similar weights to such projections. Therefore, to
use a fixed P , one can train ML models for some larger/smaller
values of Q0 than P , in addition to Q0 = P . However,
our various training experiments (not presented here) suggest
that this hyper-parameter tuning does not much affect the
performance of the trained model. In the following figure, we
use a single model trained for Q0 = 20 for the selection of
both P = 9 and P = 44 projections in an RM subcode of
parameters (256, 30).

Fig. 9 presents the results for a medium-length RM subcode
of parameters n = 256 and k = 30 constructed according to
the Gmin encoding. To train the ML-aided projection-pruning
model, Q0 was set to 20. However, two different values of
P = 9 and 44 are used as the number of projections for testing
the performance. These selections for P were made by taking
into account the profile of the weights after training (picking
a P if there is a sharp drop in the value of the next largest
weight), and to study two extreme scenarios: 1) a relatively
small number of projections such that there is a significant
gap to the full-projection decoding; and 2) a relatively large
P where the performance of the ML-aided pruned-projection
decoding is close to that of the full-projection decoding.

When P = 9, where the projections are heavily pruned by
a factor of more than 28, the minRank training is observed to
significantly diverge from the full-projection decoding perfor-
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mance (e.g., nearly 3 and 4 dB gaps at the BLERs of 10−2

and 10−4, respectively). However, training the ML model is
shown to enable achieving a significantly better performance.
Moreover, the performance of several random selections of
the projections are also tested, where, similar to Fig. 6, it is
observed that the random projection pruning scheme fails to
guarantee achieving the best performance for a given value of
P . On the other hand, when P = 44 projections are used,
both the minRank and ML-aided projection pruning schemes
are observed to achieve very close to the performance of the
full-projection decoding, with the ML-aided scheme slightly
outperforming the minRank scheme at the higher SNRs.

Fig. 9 also compares the performance of the RM subcode
with that of the polar (256, 30) code under successive cancel-
lation (SC) decoding and SC-list (SCL) decoding. To construct
the polar code, the Tal-Vardy code construction method is
used to pick the k bit-channels with the smallest BERs [36].
The performance of the cyclic redundancy check (CRC) aided
SCL (CA-SCL) decoding of the polar code is also included.
We note, however, that the comparison to the CA-SCL may
not be fair as one can also do RM-CRC and consider RPA-
type decoding algorithms together with Chase list decoding
(see, e.g., [14]). Indeed, the comparison of plain codes with
plain decoders is more meaningful, and polar with CRC is
essentially a concatenated design. The following are the main
conclusions drawn from this figure.

• First, the polar code under SC decoding fails to provide
a comparable performance to that of the RM subcode,
even under P = 7 projections.

• The performance of the polar code under SCL quickly
saturates with respect to the list size L such that only a
very minimal improvement is observed with increasing
L, i.e., some gains from L = 1 to L = 2, very little gain
from L = 2 to L = 4, and no gain from L = 4 to larger
L’s. This is while the RM subcode is able to achieve a
much better performance by increasing P from 9 to 44.

• The RM subcode under P = 44 is able to achieve a
significantly better performance than the polar code under
SCL decoding with any list size. Even with P = 9, the
RM subcode beats the polar code under SCL for BLERs
smaller than ≈ 7× 10−4.

It is worth noting that, as seen in Fig. 3, the performance of
an RM subcode, for a given k and n, highly depends on the
selection of the rows, i.e., the encoder design. Therefore, the
objective of the paper is not to have a better performance than
other classes of codes (which necessitates the best design of
the RM subcode encoder) but to deliver the best performance
given an RM subcode encoder (that, as shown above, has the
potential to beat other classes of codes). We shall emphasize
that the low latency of our decoding algorithms is another
major advantage compared to polar codes as all decoding
branches in the decoding tree (see Fig. 1) can be executed
in parallel.

In Fig. 10, the (soft-) subRPA decoding algorithm is applied
to an RM(6, 2) code (that has k = 22 and n = 64). As
discussed in Remark 2, in this case, our decoding algorithm
reduces to the original RPA decoding of RM codes [14].

Fig. 10. Performance of the full- and pruned-projection soft-subRPA (that
reduces to the soft-version of RPA) decoding of an RM(6, 2) code. P =
12 projections are considered for the pruned-projection decoding under the
minRank, ML-aided, and random pruning schemes.

By evaluating the performance of many different random
selections of P = 12 projections, it is observed that the
performance of a pruned-projection decoding of an RM code,
for a given P , is (almost) the same regardless of the selection
of the projections. This empirical observation then suggests
that not much (if any) gain can be expected from ML train-
ing for projection selection in RPA decoding of RM codes.
As such, our ML-based projection selection as well as the
minRank scheme achieved the same performance as random
selection of projections. This further suggests that the selection
of projections is strongly tied to the rank profile/properties
of the so-called projected generator matrices. We believe
the theoretical study of this behavior, on both encoding and
decoding of RM subcodes, is an interesting direction for future
research.

Finally, Fig. 11 shows the error probability profile of en-
coded bits for the sample (64, 14) RM subcode with P = 12
ML-aided projections that corresponds to the setting in Fig.
8. The Eb/N0 is changed from 1 dB to 4.5 dB with the step
size of 0.5 dB. For each Eb/N0 point, 105 random codewords
are examined and the mismatch of the decoder output with
the encoded codeword is evaluated. It is observed that under
all evaluated Eb/N0’s, all encoded bits experience a relatively
uniform/equal error probability.

VI. CONCLUSIONS

In this paper, we designed efficient decoding algorithms
for decoding subcodes of RM codes. More specifically, we
first proposed a general recursive algorithm, namely the sub-
RPA algorithm, for decoding RM subcodes. Then we derived
a soft-decision based version of our algorithm, called the
soft-subRPA algorithm, that not only improved upon the
performance of the subRPA algorithm but also enabled a
differentiable implementation of the decoding algorithm for
the purpose of training a machine learning (ML) model.
Accordingly, we proposed an efficient pruning scheme that
finds the best subsets of projections via training an ML model.
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Fig. 11. Encoded bits error rate profile for the (64, 14) RM subcode under
ML-aided projection selection.

Our simulation results on (64, 14) and (256, 30) RM sub-
codes demonstrate achieving very close the performance of
the full-projection decoding using our ML-aided pruned-
projection decoding algorithm with more than 4 times smaller
number of projections. Our decoding algorithm also inherits
the low-latency and parallelized implementation of the RPA
algorithm; when the training is completed, the set of pro-
jections are fixed, and all branches in the decoding tree can
be executed in parallel. We also provided some insights on
encoding RM subcodes and studied several ad-hoc projection
pruning schemes. Our extensive simulations showed that the
random selection of projections cannot guarantee a compet-
itive performance to that of the ML-aided pruning scheme,
while the proposed minRank pruning scheme being often a
reasonable structured scheme, especially when the projections
are not heavily pruned. On the other hand, when a significant
fraction of projections are pruned, the minRank scheme was
observed to significantly degrade the performance compared
to the ML-aided pruning scheme.

The research in this paper can be extended in several
directions such as training ML models to design efficient
encoders for RM subcodes, and also leveraging higher dimen-
sion subspaces for projections to, possibly, further reduce the
decoding complexity.

APPENDIX A
PROOF OF PROPOSITION 1

The projection of RM(m, r) onto a s-dimensional sub-
space, 1 ⩽ s ⩽ r is an RM(m−s, r−s) code [14]. The code
C, that is a subcode of RM(m, r), is constructed by removing
ku−k rows of the generator matrix of RM(m, r) that are not
in the generator matrix of RM(m, r − 1). We note that the
projection of RM(m, r − 1) onto a s-dimensional subspace,
1 ⩽ s ⩽ r− 1, is an RM(m− s, r− 1− s) code. Now, given
that each s-dimensional projection is equivalent to partitioning
n columns of the generator matrix into n/2s groups of 2s

columns and adding them in the binary field (see Remark 1),
the generator matrices of the projected codes contain rows of
the generator matrix of RM(m−s, r−1−s) and, possibly, a

subset of the rows of the generator matrix ofRM(m−s, r−s)
that are not in the generator matrix of RM(m− s, r−1− s).
More precisely, if the selected additional k − kl rows do not
contribute in the rank of the merged matrix according to a
given subspace, the projected code onto that subspace is an
RM(m−s, r−1−s) code. On the other hand, if the removed
ku− k rows do not contribute in that rank, the projected code
is an RM(m− s, r− s) code. Otherwise, that projected code
is a subcode of RM(m− s, r − s).

APPENDIX B
MEMORY REQUIREMENTS TO STORE PROJECTED

MATRICES IN (SOFT-) MAP ALGORITHM

As discussed in Sections III-B and III-C, one can pre-
compute and store the codebook of each projected code at
the bottom layer to facilitate the (soft-) MAP decoding at that
layer. In this appendix, we quantify the memory requirement
for storing such matrices at the bottom layer, and discuss
alternative approaches in applications with limited memory
availability.

Recall that for a subcode of RM(m, r), with r > 1,
the decoding involves r − 1 layers of 1-D projections, re-
sulting in T =

∏r−1
i=1 (

n
2i−1 − 1) = O(nr−1) projections

for full-projection decoding. This number reduces to T =
O(βr−1nr−1) for a pruned-projection decoding with the prun-
ing factor β < 1. After r − 1 layers of 1-D projections, we
arrive at subcodes of RM(m− r+ 1, 1) whose dimension is
Rt ⩽ m− r + 2, ∀t ∈ [T ]. Therefore, the so-called projected
codebooks C(t)p will contain 2Rt (i.e., at most 2m−r+2 =
n/2r−2) length-(n/2r−1) codewords, that can be stored in
so-called projected codebook matrices C(t)

p of size at most
(n/2r−2) × (n/2r−1). Therefore, O(βr−1nr+1/22r−3) bits
are required to store all T projected codebooks. For example,
for subcodes of RM(6, 2) and RM(8, 2) with β = 7/63
and 9/255 (that correspond to Figs. 7 and 9, respectively), at
most 14,563 and 296,068 bits (i.e., nearly 1.82 kB and 37 kB)
respectively, are needed to store all codebooks at the bottom
layer.

Similarly, O(kβr−1nr/2r−1) bits are needed to store all
T projected generator matrices G(t)

p of dimension k ×
2m−r+1. Finally, since each matrix U (t)

p is of size 2Rt × k,
O(kβr−1nr/2r−2) bits are also needed to store all T matrices
U (t)

p . Therefore, the memory Mtot (in terms of the number
of bits) required to store all matrices C(t)

p , U (t)
p , and G(t)

p ,
∀t ∈ [T ], at the bottom layer can be characterized as

Mtot = O(βr−1nr+1/22r−3) +O(kβr−1nr/2r−1)

+O(kβr−1nr/2r−2)

= O
(
βr−1nr

[
3k + n/2r−2

]
/2r−1

)
= O

(
(nβ/2)r

[
k + n/2r−2

])
. (15)

Note that the pruning factor β can be essentially O(1/n) so
that the number of projections in each layer, i.e., O(βn),
becomes a constant. Then (βn)r = O(1) (though with a
large constant) and the overall memory requirement will scale
linearly with n.

Given the above analysis, in applications where this memory
requirement may be hard to satisfy, one can directly apply
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Algorithm 2 to compute these matrices during the decoding.
We would like to emphasize that the use of the soft-MAP
decoding at the bottom layer is motivated by the fact that all
projected codewords are subcodes of order-1 RM codes whose
dimensions are Rt ⩽ m − r + 2. Given that our experiments
suggest that projections with smaller Rt are favorable in the
decoding process, the above matrices are often significantly
smaller than the bounds analyzed here, and the soft-MAP
algorithm can be easily afforded. Nevertheless, one may extend
the lower-complexity fast Hadamard transform (FHT) decoder
of order-1 RM codes to subcodes of order-1 RM codes, and
then apply the extended FHT algorithm (instead of MAP) in
the subRPA or its soft version (instead of soft-MAP) in the
soft-subRPA algorithm or for training the ML model.

APPENDIX C
LLRS OF THE INFORMATION BITS

Consider an AWGN channel model as y = s+n, where s =
1−2c, c ∈ C, and n is the AWGN vector with mean zero and
variance σ2 elements. Then, the LLR of the i-th information
bit ui can be obtained using the max-log approximation as

linf(i) ≈ max
c∈C0

i

⟨l, 1− 2c⟩ − max
c∈C1

i

⟨l, 1− 2c⟩, (16)

where l := 2y/σ2 is the LLR vector of the AWGN channel,
and C0i and C1i are the subsets of the codewords whose i-th
information bit ui is equal to zero or one, respectively. To see
this, observe that

linf(i) := ln

(
Pr(ui = 0|y)
Pr(ui = 1|y)

)
(a)
= ln

(∑
s∈C0

i
exp

(
−||y − s||22/σ2

)∑
s∈C1

i
exp (−||y − s||22/σ2)

)
(b)
≈ 1

σ2
min
c∈C1

i

||y − s||22 −
1

σ2
min
c∈C0

i

||y − s||22, (17)

where step (a) is by applying the Bayes’ rule, the assumption
Pr(ui = 0) = Pr(ui = 1), the law of total probability, and
the distribution of Gaussian noise. Moreover, step (b) is by
the max-log approximation. Finally, given that all s’s have
the same norm, we obtain (16).

APPENDIX D
PROOF OF PROPOSITION 2

It is well known that the decoding complexity of the
full-projection RPA-like decoding of an RM(m, r) code is
O(nr log n) [14]. Similarly, a proof by induction can show that
the decoding complexity of our algorithms for a subcode of
an RM(m, r) code, r > 1, is O(nr−1C(m−r+1, 1)), where
C(m′, 1) stands for the complexity of decoding a subcode of
an RM(m′, 1) code. We note that (proof by induction) the
above complexity reduces to O((βn)r−1C(m− r + 1, 1)) for
pruned-projection decoding with a pruning factor β < 1.

We first note that, assuming (soft-) MAP at the bottom layer,
C(m − r + 1, 1) can be characterized as O(n12

k1), where
n1 = 2m−r+1 is the code length and k1 = m − r + 2 is the
code dimension in the bottom layer. Therefore, C(m − r +

1, 1) = O(2m−r+12m−r+2) = O(n2/22r−3). This complete
the proof of the first part, i.e., the O(nr+1) complexity for
full-projection decoding.

Next, as discussed in Appendix B, the pruning factor β can
be essentially O(1/n) so that the number of projections in
each layer, i.e., O(βn), becomes a constant. Then, (βn)r−1 =
O(1) (though with a large constant) and the overall complexity
reduces to O(C(m−r+1, 1)). This then complete the proof of
the second part, i.e., O(n2) complexity for pruned-projection
decoding with pruning factor β = O(1/n).

Finally, as empirically observed in Section V, in most cases
the selected projections by our ML training scheme have very
small (nearly the smallest) ranks Rt for the projected generator
matrices. Therefore, the number of codewords 2k1 = 2Rt

may be upper bounded by a constant. This then reduces the
complexity to O(n) if 2Rt = O(1), ∀t ∈ [T ], in addition to
β = O(1/n).

We would like to emphasize that the complexity analysis
above my require some large constants (modeled by O(1)).
Therefore, even if the complexity can linearly scale with n, the
involved constants may be large. However, a major advantage
of our decoding algorithms is the reduction in the latency (e.g.,
compared to polar codes) as all the branches involved in the
decoding tree (see, e.g., Fig. 1) can be executed in parallel. We
refer the readers to [14] for additional discussions on latency
aspects of RPA-like decoding of RM codes.
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